From 70e6784389f992aa2ae20aa716168b868bd59432 Mon Sep 17 00:00:00 2001 From: zhaoyingli <86812880+zhaoyinglia@users.noreply.github.com> Date: Thu, 30 Sep 2021 19:48:57 +0800 Subject: [PATCH] add optest for adamw (#36148) (#36239) * update func name * skip cpu * update unittest * update unittest --- .../fluid/tests/unittests/test_adamw_op.py | 166 +++++++++++++++++- python/paddle/optimizer/adamw.py | 6 +- 2 files changed, 165 insertions(+), 7 deletions(-) diff --git a/python/paddle/fluid/tests/unittests/test_adamw_op.py b/python/paddle/fluid/tests/unittests/test_adamw_op.py index 2a5dc76c6bb..0a60f4cba09 100644 --- a/python/paddle/fluid/tests/unittests/test_adamw_op.py +++ b/python/paddle/fluid/tests/unittests/test_adamw_op.py @@ -14,9 +14,153 @@ import unittest import paddle +import random import numpy as np import paddle.fluid as fluid +from op_test import OpTest from functools import partial +from paddle.framework import core + + +def adamw_step(inputs, attributes): + param = inputs['Param'] + grad = inputs['Grad'] + moment1 = inputs['Moment1'] + moment2 = inputs['Moment2'] + lr = inputs['LearningRate'] + beta1_pow = inputs['Beta1Pow'] + beta2_pow = inputs['Beta2Pow'] + + epsilon = attributes['epsilon'] + + if 'lr_ratio' in attributes: + lr = lr * attributes['lr_ratio'] + + if attributes["with_decay"]: + coeff = attributes["coeff"] + decay = 1.0 - lr * coeff + param2 = param * decay + param = param2.copy() + + if 'beta1' in attributes: + beta1 = attributes['beta1'] + else: + beta1 = inputs['Beta1Tensor'][0] + if 'beta2' in attributes: + beta2 = attributes['beta2'] + else: + beta2 = inputs['Beta2Tensor'][0] + + moment1_out = beta1 * moment1 + (1 - beta1) * grad + moment2_out = beta2 * moment2 + (1 - beta2) * np.square(grad) + lr_t = lr * np.sqrt(1 - beta2_pow) / (1 - beta1_pow) + param_out = param - lr_t * (moment1_out / (np.sqrt(moment2_out) + epsilon)) + return param_out, moment1_out, moment2_out + + +class TestAdamW(OpTest): + def setUp(self): + '''Test AdamW Op with supplied attributes + ''' + self.op_type = "adamw" + param = np.random.uniform(-1, 1, (102, 105)).astype("float32") + grad = np.random.uniform(-1, 1, (102, 105)).astype("float32") + moment1 = np.random.uniform(-1, 1, (102, 105)).astype("float32") + # The second moment is positive + moment2 = np.random.random((102, 105)).astype("float32") + + learning_rate = 0.004 + beta1 = 0.78 + beta2 = 0.836 + epsilon = 1e-4 + beta1_pow = beta1**10 + beta2_pow = beta2**10 + + self.inputs = { + 'Param': param, + 'Grad': grad, + 'Moment1': moment1, + 'Moment2': moment2, + 'LearningRate': np.array([learning_rate]).astype("float32"), + 'Beta1Pow': np.array([beta1_pow]).astype("float32"), + 'Beta2Pow': np.array([beta2_pow]).astype("float32") + } + + self.attrs = { + 'epsilon': epsilon, + 'beta1': beta1, + 'beta2': beta2, + "coeff": 0.5, + "with_decay": True + } + + param_out, moment1_out, \ + moment2_out = adamw_step(self.inputs, self.attrs) + + self.outputs = { + 'Moment1Out': moment1_out, + 'Moment2Out': moment2_out, + 'ParamOut': param_out, + 'Beta1PowOut': np.array([beta1_pow]).astype("float32") * beta1, + 'Beta2PowOut': np.array([beta2_pow]).astype("float32") * beta2 + } + + def test_check_output(self): + self.check_output() + + +@unittest.skipIf(not core.is_compiled_with_cuda(), + "core is not compiled with CUDA") +class TestAdamW2(OpTest): + def setUp(self): + '''Test AdamW Op with supplied attributes + ''' + self.op_type = "adamw" + param = np.random.uniform(-1, 1, (2, 2)).astype("float32") + grad = np.random.uniform(-1, 1, (2, 2)).astype("float32") + moment1 = np.random.uniform(-1, 1, (2, 2)).astype("float32") + # The second moment is positive + moment2 = np.random.random((2, 2)).astype("float32") + + learning_rate = 0.004 + beta1 = 0.78 + beta2 = 0.836 + epsilon = 1e-4 + beta1_pow = beta1**10 + beta2_pow = beta2**10 + + self.inputs = { + 'Param': param, + 'Grad': grad, + 'Moment1': moment1, + 'Moment2': moment2, + 'LearningRate': np.array([learning_rate]).astype("float32"), + 'Beta1Pow': np.array([beta1_pow]).astype("float32"), + 'Beta2Pow': np.array([beta2_pow]).astype("float32") + } + + self.attrs = { + 'epsilon': epsilon, + 'beta1': beta1, + 'beta2': beta2, + "lr_ratio": 0.1, + "coeff": 0.5, + "with_decay": True + } + + param_out, moment1_out, moment2_out = adamw_step(self.inputs, + self.attrs) + + self.outputs = { + 'Moment1Out': moment1_out, + 'Moment2Out': moment2_out, + 'ParamOut': param_out, + 'Beta1PowOut': np.array([beta1_pow]).astype("float32") * beta1, + 'Beta2PowOut': np.array([beta2_pow]).astype("float32") * beta2 + } + + def test_check_output(self): + self.check_output_with_place(core.CUDAPlace(0)) class TestAdamWOp(unittest.TestCase): @@ -160,7 +304,14 @@ def simple_lr_setting(param, decay_rate, n_layers): return decay_rate**(n_layers + 2 - depth) +@unittest.skipIf(not core.is_compiled_with_cuda(), + "core is not compiled with CUDA") class TestAdamWOpLayerwiseLR(TestAdamWOp): + def setUp(self): + random.seed(2021) + np.random.seed(2021) + paddle.seed(2021) + def test_adamw_op_dygraph(self): paddle.disable_static() value = np.arange(26).reshape(2, 13).astype("float32") @@ -181,17 +332,20 @@ class TestAdamWOpLayerwiseLR(TestAdamWOp): weight_decay=0.01, lr_ratio=simple_lr_fun) - for _ in range(2): + loss_ref = np.array( + [4.8383293, 3.0854003, 1.33299, -0.418993, -2.171043]) + for i in range(5): a1 = linear1(a) out = linear2(a1) + out = paddle.mean(out) out.backward() adam.step() adam.clear_gradients() + np.testing.assert_allclose(out[0].numpy(), loss_ref[i], rtol=1e-6) def test_adamw_op(self): paddle.enable_static() - place = fluid.CUDAPlace(0) if fluid.is_compiled_with_cuda() \ - else fluid.CPUPlace() + place = fluid.CUDAPlace(0) train_prog = fluid.Program() startup = fluid.Program() with fluid.program_guard(train_prog, startup): @@ -223,7 +377,10 @@ class TestAdamWOpLayerwiseLR(TestAdamWOp): exe = fluid.Executor(place) exe.run(startup) - for _ in range(2): + + loss_ref = np.array( + [0.36120513, 0.2720821, 0.67208904, 0.14607805, 0.24098626]) + for i in range(5): inputs = np.random.random(size=[8, 10]).astype('float32') outputs = np.random.random(size=[8, 1]).astype('float32') rets = exe.run(train_prog, @@ -231,6 +388,7 @@ class TestAdamWOpLayerwiseLR(TestAdamWOp): "y": outputs}, fetch_list=[avg_cost]) assert rets[0] is not None + np.testing.assert_allclose(rets[0], loss_ref[i], rtol=1e-6) paddle.disable_static() diff --git a/python/paddle/optimizer/adamw.py b/python/paddle/optimizer/adamw.py index 34fb201d8cc..f26ee80d0af 100644 --- a/python/paddle/optimizer/adamw.py +++ b/python/paddle/optimizer/adamw.py @@ -171,9 +171,9 @@ class AdamW(Adam): self._lr_to_coeff = dict() if lr_ratio is not None: assert isinstance(lr_ratio, Callable) - if core.is_compiled_with_xpu() or core.is_compiled_with_npu(): + if not core.is_compiled_with_cuda(): raise NotImplementedError( - "'lr_ratio' is unimplemented in XPU and NPU") + "'lr_ratio' is unimplemented in CPU, XPU and NPU") self._lr_ratio = lr_ratio super(AdamW, self).__init__( @@ -305,7 +305,7 @@ class AdamW(Adam): 'epsilon', self._epsilon, 'lazy_mode', self._lazy_mode, 'min_row_size_to_use_multithread', 1000, 'beta1', _beta1, 'beta2', _beta2, 'coeff', self._coeff, 'multi_precision', - find_master, "lr_ratio", lr_ratio_) + find_master, 'lr_ratio', lr_ratio_) return None -- GitLab