未验证 提交 6f0a1d7b 编写于 作者: Q qingqing01 提交者: GitHub

Inception fusion operator. (#14968)

* Inception fusion operator.
* Support horizontal layer fusion in conv_fusion_op.
* Search conv algo strategy for variable-length input.
   search N times and cache the searched algos. For other input, choose the algo of input whose area is closest to this input.
上级 77e11ce8
......@@ -110,7 +110,7 @@ function(op_library TARGET)
# Define operators that don't need pybind here.
foreach(manual_pybind_op "compare_op" "logical_op" "nccl_op"
"tensor_array_read_write_op" "tensorrt_engine_op" "conv_fusion_op"
"fusion_transpose_flatten_concat_op")
"fusion_transpose_flatten_concat_op" "fusion_conv_inception_op")
if ("${TARGET}" STREQUAL "${manual_pybind_op}")
set(pybind_flag 1)
endif()
......
......@@ -19,6 +19,10 @@ limitations under the License. */
#include <vector>
#include "paddle/fluid/platform/cudnn_helper.h"
DECLARE_uint64(conv_workspace_size_limit);
DECLARE_bool(cudnn_exhaustive_search);
DECLARE_int64(cudnn_exhaustive_search_times);
namespace paddle {
namespace operators {
......@@ -45,6 +49,7 @@ static constexpr size_t kNUM_CUDNN_BWD_DATA_ALGS = 5;
template <typename TAlgorithm>
class AlgorithmsCache {
public:
AlgorithmsCache() : search_times_(0) { hash_.clear(); }
// Caches the best algorithm for a given
// combination of tensor dimensions & compute data type.
TAlgorithm GetAlgorithm(
......@@ -54,9 +59,14 @@ class AlgorithmsCache {
int algorithmFlags, // can set for different data type
std::function<TAlgorithm()> gen_func);
TAlgorithm GetAlgorithm(int64_t area, int search_times, int algorithmFlags,
std::function<TAlgorithm()> gen_func);
private:
std::unordered_map<int64_t, TAlgorithm> hash_;
std::mutex mutex_;
int search_times_;
};
template <typename TAlgorithm>
......@@ -107,5 +117,29 @@ TAlgorithm AlgorithmsCache<TAlgorithm>::GetAlgorithm(
return hash_[seed];
}
template <typename TAlgorithm>
TAlgorithm AlgorithmsCache<TAlgorithm>::GetAlgorithm(
int64_t area, int search_times, int algorithmFlags,
std::function<TAlgorithm()> gen_func) {
if (hash_.find(area) != hash_.end()) {
return hash_[area];
}
if (search_times_ < search_times) {
auto algo = gen_func();
hash_[area] = algo;
++search_times_;
return algo;
}
TAlgorithm algo;
int64_t min = static_cast<uint64_t>(INT_MAX);
for (const auto& m : hash_) {
if (m.first < min) {
min = m.first;
algo = m.second;
}
}
return algo;
}
} // namespace operators
} // namespace paddle
......@@ -28,6 +28,8 @@ namespace operators {
// x is Input,
// z is ResidualData,
// bias is Bias
// When `split_channels` is set, y will be splitted into multiple outputs,
// each output has split_channels[i] number of channels.
class Conv2DFusionOpMaker : public Conv2DOpMaker {
protected:
void Apply() override {
......@@ -36,8 +38,65 @@ class Conv2DFusionOpMaker : public Conv2DOpMaker {
"The activation type can be 'identity', 'sigmoid', 'relu', 'relu6' "
"'relux' , 'tanh', 'band_pass'")
.SetDefault("relu");
AddAttr<std::vector<int>>(
"split_channels",
"When `split_channels` are set, there will be multiple outputs, the "
"output size is equal to the number of `split_channels`.")
.SetDefault({});
AddOutput("Outputs",
"This Outputs is used when setting `split_channels`."
"Usually used to fuse conv with same input and same filter size, "
"padding, stride, dilation size.")
.AsDuplicable()
.AsDispensable();
AddInput("AlgoCache",
"The cache of convolution algorithm, a RAW type variable.")
.AsDispensable();
AddAttr<int>(
"search_times",
"The number of exhaustive search times for convolution algorithm.")
.SetDefault(-1);
}
};
class Conv2DFusionOpInferShape : public framework::InferShapeBase {
public:
void operator()(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("Input"),
"Input(Input) of ConvOp should not be null.");
PADDLE_ENFORCE(ctx->HasInput("Filter"),
"Input(Filter) of ConvOp should not be null.");
auto in_dims = ctx->GetInputDim("Input");
auto filter_dims = ctx->GetInputDim("Filter");
std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
std::vector<int> dilations =
ctx->Attrs().Get<std::vector<int>>("dilations");
std::vector<int64_t> oshape({in_dims[0], filter_dims[0]});
for (size_t i = 0; i < strides.size(); ++i) {
oshape.push_back(ConvOutputSize(in_dims[i + 2], filter_dims[i + 2],
dilations[i], paddings[i], strides[i]));
}
PADDLE_ENFORCE(ctx->HasOutput("Output"),
"Output(Output) of ConvOp should not be null.");
ctx->SetOutputDim("Output", framework::make_ddim(oshape));
std::vector<int> channels =
ctx->Attrs().Get<std::vector<int>>("split_channels");
if (channels.size()) {
PADDLE_ENFORCE(ctx->HasOutputs("Outputs"),
"Output(Outputs) of ConvOp should not be null.");
std::vector<framework::DDim> oshapes;
oshapes.reserve(channels.size());
for (size_t i = 0; i < channels.size(); ++i) {
oshapes.push_back({oshape[0], channels[i], oshape[2], oshape[3]});
}
ctx->SetOutputsDim("Outputs", oshapes);
}
}
};
// TODO(qingqing): add gradient operator for conv2d_fusion
} // namespace operators
......@@ -45,4 +104,5 @@ class Conv2DFusionOpMaker : public Conv2DOpMaker {
namespace ops = paddle::operators;
REGISTER_OPERATOR(conv2d_fusion, ops::ConvOp, ops::Conv2DFusionOpMaker,
ops::ConvOpInferVarType, paddle::framework::EmptyGradOpMaker);
ops::Conv2DFusionOpInferShape, ops::ConvOpInferVarType,
paddle::framework::EmptyGradOpMaker);
......@@ -16,8 +16,9 @@ limitations under the License. */
#include "paddle/fluid/operators/conv_cudnn_op_cache.h"
#include "paddle/fluid/platform/cudnn_helper.h"
DECLARE_uint64(conv_workspace_size_limit);
DECLARE_bool(cudnn_exhaustive_search);
DEFINE_int64(cudnn_exhaustive_search_times, -1,
"Exhaustive search times for cuDNN convolution, "
"defalut is 1, only search once.");
namespace paddle {
namespace operators {
......@@ -117,20 +118,7 @@ class CUDNNConvFusionOpKernel : public framework::OpKernel<T> {
workspace_size_limit, &algo));
VLOG(3) << "cuDNN forward algo " << algo;
} else {
AlgorithmsCache<cudnnConvolutionFwdAlgo_t>* algo_cache = nullptr;
if (ctx.scope().FindVar(kCUDNNFwdAlgoCache)) {
algo_cache =
ctx.scope()
.FindVar(kCUDNNFwdAlgoCache)
->GetMutable<AlgorithmsCache<cudnnConvolutionFwdAlgo_t>>();
} else {
algo_cache =
const_cast<framework::Scope&>(ctx.scope())
.Var(kCUDNNFwdAlgoCache)
->GetMutable<AlgorithmsCache<cudnnConvolutionFwdAlgo_t>>();
}
algo = algo_cache->GetAlgorithm(
x_dims, f_dims, strides, paddings, dilations, 0, [&]() {
auto search_func = [&]() {
int returned_algo_count;
std::array<cudnnConvolutionFwdAlgoPerf_t, kNUM_CUDNN_FWD_ALGS>
fwd_perf_stat;
......@@ -138,20 +126,52 @@ class CUDNNConvFusionOpKernel : public framework::OpKernel<T> {
CUDNN_ENFORCE(
platform::dynload::cudnnFindConvolutionForwardAlgorithmEx(
handle, cudnn_input_desc, input_data, cudnn_filter_desc,
filter_data, cudnn_conv_desc, cudnn_output_desc,
output_data, kNUM_CUDNN_FWD_ALGS, &returned_algo_count,
fwd_perf_stat.data(), cudnn_workspace,
workspace_size_limit));
filter_data, cudnn_conv_desc, cudnn_output_desc, output_data,
kNUM_CUDNN_FWD_ALGS, &returned_algo_count,
fwd_perf_stat.data(), cudnn_workspace, workspace_size_limit));
};
workspace_handle.RunFunc(cudnn_find_func, workspace_size_limit);
VLOG(3) << "Perf result: (algo: stat, time, memory)";
for (int i = 0; i < returned_algo_count; ++i) {
const auto& stat = fwd_perf_stat[i];
VLOG(3) << stat.algo << ": " << stat.status << " " << stat.time
<< " " << stat.memory;
VLOG(3) << stat.algo << ": " << stat.status << " " << stat.time << " "
<< stat.memory;
}
return fwd_perf_stat[0].algo;
});
};
AlgorithmsCache<cudnnConvolutionFwdAlgo_t>* algo_cache = nullptr;
int search_times = ctx.Attr<int>("search_times");
search_times = std::max(
static_cast<int>(FLAGS_cudnn_exhaustive_search_times), search_times);
if (search_times > 0) {
// The searched algo will be cached by `search_times` times for
// different input dimension. For other dimensions, select the algo
// of closest area.
auto var_name = ctx.Inputs("AlgoCache")[0];
algo_cache =
ctx.scope()
.FindVar(var_name)
->GetMutable<AlgorithmsCache<cudnnConvolutionFwdAlgo_t>>();
algo = algo_cache->GetAlgorithm(x_dims[2] * x_dims[3], search_times, 0,
search_func);
} else {
// Cache searched algo in Var(kCUDNNFwdAlgoCache).
// all conv ops use the same kCUDNNFwdAlgoCache variable.
if (ctx.scope().FindVar(kCUDNNFwdAlgoCache)) {
algo_cache =
ctx.scope()
.FindVar(kCUDNNFwdAlgoCache)
->GetMutable<AlgorithmsCache<cudnnConvolutionFwdAlgo_t>>();
} else {
// TODO(qingqing) remove const_cast
algo_cache =
const_cast<framework::Scope*>(ctx.scope().parent())
->Var(kCUDNNFwdAlgoCache)
->GetMutable<AlgorithmsCache<cudnnConvolutionFwdAlgo_t>>();
}
algo = algo_cache->GetAlgorithm(x_dims, f_dims, strides, paddings,
dilations, 0, search_func);
}
VLOG(3) << "choose algo " << algo;
}
......@@ -195,6 +215,27 @@ class CUDNNConvFusionOpKernel : public framework::OpKernel<T> {
};
workspace_handle.RunFunc(cudnn_func, workspace_size_in_bytes);
}
std::vector<int> channels = ctx.Attr<std::vector<int>>("split_channels");
if (channels.size()) {
auto outs = ctx.MultiOutput<framework::Tensor>("Outputs");
if (x_dims[0] == 1) {
// share data with Output
framework::Tensor t;
t.ShareDataWith(*output);
auto y_dims = output->dims();
t.Resize({y_dims[1], y_dims[2], y_dims[3]});
int s = 0;
for (size_t i = 0; i < channels.size(); ++i) {
int e = s + channels[i];
outs[i]->ShareDataWith(t.Slice(s, e));
outs[i]->Resize({x_dims[0], channels[i], y_dims[2], y_dims[3]});
s = e;
}
} else {
// TODO(qingiqng): do copy when batch size large than 1
PADDLE_THROW("Batch size greater than 1 is Unsupported");
}
}
}
};
#endif
......
include(operators)
register_operators(EXCLUDES fusion_transpose_flatten_concat_op)
register_operators(EXCLUDES fusion_transpose_flatten_concat_op fusion_conv_inception_op)
if (WITH_GPU)
op_library(fusion_transpose_flatten_concat_op)
op_library(fusion_conv_inception_op)
file(APPEND ${pybind_file} "USE_CUDA_ONLY_OP(fusion_transpose_flatten_concat);\n")
file(APPEND ${pybind_file} "USE_CUDA_ONLY_OP(conv2d_inception_fusion);\n")
endif()
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <string>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/cudnn_helper.h"
#endif
namespace paddle {
namespace operators {
class ConvInceptionFusionOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
// 1 x
auto in_dims = ctx->GetInputDim("Input");
// 4 filters
auto w_dims = ctx->GetInputsDim("Filter");
PADDLE_ENFORCE(in_dims.size(), 4, "Conv intput should be 4-D tensor.");
PADDLE_ENFORCE_EQ(w_dims.size(), 4, "There should be 4 filters");
PADDLE_ENFORCE_EQ(w_dims[0][1], in_dims[1]);
PADDLE_ENFORCE_EQ(w_dims[1][1], in_dims[1]);
int n = in_dims[0];
// compute output channel
// 1st channel
int c = w_dims[0][0];
// add 2nd channel
c += (w_dims[1][0] - w_dims[2][1] * 2);
// add 3rd channel
c += (w_dims[2][0] - w_dims[3][1]);
// add 4-th channel
c += w_dims[3][0];
int h = in_dims[2];
int w = in_dims[3];
ctx->SetOutputDim("Output", {n, c, h, w});
}
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
return framework::OpKernelType(
ctx.Input<framework::LoDTensor>("Input")->type(), ctx.device_context());
}
};
class ConvInceptionFusionOpMaker : public framework::OpProtoAndCheckerMaker {
protected:
void Make() override {
AddInput("Input", "(Tensor) NCHW layout.");
AddInput("Filter", "(vector<Tensor>) 4 aggregated filters").AsDuplicable();
AddInput("Bias", "(vector<Tensor>) it's lenght is equal to Filter")
.AsDuplicable();
AddOutput("Output",
"(Tensor) The output tensor of convolution operator. "
"The format of output tensor is also NCHW.");
AddOutput("TempOutput", "").AsDuplicable();
AddAttr<std::string>(
"pooling_type",
"(string), pooling type, can be \"max\" for max-pooling "
"and \"avg\" for average-pooling.")
.InEnum({"max", "avg"});
AddAttr<bool>(
"exclusive",
"(bool, default True) When true, will exclude the zero-padding in the "
"averaging calculating, otherwise, include the zero-padding. Note, it "
"is only used when pooling_type is avg. The defalut is True.")
.SetDefault(true);
AddAttr<std::string>(
"activation",
"The activation type can be 'identity', 'sigmoid', 'relu', 'relu6' "
"'relux' , 'tanh', 'band_pass'")
.SetDefault("relu");
AddAttr<int>("workspace_size_MB",
"Only used in cudnn kernel. Need set use_cudnn to true."
"workspace size for cudnn, in MB, "
"workspace is a section of GPU memory which will be "
"allocated/freed each time the operator runs, larger "
"workspace size can increase performance but also requires "
"better hardware. This size should be chosen carefully.")
.SetDefault(4096);
AddComment(R"DOC(
)DOC");
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(conv2d_inception_fusion, ops::ConvInceptionFusionOp,
ops::ConvInceptionFusionOpMaker,
paddle::framework::EmptyGradOpMaker);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/conv_cudnn_op_cache.h"
#include "paddle/fluid/platform/cudnn_helper.h"
DECLARE_uint64(conv_workspace_size_limit);
namespace paddle {
namespace operators {
#if CUDNN_VERSION >= 7001
using Tensor = framework::Tensor;
using ScopedTensorDescriptor = platform::ScopedTensorDescriptor;
using ScopedFilterDescriptor = platform::ScopedFilterDescriptor;
using ScopedConvolutionDescriptor = platform::ScopedConvolutionDescriptor;
using ScopedActivationDescriptor = platform::ScopedActivationDescriptor;
using DataLayout = platform::DataLayout;
using ScopedPoolingDescriptor = platform::ScopedPoolingDescriptor;
using PoolingMode = platform::PoolingMode;
template <typename T>
using ScalingParamType = typename platform::CudnnDataType<T>::ScalingParamType;
template <typename T>
using CudnnDataType = platform::CudnnDataType<T>;
template <typename T>
class CUDNNConvInceptionFusionOpKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
auto* input = ctx.Input<Tensor>("Input");
auto filters = ctx.MultiInput<framework::Tensor>("Filter");
auto bias = ctx.MultiInput<framework::Tensor>("Bias");
auto* output = ctx.Output<Tensor>("Output");
auto temp_outs = ctx.MultiOutput<framework::Tensor>("TempOutput");
const std::string pool_type = ctx.Attr<std::string>("pooling_type");
const std::string activation = ctx.Attr<std::string>("activation");
const bool exclusive = ctx.Attr<bool>("exclusive");
int64_t user_workspace_size =
static_cast<size_t>(ctx.Attr<int>("workspace_size_MB"));
const T* input_data = input->data<T>();
T* output_data = output->mutable_data<T>(ctx.GetPlace());
T* temp_data = temp_outs[0]->mutable_data<T>(input->dims(), ctx.GetPlace());
DataLayout layout = DataLayout::kNCHW;
std::vector<int> in_dim = framework::vectorize2int(input->dims());
// ------------------- cudnn descriptors ---------------------
PoolingMode pooling_mode;
if (pool_type == "max") {
pooling_mode = PoolingMode::kMaximum;
} else {
pooling_mode = exclusive ? PoolingMode::kAverageExclusive
: (PoolingMode::kAverageInclusive);
}
std::vector<int> k0x0 = {0, 0};
std::vector<int> k1x1 = {1, 1};
std::vector<int> k1x1_2 = {1, 1};
std::vector<int> k3x3 = {3, 3};
ScopedPoolingDescriptor pool_desc;
ScopedActivationDescriptor act_desc;
ScopedTensorDescriptor out_pool_desc;
ScopedTensorDescriptor input_desc;
cudnnPoolingDescriptor_t cudnn_pool_desc =
pool_desc.descriptor(pooling_mode, k3x3, k1x1, k1x1);
cudnnTensorDescriptor_t cudnn_input_desc = input_desc.descriptor<T>(
layout, framework::vectorize2int(input->dims()));
cudnnTensorDescriptor_t pool_out_desc = out_pool_desc.descriptor<T>(
layout, framework::vectorize2int(input->dims()));
cudnnDataType_t cudnn_dtype = CudnnDataType<T>::type;
cudnnTensorDescriptor_t* out_desc = new cudnnTensorDescriptor_t[4];
cudnnFilterDescriptor_t* filter_desc = new cudnnFilterDescriptor_t[4];
cudnnTensorDescriptor_t* bias_desc = new cudnnTensorDescriptor_t[4];
cudnnTensorDescriptor_t* in_desc = new cudnnTensorDescriptor_t[4];
cudnnConvolutionDescriptor_t* conv_desc =
new cudnnConvolutionDescriptor_t[4];
for (int i = 0; i < 4; ++i) {
CUDNN_ENFORCE(
platform::dynload::cudnnCreateFilterDescriptor(&filter_desc[i]));
CUDNN_ENFORCE(
platform::dynload::cudnnCreateTensorDescriptor(&bias_desc[i]));
CUDNN_ENFORCE(
platform::dynload::cudnnCreateTensorDescriptor(&in_desc[i]));
CUDNN_ENFORCE(
platform::dynload::cudnnCreateTensorDescriptor(&out_desc[i]));
CUDNN_ENFORCE(
platform::dynload::cudnnCreateConvolutionDescriptor(&conv_desc[i]));
}
std::vector<std::vector<int>> filter_dims;
std::vector<std::vector<int>> bias_dims;
std::vector<std::vector<int>> in_dims;
std::vector<std::vector<int>> out_dims;
std::vector<std::vector<int>> in_strides;
std::vector<std::vector<int>> out_strides;
std::vector<std::vector<int>> bias_strides;
cudnnTensorFormat_t format = CUDNN_TENSOR_NCHW;
int n = in_dim[0];
int h = in_dim[2];
int w = in_dim[3];
int oc = output->dims()[1];
cudnnDataType_t compute_type = (cudnn_dtype == CUDNN_DATA_DOUBLE)
? CUDNN_DATA_DOUBLE
: CUDNN_DATA_FLOAT;
for (int i = 0; i < 4; ++i) {
filter_dims.push_back(framework::vectorize2int(filters[i]->dims()));
CUDNN_ENFORCE(platform::dynload::cudnnSetFilterNdDescriptor(
filter_desc[i], cudnn_dtype, format, 4, filter_dims[i].data()));
bias_dims.push_back({1, filter_dims[i][0], 1, 1});
bias_strides.push_back({filter_dims[i][0], 1, 1, 1});
CUDNN_ENFORCE(platform::dynload::cudnnSetTensorNdDescriptor(
bias_desc[i], cudnn_dtype, 4, bias_dims[i].data(),
bias_strides[i].data()));
in_dims.push_back({n, filter_dims[i][1], h, w});
out_dims.push_back({n, filter_dims[i][0], h, w});
in_strides.push_back({filter_dims[i][1] * h * w, h * w, w, 1});
out_strides.push_back({oc * h * w, h * w, w, 1});
if (i < 2) {
CUDNN_ENFORCE(platform::dynload::cudnnSetConvolutionNdDescriptor(
conv_desc[i], 2, k0x0.data(), k1x1.data(), k1x1.data(),
CUDNN_CROSS_CORRELATION, compute_type));
} else {
CUDNN_ENFORCE(platform::dynload::cudnnSetConvolutionNdDescriptor(
conv_desc[i], 2, k1x1.data(), k1x1.data(), k1x1.data(),
CUDNN_CROSS_CORRELATION, compute_type));
}
CUDNN_ENFORCE(platform::dynload::cudnnSetConvolutionMathType(
conv_desc[i], CUDNN_DEFAULT_MATH));
}
in_dims[2][1] *= 2;
in_strides[2][0] = oc * h * w;
out_strides[2][0] = filter_dims[2][0] * h * w; // this out is continuous.
in_strides[3][0] = filter_dims[2][0] * h * w;
CUDNN_ENFORCE(
platform::dynload::cudnnSetConvolutionGroupCount(conv_desc[2], 2));
cudnnConvolutionFwdAlgo_t algo[4];
auto handle = dev_ctx.cudnn_handle();
size_t workspace_size_in_bytes = 0; // final workspace to allocate.
size_t workspace_size_limit = kCONV_CUDNN_WORKSPACE_LIMIT_BYTES;
if (FLAGS_conv_workspace_size_limit > 0 || user_workspace_size > 0) {
int64_t max_user_size =
std::max(static_cast<int64_t>(FLAGS_conv_workspace_size_limit),
user_workspace_size);
workspace_size_limit = max_user_size * 1024 * 1024;
}
for (int i = 0; i < 4; ++i) {
CUDNN_ENFORCE(platform::dynload::cudnnSetTensorNdDescriptor(
in_desc[i], cudnn_dtype, 4, in_dims[i].data(), in_strides[i].data()));
CUDNN_ENFORCE(platform::dynload::cudnnSetTensorNdDescriptor(
out_desc[i], cudnn_dtype, 4, out_dims[i].data(),
out_strides[i].data()));
CUDNN_ENFORCE(platform::dynload::cudnnGetConvolutionForwardAlgorithm(
handle, in_desc[i], filter_desc[i], conv_desc[i], out_desc[i],
CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT, workspace_size_limit,
&algo[i]));
size_t tmp_size = 0;
CUDNN_ENFORCE(platform::dynload::cudnnGetConvolutionForwardWorkspaceSize(
handle, in_desc[i], filter_desc[i], conv_desc[i], out_desc[i],
algo[i], &tmp_size));
workspace_size_in_bytes = std::max(workspace_size_in_bytes, tmp_size);
}
cudnnActivationDescriptor_t cudnn_act_desc =
act_desc.descriptor<T>(activation);
int oc0 = filter_dims[0][0];
int oc1 = filter_dims[1][0] - filter_dims[2][1] * 2;
int oc3 = filter_dims[3][0];
int oc2 = oc - oc0 - oc1 - oc3;
// branch1: pool + 1x1 conv
ScalingParamType<T> alpha = 1.0f, beta = 0.0f;
CUDNN_ENFORCE(platform::dynload::cudnnPoolingForward(
handle, cudnn_pool_desc, &alpha, cudnn_input_desc, input_data, &beta,
pool_out_desc, temp_data));
std::vector<const void*> in_datas;
in_datas.push_back(static_cast<const void*>(temp_data));
in_datas.push_back(static_cast<const void*>(input_data));
in_datas.push_back(
static_cast<const void*>(output_data + (oc0 + oc1) * h * w));
T* temp2_data = temp_outs[1]->mutable_data<T>(
framework::make_ddim(out_dims[2]), ctx.GetPlace());
in_datas.push_back(static_cast<const void*>(temp2_data + oc2 * h * w));
std::vector<void*> out_datas;
out_datas.push_back(static_cast<void*>(output_data));
out_datas.push_back(static_cast<void*>(output_data + oc0 * h * w));
out_datas.push_back(static_cast<void*>(temp2_data));
out_datas.push_back(
static_cast<void*>(output_data + (oc0 + oc1 + oc2) * h * w));
for (int i = 0; i < 4; ++i) {
auto func = [&](void* cudnn_workspace) {
CUDNN_ENFORCE(platform::dynload::cudnnConvolutionBiasActivationForward(
handle, &alpha, in_desc[i], in_datas[i], filter_desc[i],
static_cast<const void*>(filters[i]->data<T>()), conv_desc[i],
algo[i], cudnn_workspace, workspace_size_in_bytes, &beta,
out_desc[i], out_datas[i], bias_desc[i],
static_cast<const void*>(bias[i]->data<T>()), cudnn_act_desc,
out_desc[i], out_datas[i]));
};
auto workspace_handle = dev_ctx.cudnn_workspace_handle();
workspace_handle.RunFunc(func, workspace_size_in_bytes);
}
cudnnTensorDescriptor_t x_desc;
cudnnTensorDescriptor_t y_desc;
CUDNN_ENFORCE(platform::dynload::cudnnCreateTensorDescriptor(&x_desc));
CUDNN_ENFORCE(platform::dynload::cudnnCreateTensorDescriptor(&y_desc));
CUDNN_ENFORCE(platform::dynload::cudnnSetTensorNdDescriptor(
x_desc, cudnn_dtype, 4, out_dims[3].data(), out_strides[2].data()));
CUDNN_ENFORCE(platform::dynload::cudnnSetTensorNdDescriptor(
y_desc, cudnn_dtype, 4, out_dims[3].data(), out_strides[3].data()));
CUDNN_ENFORCE(platform::dynload::cudnnTransformTensor(
handle, CudnnDataType<T>::kOne(), x_desc,
static_cast<const void*>(out_datas[2]), CudnnDataType<T>::kZero(),
y_desc, static_cast<void*>(output_data + (oc0 + oc1) * h * w)));
for (int i = 0; i < 4; ++i) {
CUDNN_ENFORCE(
platform::dynload::cudnnDestroyTensorDescriptor(in_desc[i]));
CUDNN_ENFORCE(
platform::dynload::cudnnDestroyTensorDescriptor(out_desc[i]));
CUDNN_ENFORCE(
platform::dynload::cudnnDestroyFilterDescriptor(filter_desc[i]));
CUDNN_ENFORCE(
platform::dynload::cudnnDestroyTensorDescriptor(bias_desc[i]));
CUDNN_ENFORCE(
platform::dynload::cudnnDestroyConvolutionDescriptor(conv_desc[i]));
}
CUDNN_ENFORCE(platform::dynload::cudnnDestroyTensorDescriptor(x_desc));
CUDNN_ENFORCE(platform::dynload::cudnnDestroyTensorDescriptor(y_desc));
}
};
#endif
} // namespace operators
} // namespace paddle
#if CUDNN_VERSION >= 7001
namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(conv2d_inception_fusion,
ops::CUDNNConvInceptionFusionOpKernel<float>,
ops::CUDNNConvInceptionFusionOpKernel<double>);
#endif
......@@ -154,9 +154,14 @@ def __bootstrap__():
if core.is_compiled_with_cuda():
read_env_flags += [
'fraction_of_gpu_memory_to_use', 'cudnn_deterministic',
'enable_cublas_tensor_op_math', 'conv_workspace_size_limit',
'cudnn_exhaustive_search', 'memory_optimize_debug', 'selected_gpus'
'fraction_of_gpu_memory_to_use',
'cudnn_deterministic',
'enable_cublas_tensor_op_math',
'conv_workspace_size_limit',
'cudnn_exhaustive_search',
'memory_optimize_debug',
'selected_gpus',
'cudnn_exhaustive_search_times',
]
core.init_gflags([sys.argv[0]] +
......
......@@ -647,20 +647,16 @@ class Operator(object):
self.desc.set_input(in_proto.name, [])
if outputs is not None:
given = set()
need = set()
for n in outputs:
given.add(n)
for m in proto.outputs:
need.add(m.name)
if not given == need:
raise ValueError(("Incorrect setting for output(s) of "
"operator \"%s\". Need: [%s] Given: [%s]") %
(type,
", ".join(six.binary_type(e) for e in need),
", ".join(six.binary_type(e) for e in given)))
if (m.name not in outputs) and m.dispensable:
continue
if not ((m.name in outputs) or m.dispensable):
raise ValueError(
("Incorrect setting for output(s) of "
"operator \"%s\", should set: [%s].") % (type, m.name))
for out_proto in proto.outputs:
if out_proto.name not in outputs:
continue
out_args = outputs[out_proto.name]
if not isinstance(out_args, list):
out_args = [out_args]
......
......@@ -32,6 +32,8 @@ class TestConv2dFusionOp(OpTest):
self.activation = 'relu'
self.add_bias = True
self.add_residual_data = True
self.channels = None
self.outputs = None
self.init_group()
self.init_dilation()
......@@ -49,7 +51,7 @@ class TestConv2dFusionOp(OpTest):
input = np.random.random(self.input_size).astype(self.dtype)
filter = np.random.random(self.filter_size).astype(self.dtype)
output = conv2d_forward_naive(input, filter, self.groups,
self.output = conv2d_forward_naive(input, filter, self.groups,
conv2d_param).astype(self.dtype)
self.inputs = {
......@@ -58,19 +60,20 @@ class TestConv2dFusionOp(OpTest):
}
if self.add_residual_data:
residual_data = np.random.random(output.shape).astype(self.dtype)
residual_data = np.random.random(self.output.shape).astype(
self.dtype)
self.inputs['ResidualData'] = OpTest.np_dtype_to_fluid_dtype(
residual_data)
output += residual_data
self.output += residual_data
if self.add_bias:
bias = np.random.random(self.filter_size[0]).astype(self.dtype)
self.inputs['Bias'] = OpTest.np_dtype_to_fluid_dtype(bias)
output = output + bias.reshape((1, bias.size, 1, 1))
self.output = self.output + bias.reshape((1, bias.size, 1, 1))
assert self.activation in ['relu', 'identity']
if self.activation == 'relu':
output = np.maximum(output, 0)
self.output = np.maximum(self.output, 0)
self.attrs = {
'strides': self.stride,
......@@ -79,9 +82,12 @@ class TestConv2dFusionOp(OpTest):
'dilations': self.dilations,
'data_format': self.data_format,
'exhaustive_search': self.exhaustive_search,
'activation': self.activation
'activation': self.activation,
'split_channels': self.channels
}
self.outputs = {'Output': output}
self.outputs = {'Output': self.output}
self.set_outputs()
def testcuda(self):
return core.is_compiled_with_cuda()
......@@ -117,6 +123,9 @@ class TestConv2dFusionOp(OpTest):
def set_search_method(self):
self.exhaustive_search = False
def set_outputs(self):
pass
class TestWithoutResidual(TestConv2dFusionOp):
def init_bias_residual(self):
......@@ -160,5 +169,21 @@ class TestCUDNNExhaustiveSearch(TestConv2dFusionOp):
self.exhaustive_search = True
class TestMultipleOutputs(TestConv2dFusionOp):
def init_test_case(self):
self.pad = [1, 1]
self.stride = [1, 1]
self.input_size = [1, 32, 17, 17] # NCHW
assert np.mod(self.input_size[1], self.groups) == 0
f_c = self.input_size[1] // self.groups
self.filter_size = [126, f_c, 3, 3]
self.channels = [84, 42]
def set_outputs(self):
out1 = self.output[:, 0:84, :, :]
out2 = self.output[:, 84:126, :, :]
self.outputs['Outputs'] = [('out1', out1), ('out2', out2)]
if __name__ == '__main__':
unittest.main()
......@@ -137,9 +137,9 @@ def append_input_output(block, op_proto, np_list, is_input, dtype):
var_dict = {}
for var_proto in proto_list:
var_name = str(var_proto.name)
if is_input:
if (var_name not in np_list) and var_proto.dispensable:
continue
if is_input:
assert (var_name in np_list) or (var_proto.dispensable), \
"Missing {} as input".format(var_name)
if var_proto.duplicable:
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册