未验证 提交 7578fcba 编写于 作者: W wangchaochaohu 提交者: GitHub

Profile code refine (#22800)

* add profiler_help.h to refine the code test=develop
上级 b7782ea7
......@@ -12,7 +12,6 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/platform/profiler.h"
#include <algorithm>
#include <iomanip>
#include <limits>
......@@ -22,7 +21,6 @@ limitations under the License. */
#include <stack>
#include <string>
#include <vector>
#ifdef PADDLE_WITH_CUDA
#include <cuda.h>
#endif // PADDLE_WITH_CUDA
......@@ -30,7 +28,11 @@ limitations under the License. */
#include "glog/logging.h"
#include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/platform/device_tracer.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/errors.h"
#include "paddle/fluid/platform/port.h"
#include "paddle/fluid/platform/profiler.h"
#include "paddle/fluid/platform/profiler_helper.h"
#include "paddle/fluid/string/printf.h"
DEFINE_bool(enable_rpc_profiler, false, "Enable rpc profiler or not.");
......@@ -38,40 +40,7 @@ DEFINE_bool(enable_rpc_profiler, false, "Enable rpc profiler or not.");
namespace paddle {
namespace platform {
static int64_t profiler_lister_id = 0;
static bool should_send_profile_state = false;
std::mutex profiler_mu;
static TracerOption g_tracer_option = TracerOption::kDefault;
// The profiler state, the initial value is ProfilerState::kDisabled
static ProfilerState g_state = ProfilerState::kDisabled;
// The thread local event list only can be accessed by the specific thread
// The thread index of each thread
static thread_local int32_t g_thread_id;
// The g_next_thread_id is a global counter for threads, by the g_thread_id and
// g_next_thread_id, we can know how many threads have created EventList.
static uint32_t g_next_thread_id = 0;
// The global mutex
static std::mutex g_all_event_lists_mutex;
// The total event lists of all threads
static std::list<std::shared_ptr<EventList<Event>>> g_all_event_lists;
// The thread local event list only can be accessed by the specific thread
static thread_local std::shared_ptr<EventList<Event>> g_event_list;
static std::list<std::shared_ptr<EventList<MemEvent>>> g_all_mem_event_lists;
static thread_local std::shared_ptr<EventList<MemEvent>> g_mem_event_list;
static std::mutex g_all_mem_event_lists_mutex;
static thread_local int32_t g_mem_thread_id;
static uint32_t g_mem_next_thread_id = 0;
inline uint64_t GetTimeInNsec() {
using clock = std::conditional<std::chrono::high_resolution_clock::is_steady,
std::chrono::high_resolution_clock,
std::chrono::steady_clock>::type;
return std::chrono::duration_cast<std::chrono::nanoseconds>(
clock::now().time_since_epoch())
.count();
}
MemEvenRecorder MemEvenRecorder::recorder;
Event::Event(EventType type, std::string name, uint32_t thread_id)
: type_(type), name_(name), thread_id_(thread_id) {
......@@ -93,51 +62,6 @@ double Event::CudaElapsedMs(const Event &e) const {
#endif
}
inline EventList<MemEvent> &GetMemEventList() {
if (!g_mem_event_list) {
g_mem_event_list = std::make_shared<EventList<MemEvent>>();
std::lock_guard<std::mutex> guard(g_all_mem_event_lists_mutex);
g_mem_thread_id = g_mem_next_thread_id++;
g_all_mem_event_lists.emplace_front(g_mem_event_list);
}
return *g_mem_event_list;
}
void PushMemEvent(uint64_t start_ns, uint64_t end_ns, size_t bytes,
const Place &place, const std::string &annotation) {
GetMemEventList().Record(EventType::kPushRange, start_ns, end_ns, bytes,
place, g_mem_thread_id, annotation);
}
void PopMemEvent(uint64_t start_ns, uint64_t end_ns, size_t bytes,
const Place &place, const std::string &annotation) {
GetMemEventList().Record(EventType::kPopRange, start_ns, end_ns, bytes, place,
g_mem_thread_id, annotation);
}
inline EventList<Event> &GetEventList() {
if (!g_event_list) {
std::lock_guard<std::mutex> guard(g_all_event_lists_mutex);
g_event_list = std::make_shared<EventList<Event>>();
g_thread_id = g_next_thread_id++;
g_all_event_lists.emplace_front(g_event_list);
RecoreCurThreadId(g_thread_id);
}
return *g_event_list;
}
void Mark(const std::string &name) {
GetEventList().Record(EventType::kMark, name, g_thread_id);
}
Event *PushEvent(const std::string &name) {
return GetEventList().Record(EventType::kPushRange, name, g_thread_id);
}
void PopEvent(const std::string &name) {
GetEventList().Record(EventType::kPopRange, name, g_thread_id);
}
RecordEvent::RecordEvent(const std::string &name, const RecordRole role)
: is_enabled_(false), start_ns_(PosixInNsec()), role_(role) {
if (g_state == ProfilerState::kDisabled || name.empty()) return;
......@@ -161,14 +85,15 @@ RecordEvent::~RecordEvent() {
PopEvent(name_);
}
MemEvenRecorder MemEvenRecorder::recorder;
void MemEvenRecorder::PushMemRecord(const void *ptr, const Place &place,
size_t size) {
if (g_state == ProfilerState::kDisabled) return;
std::lock_guard<std::mutex> guard(mtx_);
auto &events = address_memevent_[place];
PADDLE_ENFORCE(events.count(ptr) == 0, "");
PADDLE_ENFORCE_EQ(
events.count(ptr), 0,
platform::errors::InvalidArgument(
"The Place can't exist in the stage of PushMemRecord"));
events.emplace(ptr, std::unique_ptr<RecordMemEvent>(
new MemEvenRecorder::RecordMemEvent(place, size)));
}
......@@ -238,20 +163,34 @@ RecordBlock::~RecordBlock() {
ClearCurBlock();
}
void SynchronizeAllDevice() {
#ifdef PADDLE_WITH_CUDA
int count = GetCUDADeviceCount();
for (int i = 0; i < count; i++) {
SetDeviceId(i);
PADDLE_ENFORCE(cudaDeviceSynchronize());
}
#endif
void PushMemEvent(uint64_t start_ns, uint64_t end_ns, size_t bytes,
const Place &place, const std::string &annotation) {
GetMemEventList().Record(EventType::kPushRange, start_ns, end_ns, bytes,
place, g_mem_thread_id, annotation);
}
void PopMemEvent(uint64_t start_ns, uint64_t end_ns, size_t bytes,
const Place &place, const std::string &annotation) {
GetMemEventList().Record(EventType::kPopRange, start_ns, end_ns, bytes, place,
g_mem_thread_id, annotation);
}
void Mark(const std::string &name) {
GetEventList().Record(EventType::kMark, name, g_thread_id);
}
Event *PushEvent(const std::string &name) {
return GetEventList().Record(EventType::kPushRange, name, g_thread_id);
}
void PopEvent(const std::string &name) {
GetEventList().Record(EventType::kPopRange, name, g_thread_id);
}
void EnableProfiler(ProfilerState state) {
PADDLE_ENFORCE(state != ProfilerState::kDisabled,
"Can't enable profiling, since the input state is ",
"ProfilerState::kDisabled");
PADDLE_ENFORCE_NE(state, ProfilerState::kDisabled,
platform::errors::InvalidArgument(
"Can't enable profiling, since the input state is"
"ProfilerState::kDisabled"));
SynchronizeAllDevice();
std::lock_guard<std::mutex> l(profiler_mu);
if (state == g_state) {
......@@ -287,574 +226,6 @@ void ResetProfiler() {
}
}
std::vector<std::vector<Event>> GetAllEvents() {
std::lock_guard<std::mutex> guard(g_all_event_lists_mutex);
std::vector<std::vector<Event>> result;
for (auto it = g_all_event_lists.begin(); it != g_all_event_lists.end();
++it) {
result.emplace_back((*it)->Reduce());
}
return result;
}
std::vector<std::vector<MemEvent>> GetMemEvents() {
std::lock_guard<std::mutex> guard(g_all_mem_event_lists_mutex);
std::vector<std::vector<MemEvent>> result;
for (auto &it : g_all_mem_event_lists) {
result.emplace_back((*it).Reduce());
}
return result;
}
// The information of each event given in the profiling report
struct EventItem {
std::string name;
int calls;
double total_time;
double max_time;
double ave_time;
double min_time;
double cpu_time;
double gpu_time;
float ratio;
};
struct OverHead {
bool print = false;
double total_time = 0.;
float compute_ratio = 0.0f;
float framework_ratio = 0.0f;
EventItem memcpy_item;
std::vector<EventItem> sub_memcpy_items;
};
// Print results
void PrintProfiler(const std::vector<std::vector<EventItem>> &events_table,
const std::multimap<std::string, EventItem> &child_map,
const OverHead &overhead, const std::string &sorted_domain,
const size_t name_width, const size_t data_width,
bool merge_thread, int print_depth, int remove_len) {
if (print_depth == 0) {
// Output header information
std::cout << "\n------------------------->"
<< " Profiling Report "
<< "<-------------------------\n\n";
std::string place;
if (g_state == ProfilerState::kCPU) {
place = "CPU";
} else if (g_state == ProfilerState::kCUDA) {
place = "CUDA";
} else if (g_state == ProfilerState::kAll) {
place = "All";
} else {
PADDLE_THROW(platform::errors::InvalidArgument(
"Except profiler state must to be one of ['CPU', 'GPU' 'ALL'], but "
"received Invalid profiler state"));
}
if (merge_thread) {
std::cout << "Note! This Report merge all thread info into one."
<< std::endl;
}
std::cout << "Place: " << place << std::endl;
std::cout << "Time unit: ms" << std::endl;
std::cout << "Sorted by " << sorted_domain
<< " in descending order in the same thread\n\n";
if (overhead.print) {
double compute_time = overhead.total_time * overhead.compute_ratio;
double framework_time = overhead.total_time * overhead.framework_ratio;
std::cout.setf(std::ios::left);
std::cout << "Total time: " << overhead.total_time << std::endl;
std::cout << std::setw(25) << " Computation time"
<< "Total: " << std::setw(data_width) << compute_time
<< "Ratio: " << overhead.compute_ratio * 100 << "%"
<< std::endl;
std::cout << std::setw(25) << " Framework overhead"
<< "Total: " << std::setw(data_width) << framework_time
<< "Ratio: " << overhead.framework_ratio * 100 << "%"
<< std::endl;
std::cout << "\n-------------------------"
<< " GpuMemCpy Summary "
<< "-------------------------\n\n";
std::cout << std::setw(25) << "GpuMemcpy"
<< "Calls: " << std::setw(data_width)
<< overhead.memcpy_item.calls
<< "Total: " << std::setw(data_width)
<< overhead.memcpy_item.total_time
<< "Ratio: " << overhead.memcpy_item.ratio * 100 << "%"
<< std::endl;
for (size_t i = 0; i < overhead.sub_memcpy_items.size(); ++i) {
EventItem item = overhead.sub_memcpy_items[i];
if (item.calls != 0) {
std::cout << std::setw(25) << " " + item.name
<< "Calls: " << std::setw(data_width) << item.calls
<< "Total: " << std::setw(data_width) << item.total_time
<< "Ratio: " << item.ratio * 100 << "%" << std::endl;
}
}
}
std::cout << "\n-------------------------"
<< " Event Summary "
<< "-------------------------\n\n";
// Output events table
std::cout.setf(std::ios::left);
std::cout << std::setw(name_width) << "Event" << std::setw(data_width)
<< "Calls" << std::setw(data_width) << "Total";
if (g_state == ProfilerState::kAll) {
std::cout << std::setw(data_width * 2) << "CPU Time (Ratio)"
<< std::setw(data_width * 2) << "GPU Time (Ratio)";
}
std::cout << std::setw(data_width) << "Min." << std::setw(data_width)
<< "Max." << std::setw(data_width) << "Ave."
<< std::setw(data_width) << "Ratio." << std::endl;
}
if (events_table.size() <= 0) return;
for (size_t i = 0; i < events_table.size(); ++i) {
for (size_t j = 0; j < events_table[i].size(); ++j) {
auto event_item = events_table[i][j];
std::vector<std::vector<EventItem>> child_table;
std::vector<EventItem> table;
for (auto it = child_map.begin(); it != child_map.end(); it++) {
if (it->first == event_item.name) {
table.push_back(it->second);
}
}
child_table.push_back(table);
auto name_len = event_item.name.length();
std::string print_name = event_item.name.substr(remove_len, name_len);
std::string delimiter;
for (int i = 0; i < print_depth; i++) {
delimiter = " " + delimiter;
}
print_name = delimiter + print_name;
std::cout << std::setw(name_width) << print_name << std::setw(data_width)
<< event_item.calls << std::setw(data_width)
<< event_item.total_time;
if (g_state == ProfilerState::kAll) {
std::cout << std::setw(data_width * 2)
<< string::Sprintf(
"%f (%f)", event_item.cpu_time,
(event_item.cpu_time / event_item.total_time))
<< std::setw(data_width * 2)
<< string::Sprintf(
"%f (%f)", event_item.gpu_time,
(event_item.gpu_time / event_item.total_time));
}
std::cout << std::setw(data_width) << event_item.min_time
<< std::setw(data_width) << event_item.max_time
<< std::setw(data_width) << event_item.ave_time
<< std::setw(data_width) << event_item.ratio << std::endl;
PrintProfiler(child_table, child_map, overhead, sorted_domain, name_width,
data_width, merge_thread, print_depth + 1, 0);
}
}
}
std::function<bool(const EventItem &, const EventItem &)> SetSortedFunc(
EventSortingKey sorted_by, std::string *domain) {
std::string sorted_domain;
std::function<bool(const EventItem &, const EventItem &)> sorted_func;
switch (sorted_by) {
case EventSortingKey::kCalls:
sorted_domain = "number of calls";
sorted_func = [](const EventItem &a, const EventItem &b) {
return a.calls > b.calls;
};
break;
case EventSortingKey::kTotal:
sorted_domain = "total time";
sorted_func = [](const EventItem &a, const EventItem &b) {
return a.total_time > b.total_time;
};
break;
case EventSortingKey::kMin:
sorted_domain = "minimum time";
sorted_func = [](const EventItem &a, const EventItem &b) {
return a.min_time > b.min_time;
};
break;
case EventSortingKey::kMax:
sorted_domain = "maximum time";
sorted_func = [](const EventItem &a, const EventItem &b) {
return a.max_time > b.max_time;
};
break;
case EventSortingKey::kAve:
sorted_domain = "average time";
sorted_func = [](const EventItem &a, const EventItem &b) {
return a.ave_time > b.ave_time;
};
break;
case EventSortingKey::kGPUTime:
sorted_domain = "average time";
sorted_func = [](const EventItem &a, const EventItem &b) {
return a.gpu_time > b.gpu_time;
};
break;
case EventSortingKey::kCPUTime:
sorted_domain = "average time";
sorted_func = [](const EventItem &a, const EventItem &b) {
return a.cpu_time > b.cpu_time;
};
break;
default:
sorted_domain = "event first end time";
}
*domain = sorted_domain;
return sorted_func;
}
void SetEvent(bool merge_thread, Event analyze_event, size_t *max_name_width,
std::list<Event> *pushed_events,
std::vector<EventItem> *event_items,
std::unordered_map<std::string, int> *event_idx) {
if (analyze_event.type() == EventType::kPushRange) {
pushed_events->push_back(analyze_event);
} else if (analyze_event.type() == EventType::kPopRange) {
std::list<Event>::reverse_iterator rit = pushed_events->rbegin();
while (rit != pushed_events->rend() &&
rit->name() != analyze_event.name()) {
++rit;
}
// to find the father name event name
if (rit != pushed_events->rend()) {
double event_time = 0;
double gpu_time = 0.0f;
#ifdef PADDLE_WITH_CUDA
gpu_time = rit->CudaElapsedMs(analyze_event);
#endif
double cpu_time = rit->CpuElapsedMs(analyze_event);
if (g_state == ProfilerState::kCUDA) {
event_time = gpu_time;
} else if (g_state == ProfilerState::kCPU) {
event_time = cpu_time;
} else {
event_time = gpu_time + cpu_time;
}
std::string event_name;
if (merge_thread) {
event_name = rit->name();
*max_name_width = std::max(*max_name_width, event_name.size());
} else {
event_name =
"thread" + std::to_string(rit->thread_id()) + "::" + rit->name();
*max_name_width = std::max(*max_name_width, event_name.size());
}
if (event_idx->find(event_name) == event_idx->end()) {
event_idx->insert({event_name, event_items->size()});
EventItem event_item = {event_name, 1, event_time,
event_time, event_time, event_time,
cpu_time, gpu_time, 0.};
event_items->push_back(event_item);
} else {
int index = event_idx->at(event_name);
event_items->at(index).calls += 1;
// total time
event_items->at(index).total_time += event_time;
// min time
event_items->at(index).min_time =
std::min(event_time, event_items->at(index).min_time);
// max time
event_items->at(index).max_time =
std::max(event_time, event_items->at(index).max_time);
event_items->at(index).gpu_time += gpu_time;
event_items->at(index).cpu_time += cpu_time;
}
// remove the push marker from the list
pushed_events->erase((++rit).base());
} else {
LOG(WARNING) << "Cannot find the push marker of event \'"
<< analyze_event.name()
<< "\', which will be ignored in profiling report.";
}
}
}
void ComputeOverhead(const std::multimap<std::string, EventItem> &sub_child_map,
OverHead *overhead) {
EventItem memcpy_async = {"GpuMemcpyAsync", 0, 0., 0., 0., 0., 0., 0., 0.0f};
EventItem memcpy_sync = {"GpuMemcpySync", 0, 0., 0., 0., 0., 0., 0., 0.0f};
for (auto it = sub_child_map.begin(); it != sub_child_map.end(); it++) {
if (it->second.name.find("compute") != std::string::npos) {
overhead->compute_ratio += it->second.ratio;
}
if (it->second.name.find("GpuMemcpyAsync") != std::string::npos) {
memcpy_async.calls += it->second.calls;
memcpy_async.total_time += it->second.total_time;
memcpy_async.ratio += it->second.ratio;
} else if (it->second.name.find("GpuMemcpySync") != std::string::npos) {
memcpy_sync.calls += it->second.calls;
memcpy_sync.total_time += it->second.total_time;
memcpy_sync.ratio += it->second.ratio;
}
}
overhead->framework_ratio = 1.0f - overhead->compute_ratio;
overhead->memcpy_item.calls = memcpy_async.calls + memcpy_sync.calls;
overhead->memcpy_item.total_time =
memcpy_async.total_time + memcpy_sync.total_time;
overhead->memcpy_item.ratio = memcpy_async.ratio + memcpy_sync.ratio;
overhead->sub_memcpy_items = {memcpy_async, memcpy_sync};
}
// When TracerOption is KDefault, OpDetail will be recorded but only default
// profile result will be printed.
// GpuMemcpy should be printed in kDefault setting, however it offten occurs
// during 'compute' or 'prepare data' process, so the elements of sub_child_map
// need to be changed before being inserted into child_map. for instance:
// it->first: OpType/compute => OpType
// it->second.name: OpType/compute/GpuMemcpyAsync => OpType/GpuMemcpyAsync.
void GetChildMap(const std::multimap<std::string, EventItem> &sub_child_map,
std::multimap<std::string, EventItem> *child_map) {
if (platform::GetTracerOption() != TracerOption::kDefault) {
for (auto it = sub_child_map.begin(); it != sub_child_map.end(); it++) {
child_map->insert(
std::pair<std::string, EventItem>(it->first, it->second));
}
} else {
for (auto it = sub_child_map.begin(); it != sub_child_map.end(); it++) {
if (it->second.name.find("GpuMemcpy") != std::string::npos) {
std::string parent_name = it->first;
auto left_pos = it->first.find("/");
if (left_pos != std::string::npos) {
parent_name = it->first.substr(0, left_pos);
}
auto item = it->second;
auto right_pos = item.name.rfind("/");
if (right_pos != std::string::npos) {
std::string child_name = item.name.substr(
right_pos + 1, item.name.length() - right_pos - 1);
item.name = parent_name + "/" + child_name;
}
child_map->insert(std::pair<std::string, EventItem>(parent_name, item));
}
}
}
}
// Parse the event list and output the profiling report
void ParseEvents(const std::vector<std::vector<Event>> &events,
bool merge_thread,
EventSortingKey sorted_by = EventSortingKey::kDefault) {
if (g_state == ProfilerState::kDisabled) return;
if (merge_thread && events.size() < 2) return;
std::string sorted_domain;
std::function<bool(const EventItem &, const EventItem &)> sorted_func;
sorted_func = SetSortedFunc(sorted_by, &sorted_domain);
const std::vector<std::vector<Event>> *analyze_events;
std::vector<std::vector<Event>> merged_events_list;
if (merge_thread) {
std::vector<Event> merged_events;
for (size_t i = 0; i < events.size(); ++i) {
for (size_t j = 0; j < events[i].size(); ++j) {
merged_events.push_back(events[i][j]);
}
}
merged_events_list.push_back(merged_events);
analyze_events = &merged_events_list;
} else {
analyze_events = &events;
}
std::vector<std::vector<EventItem>> events_table;
std::multimap<std::string, EventItem> child_map;
size_t max_name_width = 0;
OverHead overhead;
for (size_t i = 0; i < (*analyze_events).size(); i++) {
double total = 0.; // the total time in one thread
std::list<Event> pushed_events;
std::vector<EventItem> event_items;
std::vector<EventItem> main_event_items;
std::unordered_map<std::string, int> event_idx;
std::multimap<std::string, EventItem> sub_child_map;
for (size_t j = 0; j < (*analyze_events)[i].size(); j++) {
Event analyze_event = (*analyze_events)[i][j];
SetEvent(merge_thread, analyze_event, &max_name_width, &pushed_events,
&event_items, &event_idx);
}
auto table_size = event_items.size();
std::vector<int> child_index(table_size, 0);
for (size_t j = 0; j < table_size; ++j) {
std::string fname = event_items[j].name;
std::string grad_name = event_items[j].name + "_grad";
for (size_t k = 0; k < table_size; ++k) {
std::string cname = event_items[k].name;
bool condition = cname.length() > fname.length() &&
cname.rfind(fname, 0) == 0 &&
!cname.rfind(grad_name, 0) == 0 &&
(cname[fname.length()] == '/' &&
cname.rfind('/') == fname.length());
if (condition) {
sub_child_map.insert(
std::pair<std::string, EventItem>(fname, event_items[k]));
child_index[k] = 1;
}
}
}
for (size_t j = 0; j < table_size; ++j) {
if (child_index[j] == 0) {
main_event_items.push_back(event_items[j]);
total += event_items[j].total_time;
}
}
// average time
for (auto &item : main_event_items) {
item.ave_time = item.total_time / item.calls;
item.ratio = item.total_time / total;
}
for (auto it = sub_child_map.begin(); it != sub_child_map.end(); it++) {
it->second.ratio = it->second.total_time / total;
it->second.ave_time = it->second.total_time / it->second.calls;
}
// When multi-threaded, overhead are printed only if merge_thread is true
if ((*analyze_events).size() == 1) {
overhead.total_time = total;
overhead.print = true;
ComputeOverhead(sub_child_map, &overhead);
}
// sort
if (sorted_by != EventSortingKey::kDefault) {
std::sort(main_event_items.begin(), main_event_items.end(), sorted_func);
}
events_table.push_back(main_event_items);
// log warning if there are events with `push` but without `pop`
std::list<Event>::reverse_iterator rit = pushed_events.rbegin();
while (rit != pushed_events.rend()) {
LOG(WARNING) << "Cannot find the pop marker of event \'" << rit->name()
<< "\', which will be ignored in profiling report.";
++rit;
}
GetChildMap(sub_child_map, &child_map);
}
// Print report
PrintProfiler(events_table, child_map, overhead, sorted_domain,
max_name_width + 8, 12, merge_thread, 0, 0);
}
struct MemoryProfierReport {
size_t alloc_times{0};
size_t alloc_size{0};
size_t free_times{0};
size_t free_size{0};
};
// Print results
void PrintMemProfiler(
const std::map<Place, std::unordered_map<std::string, MemoryProfierReport>>
&annotation_report,
const size_t name_width, const size_t data_width) {
// Output header information
std::cout << "\n------------------------->"
<< " Memory Profiling Report "
<< "<-------------------------\n\n";
// Output events table
std::cout.setf(std::ios::left);
std::cout << std::setw(name_width) << "Event" << std::setw(data_width)
<< "Alloc Calls" << std::setw(data_width) << "Size(MB)"
<< std::setw(data_width) << "Free Calls" << std::setw(data_width)
<< "Size(MB)" << std::endl;
for (auto &tmp : annotation_report) {
for (auto &e : tmp.second) {
auto event_name = string::Sprintf("%s:%s", tmp.first, e.first);
std::cout << std::setw(name_width) << event_name;
std::cout << std::setw(data_width) << e.second.alloc_times;
std::cout << std::setw(data_width)
<< e.second.alloc_size / (1024.0 * 1024.0);
std::cout << std::setw(data_width) << e.second.free_times;
std::cout << std::setw(data_width)
<< e.second.free_size / (1024.0 * 1024.0) << std::endl;
}
}
std::cout << std::endl;
}
// parse memory events
void ParseMemEvents(const std::vector<std::vector<MemEvent>> &events) {
if (g_state == ProfilerState::kDisabled) return;
// place, annotation, alloc times, alloc size
std::map<Place, std::unordered_map<std::string, MemoryProfierReport>>
annotation_report;
for (auto &tmp : events) {
for (auto &e : tmp) {
if (e.type() == EventType::kPushRange) {
annotation_report[e.place()][e.annotation()].alloc_times += 1;
annotation_report[e.place()][e.annotation()].alloc_size += e.bytes();
} else if (e.type() == EventType::kPopRange) {
annotation_report[e.place()][e.annotation()].free_times += 1;
annotation_report[e.place()][e.annotation()].free_size += e.bytes();
}
}
}
PrintMemProfiler(annotation_report, 55, 18);
}
void DealWithShowName() {
std::unordered_map<std::string, std::vector<std::string>> profiler_name_info;
for (auto it = g_all_event_lists.begin(); it != g_all_event_lists.end();
++it) {
for (auto &block : (*it)->event_blocks) {
for (auto &r : block) {
auto event_name = r.name();
size_t start = event_name.find('%', 0);
size_t end = event_name.find('%', start + 1);
std::string prefix_str = event_name.substr(0, start);
while (start != std::string::npos && end != std::string::npos) {
auto search_str = event_name.substr(start, end - start + 1);
std::string replace_str = "";
int replace_index = 0;
auto it = profiler_name_info.find(prefix_str);
if (it == profiler_name_info.end()) {
std::vector<std::string> op_name_vector{search_str};
profiler_name_info[prefix_str] = op_name_vector;
} else {
auto op_name_vector = it->second;
auto iter =
find(op_name_vector.begin(), op_name_vector.end(), search_str);
if (iter == op_name_vector.end()) {
replace_index = it->second.size();
it->second.push_back(search_str);
} else {
replace_index = it->second.size() - 1;
}
}
replace_str = std::to_string(replace_index);
event_name.replace(start, end - start + 1, replace_str);
start = start + 1;
start = event_name.find('%', start);
end = event_name.find('%', start + 1);
prefix_str = event_name.substr(0, start);
}
r.set_name(event_name);
}
}
}
}
void DisableProfiler(EventSortingKey sorted_key,
const std::string &profile_path) {
SynchronizeAllDevice();
......@@ -887,17 +258,19 @@ void DisableProfiler(EventSortingKey sorted_key,
should_send_profile_state = true;
}
std::vector<std::vector<Event>> GetAllEvents() {
std::lock_guard<std::mutex> guard(g_all_event_lists_mutex);
std::vector<std::vector<Event>> result;
for (auto it = g_all_event_lists.begin(); it != g_all_event_lists.end();
++it) {
result.emplace_back((*it)->Reduce());
}
return result;
}
bool IsProfileEnabled() { return g_state != ProfilerState::kDisabled; }
bool ShouldSendProfileState() { return should_send_profile_state; }
void SetProfileListener() {
std::mt19937 rng;
rng.seed(std::random_device()());
std::uniform_int_distribution<std::mt19937::result_type> dist6(
1, std::numeric_limits<int>::max());
profiler_lister_id = dist6(rng);
}
int64_t ListenerId() { return profiler_lister_id; }
bool ShouldSendProfileState() { return should_send_profile_state; }
std::string OpName(const framework::VariableNameMap &name_map,
const std::string &type_name) {
......@@ -923,5 +296,16 @@ void SetTracerOption(TracerOption option) {
}
platform::TracerOption GetTracerOption() { return g_tracer_option; }
void SetProfileListener() {
std::mt19937 rng;
rng.seed(std::random_device()());
std::uniform_int_distribution<std::mt19937::result_type> dist6(
1, std::numeric_limits<int>::max());
profiler_lister_id = dist6(rng);
}
int64_t ListenerId() { return profiler_lister_id; }
} // namespace platform
} // namespace paddle
......@@ -33,6 +33,9 @@ limitations under the License. */
namespace paddle {
namespace platform {
const int kEnableProfiler = 1;
const int kDisableProfiler = 2;
enum class ProfilerState {
kDisabled, // disabled state
kCPU, // CPU profiling state
......@@ -53,12 +56,46 @@ enum class TracerOption {
kAllOpDetail, // print the detail profiling result of different op name
};
void Mark(const std::string& name);
// Candidate keys to sort the profiling report
enum class EventSortingKey {
kDefault,
kCalls,
kTotal,
kMin,
kMax,
kAve,
kCPUTime,
kGPUTime
};
void PushMemEvent(uint64_t start_ns, uint64_t end_ns, size_t bytes,
const Place& place);
void PopMemEvent(uint64_t start_ns, uint64_t end_ns, size_t bytes,
const Place& place);
struct MemoryProfierReport {
size_t alloc_times{0};
size_t alloc_size{0};
size_t free_times{0};
size_t free_size{0};
};
// The information of each event given in the profiling report
struct EventItem {
std::string name;
int calls;
double total_time;
double max_time;
double ave_time;
double min_time;
double cpu_time;
double gpu_time;
float ratio;
};
struct OverHead {
bool print = false;
double total_time = 0.;
float compute_ratio = 0.0f;
float framework_ratio = 0.0f;
EventItem memcpy_item;
std::vector<EventItem> sub_memcpy_items;
};
struct MemEvenRecorder {
public:
......@@ -89,9 +126,6 @@ struct MemEvenRecorder {
DISABLE_COPY_AND_ASSIGN(MemEvenRecorder);
};
Event* PushEvent(const std::string& name);
void PopEvent(const std::string& name);
struct RecordEvent {
RecordEvent(const std::string& name,
const RecordRole role = RecordRole::kOrdinary);
......@@ -127,22 +161,6 @@ struct RecordBlock {
uint64_t start_ns_;
};
// Return the event list of all threads. Assumed the returned value calls
// event_lists, event_lists[i][j] represents the j-th Event of i-th thread.
std::vector<std::vector<Event>> GetAllEvents();
// Candidate keys to sort the profiling report
enum class EventSortingKey {
kDefault,
kCalls,
kTotal,
kMin,
kMax,
kAve,
kCPUTime,
kGPUTime
};
template <typename T>
struct EventList {
constexpr static size_t kMB = 1024 * 1024;
......@@ -178,25 +196,27 @@ struct EventList {
std::forward_list<std::vector<T>> event_blocks;
};
void Mark(const std::string& name);
void PushMemEvent(uint64_t start_ns, uint64_t end_ns, size_t bytes,
const Place& place, const std::string& annotation);
void PopMemEvent(uint64_t start_ns, uint64_t end_ns, size_t bytes,
const Place& place, const std::string& annotation);
Event* PushEvent(const std::string& name);
void PopEvent(const std::string& name);
// Return the event list of all threads. Assumed the returned value calls
// event_lists, event_lists[i][j] represents the j-th Event of i-th thread.
std::vector<std::vector<Event>> GetAllEvents();
// Enable the profiling function.
void EnableProfiler(ProfilerState state);
// Clear the g_all_event_lists, which is total event lists of all threads.
void ResetProfiler();
void DisableProfiler(EventSortingKey sorted_key,
const std::string& profile_path);
const int kEnableProfiler = 1;
const int kDisableProfiler = 2;
// Test if the profiler is currently enabled.
bool IsProfileEnabled();
// Whether the trainer should send profiling state to PS.
bool ShouldSendProfileState();
// Mark current process as PS by assigning a lister id.
void SetProfileListener();
int64_t ListenerId();
std::string OpName(const framework::VariableNameMap& name_map,
const std::string& type_name);
void SetTracerOption(TracerOption option);
......@@ -205,5 +225,9 @@ platform::TracerOption GetTracerOption();
void DummyKernelAndEvent();
#endif
// Mark current process as PS by assigning a lister id.
void SetProfileListener();
int64_t ListenerId();
} // namespace platform
} // namespace paddle
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <algorithm>
#include <iomanip>
#include <limits>
#include <list>
#include <map>
#include <memory>
#include <mutex> // NOLINT
#include <random>
#include <stack>
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
#ifdef PADDLE_WITH_CUDA
#include <cuda.h>
#endif // PADDLE_WITH_CUDA
namespace paddle {
namespace platform {
static int64_t profiler_lister_id = 0;
static bool should_send_profile_state = false;
std::mutex profiler_mu;
static TracerOption g_tracer_option = TracerOption::kDefault;
// The profiler state, the initial value is ProfilerState::kDisabled
static ProfilerState g_state = ProfilerState::kDisabled;
// The thread local event list only can be accessed by the specific thread
// The thread index of each thread
static thread_local int32_t g_thread_id;
// The g_next_thread_id is a global counter for threads, by the g_thread_id and
// g_next_thread_id, we can know how many threads have created EventList.
static uint32_t g_next_thread_id = 0;
// The global mutex
static std::mutex g_all_event_lists_mutex;
// The total event lists of all threads
static std::list<std::shared_ptr<EventList<Event>>> g_all_event_lists;
// The thread local event list only can be accessed by the specific thread
static thread_local std::shared_ptr<EventList<Event>> g_event_list;
static std::list<std::shared_ptr<EventList<MemEvent>>> g_all_mem_event_lists;
static thread_local std::shared_ptr<EventList<MemEvent>> g_mem_event_list;
static std::mutex g_all_mem_event_lists_mutex;
static thread_local int32_t g_mem_thread_id;
static uint32_t g_mem_next_thread_id = 0;
inline uint64_t GetTimeInNsec() {
using clock = std::conditional<std::chrono::high_resolution_clock::is_steady,
std::chrono::high_resolution_clock,
std::chrono::steady_clock>::type;
return std::chrono::duration_cast<std::chrono::nanoseconds>(
clock::now().time_since_epoch())
.count();
}
inline EventList<Event> &GetEventList() {
if (!g_event_list) {
std::lock_guard<std::mutex> guard(g_all_event_lists_mutex);
g_event_list = std::make_shared<EventList<Event>>();
g_thread_id = g_next_thread_id++;
g_all_event_lists.emplace_front(g_event_list);
RecoreCurThreadId(g_thread_id);
}
return *g_event_list;
}
inline EventList<MemEvent> &GetMemEventList() {
if (!g_mem_event_list) {
g_mem_event_list = std::make_shared<EventList<MemEvent>>();
std::lock_guard<std::mutex> guard(g_all_mem_event_lists_mutex);
g_mem_thread_id = g_mem_next_thread_id++;
g_all_mem_event_lists.emplace_front(g_mem_event_list);
}
return *g_mem_event_list;
}
std::vector<std::vector<MemEvent>> GetMemEvents() {
std::lock_guard<std::mutex> guard(g_all_mem_event_lists_mutex);
std::vector<std::vector<MemEvent>> result;
for (auto &it : g_all_mem_event_lists) {
result.emplace_back((*it).Reduce());
}
return result;
}
void SynchronizeAllDevice() {
#ifdef PADDLE_WITH_CUDA
int count = GetCUDADeviceCount();
for (int i = 0; i < count; i++) {
SetDeviceId(i);
PADDLE_ENFORCE_CUDA_SUCCESS(
cudaDeviceSynchronize(),
platform::errors::External(
"Device synchronize failed in cudaDeviceSynchronize()"));
}
#endif
}
// Print results
void PrintMemProfiler(
const std::map<Place, std::unordered_map<std::string, MemoryProfierReport>>
&annotation_report,
const size_t name_width, const size_t data_width) {
// Output header information
std::cout << "\n------------------------->"
<< " Memory Profiling Report "
<< "<-------------------------\n\n";
// Output events table
std::cout.setf(std::ios::left);
std::cout << std::setw(name_width) << "Event" << std::setw(data_width)
<< "Alloc Calls" << std::setw(data_width) << "Size(MB)"
<< std::setw(data_width) << "Free Calls" << std::setw(data_width)
<< "Size(MB)" << std::endl;
for (auto &tmp : annotation_report) {
for (auto &e : tmp.second) {
auto event_name = string::Sprintf("%s:%s", tmp.first, e.first);
std::cout << std::setw(name_width) << event_name;
std::cout << std::setw(data_width) << e.second.alloc_times;
std::cout << std::setw(data_width)
<< e.second.alloc_size / (1024.0 * 1024.0);
std::cout << std::setw(data_width) << e.second.free_times;
std::cout << std::setw(data_width)
<< e.second.free_size / (1024.0 * 1024.0) << std::endl;
}
}
std::cout << std::endl;
}
// parse memory events
void ParseMemEvents(const std::vector<std::vector<MemEvent>> &events) {
if (g_state == ProfilerState::kDisabled) return;
// place, annotation, alloc times, alloc size
std::map<Place, std::unordered_map<std::string, MemoryProfierReport>>
annotation_report;
for (auto &tmp : events) {
for (auto &e : tmp) {
if (e.type() == EventType::kPushRange) {
annotation_report[e.place()][e.annotation()].alloc_times += 1;
annotation_report[e.place()][e.annotation()].alloc_size += e.bytes();
} else if (e.type() == EventType::kPopRange) {
annotation_report[e.place()][e.annotation()].free_times += 1;
annotation_report[e.place()][e.annotation()].free_size += e.bytes();
}
}
}
PrintMemProfiler(annotation_report, 55, 18);
}
void DealWithShowName() {
std::unordered_map<std::string, std::vector<std::string>> profiler_name_info;
for (auto it = g_all_event_lists.begin(); it != g_all_event_lists.end();
++it) {
for (auto &block : (*it)->event_blocks) {
for (auto &r : block) {
auto event_name = r.name();
size_t start = event_name.find('%', 0);
size_t end = event_name.find('%', start + 1);
std::string prefix_str = event_name.substr(0, start);
while (start != std::string::npos && end != std::string::npos) {
auto search_str = event_name.substr(start, end - start + 1);
std::string replace_str = "";
int replace_index = 0;
auto it = profiler_name_info.find(prefix_str);
if (it == profiler_name_info.end()) {
std::vector<std::string> op_name_vector{search_str};
profiler_name_info[prefix_str] = op_name_vector;
} else {
auto op_name_vector = it->second;
auto iter =
find(op_name_vector.begin(), op_name_vector.end(), search_str);
if (iter == op_name_vector.end()) {
replace_index = it->second.size();
it->second.push_back(search_str);
} else {
replace_index = it->second.size() - 1;
}
}
replace_str = std::to_string(replace_index);
event_name.replace(start, end - start + 1, replace_str);
start = start + 1;
start = event_name.find('%', start);
end = event_name.find('%', start + 1);
prefix_str = event_name.substr(0, start);
}
r.set_name(event_name);
}
}
}
}
std::function<bool(const EventItem &, const EventItem &)> SetSortedFunc(
EventSortingKey sorted_by, std::string *domain) {
std::string sorted_domain;
std::function<bool(const EventItem &, const EventItem &)> sorted_func;
switch (sorted_by) {
case EventSortingKey::kCalls:
sorted_domain = "number of calls";
sorted_func = [](const EventItem &a, const EventItem &b) {
return a.calls > b.calls;
};
break;
case EventSortingKey::kTotal:
sorted_domain = "total time";
sorted_func = [](const EventItem &a, const EventItem &b) {
return a.total_time > b.total_time;
};
break;
case EventSortingKey::kMin:
sorted_domain = "minimum time";
sorted_func = [](const EventItem &a, const EventItem &b) {
return a.min_time > b.min_time;
};
break;
case EventSortingKey::kMax:
sorted_domain = "maximum time";
sorted_func = [](const EventItem &a, const EventItem &b) {
return a.max_time > b.max_time;
};
break;
case EventSortingKey::kAve:
sorted_domain = "average time";
sorted_func = [](const EventItem &a, const EventItem &b) {
return a.ave_time > b.ave_time;
};
break;
case EventSortingKey::kGPUTime:
sorted_domain = "average time";
sorted_func = [](const EventItem &a, const EventItem &b) {
return a.gpu_time > b.gpu_time;
};
break;
case EventSortingKey::kCPUTime:
sorted_domain = "average time";
sorted_func = [](const EventItem &a, const EventItem &b) {
return a.cpu_time > b.cpu_time;
};
break;
default:
sorted_domain = "event first end time";
}
*domain = sorted_domain;
return sorted_func;
}
void SetEvent(bool merge_thread, Event analyze_event, size_t *max_name_width,
std::list<Event> *pushed_events,
std::vector<EventItem> *event_items,
std::unordered_map<std::string, int> *event_idx) {
if (analyze_event.type() == EventType::kPushRange) {
pushed_events->push_back(analyze_event);
} else if (analyze_event.type() == EventType::kPopRange) {
std::list<Event>::reverse_iterator rit = pushed_events->rbegin();
while (rit != pushed_events->rend() &&
rit->name() != analyze_event.name()) {
++rit;
}
// to find the father name event name
if (rit != pushed_events->rend()) {
double event_time = 0;
double gpu_time = 0.0f;
#ifdef PADDLE_WITH_CUDA
gpu_time = rit->CudaElapsedMs(analyze_event);
#endif
double cpu_time = rit->CpuElapsedMs(analyze_event);
if (g_state == ProfilerState::kCUDA) {
event_time = gpu_time;
} else if (g_state == ProfilerState::kCPU) {
event_time = cpu_time;
} else {
event_time = gpu_time + cpu_time;
}
std::string event_name;
if (merge_thread) {
event_name = rit->name();
*max_name_width = std::max(*max_name_width, event_name.size());
} else {
event_name =
"thread" + std::to_string(rit->thread_id()) + "::" + rit->name();
*max_name_width = std::max(*max_name_width, event_name.size());
}
if (event_idx->find(event_name) == event_idx->end()) {
event_idx->insert({event_name, event_items->size()});
EventItem event_item = {event_name, 1, event_time,
event_time, event_time, event_time,
cpu_time, gpu_time, 0.};
event_items->push_back(event_item);
} else {
int index = event_idx->at(event_name);
event_items->at(index).calls += 1;
// total time
event_items->at(index).total_time += event_time;
// min time
event_items->at(index).min_time =
std::min(event_time, event_items->at(index).min_time);
// max time
event_items->at(index).max_time =
std::max(event_time, event_items->at(index).max_time);
event_items->at(index).gpu_time += gpu_time;
event_items->at(index).cpu_time += cpu_time;
}
// remove the push marker from the list
pushed_events->erase((++rit).base());
} else {
LOG(WARNING) << "Cannot find the push marker of event \'"
<< analyze_event.name()
<< "\', which will be ignored in profiling report.";
}
}
}
void ComputeOverhead(const std::multimap<std::string, EventItem> &sub_child_map,
OverHead *overhead) {
EventItem memcpy_async = {"GpuMemcpyAsync", 0, 0., 0., 0., 0., 0., 0., 0.0f};
EventItem memcpy_sync = {"GpuMemcpySync", 0, 0., 0., 0., 0., 0., 0., 0.0f};
for (auto it = sub_child_map.begin(); it != sub_child_map.end(); it++) {
if (it->second.name.find("compute") != std::string::npos) {
overhead->compute_ratio += it->second.ratio;
}
if (it->second.name.find("GpuMemcpyAsync") != std::string::npos) {
memcpy_async.calls += it->second.calls;
memcpy_async.total_time += it->second.total_time;
memcpy_async.ratio += it->second.ratio;
} else if (it->second.name.find("GpuMemcpySync") != std::string::npos) {
memcpy_sync.calls += it->second.calls;
memcpy_sync.total_time += it->second.total_time;
memcpy_sync.ratio += it->second.ratio;
}
}
overhead->framework_ratio = 1.0f - overhead->compute_ratio;
overhead->memcpy_item.calls = memcpy_async.calls + memcpy_sync.calls;
overhead->memcpy_item.total_time =
memcpy_async.total_time + memcpy_sync.total_time;
overhead->memcpy_item.ratio = memcpy_async.ratio + memcpy_sync.ratio;
overhead->sub_memcpy_items = {memcpy_async, memcpy_sync};
}
// When TracerOption is KDefault, OpDetail will be recorded but only default
// profile result will be printed.
// GpuMemcpy should be printed in kDefault setting, however it offten occurs
// during 'compute' or 'prepare data' process, so the elements of sub_child_map
// need to be changed before being inserted into child_map. for instance:
// it->first: OpType/compute => OpType
// it->second.name: OpType/compute/GpuMemcpyAsync => OpType/GpuMemcpyAsync.
void GetChildMap(const std::multimap<std::string, EventItem> &sub_child_map,
std::multimap<std::string, EventItem> *child_map) {
if (platform::GetTracerOption() != TracerOption::kDefault) {
for (auto it = sub_child_map.begin(); it != sub_child_map.end(); it++) {
child_map->insert(
std::pair<std::string, EventItem>(it->first, it->second));
}
} else {
for (auto it = sub_child_map.begin(); it != sub_child_map.end(); it++) {
if (it->second.name.find("GpuMemcpy") != std::string::npos) {
std::string parent_name = it->first;
auto left_pos = it->first.find("/");
if (left_pos != std::string::npos) {
parent_name = it->first.substr(0, left_pos);
}
auto item = it->second;
auto right_pos = item.name.rfind("/");
if (right_pos != std::string::npos) {
std::string child_name = item.name.substr(
right_pos + 1, item.name.length() - right_pos - 1);
item.name = parent_name + "/" + child_name;
}
child_map->insert(std::pair<std::string, EventItem>(parent_name, item));
}
}
}
}
// Print results
void PrintProfiler(const std::vector<std::vector<EventItem>> &events_table,
const std::multimap<std::string, EventItem> &child_map,
const OverHead &overhead, const std::string &sorted_domain,
const size_t name_width, const size_t data_width,
bool merge_thread, int print_depth, int remove_len) {
if (print_depth == 0) {
// Output header information
std::cout << "\n------------------------->"
<< " Profiling Report "
<< "<-------------------------\n\n";
std::string place;
if (g_state == ProfilerState::kCPU) {
place = "CPU";
} else if (g_state == ProfilerState::kCUDA) {
place = "CUDA";
} else if (g_state == ProfilerState::kAll) {
place = "All";
} else {
PADDLE_THROW(platform::errors::InvalidArgument(
"Except profiler state must to be one of ['CPU', 'GPU' 'ALL'], but "
"received Invalid profiler state"));
}
if (merge_thread) {
std::cout << "Note! This Report merge all thread info into one."
<< std::endl;
}
std::cout << "Place: " << place << std::endl;
std::cout << "Time unit: ms" << std::endl;
std::cout << "Sorted by " << sorted_domain
<< " in descending order in the same thread\n\n";
if (overhead.print) {
double compute_time = overhead.total_time * overhead.compute_ratio;
double framework_time = overhead.total_time * overhead.framework_ratio;
std::cout.setf(std::ios::left);
std::cout << "Total time: " << overhead.total_time << std::endl;
std::cout << std::setw(25) << " Computation time"
<< "Total: " << std::setw(data_width) << compute_time
<< "Ratio: " << overhead.compute_ratio * 100 << "%"
<< std::endl;
std::cout << std::setw(25) << " Framework overhead"
<< "Total: " << std::setw(data_width) << framework_time
<< "Ratio: " << overhead.framework_ratio * 100 << "%"
<< std::endl;
std::cout << "\n-------------------------"
<< " GpuMemCpy Summary "
<< "-------------------------\n\n";
std::cout << std::setw(25) << "GpuMemcpy"
<< "Calls: " << std::setw(data_width)
<< overhead.memcpy_item.calls
<< "Total: " << std::setw(data_width)
<< overhead.memcpy_item.total_time
<< "Ratio: " << overhead.memcpy_item.ratio * 100 << "%"
<< std::endl;
for (size_t i = 0; i < overhead.sub_memcpy_items.size(); ++i) {
EventItem item = overhead.sub_memcpy_items[i];
if (item.calls != 0) {
std::cout << std::setw(25) << " " + item.name
<< "Calls: " << std::setw(data_width) << item.calls
<< "Total: " << std::setw(data_width) << item.total_time
<< "Ratio: " << item.ratio * 100 << "%" << std::endl;
}
}
}
std::cout << "\n-------------------------"
<< " Event Summary "
<< "-------------------------\n\n";
// Output events table
std::cout.setf(std::ios::left);
std::cout << std::setw(name_width) << "Event" << std::setw(data_width)
<< "Calls" << std::setw(data_width) << "Total";
if (g_state == ProfilerState::kAll) {
std::cout << std::setw(data_width * 2) << "CPU Time (Ratio)"
<< std::setw(data_width * 2) << "GPU Time (Ratio)";
}
std::cout << std::setw(data_width) << "Min." << std::setw(data_width)
<< "Max." << std::setw(data_width) << "Ave."
<< std::setw(data_width) << "Ratio." << std::endl;
}
if (events_table.size() <= 0) return;
for (size_t i = 0; i < events_table.size(); ++i) {
for (size_t j = 0; j < events_table[i].size(); ++j) {
auto event_item = events_table[i][j];
std::vector<std::vector<EventItem>> child_table;
std::vector<EventItem> table;
for (auto it = child_map.begin(); it != child_map.end(); it++) {
if (it->first == event_item.name) {
table.push_back(it->second);
}
}
child_table.push_back(table);
auto name_len = event_item.name.length();
std::string print_name = event_item.name.substr(remove_len, name_len);
std::string delimiter;
for (int i = 0; i < print_depth; i++) {
delimiter = " " + delimiter;
}
print_name = delimiter + print_name;
std::cout << std::setw(name_width) << print_name << std::setw(data_width)
<< event_item.calls << std::setw(data_width)
<< event_item.total_time;
if (g_state == ProfilerState::kAll) {
std::cout << std::setw(data_width * 2)
<< string::Sprintf(
"%f (%f)", event_item.cpu_time,
(event_item.cpu_time / event_item.total_time))
<< std::setw(data_width * 2)
<< string::Sprintf(
"%f (%f)", event_item.gpu_time,
(event_item.gpu_time / event_item.total_time));
}
std::cout << std::setw(data_width) << event_item.min_time
<< std::setw(data_width) << event_item.max_time
<< std::setw(data_width) << event_item.ave_time
<< std::setw(data_width) << event_item.ratio << std::endl;
PrintProfiler(child_table, child_map, overhead, sorted_domain, name_width,
data_width, merge_thread, print_depth + 1, 0);
}
}
}
// Parse the event list and output the profiling report
void ParseEvents(const std::vector<std::vector<Event>> &events,
bool merge_thread,
EventSortingKey sorted_by = EventSortingKey::kDefault) {
if (g_state == ProfilerState::kDisabled) return;
if (merge_thread && events.size() < 2) return;
std::string sorted_domain;
std::function<bool(const EventItem &, const EventItem &)> sorted_func;
sorted_func = SetSortedFunc(sorted_by, &sorted_domain);
const std::vector<std::vector<Event>> *analyze_events;
std::vector<std::vector<Event>> merged_events_list;
if (merge_thread) {
std::vector<Event> merged_events;
for (size_t i = 0; i < events.size(); ++i) {
for (size_t j = 0; j < events[i].size(); ++j) {
merged_events.push_back(events[i][j]);
}
}
merged_events_list.push_back(merged_events);
analyze_events = &merged_events_list;
} else {
analyze_events = &events;
}
std::vector<std::vector<EventItem>> events_table;
std::multimap<std::string, EventItem> child_map;
size_t max_name_width = 0;
OverHead overhead;
for (size_t i = 0; i < (*analyze_events).size(); i++) {
double total = 0.; // the total time in one thread
std::list<Event> pushed_events;
std::vector<EventItem> event_items;
std::vector<EventItem> main_event_items;
std::unordered_map<std::string, int> event_idx;
std::multimap<std::string, EventItem> sub_child_map;
for (size_t j = 0; j < (*analyze_events)[i].size(); j++) {
Event analyze_event = (*analyze_events)[i][j];
SetEvent(merge_thread, analyze_event, &max_name_width, &pushed_events,
&event_items, &event_idx);
}
auto table_size = event_items.size();
std::vector<int> child_index(table_size, 0);
for (size_t j = 0; j < table_size; ++j) {
std::string fname = event_items[j].name;
std::string grad_name = event_items[j].name + "_grad";
for (size_t k = 0; k < table_size; ++k) {
std::string cname = event_items[k].name;
bool condition = cname.length() > fname.length() &&
cname.rfind(fname, 0) == 0 &&
!cname.rfind(grad_name, 0) == 0 &&
(cname[fname.length()] == '/' &&
cname.rfind('/') == fname.length());
if (condition) {
sub_child_map.insert(
std::pair<std::string, EventItem>(fname, event_items[k]));
child_index[k] = 1;
}
}
}
for (size_t j = 0; j < table_size; ++j) {
if (child_index[j] == 0) {
main_event_items.push_back(event_items[j]);
total += event_items[j].total_time;
}
}
// average time
for (auto &item : main_event_items) {
item.ave_time = item.total_time / item.calls;
item.ratio = item.total_time / total;
}
for (auto it = sub_child_map.begin(); it != sub_child_map.end(); it++) {
it->second.ratio = it->second.total_time / total;
it->second.ave_time = it->second.total_time / it->second.calls;
}
// When multi-threaded, overhead are printed only if merge_thread is true
if ((*analyze_events).size() == 1) {
overhead.total_time = total;
overhead.print = true;
ComputeOverhead(sub_child_map, &overhead);
}
// sort
if (sorted_by != EventSortingKey::kDefault) {
std::sort(main_event_items.begin(), main_event_items.end(), sorted_func);
}
events_table.push_back(main_event_items);
// log warning if there are events with `push` but without `pop`
std::list<Event>::reverse_iterator rit = pushed_events.rbegin();
while (rit != pushed_events.rend()) {
LOG(WARNING) << "Cannot find the pop marker of event \'" << rit->name()
<< "\', which will be ignored in profiling report.";
++rit;
}
GetChildMap(sub_child_map, &child_map);
}
// Print report
PrintProfiler(events_table, child_map, overhead, sorted_domain,
max_name_width + 8, 12, merge_thread, 0, 0);
}
} // namespace platform
} // namespace paddle
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册