未验证 提交 70540b26 编写于 作者: F Feiyu Chan 提交者: GitHub

[phi] move cpu_vec (#39714)

move cpu_vec.h to phi/kernels/funcs.
上级 880dec0f
......@@ -14,10 +14,10 @@ limitations under the License. */
#include "paddle/fluid/operators/attention_lstm_op.h"
#include <string>
#include "paddle/fluid/operators/math/cpu_vec.h"
#include "paddle/fluid/operators/math/fc.h"
#include "paddle/fluid/platform/cpu_info.h"
#include "paddle/phi/kernels/funcs/blas/blas.h"
#include "paddle/phi/kernels/funcs/cpu_vec.h"
namespace paddle {
namespace operators {
......@@ -269,10 +269,10 @@ use lstm_x_t as input and compute as standard LSTM.
template <typename T>
inline void bias_relu(const int n, const T* x, const T* bias, T* y) {
if (bias) {
math::vec_add_bias<T, platform::avx>(n, *bias, x, y);
math::vec_relu<T, platform::avx>(n, y, y);
phi::funcs::vec_add_bias<T, platform::avx>(n, *bias, x, y);
phi::funcs::vec_relu<T, platform::avx>(n, y, y);
} else {
math::vec_relu<T, platform::avx>(n, x, y);
phi::funcs::vec_relu<T, platform::avx>(n, x, y);
}
}
......@@ -283,14 +283,14 @@ inline void vec_softmax(const int n, const T* x, T* y) {
for (int i = 1; i < n; ++i) {
scalar = scalar < x[i] ? x[i] : scalar;
}
math::vec_add_bias<T, platform::avx>(n, -scalar, x, y); // sub
math::vec_exp<T>(n, y, y); // exp
phi::funcs::vec_add_bias<T, platform::avx>(n, -scalar, x, y); // sub
phi::funcs::vec_exp<T>(n, y, y); // exp
// sum
scalar = T(0);
for (int i = 0; i < n; ++i) {
scalar += y[i];
}
math::vec_scal<T>(n, static_cast<T>(1) / scalar, y); // scale
phi::funcs::vec_scal<T>(n, static_cast<T>(1) / scalar, y); // scale
}
template <typename T>
......@@ -344,12 +344,12 @@ class AttentionLSTMKernel : public framework::OpKernel<T> {
auto& act_cell_str = ctx.Attr<std::string>("cell_activation");
auto& act_cand_str = ctx.Attr<std::string>("candidate_activation");
if (platform::MayIUse(platform::avx)) {
math::VecActivations<T, platform::avx> act_functor;
phi::funcs::VecActivations<T, platform::avx> act_functor;
act_gate = act_functor(act_gate_str);
act_cell = act_functor(act_cell_str);
act_cand = act_functor(act_cand_str);
} else {
math::VecActivations<T, platform::isa_any> act_functor;
phi::funcs::VecActivations<T, platform::isa_any> act_functor;
act_gate = act_functor(act_gate_str);
act_cell = act_functor(act_cell_str);
act_cand = act_functor(act_cand_str);
......
......@@ -14,9 +14,9 @@ limitations under the License. */
#include "paddle/fluid/operators/fused/fused_embedding_fc_lstm_op.h"
#include <string>
#include "paddle/fluid/operators/math/cpu_vec.h"
#include "paddle/fluid/platform/cpu_info.h"
#include "paddle/phi/kernels/funcs/blas/blas.h"
#include "paddle/phi/kernels/funcs/cpu_vec.h"
#include "paddle/phi/kernels/funcs/sequence2batch.h"
namespace paddle {
......@@ -243,12 +243,12 @@ class FusedEmbeddingFCLSTMKernel : public framework::OpKernel<T> {
auto& act_cell_str = ctx.Attr<std::string>("cell_activation"); \
auto& act_cand_str = ctx.Attr<std::string>("candidate_activation"); \
if (platform::MayIUse(platform::avx)) { \
math::VecActivations<T, platform::avx> act_functor; \
phi::funcs::VecActivations<T, platform::avx> act_functor; \
act_gate = act_functor(act_gate_str); \
act_cell = act_functor(act_cell_str); \
act_cand = act_functor(act_cand_str); \
} else { \
math::VecActivations<T, platform::isa_any> act_functor; \
phi::funcs::VecActivations<T, platform::isa_any> act_functor; \
act_gate = act_functor(act_gate_str); \
act_cell = act_functor(act_cell_str); \
act_cand = act_functor(act_cand_str); \
......
......@@ -14,10 +14,10 @@ limitations under the License. */
#include "paddle/fluid/operators/fused/fusion_seqexpand_concat_fc_op.h"
#include <string>
#include "paddle/fluid/operators/math/cpu_vec.h"
#include "paddle/fluid/operators/math/fc.h"
#include "paddle/fluid/platform/cpu_info.h"
#include "paddle/phi/kernels/funcs/blas/blas.h"
#include "paddle/phi/kernels/funcs/cpu_vec.h"
namespace paddle {
namespace operators {
......@@ -196,10 +196,10 @@ class FusionSeqExpandConcatFCOpKernel : public framework::OpKernel<T> {
std::function<void(const int, const T*, T*)> fc_act;
auto& fc_act_str = ctx.Attr<std::string>("fc_activation");
if (platform::MayIUse(platform::avx)) {
math::VecActivations<T, platform::avx> act_functor;
phi::funcs::VecActivations<T, platform::avx> act_functor;
fc_act = act_functor(fc_act_str);
} else {
math::VecActivations<T, platform::isa_any> act_functor;
phi::funcs::VecActivations<T, platform::isa_any> act_functor;
fc_act = act_functor(fc_act_str);
}
......
......@@ -70,7 +70,6 @@ if(WITH_GPU AND (NOT WITH_ROCM))
endif()
endif()
cc_test(cpu_vec_test SRCS cpu_vec_test.cc DEPS blas cpu_info)
if(WITH_TESTING AND TEST im2col_test)
set_tests_properties(im2col_test PROPERTIES TIMEOUT 120)
endif()
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <cmath>
#include <functional>
#include <string>
#include "paddle/fluid/platform/cpu_info.h"
#include "paddle/fluid/platform/enforce.h"
#ifdef PADDLE_WITH_MKLML
#include "paddle/fluid/platform/dynload/mklml.h"
#endif
namespace phi {
namespace funcs {
#define SIGMOID_THRESHOLD_MIN -40.0
#define SIGMOID_THRESHOLD_MAX 13.0
#define YMM_FLOAT_BLOCK 8
#define AVX_DOUBLE_BLOCK 4
#define YMM_FLOAT_BLOCK 8
#define AVX2_DOUBLE_BLOCK 4
#define ZMM_FLOAT_BLOCK 16
#define AVX512_DOUBLE_BLOCK 8
template <typename T>
inline void vec_exp(const int n, const T* x, T* y) {
for (int i = 0; i < n; ++i) {
y[i] = std::exp(x[i]);
}
}
template <typename T>
inline void vec_scal(const int n, const T a, T* x) {
for (int i = 0; i < n; ++i) {
x[i] = a * x[i];
}
}
#ifdef PADDLE_WITH_MKLML
template <>
inline void vec_exp<float>(const int n, const float* x, float* y) {
constexpr int small_enough = 128;
if (n < small_enough) {
for (int i = 0; i < n; ++i) {
y[i] = std::exp(x[i]);
}
} else {
paddle::platform::dynload::vsExp(n, x, y);
}
}
template <>
inline void vec_exp<double>(const int n, const double* x, double* y) {
paddle::platform::dynload::vdExp(n, x, y);
}
template <>
inline void vec_scal<float>(const int n, const float a, float* x) {
paddle::platform::dynload::cblas_sscal(n, a, x, 1);
}
template <>
inline void vec_scal<double>(const int n, const double a, double* x) {
paddle::platform::dynload::cblas_dscal(n, a, x, 1);
}
#endif
// MKL scal only support inplace, choose this if src and dst are not equal
template <typename T,
paddle::platform::cpu_isa_t isa = paddle::platform::isa_any>
inline void vec_scal(const int n, const T a, const T* x, T* y) {
for (int i = 0; i < n; ++i) {
y[i] = a * x[i];
}
}
template <>
inline void vec_scal<float, paddle::platform::avx>(const int n,
const float a,
const float* x,
float* y) {
#ifdef __AVX__
constexpr int block = YMM_FLOAT_BLOCK;
if (n < block) {
vec_scal<float, paddle::platform::isa_any>(n, a, x, y);
return;
}
const int rest = n % block;
const int end = n - rest;
int i = 0;
__m256 scalar = _mm256_set1_ps(a);
__m256 tmp;
#define MOVE_ONE_STEP \
tmp = _mm256_loadu_ps(x + i); \
tmp = _mm256_mul_ps(tmp, scalar); \
_mm256_storeu_ps(y + i, tmp)
for (i = 0; i < end; i += block) {
MOVE_ONE_STEP;
}
#undef MOVE_ONE_STEP
if (rest == 0) {
return;
}
// can not continue move step if src and dst are inplace
for (i = n - rest; i < n; ++i) {
y[i] = a * x[i];
}
#else
vec_scal<float, paddle::platform::isa_any>(n, a, x, y);
#endif
}
template <>
inline void vec_scal<float, paddle::platform::avx2>(const int n,
const float a,
const float* x,
float* y) {
vec_scal<float, paddle::platform::avx>(n, a, x, y);
}
template <>
inline void vec_scal<float, paddle::platform::avx512f>(const int n,
const float a,
const float* x,
float* y) {
// TODO(TJ): enable me
vec_scal<float, paddle::platform::avx2>(n, a, x, y);
}
template <typename T,
paddle::platform::cpu_isa_t isa = paddle::platform::isa_any>
inline void vec_sum(const size_t n, const T* x, T* s) {
s[0] = x[0];
for (size_t i = 1; i < n; ++i) {
s[0] += x[i];
}
}
template <>
inline void vec_sum<float, paddle::platform::avx>(const size_t n,
const float* x,
float* s) {
#ifdef __AVX__
constexpr unsigned int block = YMM_FLOAT_BLOCK;
if (n < block) {
vec_sum<float, paddle::platform::isa_any>(n, x, s);
return;
}
unsigned int i, end;
i = end = 0;
s[0] = 0.f;
end = n & ~(block - 1);
__m256 tmp = _mm256_setzero_ps();
for (i = 0; i < end; i += block) {
tmp = _mm256_add_ps(tmp, _mm256_loadu_ps(x + i));
}
__m256 hsum = _mm256_hadd_ps(tmp, tmp);
hsum = _mm256_add_ps(hsum, _mm256_permute2f128_ps(hsum, hsum, 0x1));
_mm_store_ss(
s,
_mm_hadd_ps(_mm256_castps256_ps128(hsum), _mm256_castps256_ps128(hsum)));
for (; i < n; i++) {
s[0] += x[i];
}
#else
vec_sum<float, paddle::platform::isa_any>(n, x, s);
#endif
}
template <typename T,
paddle::platform::cpu_isa_t isa = paddle::platform::isa_any>
inline void vec_mul(const size_t n, const T* x, const T* y, T* z) {
for (size_t i = 0; i < n; ++i) {
z[i] = x[i] * y[i];
}
}
template <>
inline void vec_mul<float, paddle::platform::avx>(const size_t n,
const float* x,
const float* y,
float* z) {
#ifdef __AVX__
constexpr unsigned int block = YMM_FLOAT_BLOCK;
if (n < block) {
vec_mul<float, paddle::platform::isa_any>(n, x, y, z);
return;
}
unsigned int i = 0, end = 0;
end = n & ~(block - 1);
for (i = 0; i < end; i += block) {
_mm256_storeu_ps(
z + i, _mm256_mul_ps(_mm256_loadu_ps(x + i), _mm256_loadu_ps(y + i)));
}
for (; i < n; i++) {
z[i] = x[i] * y[i];
}
#else
vec_mul<float, paddle::platform::isa_any>(n, x, y, z);
#endif
}
template <typename T,
paddle::platform::cpu_isa_t isa = paddle::platform::isa_any>
inline void vec_mul_reduce(const size_t n, const T* x, const T* y, T* z) {
z[0] = x[0] * y[0];
for (size_t i = 1; i < n; ++i) {
z[0] += x[i] * y[i];
}
}
template <>
inline void vec_mul_reduce<float, paddle::platform::avx>(const size_t n,
const float* x,
const float* y,
float* z) {
#ifdef __AVX__
constexpr unsigned int block = YMM_FLOAT_BLOCK;
if (n < block) {
vec_mul_reduce<float, paddle::platform::isa_any>(n, x, y, z);
return;
}
unsigned int i = 0, end = 0;
z[0] = 0.f;
end = n & ~(block - 1);
__m256 tmp = _mm256_setzero_ps();
for (i = 0; i < end; i += block) {
tmp = _mm256_add_ps(
tmp, _mm256_mul_ps(_mm256_loadu_ps(x + i), _mm256_loadu_ps(y + i)));
}
__m256 hsum = _mm256_hadd_ps(tmp, tmp);
hsum = _mm256_add_ps(hsum, _mm256_permute2f128_ps(hsum, hsum, 0x1));
_mm_store_ss(
z,
_mm_hadd_ps(_mm256_castps256_ps128(hsum), _mm256_castps256_ps128(hsum)));
for (; i < n; i++) {
z[0] += x[i] * y[i];
}
#else
vec_mul_reduce<float, paddle::platform::isa_any>(n, x, y, z);
#endif
}
template <typename T,
paddle::platform::cpu_isa_t isa = paddle::platform::isa_any>
inline void vec_bias_sub(const int n, const T a, const T* x, T* y) {
for (int i = 0; i < n; ++i) {
y[i] = a - x[i];
}
}
template <>
inline void vec_bias_sub<float, paddle::platform::avx>(const int n,
const float a,
const float* x,
float* y) {
#ifdef __AVX__
constexpr int block = YMM_FLOAT_BLOCK;
if (n < block) {
vec_bias_sub<float, paddle::platform::isa_any>(n, a, x, y);
return;
}
const int rest = n % block;
const int end = n - rest;
int i = 0;
__m256 bias = _mm256_set1_ps(a);
__m256 tmp;
#define MOVE_ONE_STEP \
tmp = _mm256_loadu_ps(x + i); \
tmp = _mm256_sub_ps(bias, tmp); \
_mm256_storeu_ps(y + i, tmp)
for (i = 0; i < end; i += block) {
MOVE_ONE_STEP;
}
#undef MOVE_ONE_STEP
if (rest == 0) {
return;
}
// can not continue move step if src and dst are inplace
for (i = n - rest; i < n; ++i) {
y[i] = a - x[i];
}
#else
vec_bias_sub<float, paddle::platform::isa_any>(n, a, x, y);
#endif
}
template <>
inline void vec_bias_sub<float, paddle::platform::avx2>(const int n,
const float a,
const float* x,
float* y) {
vec_bias_sub<float, paddle::platform::avx>(n, a, x, y);
}
template <>
inline void vec_bias_sub<float, paddle::platform::avx512f>(const int n,
const float a,
const float* x,
float* y) {
// TODO(TJ): enable me
vec_bias_sub<float, paddle::platform::avx2>(n, a, x, y);
}
// out = x*y + (1-x)*z
template <typename T,
paddle::platform::cpu_isa_t isa = paddle::platform::isa_any>
inline void vec_cross(const int n, const T* x, const T* y, const T* z, T* out) {
for (int i = 0; i < n; ++i) {
out[i] = x[i] * y[i] + (static_cast<T>(1) - x[i]) * z[i];
}
}
template <>
inline void vec_cross<float, paddle::platform::avx>(
const int n, const float* x, const float* y, const float* z, float* out) {
#ifdef __AVX__
constexpr int block = YMM_FLOAT_BLOCK;
if (n < block) {
vec_cross<float, paddle::platform::isa_any>(n, x, y, z, out);
return;
}
const int rest = n % block;
const int end = n - rest;
int i = 0;
__m256 bias = _mm256_set1_ps(1.f);
__m256 tmpx, tmpy, tmpz;
for (i = 0; i < end; i += block) {
tmpx = _mm256_loadu_ps(x + i);
tmpy = _mm256_loadu_ps(y + i);
tmpz = _mm256_loadu_ps(z + i);
tmpy = _mm256_mul_ps(tmpx, tmpy);
tmpx = _mm256_sub_ps(bias, tmpx);
tmpz = _mm256_mul_ps(tmpx, tmpz);
tmpz = _mm256_add_ps(tmpy, tmpz);
_mm256_storeu_ps(out + i, tmpz);
}
if (rest == 0) {
return;
}
// can not continue move step if src and dst are inplace
for (i = n - rest; i < n; ++i) {
out[i] = x[i] * y[i] + (1.f - x[i]) * z[i];
}
#else
vec_cross<float, paddle::platform::isa_any>(n, x, y, z, out);
#endif
}
template <>
inline void vec_cross<float, paddle::platform::avx2>(
const int n, const float* x, const float* y, const float* z, float* out) {
vec_cross<float, paddle::platform::avx>(n, x, y, z, out);
}
template <>
inline void vec_cross<float, paddle::platform::avx512f>(
const int n, const float* x, const float* y, const float* z, float* out) {
// TODO(TJ): enable me
vec_cross<float, paddle::platform::avx>(n, x, y, z, out);
}
template <typename T,
paddle::platform::cpu_isa_t isa = paddle::platform::isa_any>
inline void vec_clip(const size_t n, const T a, const T* x, T* y) {
for (size_t i = 0; i < n; ++i) {
y[i] = x[i] < a ? a : x[i];
}
}
template <>
inline void vec_clip<float, paddle::platform::avx>(const size_t n,
const float a,
const float* x,
float* y) {
#ifdef __AVX__
constexpr unsigned int block = YMM_FLOAT_BLOCK;
if (n < block) {
vec_clip<float, paddle::platform::isa_any>(n, a, x, y);
return;
}
unsigned int i = 0, end = 0;
end = n & ~(block - 1);
__m256 threshold = _mm256_set1_ps(a);
for (i = 0; i < end; i += block) {
_mm256_storeu_ps(y + i, _mm256_max_ps(_mm256_loadu_ps(x + i), threshold));
}
for (; i < n; i++) {
y[i] = x[i] < a ? a : x[i];
}
#else
vec_clip<float, paddle::platform::isa_any>(n, a, x, y);
#endif
}
template <typename T,
paddle::platform::cpu_isa_t isa = paddle::platform::isa_any>
inline void vec_add_bias(const int n, const T a, const T* x, T* y) {
for (int i = 0; i < n; ++i) {
y[i] = x[i] + a;
}
}
template <>
inline void vec_add_bias<float, paddle::platform::avx>(const int n,
const float a,
const float* x,
float* y) {
#ifdef __AVX__
constexpr int block = YMM_FLOAT_BLOCK;
if (n < block) {
vec_add_bias<float, paddle::platform::isa_any>(n, a, x, y);
return;
}
const int rest = n % block;
const int end = n - rest;
int i = 0;
__m256 bias = _mm256_set1_ps(a);
__m256 tmp;
#define MOVE_ONE_STEP \
tmp = _mm256_loadu_ps(x + i); \
tmp = _mm256_add_ps(tmp, bias); \
_mm256_storeu_ps(y + i, tmp)
for (i = 0; i < end; i += block) {
MOVE_ONE_STEP;
}
#undef MOVE_ONE_STEP
if (rest == 0) {
return;
}
// can not continue move step if src and dst are inplace
for (i = n - rest; i < n; ++i) {
y[i] = x[i] + a;
}
#else
vec_add_bias<float, paddle::platform::isa_any>(n, a, x, y);
#endif
}
template <>
inline void vec_add_bias<float, paddle::platform::avx2>(const int n,
const float a,
const float* x,
float* y) {
vec_add_bias<float, paddle::platform::avx>(n, a, x, y);
}
template <>
inline void vec_add_bias<float, paddle::platform::avx512f>(const int n,
const float a,
const float* x,
float* y) {
// TODO(TJ): enable me
vec_add_bias<float, paddle::platform::avx2>(n, a, x, y);
}
template <typename T,
paddle::platform::cpu_isa_t isa = paddle::platform::isa_any>
inline void vec_identity(const int n, const T* x, T* y) {
// do nothing
return;
}
template <typename T,
paddle::platform::cpu_isa_t isa = paddle::platform::isa_any>
inline void vec_sigmoid(const int n, const T* x, T* y) {
const T min = SIGMOID_THRESHOLD_MIN;
const T max = SIGMOID_THRESHOLD_MAX;
for (int i = 0; i < n; ++i) {
y[i] = (x[i] < min) ? min : ((x[i] > max) ? max : x[i]);
y[i] = static_cast<T>(0) - y[i];
}
vec_exp<T>(n, y, y);
for (int i = 0; i < n; ++i) {
y[i] = static_cast<T>(1) / (static_cast<T>(1) + y[i]);
}
}
template <>
inline void vec_sigmoid<float, paddle::platform::avx>(const int n,
const float* x,
float* y) {
#ifdef __AVX__
constexpr int block = YMM_FLOAT_BLOCK;
if (n < block) {
vec_sigmoid<float, paddle::platform::isa_any>(n, x, y);
return;
}
const int rest = n % block;
const int end = n - rest;
int i = 0;
__m256 max = _mm256_set1_ps(SIGMOID_THRESHOLD_MAX);
__m256 min = _mm256_set1_ps(SIGMOID_THRESHOLD_MIN);
__m256 zeros = _mm256_setzero_ps();
__m256 tmp;
#define MOVE_ONE_STEP \
tmp = _mm256_loadu_ps(x + i); \
tmp = _mm256_max_ps(tmp, min); \
tmp = _mm256_min_ps(tmp, max); \
tmp = _mm256_sub_ps(zeros, tmp); \
_mm256_storeu_ps(y + i, tmp)
for (i = 0; i < end; i += block) {
MOVE_ONE_STEP;
}
#undef MOVE_ONE_STEP
if (rest != 0) {
// can not continue move step since the src and dst address could be equal
const float xmin = SIGMOID_THRESHOLD_MIN;
const float xmax = SIGMOID_THRESHOLD_MAX;
for (i = n - rest; i < n; ++i) {
y[i] = 0.f - ((x[i] < xmin) ? xmin : ((x[i] > xmax) ? xmax : x[i]));
}
}
vec_exp<float>(n, y, y);
__m256 ones = _mm256_set1_ps(1.0f);
#define MOVE_ONE_STEP \
tmp = _mm256_loadu_ps(y + i); \
tmp = _mm256_add_ps(ones, tmp); \
tmp = _mm256_div_ps(ones, tmp); \
_mm256_storeu_ps(y + i, tmp)
for (i = 0; i < end; i += block) {
MOVE_ONE_STEP;
}
#undef MOVE_ONE_STEP
if (rest == 0) {
return;
}
// can not continue move step
for (i = n - rest; i < n; ++i) {
y[i] = 1.f / (1.f + y[i]);
}
#else
vec_sigmoid<float, paddle::platform::isa_any>(n, x, y);
#endif
}
template <>
inline void vec_sigmoid<float, paddle::platform::avx2>(const int n,
const float* x,
float* y) {
vec_sigmoid<float, paddle::platform::avx>(n, x, y);
}
template <>
inline void vec_sigmoid<float, paddle::platform::avx512f>(const int n,
const float* x,
float* y) {
// TODO(TJ): enable me
vec_sigmoid<float, paddle::platform::avx2>(n, x, y);
}
template <typename T,
paddle::platform::cpu_isa_t isa = paddle::platform::isa_any>
inline void vec_tanh(const int n, const T* x, T* y) {
vec_scal<T, isa>(n, static_cast<T>(2), x, y);
vec_sigmoid<T, isa>(n, y, y);
vec_scal<T>(n, static_cast<T>(2), y);
vec_add_bias<T, isa>(n, static_cast<T>(-1), y, y);
}
// TODO(TJ): make relu clip
template <typename T,
paddle::platform::cpu_isa_t isa = paddle::platform::isa_any>
inline void vec_relu(const int n, const T* x, T* y) {
for (int i = 0; i < n; ++i) {
y[i] = x[i] > 0 ? x[i] : 0;
}
}
template <>
inline void vec_relu<float, paddle::platform::avx>(const int n,
const float* x,
float* y) {
#ifdef __AVX__
constexpr int block = YMM_FLOAT_BLOCK;
if (n < block * 4) {
vec_relu<float, paddle::platform::isa_any>(n, x, y);
return;
}
const int rest = n % block;
const int end = n - rest;
int i = 0;
__m256 zeros = _mm256_setzero_ps();
__m256 tmp;
#define MOVE_ONE_STEP \
tmp = _mm256_loadu_ps(x + i); \
tmp = _mm256_max_ps(tmp, zeros); \
_mm256_storeu_ps(y + i, tmp)
for (i = 0; i < end; i += block) {
MOVE_ONE_STEP;
}
if (rest == 0) {
return;
}
i = n - block;
MOVE_ONE_STEP;
#undef MOVE_ONE_STEP
#else
vec_relu<float, paddle::platform::isa_any>(n, x, y);
#endif
}
template <>
inline void vec_relu<float, paddle::platform::avx2>(const int n,
const float* x,
float* y) {
vec_relu<float, paddle::platform::avx>(n, x, y);
}
template <>
inline void vec_relu<float, paddle::platform::avx512f>(const int n,
const float* x,
float* y) {
// TODO(TJ): enable me
vec_relu<float, paddle::platform::avx2>(n, x, y);
}
// TODO(TJ): optimize double of sigmoid, tanh and relu if necessary
template <typename T,
paddle::platform::cpu_isa_t isa = paddle::platform::isa_any>
class VecActivations {
public:
std::function<void(const int, const T*, T*)> operator()(
const std::string& type) {
if (type == "sigmoid") {
return vec_sigmoid<T, isa>;
} else if (type == "relu") {
return vec_relu<T, isa>;
} else if (type == "tanh") {
return vec_tanh<T, isa>;
} else if (type == "identity" || type == "") {
return vec_identity<T, isa>;
}
PADDLE_THROW(phi::errors::InvalidArgument(
"Expected type should be one of sigmod, relu, tanh, identity. But got "
"not support type: %s.",
type));
}
};
} // namespace funcs
} // namespace phi
......@@ -22,3 +22,5 @@ endif()
if(WITH_ROCM)
hip_test(test_math_function_gpu SRCS test_math_function.cu DEPS math_function)
endif()
cc_test(test_cpu_vec SRCS test_cpu_vec.cc DEPS blas cpu_info)
......@@ -18,7 +18,10 @@ limitations under the License. */
#include "glog/logging.h"
#include "gtest/gtest.h"
#include "paddle/fluid/operators/math/cpu_vec.h"
#include "paddle/phi/kernels/funcs/cpu_vec.h"
namespace phi {
namespace tests {
inline double GetCurrentUS() {
struct timeval time;
......@@ -62,7 +65,9 @@ void ref_relu(const int n, const T* x, T* y) {
}
template <typename T>
void RandomVec(const int n, T* a, const T lower = static_cast<T>(-20.f),
void RandomVec(const int n,
T* a,
const T lower = static_cast<T>(-20.f),
const T upper = static_cast<T>(20.f)) {
static unsigned int seed = 100;
std::mt19937 rng(seed++);
......@@ -73,7 +78,8 @@ void RandomVec(const int n, T* a, const T lower = static_cast<T>(-20.f),
}
template <typename T>
void TestAndBench(const int n, std::function<void(const int, const T*, T*)> tgt,
void TestAndBench(const int n,
std::function<void(const int, const T*, T*)> tgt,
std::function<void(const int, const T*, T*)> ref) {
std::vector<T> x(n);
std::vector<T> ytgt(n), yref(n);
......@@ -101,47 +107,48 @@ void TestAndBench(const int n, std::function<void(const int, const T*, T*)> tgt,
TEST(CpuVecTest, sigmoid) {
namespace platform = paddle::platform;
using namespace paddle::operators::math; // NOLINT
using namespace phi::funcs; // NOLINT
for (auto sz : {1, 2, 15, 16, 30, 32, 128, 200, 512}) {
TestAndBench<float>(sz, vec_sigmoid<float>, ref_sigmoid<float>);
TestAndBench<float>(sz, vec_sigmoid<float, platform::avx>,
ref_sigmoid<float>);
TestAndBench<float>(sz, vec_sigmoid<float, platform::avx2>,
ref_sigmoid<float>);
TestAndBench<float>(sz, vec_sigmoid<float, platform::avx512f>,
ref_sigmoid<float>);
TestAndBench<float>(
sz, vec_sigmoid<float, platform::avx>, ref_sigmoid<float>);
TestAndBench<float>(
sz, vec_sigmoid<float, platform::avx2>, ref_sigmoid<float>);
TestAndBench<float>(
sz, vec_sigmoid<float, platform::avx512f>, ref_sigmoid<float>);
}
TestAndBench<double>(30, vec_sigmoid<double>, ref_sigmoid<double>);
}
TEST(CpuVecTest, tanh) {
namespace platform = paddle::platform;
using namespace paddle::operators::math; // NOLINT
using namespace phi::funcs; // NOLINT
for (auto sz : {1, 2, 15, 16, 30, 32, 128, 200, 512}) {
TestAndBench<float>(sz, vec_tanh<float>, ref_tanh<float>);
TestAndBench<float>(sz, vec_tanh<float, platform::avx>, ref_tanh<float>);
TestAndBench<float>(sz, vec_tanh<float, platform::avx2>, ref_tanh<float>);
TestAndBench<float>(sz, vec_tanh<float, platform::avx512f>,
ref_tanh<float>);
TestAndBench<float>(
sz, vec_tanh<float, platform::avx512f>, ref_tanh<float>);
}
TestAndBench<double>(30, vec_tanh<double>, ref_tanh<double>);
}
TEST(CpuVecTest, relu) {
namespace platform = paddle::platform;
using namespace paddle::operators::math; // NOLINT
using namespace phi::funcs; // NOLINT
for (auto sz : {1, 2, 15, 16, 30, 32, 128, 200, 512}) {
TestAndBench<float>(sz, vec_relu<float>, ref_relu<float>);
TestAndBench<float>(sz, vec_relu<float, platform::avx>, ref_relu<float>);
TestAndBench<float>(sz, vec_relu<float, platform::avx2>, ref_relu<float>);
TestAndBench<float>(sz, vec_relu<float, platform::avx512f>,
ref_relu<float>);
TestAndBench<float>(
sz, vec_relu<float, platform::avx512f>, ref_relu<float>);
}
TestAndBench<double>(30, vec_relu<double>, ref_relu<double>);
}
template <typename T>
void compare_sum(size_t n, std::function<void(const size_t, const T*, T*)> tgt,
void compare_sum(size_t n,
std::function<void(const size_t, const T*, T*)> tgt,
std::function<void(const size_t, const T*, T*)> ref) {
std::vector<T> x(n);
T ytgt_data, yref_data;
......@@ -155,18 +162,19 @@ void compare_sum(size_t n, std::function<void(const size_t, const T*, T*)> tgt,
TEST(CpuVecTest, vec_sum) {
namespace platform = paddle::platform;
using namespace paddle::operators::math; // NOLINT
using namespace phi::funcs; // NOLINT
for (size_t sz : {1, 2, 15, 16, 30, 32, 128, 200, 512}) {
compare_sum<float>(sz, vec_sum<float>, vec_sum<float, platform::isa_any>);
compare_sum<float>(sz, vec_sum<float, platform::avx>,
vec_sum<float, platform::isa_any>);
compare_sum<float>(
sz, vec_sum<float, platform::avx>, vec_sum<float, platform::isa_any>);
}
compare_sum<double>(30U, vec_sum<double>, vec_sum<double, platform::isa_any>);
}
template <typename T>
void compare_clip(
size_t n, T threshold,
size_t n,
T threshold,
std::function<void(const size_t, const T, const T*, T*)> tgt,
std::function<void(const size_t, const T, const T*, T*)> ref) {
std::vector<T> x(n);
......@@ -185,20 +193,23 @@ void compare_clip(
TEST(CpuVecTest, vec_clip) {
namespace platform = paddle::platform;
using namespace paddle::operators::math; // NOLINT
using namespace phi::funcs; // NOLINT
for (size_t sz : {1, 2, 15, 16, 30, 32, 128, 200, 512}) {
compare_clip<float>(sz, -4.f, vec_clip<float>,
vec_clip<float, platform::isa_any>);
compare_clip<float>(sz, -1.1f, vec_clip<float, platform::avx>,
compare_clip<float>(
sz, -4.f, vec_clip<float>, vec_clip<float, platform::isa_any>);
compare_clip<float>(sz,
-1.1f,
vec_clip<float, platform::avx>,
vec_clip<float, platform::isa_any>);
}
compare_clip<double>(30U, 1.0, vec_clip<double>,
vec_clip<double, platform::isa_any>);
compare_clip<double>(
30U, 1.0, vec_clip<double>, vec_clip<double, platform::isa_any>);
}
template <typename T>
void compare_mul(
size_t n, std::function<void(const size_t, const T*, const T*, T*)> tgt,
size_t n,
std::function<void(const size_t, const T*, const T*, T*)> tgt,
std::function<void(const size_t, const T*, const T*, T*)> ref) {
std::vector<T> x(n), y(n);
std::vector<T> ztgt(n), zref(n);
......@@ -220,18 +231,19 @@ void compare_mul(
TEST(CpuVecTest, vec_mul) {
namespace platform = paddle::platform;
using namespace paddle::operators::math; // NOLINT
using namespace phi::funcs; // NOLINT
for (size_t sz : {1, 2, 15, 16, 30, 32, 128, 200, 512}) {
compare_mul<float>(sz, vec_mul<float>, vec_mul<float, platform::isa_any>);
compare_mul<float>(sz, vec_mul<float, platform::avx>,
vec_mul<float, platform::isa_any>);
compare_mul<float>(
sz, vec_mul<float, platform::avx>, vec_mul<float, platform::isa_any>);
}
compare_mul<double>(30U, vec_mul<double>, vec_mul<double, platform::isa_any>);
}
template <typename T>
void compare_mul_reduce(
size_t n, std::function<void(const size_t, const T*, const T*, T*)> tgt,
size_t n,
std::function<void(const size_t, const T*, const T*, T*)> tgt,
std::function<void(const size_t, const T*, const T*, T*)> ref) {
std::vector<T> x(n), y(n);
T ztgt_data, zref_data;
......@@ -249,19 +261,21 @@ void compare_mul_reduce(
TEST(CpuVecTest, vec_mul_reduce) {
namespace platform = paddle::platform;
using namespace paddle::operators::math; // NOLINT
using namespace phi::funcs; // NOLINT
for (size_t sz : {1, 2, 15, 16, 30, 32, 128, 200, 512}) {
compare_mul_reduce<float>(sz, vec_mul_reduce<float>,
vec_mul_reduce<float, platform::isa_any>);
compare_mul_reduce<float>(sz, vec_mul_reduce<float, platform::avx>,
compare_mul_reduce<float>(
sz, vec_mul_reduce<float>, vec_mul_reduce<float, platform::isa_any>);
compare_mul_reduce<float>(sz,
vec_mul_reduce<float, platform::avx>,
vec_mul_reduce<float, platform::isa_any>);
}
compare_mul_reduce<double>(30U, vec_mul_reduce<double>,
vec_mul_reduce<double, platform::isa_any>);
compare_mul_reduce<double>(
30U, vec_mul_reduce<double>, vec_mul_reduce<double, platform::isa_any>);
}
template <typename T>
void TestInplace(const int n, std::function<void(const int, const T*, T*)> tgt,
void TestInplace(const int n,
std::function<void(const int, const T*, T*)> tgt,
std::function<void(const int, const T*, T*)> ref) {
std::vector<T> x(n);
std::vector<T> ytgt(n), yref(n);
......@@ -283,22 +297,22 @@ void TestInplace(const int n, std::function<void(const int, const T*, T*)> tgt,
TEST(CpuVecTest, inplace_sigmoid) {
namespace platform = paddle::platform;
using namespace paddle::operators::math; // NOLINT
using namespace phi::funcs; // NOLINT
for (auto sz : {1, 2, 15, 16, 30, 32, 128, 200, 512}) {
TestInplace<float>(sz, vec_sigmoid<float>, ref_sigmoid<float>);
TestInplace<float>(sz, vec_sigmoid<float, platform::avx>,
ref_sigmoid<float>);
TestInplace<float>(sz, vec_sigmoid<float, platform::avx2>,
ref_sigmoid<float>);
TestInplace<float>(sz, vec_sigmoid<float, platform::avx512f>,
ref_sigmoid<float>);
TestInplace<float>(
sz, vec_sigmoid<float, platform::avx>, ref_sigmoid<float>);
TestInplace<float>(
sz, vec_sigmoid<float, platform::avx2>, ref_sigmoid<float>);
TestInplace<float>(
sz, vec_sigmoid<float, platform::avx512f>, ref_sigmoid<float>);
}
TestInplace<double>(30, vec_sigmoid<double>, ref_sigmoid<double>);
}
TEST(CpuVecTest, inplace_tanh) {
namespace platform = paddle::platform;
using namespace paddle::operators::math; // NOLINT
using namespace phi::funcs; // NOLINT
for (auto sz : {1, 2, 15, 16, 30, 32, 128, 200, 512}) {
TestInplace<float>(sz, vec_tanh<float>, ref_tanh<float>);
TestInplace<float>(sz, vec_tanh<float, platform::avx>, ref_tanh<float>);
......@@ -310,7 +324,7 @@ TEST(CpuVecTest, inplace_tanh) {
TEST(CpuVecTest, inplace_relu) {
namespace platform = paddle::platform;
using namespace paddle::operators::math; // NOLINT
using namespace phi::funcs; // NOLINT
for (auto sz : {1, 2, 15, 16, 30, 32, 128, 200, 512}) {
TestInplace<float>(sz, vec_relu<float>, ref_relu<float>);
TestInplace<float>(sz, vec_relu<float, platform::avx>, ref_relu<float>);
......@@ -319,3 +333,5 @@ TEST(CpuVecTest, inplace_relu) {
}
TestInplace<double>(30, vec_relu<double>, ref_relu<double>);
}
} // namespace tests
} // namespace phi
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册