From 6c332ad6c650a612c85586a4ba222fb6221d2c69 Mon Sep 17 00:00:00 2001 From: liuwei1031 <46661762+liuwei1031@users.noreply.github.com> Date: Sat, 11 Apr 2020 13:19:49 +0800 Subject: [PATCH] imporve error messages for conv, conv_transpose, cos_sim, group_norm (#23675) * imporve error messages for conv, conv_transpose, cos_sim, group_norm --- paddle/fluid/operators/conv_op.cc | 79 +++++++------- paddle/fluid/operators/conv_transpose_op.cc | 58 +++++----- paddle/fluid/operators/cos_sim_op.cc | 112 ++++++++++++-------- paddle/fluid/operators/group_norm_op.cc | 97 +++++++++-------- 4 files changed, 190 insertions(+), 156 deletions(-) diff --git a/paddle/fluid/operators/conv_op.cc b/paddle/fluid/operators/conv_op.cc index 81d1a39309a..3106a20520f 100644 --- a/paddle/fluid/operators/conv_op.cc +++ b/paddle/fluid/operators/conv_op.cc @@ -31,12 +31,9 @@ namespace paddle { namespace operators { void ConvOp::InferShape(framework::InferShapeContext* ctx) const { - PADDLE_ENFORCE_EQ(ctx->HasInput("Input"), true, - "Input(Input) of ConvOp should not be null."); - PADDLE_ENFORCE_EQ(ctx->HasInput("Filter"), true, - "Input(Filter) of ConvOp should not be null."); - PADDLE_ENFORCE_EQ(ctx->HasOutput("Output"), true, - "Output(Output) of ConvOp should not be null."); + OP_INOUT_CHECK(ctx->HasInput("Input"), "Input", "Input", "Conv"); + OP_INOUT_CHECK(ctx->HasInput("Filter"), "Input", "Filter", "Conv"); + OP_INOUT_CHECK(ctx->HasOutput("Output"), "Output", "Output", "Conv"); auto in_dims = ctx->GetInputDim("Input"); auto filter_dims = ctx->GetInputDim("Filter"); @@ -56,49 +53,53 @@ void ConvOp::InferShape(framework::InferShapeContext* ctx) const { PADDLE_ENFORCE_EQ( in_dims.size() == 4 || in_dims.size() == 5, true, - "ShapeError: the input of Op(conv) should be 4-D or 5-D Tensor. But " - "received: %u-D Tensor, the shape of input is [%s].", - in_dims.size(), in_dims); + platform::errors::InvalidArgument( + "The input of Op(conv) should be 4-D or 5-D Tensor. But " + "received: %u-D Tensor, the shape of input is [%s].", + in_dims.size(), in_dims)); PADDLE_ENFORCE_EQ( in_dims.size(), filter_dims.size(), - "ShapeError: the input's dimension size and filter's dimension size of " - "Op(conv) should be equal. But received: the shape of input is [%s], " - "the dimension size of input is [%d], the shape of filter is [%s], " - "the dimension size of filter is [%d].", - in_dims, in_dims.size(), filter_dims, filter_dims.size()); + platform::errors::InvalidArgument( + "The input's dimension size and filter's dimension size of " + "Op(conv) should be equal. But received: the shape of input is [%s], " + "the dimension size of input is [%d], the shape of filter is [%s], " + "the dimension size of filter is [%d].", + in_dims, in_dims.size(), filter_dims, filter_dims.size())); int in_sub_stride_size = in_dims.size() - strides.size(); - PADDLE_ENFORCE_EQ(in_dims.size() - strides.size() == 2U, true, - "ShapeError: the dimension size of input minus the size of " - "Attr(stride) must be euqal to 2 for Op(conv)." - "But received: the dimension size of input minus the size " - "of Attr(stride) is [%d], the " - "input's dimension size is [%d], the shape of input " - "is [%s], the Attr(stride)'s size is [%d].", - in_sub_stride_size, in_dims.size(), in_dims, - strides.size()); + PADDLE_ENFORCE_EQ( + in_dims.size(), strides.size() + 2U, + platform::errors::InvalidArgument( + "The dimension size of input minus the size of " + "Attr(stride) must be euqal to 2 for Op(conv)." + "But received: the dimension size of input minus the size " + "of Attr(stride) is [%d], the " + "input's dimension size is [%d], the shape of input " + "is [%s], the Attr(stride)'s size is [%d].", + in_sub_stride_size, in_dims.size(), in_dims, strides.size())); const auto input_channels = channel_last ? in_dims[in_dims.size() - 1] : in_dims[1]; PADDLE_ENFORCE_EQ( input_channels, filter_dims[1] * groups, - "ShapeError: The number of input channels should be equal to filter " - "channels * groups for Op(conv). But received: the input's channels is " - "[%d], the shape " - "of input is [%s], the filter's channel is [%d], the shape of filter is " - "[%s], the groups is [%d], the data_format is %s. The error may come " - "from wrong data_format setting.", - input_channels, in_dims, filter_dims[1], filter_dims, groups, - data_format); + platform::errors::InvalidArgument( + "The number of input channels should be equal to filter channels * " + "groups for Op(conv). But received: the input's channels is [%d], " + "the shape of input is [%s], the filter's channel is [%d], the shape " + "of filter is [%s], the groups is [%d], the data_format is %s. The " + "error may come from wrong data_format setting.", + input_channels, in_dims, filter_dims[1], filter_dims, groups, + data_format)); PADDLE_ENFORCE_EQ( filter_dims[0] % groups, 0, - "ShapeError: The number of output channels of Op(conv) should be divided " - "by groups. " - "But received: the output channels is [%d], the shape of filter is [%s] " - "(the first dimension of filter is output channel), the groups is [%d].", - filter_dims[0], filter_dims, groups); + platform::errors::InvalidArgument( + "The number of output channels of Op(conv) should be divided " + "by groups. But received: the output channels is [%d], the shape " + "of filter is [%s] (the first dimension of filter is output " + "channel), the groups is [%d].", + filter_dims[0], filter_dims, groups)); framework::DDim in_data_dims; framework::DDim filter_data_dims; @@ -169,11 +170,13 @@ framework::OpKernelType ConvOp::GetExpectedKernelType( input_data_type != framework::proto::VarType::UINT8) { auto filter_data_type = ctx.Input("Filter")->type(); PADDLE_ENFORCE_EQ(input_data_type, filter_data_type, - "input and filter data type should be consistent"); + platform::errors::InvalidArgument( + "input and filter data type should be consistent")); } if (input_data_type == framework::proto::VarType::FP16) { PADDLE_ENFORCE_EQ(library, framework::LibraryType::kCUDNN, - "float16 can only be used when CUDNN is used"); + platform::errors::InvalidArgument( + "float16 can only be used when CUDNN is used")); } auto type = framework::OpKernelType(input_data_type, ctx.GetPlace(), layout, diff --git a/paddle/fluid/operators/conv_transpose_op.cc b/paddle/fluid/operators/conv_transpose_op.cc index c6c1af0e362..b44aa4ce4f8 100644 --- a/paddle/fluid/operators/conv_transpose_op.cc +++ b/paddle/fluid/operators/conv_transpose_op.cc @@ -29,12 +29,9 @@ namespace operators { using DataLayout = framework::DataLayout; void ConvTransposeOp::InferShape(framework::InferShapeContext* ctx) const { - PADDLE_ENFORCE_EQ(ctx->HasInput("Input"), true, - "Input(Input) of ConvTransposeOp should not be null."); - PADDLE_ENFORCE_EQ(ctx->HasInput("Filter"), true, - "Input(Filter) of ConvTransposeOp should not be null."); - PADDLE_ENFORCE_EQ(ctx->HasOutput("Output"), true, - "Output(Output) of ConvTransposeOp should not be null."); + OP_INOUT_CHECK(ctx->HasInput("Input"), "Input", "Input", "ConvTranspose"); + OP_INOUT_CHECK(ctx->HasInput("Filter"), "Input", "Filter", "ConvTranspose"); + OP_INOUT_CHECK(ctx->HasOutput("Output"), "Output", "Output", "ConvTranspose"); auto in_dims = ctx->GetInputDim("Input"); auto filter_dims = ctx->GetInputDim("Filter"); @@ -53,42 +50,47 @@ void ConvTransposeOp::InferShape(framework::InferShapeContext* ctx) const { : framework::StringToDataLayout(data_layout_str); PADDLE_ENFORCE_EQ(in_dims.size() == 4 || in_dims.size() == 5, true, - "ShapeError: input of Op(conv_transpose) should be 4-D or " - "5-D Tensor. But received: %u-D Tensor, " - "the shape of input is [%s]", - in_dims.size(), in_dims); + platform::errors::InvalidArgument( + "Input of Op(conv_transpose) should be 4-D or " + "5-D Tensor. But received: %u-D Tensor, " + "the shape of input is [%s]", + in_dims.size(), in_dims)); PADDLE_ENFORCE_EQ( in_dims.size(), filter_dims.size(), - "ShapeError: the input's dimension size and filter's dimension size of " - "Op (conv_transpose) should be equal. But received: the shape of input " - "is [%s], the dimension size of input is [%d], the shape of filter is " - "[%s], the dimension size of filter is [%d]. ", - in_dims, in_dims.size(), filter_dims, filter_dims.size()); + platform::errors::InvalidArgument( + "The input's dimension size and filter's dimension size of " + "Op (conv_transpose) should be equal. But received: the shape of " + "input is [%s], the dimension size of input is [%d], the shape " + "of filter is [%s], the dimension size of filter is [%d]. ", + in_dims, in_dims.size(), filter_dims, filter_dims.size())); int in_sub_stride_size = in_dims.size() - strides.size(); PADDLE_ENFORCE_EQ( in_dims.size() - strides.size(), 2U, - "ShapeError: the input's dimension size minus Attr(stride)'s size must " - "be euqal to 2 for Op(conv_transpose). But received: [%d], the " - "input's dimension size is [%d], the shape of input " - "is [%s], the Attr(stride)'s size is [%d].", - in_sub_stride_size, in_dims.size(), in_dims, strides.size()); + platform::errors::InvalidArgument( + "The input's dimension size minus Attr(stride)'s size must " + "be euqal to 2 for Op(conv_transpose). But received: [%d], the " + "input's dimension size is [%d], the shape of input " + "is [%s], the Attr(stride)'s size is [%d].", + in_sub_stride_size, in_dims.size(), in_dims, strides.size())); if (output_size.size()) PADDLE_ENFORCE_EQ( output_size.size(), strides.size(), - "The Attr(output_size) and Attr(stride) of Op(conv_transpose) " - "should be the same."); + platform::errors::InvalidArgument( + "The Attr(output_size) and Attr(stride) of Op(conv_transpose) " + "should be the same.")); const int64_t C = (data_layout != DataLayout::kNHWC ? in_dims[1] : in_dims[in_dims.size() - 1]); PADDLE_ENFORCE_EQ( C, filter_dims[0], - "ShapeError: The number of input channels should be equal to filter " - "channels for Op(conv_transpose). But received: the input's channels is " - "[%d], the shape of input is [%s], the filter's channels is [%d], the " - "shape of filter is [%s]. The data_format is %s." - "The error may come from wrong data_format setting.", - C, in_dims, filter_dims[0], filter_dims, data_layout_str); + platform::errors::InvalidArgument( + "The number of input channels should be equal to filter channels " + "for Op(conv_transpose). But received: the input's channels is " + "[%d], the shape of input is [%s], the filter's channels is [%d], " + "the shape of filter is [%s]. The data_format is %s." + "The error may come from wrong data_format setting.", + C, in_dims, filter_dims[0], filter_dims, data_layout_str)); framework::DDim in_data_dims; if (data_layout != DataLayout::kNHWC) { diff --git a/paddle/fluid/operators/cos_sim_op.cc b/paddle/fluid/operators/cos_sim_op.cc index 7f9dc66ecd1..5532a02d4f1 100644 --- a/paddle/fluid/operators/cos_sim_op.cc +++ b/paddle/fluid/operators/cos_sim_op.cc @@ -26,16 +26,11 @@ class CosSimOp : public framework::OperatorWithKernel { void InferShape(framework::InferShapeContext* ctx) const override { // notnull check - PADDLE_ENFORCE(ctx->HasInput("X"), - "Input(X) of CosSimOp should not be null."); - PADDLE_ENFORCE(ctx->HasInput("Y"), - "Input(Y) of CosSimOp should not be null."); - PADDLE_ENFORCE(ctx->HasOutput("Out"), - "Output(Out) of CosSimOp should not be null."); - PADDLE_ENFORCE(ctx->HasOutput("XNorm"), - "Output(XNorm) of CosSimOp should not be null."); - PADDLE_ENFORCE(ctx->HasOutput("YNorm"), - "Output(YNorm) of CosSimOp should not be null."); + OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "CosSim"); + OP_INOUT_CHECK(ctx->HasInput("Y"), "Input", "Y", "CosSim"); + OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "CosSim"); + OP_INOUT_CHECK(ctx->HasOutput("XNorm"), "Output", "XNorm", "CosSim"); + OP_INOUT_CHECK(ctx->HasOutput("YNorm"), "Output", "YNorm", "CosSim"); // shape check auto x_dims = ctx->GetInputDim("X"); @@ -48,19 +43,28 @@ class CosSimOp : public framework::OperatorWithKernel { } if (check) { - PADDLE_ENFORCE_EQ(x_dims.size(), y_dims.size(), - "Ranks of Input(X) and Input(Y) must be equal."); - PADDLE_ENFORCE_GE(x_dims.size(), 2, - "Rank of Input(X) must not be less than 2."); + PADDLE_ENFORCE_EQ( + x_dims.size(), y_dims.size(), + platform::errors::InvalidArgument( + "Ranks of Input(X) [%s] and Input(Y) [%s] must be equal.", x_dims, + y_dims)); + PADDLE_ENFORCE_GE( + x_dims.size(), 2, + platform::errors::InvalidArgument( + "Rank of Input(X) %d must not be less than 2.", x_dims.size())); PADDLE_ENFORCE_EQ( framework::slice_ddim(x_dims, 1, x_dims.size()), framework::slice_ddim(y_dims, 1, y_dims.size()), - "All dimensions except the 1st of Input(X) and Input(Y) " - "must be equal."); + platform::errors::InvalidArgument( + "All dimensions except the 1st of Input(X) [%s] and Input(Y) [%s]" + "must be equal.", + x_dims, y_dims)); PADDLE_ENFORCE( x_dims[0] == y_dims[0] || y_dims[0] == 1, - "The 1st dimension of Input(Y) must be equal to Input(X) or" - " just 1 (which will be broadcasted to match Input(X))."); + platform::errors::InvalidArgument( + "The 1st dimension of Input(Y) %d must be equal to Input(X) %d or" + " just 1 (which will be broadcasted to match Input(X)).", + y_dims[0], x_dims[0])); } // resize tensor @@ -116,13 +120,13 @@ class CosSimOpGrad : public framework::OperatorWithKernel { void InferShape(framework::InferShapeContext* ctx) const override { // notnull check - PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must not be null."); - PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) must not be null."); - PADDLE_ENFORCE(ctx->HasInput("XNorm"), "Input(XNorm) must not be null."); - PADDLE_ENFORCE(ctx->HasInput("YNorm"), "Input(YNorm) must not be null."); - PADDLE_ENFORCE(ctx->HasInput("Out"), "Input(Out) must not be null."); - PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")), - "Input(Out@GRAD) must not be null."); + OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "CosSimGrad"); + OP_INOUT_CHECK(ctx->HasInput("Y"), "Input", "Y", "CosSimGrad"); + OP_INOUT_CHECK(ctx->HasInput("XNorm"), "Input", "XNorm", "CosSimGrad"); + OP_INOUT_CHECK(ctx->HasInput("YNorm"), "Input", "YNorm", "CosSimGrad"); + OP_INOUT_CHECK(ctx->HasInput("Out"), "Input", "Out", "CosSimGrad"); + OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input", + framework::GradVarName("Out"), "CosSimGrad"); // shape check auto x_dims = ctx->GetInputDim("X"); @@ -133,26 +137,48 @@ class CosSimOpGrad : public framework::OperatorWithKernel { auto out_grad_dims = ctx->GetInputDim(framework::GradVarName("Out")); PADDLE_ENFORCE_GE(x_dims.size(), y_dims.size(), - "Ranks of Input(X) and Input(Y) must be equal."); - PADDLE_ENFORCE_GE(x_dims.size(), 2, - "Rank of Input(X) must not be less than 2."); - PADDLE_ENFORCE_EQ(framework::slice_ddim(x_dims, 1, x_dims.size()), - framework::slice_ddim(y_dims, 1, y_dims.size()), - "All dimensions except the 1st of Input(X) and Input(Y) " - "must be equal."); - PADDLE_ENFORCE(x_dims[0] == y_dims[0] || y_dims[0] == 1, - "The 1st dimension of Input(Y) must be equal to Input(X) or" - " just 1 (which will be broadcasted to match Input(X))."); + platform::errors::InvalidArgument( + "Ranks of Input(X) %d and Input(Y) %d must be equal.", + x_dims.size(), y_dims.size())); + PADDLE_ENFORCE_GE( + x_dims.size(), 2, + platform::errors::InvalidArgument( + "Rank of Input(X) %d must not be less than 2.", x_dims.size())); + PADDLE_ENFORCE_EQ( + framework::slice_ddim(x_dims, 1, x_dims.size()), + framework::slice_ddim(y_dims, 1, y_dims.size()), + platform::errors::InvalidArgument( + "All dimensions except the 1st of Input(X) [%s] and Input(Y) [%s] " + "must be equal.", + x_dims, y_dims)); + PADDLE_ENFORCE_EQ( + true, x_dims[0] == y_dims[0] || y_dims[0] == 1, + platform::errors::InvalidArgument( + "The 1st dimension of Input(Y) %d must be equal to Input(X) %d or" + " just 1 (which will be broadcasted to match Input(X)).", + y_dims[0], x_dims[0])); auto target_xnorm_dims = framework::make_ddim({x_dims[0], 1}); auto target_ynorm_dims = framework::make_ddim({y_dims[0], 1}); - PADDLE_ENFORCE_EQ(xnorm_dims, target_xnorm_dims, - "Shape of Input(XNorm) must be [X.Dim(0), 1]."); - PADDLE_ENFORCE_EQ(ynorm_dims, target_ynorm_dims, - "Shape of Input(YNorm) must be [Y.Dim(0), 1]."); - PADDLE_ENFORCE_EQ(out_dims, target_xnorm_dims, - "Shape of Input(Out) must be [X.Dim(0), 1]."); - PADDLE_ENFORCE_EQ(out_grad_dims, target_xnorm_dims, - "Shape of Input(Out@Grad) must be [X.Dim(0), 1]."); + PADDLE_ENFORCE_EQ( + xnorm_dims, target_xnorm_dims, + platform::errors::InvalidArgument( + "Shape of Input(XNorm) [%s] must be (X.Dim(0), 1) - [%s]", + xnorm_dims, target_xnorm_dims)); + PADDLE_ENFORCE_EQ( + ynorm_dims, target_ynorm_dims, + platform::errors::InvalidArgument( + "Shape of Input(YNorm) [%s] must be (Y.Dim(0), 1) - [%s]", + ynorm_dims, target_ynorm_dims)); + PADDLE_ENFORCE_EQ( + out_dims, target_xnorm_dims, + platform::errors::InvalidArgument( + "Shape of Input(Out) [%s] must be (X.Dim(0), 1) - [%s]", out_dims, + target_xnorm_dims)); + PADDLE_ENFORCE_EQ( + out_grad_dims, target_xnorm_dims, + platform::errors::InvalidArgument( + "Shape of Input(Out@Grad) [%s] must be (X.Dim(0), 1) - [%s]", + out_grad_dims, target_xnorm_dims)); // resize tensor auto x_grad_name = framework::GradVarName("X"); diff --git a/paddle/fluid/operators/group_norm_op.cc b/paddle/fluid/operators/group_norm_op.cc index 360a745a8c5..4414f1a5712 100644 --- a/paddle/fluid/operators/group_norm_op.cc +++ b/paddle/fluid/operators/group_norm_op.cc @@ -30,14 +30,12 @@ class GroupNormOp : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; void InferShape(framework::InferShapeContext *ctx) const override { - PADDLE_ENFORCE(ctx->HasInput("X"), - "Input(X) of GroupNormOp should not be null."); - PADDLE_ENFORCE(ctx->HasOutput("Y"), - "Output(Y) of GroupNormOp should not be null."); - PADDLE_ENFORCE(ctx->HasOutput("Mean"), - "Output(Mean) of GroupNormOp should not be null."); - PADDLE_ENFORCE(ctx->HasOutput("Variance"), - "Output(Variance) of GroupNormOp should not be null."); + OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "GroupNorm"); + OP_INOUT_CHECK(ctx->HasOutput("Y"), "Output", "Y", "GroupNorm"); + OP_INOUT_CHECK(ctx->HasOutput("Mean"), "Output", "Mean", "GroupNorm"); + OP_INOUT_CHECK(ctx->HasOutput("Variance"), "Output", "Variance", + "GroupNorm"); + auto x_dim = ctx->GetInputDim("X"); const std::string data_layout_str = ctx->Attrs().Get("data_layout"); @@ -49,47 +47,52 @@ class GroupNormOp : public framework::OperatorWithKernel { auto groups = ctx->Attrs().Get("groups"); PADDLE_ENFORCE_LE( groups, channel_num, - "ValueError: the Attr(groups) of Op(group_norm) must be less than or " - "equal to the number of channels. " - "But received: groups is [%s], channels is [%s], the Attr(data_layout) " - "is [%s]. The error may come from wrong data_layout setting.", - groups, channel_num, data_layout_str); + platform::errors::InvalidArgument( + "The Attr(groups) of Op(group_norm) must be less than or " + "equal to the number of channels. But received: groups " + "is [%s], channels is [%s], the Attr(data_layout) " + "is [%s]. The error may come from wrong data_layout setting.", + groups, channel_num, data_layout_str)); PADDLE_ENFORCE_GE( groups, 1, - "ValueError: the Attr(groups) of Op(group_norm) must be " - "greater than or equal to 1. But received: groups is [%s].", - groups); + platform::errors::InvalidArgument( + "The Attr(groups) of Op(group_norm) must be " + "greater than or equal to 1. But received: groups is [%s].", + groups)); if (ctx->HasInput("Scale")) { PADDLE_ENFORCE_EQ( ctx->GetInputDim("Scale").size(), 1UL, - "ShapeError: the Input(Scale) of Op(group_norm) should be 1-D " - "Tensor. " - "But received: %u-D Tensor, the shape of Input(Scale) is [%s].", - ctx->GetInputDim("Scale").size(), ctx->GetInputDim("Scale")); + platform::errors::InvalidArgument( + "The Input(Scale) of Op(group_norm) should be 1-D Tensor. " + "But received: %u-D Tensor, the shape of Input(Scale) is [%s].", + ctx->GetInputDim("Scale").size(), ctx->GetInputDim("Scale"))); PADDLE_ENFORCE_EQ( ctx->GetInputDim("Scale")[0], channel_num, - "ShapeError: the Input(Scale)'s first dimension size of " - "Op(group_norm) must be equal to the number of channels. " - "But received: the Input(Scale)'s first dimension size is [%s], the " - "channels is [%s], the Attr(data_layout) is [%s]. The error may come " - "from wrong data_layout setting.", - ctx->GetInputDim("Scale")[0], channel_num, data_layout_str); + platform::errors::InvalidArgument( + "The Input(Scale)'s first dimension size of Op(group_norm) must " + "be equal to the number of channels. But received: the " + "Input(Scale)'s first dimension size is [%s], the channels is " + "[%s], the Attr(data_layout) is [%s]. The error may come " + "from wrong data_layout setting.", + ctx->GetInputDim("Scale")[0], channel_num, data_layout_str)); } if (ctx->HasInput("Bias")) { PADDLE_ENFORCE_EQ( ctx->GetInputDim("Bias").size(), 1UL, - "ShapeError: the Input(Bias) of Op(group_norm) should be 1-D Tensor. " - "But received: %u-D Tensor, the shape of Input(Bias) is [%s].", - ctx->GetInputDim("Bias").size(), ctx->GetInputDim("Bias")); + platform::errors::InvalidArgument( + "The Input(Bias) of Op(group_norm) should be 1-D Tensor. " + "But received: %u-D Tensor, the shape of Input(Bias) is [%s].", + ctx->GetInputDim("Bias").size(), ctx->GetInputDim("Bias"))); PADDLE_ENFORCE_EQ( ctx->GetInputDim("Bias")[0], channel_num, - "ShapeError: the Input(Bias)'s first dimension size of " - "Op(group_norm) must be equal to the number of channels. " - "But received: the Input(Bias)'s first dimension size is [%s], the " - "channels is [%s], the Attr(data_layout) is [%s]. The error may come " - "from wrong data_layout setting.", - ctx->GetInputDim("Bias")[0], channel_num, data_layout_str); + platform::errors::InvalidArgument( + "The Input(Bias)'s first dimension size of " + "Op(group_norm) must be equal to the number of channels. " + "But received: the Input(Bias)'s first dimension size is [%s], " + "the channels is [%s], the Attr(data_layout) is [%s]. The " + "error may come from wrong data_layout setting.", + ctx->GetInputDim("Bias")[0], channel_num, data_layout_str)); } ctx->SetOutputDim("Y", ctx->GetInputDim("X")); @@ -143,12 +146,11 @@ class GroupNormGradOp : public framework::OperatorWithKernel { void InferShape(framework::InferShapeContext *ctx) const override { // check input - PADDLE_ENFORCE(ctx->HasInput("Y"), - "Input(Y) of GroupNormOp should not be null."); - PADDLE_ENFORCE(ctx->HasInput("Variance"), - "Input(Variance) of GroupNormOp should not be null."); - PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Y")), - "Input(Y@GRAD) of GroupNormOp should not be null."); + OP_INOUT_CHECK(ctx->HasInput("Y"), "Input", "Y", "GroupNormGrad"); + OP_INOUT_CHECK(ctx->HasInput("Variance"), "Input", "Variance", + "GroupNormGrad"); + OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Y")), "Input", + framework::GradVarName("Y"), "GroupNormGrad"); // check output if (ctx->HasOutput(framework::GradVarName("X"))) { @@ -168,18 +170,19 @@ class GroupNormGradOp : public framework::OperatorWithKernel { framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext &ctx) const override { const auto *var = ctx.InputVar(framework::GradVarName("Y")); - if (var == nullptr) { - PADDLE_THROW("can't find Y@GRAD"); - } + + PADDLE_ENFORCE_NOT_NULL( + var, platform::errors::InvalidArgument( + "Input(Y@GRAD) of GroupNormGradOp should not be null")); const Tensor *t = nullptr; if (var->IsType()) { t = &var->Get(); } else if (var->IsType()) { t = &var->Get(); } - if (t == nullptr) { - PADDLE_THROW("can't find Y@GRAD"); - } + PADDLE_ENFORCE_NOT_NULL( + t, platform::errors::InvalidArgument( + "Input(Y@GRAD) Tensor of GroupNormGradOp should not be null")); return framework::OpKernelType(t->type(), ctx.GetPlace()); } }; -- GitLab