Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
6b7f6474
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
提交
6b7f6474
编写于
2月 23, 2017
作者:
W
wangyang59
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
deconv projection/operator implementation
上级
b8afb140
变更
8
显示空白变更内容
内联
并排
Showing
8 changed file
with
648 addition
and
259 deletion
+648
-259
paddle/gserver/layers/ConvBaseOperator.cpp
paddle/gserver/layers/ConvBaseOperator.cpp
+197
-0
paddle/gserver/layers/ConvBaseOperator.h
paddle/gserver/layers/ConvBaseOperator.h
+113
-0
paddle/gserver/layers/ConvBaseProjection.cpp
paddle/gserver/layers/ConvBaseProjection.cpp
+25
-22
paddle/gserver/layers/ConvOperator.cpp
paddle/gserver/layers/ConvOperator.cpp
+4
-223
paddle/gserver/layers/ConvOperator.h
paddle/gserver/layers/ConvOperator.h
+42
-0
paddle/gserver/layers/ConvTransOperator.cpp
paddle/gserver/layers/ConvTransOperator.cpp
+99
-0
paddle/gserver/layers/ConvTransOperator.h
paddle/gserver/layers/ConvTransOperator.h
+42
-0
paddle/gserver/tests/test_ConvUnify.cpp
paddle/gserver/tests/test_ConvUnify.cpp
+126
-14
未找到文件。
paddle/gserver/layers/ConvBaseOperator.cpp
0 → 100644
浏览文件 @
6b7f6474
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "ConvBaseOperator.h"
#include "paddle/math/MathUtils.h"
#include "paddle/math/Matrix.h"
namespace
paddle
{
/**
* @brief ConvBaseOperator takes two inputs to perform the convolution.
* The first input is the image, and the second input is the convolution kernel.
* The height of data for two inputs are the same. Each data of the first input
* is convolved with each data of the second input indepedently.
*
* The config file api is conv_operator.
*/
ConvBaseOperator
::
ConvBaseOperator
(
const
OperatorConfig
&
config
,
bool
useGpu
)
:
Operator
(
config
,
useGpu
)
{
CHECK
(
useGpu
);
CHECK_EQ
(
config_
.
input_indices_size
(),
2L
);
caffeMode_
=
true
;
getConvParams
();
computeConvSizes
();
// initialize all to default algorithms
fwdAlgo_
=
0
;
bwdFilterAlgo_
=
0
;
bwdDataAlgo_
=
0
;
fwdLimitBytes_
=
0
;
bwdDataLimitBytes_
=
0
;
bwdFilterLimitBytes_
=
0
;
workSpaceInBytes_
=
0
;
workSpace_
=
nullptr
;
isSelectAlgo_
=
false
;
}
void
ConvBaseOperator
::
allocConvWorkSpace
(
size_t
maxWorkSpace
)
{
if
(
maxWorkSpace
>
workSpaceInBytes_
)
{
if
(
workSpaceInBytes_
!=
0
)
{
hl_free_mem_device
(
workSpace_
);
}
// total amount of storage needed
workSpace_
=
hl_malloc_device
(
maxWorkSpace
);
workSpaceInBytes_
=
maxWorkSpace
;
}
}
void
ConvBaseOperator
::
reshape
(
int
batchSize
)
{
if
(
isDeconv_
)
{
outputH_
=
ins_
[
0
]
->
getFrameHeight
();
outputW_
=
ins_
[
0
]
->
getFrameWidth
();
if
(
outputH_
==
0
)
outputH_
=
outputY_
;
if
(
outputW_
==
0
)
outputW_
=
outputX_
;
imageH_
=
imageSize
(
outputH_
,
filterSizeY_
,
paddingY_
,
strideY_
,
caffeMode_
);
imageW_
=
imageSize
(
outputW_
,
filterSize_
,
padding_
,
stride_
,
caffeMode_
);
/// Check that the imageSizes are consistent with config
CHECK_EQ
(
imageH_
,
imgSizeY_
);
CHECK_EQ
(
imageW_
,
imgSize_
);
out_
->
setFrameHeight
(
imageH_
);
out_
->
setFrameWidth
(
imageW_
);
}
else
{
imageH_
=
ins_
[
0
]
->
getFrameHeight
();
imageW_
=
ins_
[
0
]
->
getFrameWidth
();
if
(
imageH_
==
0
)
imageH_
=
imgSizeY_
;
if
(
imageW_
==
0
)
imageW_
=
imgSize_
;
outputH_
=
outputSize
(
imageH_
,
filterSizeY_
,
paddingY_
,
strideY_
,
caffeMode_
);
outputW_
=
outputSize
(
imageW_
,
filterSize_
,
padding_
,
stride_
,
caffeMode_
);
/// Check that the outputSizes are consistent with config
CHECK_EQ
(
outputH_
,
outputY_
);
CHECK_EQ
(
outputW_
,
outputX_
);
out_
->
setFrameHeight
(
outputH_
);
out_
->
setFrameWidth
(
outputW_
);
}
reshapeImageDescriptors
();
if
(
!
isSelectAlgo_
)
{
hl_conv_workspace
(
imageDesc_
,
outputDesc_
,
filterDesc_
,
convDesc_
,
&
fwdAlgo_
,
&
fwdLimitBytes_
,
&
bwdDataAlgo_
,
&
bwdDataLimitBytes_
,
&
bwdFilterAlgo_
,
&
bwdFilterLimitBytes_
);
size_t
maxWorkSpace
=
0
;
maxWorkSpace
=
std
::
max
(
fwdLimitBytes_
,
bwdDataLimitBytes_
);
maxWorkSpace
=
std
::
max
(
maxWorkSpace
,
bwdFilterLimitBytes_
);
allocConvWorkSpace
(
maxWorkSpace
);
}
isSelectAlgo_
=
true
;
}
void
ConvBaseOperator
::
computeConvSizes
()
{
hl_create_filter_descriptor
(
&
filterDesc_
,
channels_
,
numFilters_
,
filterSizeY_
,
filterSize_
);
hl_create_tensor_descriptor
(
&
imageDesc_
);
hl_create_tensor_descriptor
(
&
outputDesc_
);
hl_create_convolution_descriptor
(
&
convDesc_
,
imageDesc_
,
filterDesc_
,
paddingY_
,
padding_
,
strideY_
,
stride_
);
}
void
ConvBaseOperator
::
reshapeImageDescriptors
()
{
hl_tensor_reshape
(
imageDesc_
,
1
,
channels_
,
imageH_
,
imageW_
,
channels_
*
imageH_
*
imageW_
,
imageH_
*
imageW_
,
imageW_
,
1
);
hl_tensor_reshape
(
outputDesc_
,
1
,
numFilters_
,
outputH_
,
outputW_
,
numFilters_
*
outputH_
*
outputW_
,
outputH_
*
outputW_
,
outputW_
,
1
);
hl_reset_convolution_descriptor
(
convDesc_
,
imageDesc_
,
filterDesc_
,
paddingY_
,
padding_
,
strideY_
,
stride_
);
if
(
isDeconv_
)
{
inputOffset_
=
numFilters_
*
outputH_
*
outputW_
;
outputOffset_
=
channels_
*
imageH_
*
imageW_
;
}
else
{
inputOffset_
=
channels_
*
imageH_
*
imageW_
;
outputOffset_
=
numFilters_
*
outputH_
*
outputW_
;
}
weightOffset_
=
numFilters_
*
channels_
*
filterSize_
*
filterSizeY_
;
}
void
ConvBaseOperator
::
getConvParams
()
{
configNumFilters_
=
config_
.
num_filters
();
const
ConvConfig
&
conf
=
config_
.
conv_conf
();
padding_
=
conf
.
padding
();
stride_
=
conf
.
stride
();
filterSize_
=
conf
.
filter_size
();
paddingY_
=
conf
.
padding_y
();
strideY_
=
conf
.
stride_y
();
filterSizeY_
=
conf
.
filter_size_y
();
filterPixels_
=
filterSize_
*
filterSizeY_
;
configChannels_
=
conf
.
channels
();
imgSize_
=
conf
.
img_size
();
imgSizeY_
=
conf
.
has_img_size_y
()
?
conf
.
img_size_y
()
:
conf
.
img_size
();
imgPixels_
=
imgSize_
*
imgSizeY_
;
CHECK_EQ
(
conf
.
groups
(),
1U
);
filterChannels_
=
conf
.
filter_channels
();
outputX_
=
conf
.
output_x
();
outputY_
=
conf
.
has_output_y
()
?
conf
.
output_y
()
:
conf
.
output_x
();
outputs_
=
outputX_
*
outputX_
;
isDeconv_
=
(
config_
.
type
()
==
"conv"
)
?
false
:
true
;
if
(
isDeconv_
)
{
channels_
=
configNumFilters_
;
numFilters_
=
configChannels_
;
}
else
{
channels_
=
configChannels_
;
numFilters_
=
configNumFilters_
;
}
}
}
// namespace paddle
paddle/gserver/layers/ConvBaseOperator.h
0 → 100644
浏览文件 @
6b7f6474
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "Operator.h"
#include "paddle/math/MathUtils.h"
#include "paddle/math/Matrix.h"
namespace
paddle
{
/**
* @brief ConvOperator takes two inputs to perform the convolution.
* The first input is the image, and the second input is the convolution kernel.
* The height of data for two inputs are the same. Each data of the first input
* is convolved with each data of the second input indepedently.
*
* The config file api is conv_operator.
*/
class
ConvBaseOperator
:
public
Operator
{
public:
ConvBaseOperator
(
const
OperatorConfig
&
config
,
bool
useGpu
);
/**
* Free workspace in device and destroy cudnn tensor descriptor.
*/
virtual
~
ConvBaseOperator
()
{
if
(
workSpaceInBytes_
!=
0
)
{
hl_free_mem_device
(
workSpace_
);
workSpaceInBytes_
=
0
;
}
hl_destroy_tensor_descriptor
(
imageDesc_
);
hl_destroy_tensor_descriptor
(
outputDesc_
);
hl_destroy_filter_descriptor
(
filterDesc_
);
hl_destroy_convolution_descriptor
(
convDesc_
);
}
virtual
void
forward
();
virtual
void
backward
();
private:
/**
* Get convolution parameters from layer config and
* initialize member variables.
*/
void
getConvParams
();
/**
* Allocate Gpu Memory for cudnn convolution algorithms.
*/
void
allocConvWorkSpace
(
size_t
maxWorkSpace
);
/**
* Create cudnn tensor descriptor for convolution operation.
*/
void
computeConvSizes
();
/**
* Reshape cudnn tensor descriptor.
*/
void
reshapeImageDescriptors
();
/**
* Reshape cudnn tensor descriptor.
*/
void
reshape
(
int
batchSize
);
/**
* Check filter size is equal to the size calculated by parameters from
* layer config.
*/
void
checkFilterSize
(
const
MatrixPtr
&
filter
)
{
CHECK_EQ
(
static_cast
<
int
>
(
filter
->
getWidth
()),
filterSize_
*
filterSizeY_
*
channels_
*
numFilters_
);
}
/// Most of member variables are same with CudnnConvLayer.
/// There is no explanation here.
bool
isDeconv_
;
int
imageH_
,
imageW_
,
outputH_
,
outputW_
;
hl_tensor_descriptor
imageDesc_
;
hl_tensor_descriptor
outputDesc_
;
hl_filter_descriptor
filterDesc_
;
hl_convolution_descriptor
convDesc_
;
bool
caffeMode_
;
int
inputOffset_
,
outputOffset_
,
weightOffset_
;
int
numFilters_
,
channels_
;
/// from parsing config
int
configNumFilters_
,
configChannels_
;
int
padding_
,
stride_
,
filterSize_
,
imgSize_
,
imgSizeY_
;
int
paddingY_
,
strideY_
,
filterSizeY_
;
int
imgPixels_
,
filterPixels_
,
filterChannels_
,
outputX_
,
outputY_
,
outputs_
;
/// Following member variables are same with CudnnConvLayer.
/// There is no explanation here.
int
fwdAlgo_
,
bwdFilterAlgo_
,
bwdDataAlgo_
;
size_t
fwdLimitBytes_
,
bwdDataLimitBytes_
,
bwdFilterLimitBytes_
;
size_t
workSpaceInBytes_
;
void
*
workSpace_
;
bool
isSelectAlgo_
;
};
}
// namespace paddle
paddle/gserver/layers/ConvBaseProjection.cpp
浏览文件 @
6b7f6474
...
...
@@ -93,45 +93,48 @@ void ConvBaseProjection::initCudnn() {
}
void
ConvBaseProjection
::
reshapeTensorDesc
(
int
batchSize
)
{
// The stride between two consecutive samples in the output of ConvProjection
// may not be numFilters_ * outputH_ * outputW_ (conv) or
// channels_ * imageH_ * imageW_ (deconv)
// for example, in the case of layer ConcatenateLayer2 with two
// ConvProjection, the stride is the output_size of layer ConcatenateLayer2.
// So the calculation of nStride is different from CudnnConvLayer.
size_t
nStrideImage
,
nStrideOutput
;
if
(
isDeconv_
)
{
nStrideImage
=
out_
->
value
->
getStride
();
nStrideOutput
=
numFilters_
*
outputH_
*
outputW_
;
}
else
{
nStrideImage
=
channels_
*
imageH_
*
imageW_
;
nStrideOutput
=
out_
->
value
->
getStride
();
}
hl_tensor_reshape
(
imageDesc_
,
batchSize
,
channels_
/
groups_
,
imageH_
,
imageW_
,
channels_
*
imageH_
*
imageW_
,
nStrideImage
,
imageH_
*
imageW_
,
imageW_
,
1
);
hl_reset_convolution_descriptor
(
convDesc_
,
imageDesc_
,
filterDesc_
,
paddingH_
,
paddingW_
,
strideH_
,
strideW_
);
// The stride between two consecutive images in ConvProjection may not be 1,
// for example, in the case of layer ConcatenateLayer2 with two
// ConvProjection, the stride is the output_size of layer ConcatenateLayer2.
// So the calculation of nStride is different from CudnnConvLayer.
// In fact, only "nStride = out_->value->getStride()" is ok.
// size_t nStride = numFilters_ * outputH_ * outputW_;
// if (out_->value->isContiguous()) {
// CHECK_EQ(nStride, out_->value->getWidth());
// } else {
// nStride = out_->value->getStride();
// }
size_t
nStride
=
out_
->
value
->
getStride
();
hl_tensor_reshape
(
outputDesc_
,
batchSize
,
numFilters_
/
groups_
,
outputH_
,
outputW_
,
nStride
,
nStride
Output
,
outputH_
*
outputW_
,
outputW_
,
1
);
hl_reset_convolution_descriptor
(
convDesc_
,
imageDesc_
,
filterDesc_
,
paddingH_
,
paddingW_
,
strideH_
,
strideW_
);
}
void
ConvBaseProjection
::
reshape
(
int
batchSize
)
{
...
...
paddle/gserver/layers/ConvOperator.cpp
浏览文件 @
6b7f6474
...
...
@@ -12,7 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "Operator.h"
#include "
Conv
Operator.h"
#include "paddle/math/MathUtils.h"
#include "paddle/math/Matrix.h"
...
...
@@ -27,227 +27,8 @@ namespace paddle {
* The config file api is conv_operator.
*/
class
ConvOperator
:
public
Operator
{
public:
ConvOperator
(
const
OperatorConfig
&
config
,
bool
useGpu
);
/**
* Free workspace in device and destroy cudnn tensor descriptor.
*/
virtual
~
ConvOperator
()
{
if
(
workSpaceInBytes_
!=
0
)
{
hl_free_mem_device
(
workSpace_
);
workSpaceInBytes_
=
0
;
}
hl_destroy_tensor_descriptor
(
inputDesc_
);
hl_destroy_tensor_descriptor
(
outputDesc_
);
hl_destroy_filter_descriptor
(
filterDesc_
);
hl_destroy_convolution_descriptor
(
convDesc_
);
}
virtual
void
forward
();
virtual
void
backward
();
private:
/**
* Get convolution parameters from layer config and
* initialize member variables.
*/
void
getConvParams
();
/**
* Allocate Gpu Memory for cudnn convolution algorithms.
*/
void
allocConvWorkSpace
(
size_t
maxWorkSpace
);
/**
* Create cudnn tensor descriptor for convolution operation.
*/
void
computeConvSizes
();
/**
* Reshape cudnn tensor descriptor.
*/
void
reshapeImageDescriptors
();
/**
* Reshape cudnn tensor descriptor.
*/
void
reshape
(
int
batchSize
);
/**
* Check filter size is equal to the size calculated by parameters from
* layer config.
*/
void
checkFilterSize
(
const
MatrixPtr
&
filter
)
{
CHECK_EQ
(
static_cast
<
int
>
(
filter
->
getWidth
()),
filterSize_
*
filterSizeY_
*
channels_
*
numFilters_
);
}
/// Most of member variables are same with CudnnConvLayer.
/// There is no explanation here.
int
imageH_
,
imageW_
,
outputH_
,
outputW_
;
hl_tensor_descriptor
inputDesc_
;
hl_tensor_descriptor
outputDesc_
;
hl_filter_descriptor
filterDesc_
;
hl_convolution_descriptor
convDesc_
;
bool
caffeMode_
;
int
inputOffset_
,
outputOffset_
,
weightOffset_
;
int
numFilters_
;
int
padding_
,
stride_
,
filterSize_
,
channels_
,
imgSize_
,
imgSizeY_
;
int
paddingY_
,
strideY_
,
filterSizeY_
;
int
imgPixels_
,
filterPixels_
,
filterChannels_
,
outputX_
,
outputY_
,
outputs_
;
/// Following member variables are same with CudnnConvLayer.
/// There is no explanation here.
int
fwdAlgo_
,
bwdFilterAlgo_
,
bwdDataAlgo_
;
size_t
fwdLimitBytes_
,
bwdDataLimitBytes_
,
bwdFilterLimitBytes_
;
size_t
workSpaceInBytes_
;
void
*
workSpace_
;
bool
isSelectAlgo_
;
};
REGISTER_OPERATOR
(
conv
,
ConvOperator
);
ConvOperator
::
ConvOperator
(
const
OperatorConfig
&
config
,
bool
useGpu
)
:
Operator
(
config
,
useGpu
)
{
CHECK
(
useGpu
);
CHECK_EQ
(
config_
.
input_indices_size
(),
2L
);
caffeMode_
=
true
;
getConvParams
();
computeConvSizes
();
// initialize all to default algorithms
fwdAlgo_
=
0
;
bwdFilterAlgo_
=
0
;
bwdDataAlgo_
=
0
;
fwdLimitBytes_
=
0
;
bwdDataLimitBytes_
=
0
;
bwdFilterLimitBytes_
=
0
;
workSpaceInBytes_
=
0
;
workSpace_
=
nullptr
;
isSelectAlgo_
=
false
;
}
void
ConvOperator
::
allocConvWorkSpace
(
size_t
maxWorkSpace
)
{
if
(
maxWorkSpace
>
workSpaceInBytes_
)
{
if
(
workSpaceInBytes_
!=
0
)
{
hl_free_mem_device
(
workSpace_
);
}
// total amount of storage needed
workSpace_
=
hl_malloc_device
(
maxWorkSpace
);
workSpaceInBytes_
=
maxWorkSpace
;
}
}
void
ConvOperator
::
reshape
(
int
batchSize
)
{
imageH_
=
ins_
[
0
]
->
getFrameHeight
();
imageW_
=
ins_
[
0
]
->
getFrameWidth
();
if
(
imageH_
==
0
)
imageH_
=
imgSizeY_
;
if
(
imageW_
==
0
)
imageW_
=
imgSize_
;
outputH_
=
outputSize
(
imageH_
,
filterSizeY_
,
paddingY_
,
strideY_
,
caffeMode_
);
outputW_
=
outputSize
(
imageW_
,
filterSize_
,
padding_
,
stride_
,
caffeMode_
);
out_
->
setFrameHeight
(
outputH_
);
out_
->
setFrameWidth
(
outputW_
);
reshapeImageDescriptors
();
if
(
!
isSelectAlgo_
)
{
hl_conv_workspace
(
inputDesc_
,
outputDesc_
,
filterDesc_
,
convDesc_
,
&
fwdAlgo_
,
&
fwdLimitBytes_
,
&
bwdDataAlgo_
,
&
bwdDataLimitBytes_
,
&
bwdFilterAlgo_
,
&
bwdFilterLimitBytes_
);
size_t
maxWorkSpace
=
0
;
maxWorkSpace
=
std
::
max
(
fwdLimitBytes_
,
bwdDataLimitBytes_
);
maxWorkSpace
=
std
::
max
(
maxWorkSpace
,
bwdFilterLimitBytes_
);
allocConvWorkSpace
(
maxWorkSpace
);
}
isSelectAlgo_
=
true
;
}
void
ConvOperator
::
computeConvSizes
()
{
hl_create_filter_descriptor
(
&
filterDesc_
,
channels_
,
numFilters_
,
filterSizeY_
,
filterSize_
);
hl_create_tensor_descriptor
(
&
inputDesc_
);
int
outputX
=
outputSize
(
imgSize_
,
filterSize_
,
padding_
,
stride_
,
caffeMode_
);
int
outputY
=
outputSize
(
imgSizeY_
,
filterSizeY_
,
paddingY_
,
strideY_
,
caffeMode_
);
CHECK_EQ
(
outputX
,
outputX_
);
CHECK_EQ
(
outputY
,
outputY_
);
hl_create_tensor_descriptor
(
&
outputDesc_
);
hl_create_convolution_descriptor
(
&
convDesc_
,
inputDesc_
,
filterDesc_
,
paddingY_
,
padding_
,
strideY_
,
stride_
);
}
void
ConvOperator
::
reshapeImageDescriptors
()
{
hl_tensor_reshape
(
inputDesc_
,
1
,
channels_
,
imageH_
,
imageW_
,
channels_
*
imageH_
*
imageW_
,
imageH_
*
imageW_
,
imageW_
,
1
);
hl_tensor_reshape
(
outputDesc_
,
1
,
numFilters_
,
outputH_
,
outputW_
,
numFilters_
*
outputH_
*
outputW_
,
outputH_
*
outputW_
,
outputW_
,
1
);
hl_reset_convolution_descriptor
(
convDesc_
,
inputDesc_
,
filterDesc_
,
paddingY_
,
padding_
,
strideY_
,
stride_
);
inputOffset_
=
channels_
*
imageH_
*
imageW_
;
outputOffset_
=
numFilters_
*
outputH_
*
outputW_
;
weightOffset_
=
numFilters_
*
channels_
*
filterSize_
*
filterSize_
;
}
void
ConvOperator
::
getConvParams
()
{
numFilters_
=
config_
.
num_filters
();
const
ConvConfig
&
conf
=
config_
.
conv_conf
();
padding_
=
conf
.
padding
();
stride_
=
conf
.
stride
();
filterSize_
=
conf
.
filter_size
();
paddingY_
=
conf
.
padding_y
();
strideY_
=
conf
.
stride_y
();
filterSizeY_
=
conf
.
filter_size_y
();
filterPixels_
=
filterSize_
*
filterSizeY_
;
channels_
=
conf
.
channels
();
imgSize_
=
conf
.
img_size
();
imgSizeY_
=
conf
.
has_img_size_y
()
?
conf
.
img_size_y
()
:
conf
.
img_size
();
imgPixels_
=
imgSize_
*
imgSizeY_
;
CHECK_EQ
(
conf
.
groups
(),
1U
);
filterChannels_
=
conf
.
filter_channels
();
outputX_
=
conf
.
output_x
();
outputY_
=
conf
.
has_output_y
()
?
conf
.
output_y
()
:
conf
.
output_x
();
outputs_
=
outputX_
*
outputX_
;
}
void
ConvOperator
::
forward
()
{
size_t
batchSize
=
ins_
[
0
]
->
value
->
getHeight
();
reshape
(
batchSize
);
...
...
@@ -264,7 +45,7 @@ void ConvOperator::forward() {
real
*
inputData
=
ins_
[
0
]
->
value
->
getData
()
+
inputOffset_
*
batchId
;
real
*
wgtData
=
ins_
[
1
]
->
value
->
getData
()
+
weightOffset_
*
batchId
;
real
*
outData
=
out_
->
value
->
getData
()
+
outputOffset_
*
batchId
;
hl_convolution_forward
(
i
nput
Desc_
,
hl_convolution_forward
(
i
mage
Desc_
,
inputData
,
outputDesc_
,
outData
,
...
...
@@ -287,7 +68,7 @@ void ConvOperator::backward() {
if
(
ins_
[
1
]
->
grad
)
{
real
*
inputData
=
ins_
[
0
]
->
value
->
getData
()
+
inputOffset_
*
batchId
;
real
*
weightGrad
=
ins_
[
1
]
->
grad
->
getData
()
+
weightOffset_
*
batchId
;
hl_convolution_backward_filter
(
i
nput
Desc_
,
hl_convolution_backward_filter
(
i
mage
Desc_
,
inputData
,
outputDesc_
,
outGrad
,
...
...
@@ -303,7 +84,7 @@ void ConvOperator::backward() {
if
(
NULL
!=
preGrad
)
{
real
*
inputGrad
=
preGrad
->
getData
()
+
inputOffset_
*
batchId
;
real
*
wgtData
=
ins_
[
1
]
->
value
->
getData
()
+
weightOffset_
*
batchId
;
hl_convolution_backward_data
(
i
nput
Desc_
,
hl_convolution_backward_data
(
i
mage
Desc_
,
inputGrad
,
outputDesc_
,
outGrad
,
...
...
paddle/gserver/layers/ConvOperator.h
0 → 100644
浏览文件 @
6b7f6474
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "ConvBaseOperator.h"
#include "paddle/math/MathUtils.h"
#include "paddle/math/Matrix.h"
namespace
paddle
{
/**
* @brief ConvOperator takes two inputs to perform the convolution.
* The first input is the image, and the second input is the convolution kernel.
* The height of data for two inputs are the same. Each data of the first input
* is convolved with each data of the second input indepedently.
*
* The config file api is conv_operator.
*/
class
ConvOperator
:
public
ConvBaseOperator
{
public:
ConvOperator
(
const
OperatorConfig
&
config
,
bool
useGpu
)
:
ConvBaseOperator
(
config
,
useGpu
)
{}
/**
* Free workspace in device and destroy cudnn tensor descriptor.
*/
virtual
~
ConvOperator
()
{}
virtual
void
forward
();
virtual
void
backward
();
};
}
// namespace paddle
paddle/gserver/layers/ConvTransOperator.cpp
0 → 100644
浏览文件 @
6b7f6474
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "ConvTransOperator.h"
#include "paddle/math/MathUtils.h"
#include "paddle/math/Matrix.h"
namespace
paddle
{
/**
* @brief ConvTransOperator takes two inputs to perform the convolution.
* The first input is the image, and the second input is the convolution kernel.
* The height of data for two inputs are the same. Each data of the first input
* is convolved with each data of the second input indepedently.
*
* The config file api is conv_operator.
*/
REGISTER_OPERATOR
(
convt
,
ConvTransOperator
);
void
ConvTransOperator
::
forward
()
{
size_t
batchSize
=
ins_
[
0
]
->
value
->
getHeight
();
reshape
(
batchSize
);
CHECK_EQ
(
ins_
[
1
]
->
value
->
getHeight
(),
batchSize
);
checkFilterSize
(
ins_
[
1
]
->
value
);
Matrix
::
resizeOrCreate
(
out_
->
value
,
batchSize
,
imageH_
*
imageW_
*
channels_
,
false
,
useGpu_
);
{
AsyncGpuBlock
block
;
for
(
size_t
batchId
=
0
;
batchId
<
batchSize
;
++
batchId
)
{
real
*
inputData
=
ins_
[
0
]
->
value
->
getData
()
+
inputOffset_
*
batchId
;
real
*
wgtData
=
ins_
[
1
]
->
value
->
getData
()
+
weightOffset_
*
batchId
;
real
*
outData
=
out_
->
value
->
getData
()
+
outputOffset_
*
batchId
;
hl_convolution_backward_data
(
imageDesc_
,
outData
,
outputDesc_
,
inputData
,
filterDesc_
,
wgtData
,
convDesc_
,
workSpace_
,
workSpaceInBytes_
,
bwdDataAlgo_
);
}
}
}
void
ConvTransOperator
::
backward
()
{
size_t
batchSize
=
ins_
[
0
]
->
value
->
getHeight
();
{
AsyncGpuBlock
block
;
for
(
size_t
batchId
=
0
;
batchId
<
batchSize
;
++
batchId
)
{
real
*
outGrad
=
out_
->
grad
->
getData
()
+
outputOffset_
*
batchId
;
if
(
ins_
[
1
]
->
grad
)
{
real
*
inputData
=
ins_
[
0
]
->
value
->
getData
()
+
inputOffset_
*
batchId
;
real
*
weightGrad
=
ins_
[
1
]
->
grad
->
getData
()
+
weightOffset_
*
batchId
;
hl_convolution_backward_filter
(
imageDesc_
,
outGrad
,
outputDesc_
,
inputData
,
filterDesc_
,
weightGrad
,
convDesc_
,
workSpace_
,
workSpaceInBytes_
,
bwdFilterAlgo_
);
}
MatrixPtr
preGrad
=
ins_
[
0
]
->
grad
;
if
(
NULL
!=
preGrad
)
{
real
*
inputGrad
=
preGrad
->
getData
()
+
inputOffset_
*
batchId
;
real
*
wgtData
=
ins_
[
1
]
->
value
->
getData
()
+
weightOffset_
*
batchId
;
hl_convolution_forward
(
imageDesc_
,
outGrad
,
outputDesc_
,
inputGrad
,
filterDesc_
,
wgtData
,
convDesc_
,
workSpace_
,
workSpaceInBytes_
,
fwdAlgo_
);
}
}
}
}
}
// namespace paddle
paddle/gserver/layers/ConvTransOperator.h
0 → 100644
浏览文件 @
6b7f6474
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "ConvBaseOperator.h"
#include "paddle/math/MathUtils.h"
#include "paddle/math/Matrix.h"
namespace
paddle
{
/**
* @brief ConvTransOperator takes two inputs to perform the convolution.
* The first input is the image, and the second input is the convolution kernel.
* The height of data for two inputs are the same. Each data of the first input
* is convolved with each data of the second input indepedently.
*
* The config file api is conv_operator.
*/
class
ConvTransOperator
:
public
ConvBaseOperator
{
public:
ConvTransOperator
(
const
OperatorConfig
&
config
,
bool
useGpu
)
:
ConvBaseOperator
(
config
,
useGpu
)
{}
/**
* Free workspace in device and destroy cudnn tensor descriptor.
*/
virtual
~
ConvTransOperator
()
{}
virtual
void
forward
();
virtual
void
backward
();
};
}
// namespace paddle
paddle/gserver/tests/test_ConvUnify.cpp
浏览文件 @
6b7f6474
...
...
@@ -45,22 +45,35 @@ MatrixPtr doOneConvTest(size_t imgSize,
size_t
groups
,
MatrixPtr
&
inputData
,
real
*
param
,
bool
useGpu
)
{
bool
useGpu
,
bool
isDeconv
=
false
)
{
TestConfig
config
;
config
.
biasSize
=
numfilters
;
string
layerType
;
if
(
useGpu
)
{
config
.
layerConfig
.
set_type
(
"cudnn_conv"
)
;
layerType
=
(
isDeconv
)
?
"cudnn_convt"
:
"cudnn_conv"
;
}
else
{
config
.
layerConfig
.
set_type
(
"exconv"
)
;
layerType
=
(
isDeconv
)
?
"exconvt"
:
"exconv"
;
}
config
.
layerConfig
.
set_type
(
layerType
);
config
.
layerConfig
.
set_num_filters
(
numfilters
);
config
.
layerConfig
.
set_partial_sum
(
1
);
config
.
layerConfig
.
set_shared_biases
(
true
);
size_t
weightSize
=
channel
*
filter_size
*
filter_size
*
config
.
layerConfig
.
num_filters
()
/
groups
;
if
(
isDeconv
)
{
config
.
inputDefs
.
push_back
(
{
INPUT_DATA
,
"layer_0"
,
output_x
*
output_x
*
channel
,
weightSize
});
config
.
layerConfig
.
set_size
(
imgSize
*
imgSize
*
config
.
layerConfig
.
num_filters
());
}
else
{
config
.
inputDefs
.
push_back
(
{
INPUT_DATA
,
"layer_0"
,
imgSize
*
imgSize
*
channel
,
weightSize
});
config
.
layerConfig
.
set_size
(
output_x
*
output_x
*
config
.
layerConfig
.
num_filters
());
}
LayerInputConfig
*
input
=
config
.
layerConfig
.
add_inputs
();
ConvConfig
*
conv
=
input
->
mutable_conv_conf
();
conv
->
set_filter_size
(
filter_size
);
...
...
@@ -71,12 +84,15 @@ MatrixPtr doOneConvTest(size_t imgSize,
conv
->
set_stride
(
stride
);
conv
->
set_stride_y
(
stride
);
conv
->
set_groups
(
groups
);
conv
->
set_filter_channels
(
channel
/
groups
);
conv
->
set_img_size
(
imgSize
);
conv
->
set_output_x
(
output_x
);
config
.
layerConfig
.
set_size
(
conv
->
output_x
()
*
conv
->
output_x
()
*
config
.
layerConfig
.
num_filters
());
if
(
isDeconv
)
{
conv
->
set_filter_channels
(
numfilters
/
groups
);
}
else
{
conv
->
set_filter_channels
(
channel
/
groups
);
}
config
.
layerConfig
.
set_name
(
"conv"
);
std
::
vector
<
DataLayerPtr
>
dataLayers
;
...
...
@@ -104,6 +120,8 @@ MatrixPtr doOneConvTest(size_t imgSize,
TEST
(
Layer
,
convParaUnified
)
{
#ifndef PADDLE_ONLY_CPU
MatrixPtr
input
,
resultCpu
,
resultGpu
;
/// TEST1 for conv ///
input
=
Matrix
::
create
(
1
,
4
*
4
,
false
,
false
);
real
inputData
[]
=
{
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
,
10
,
11
,
12
,
13
,
14
,
15
,
16
};
real
param
[]
=
{
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
,
9
,
8
,
7
,
6
,
5
,
4
,
3
,
2
,
1
};
...
...
@@ -120,7 +138,38 @@ TEST(Layer, convParaUnified) {
/*groups*/
1
,
input
,
param
,
false
);
/*useGpu*/
false
);
resultGpu
=
doOneConvTest
(
/* imgSize */
4
,
/* output_x */
2
,
/* stride */
1
,
/* padding */
0
,
/* filter_size */
3
,
/*channel*/
1
,
/*numfilters*/
2
,
/*groups*/
1
,
input
,
param
,
/*useGpu*/
true
);
checkMatrixEqual
(
resultCpu
,
resultGpu
);
/// TEST1 for deconv ///
input
=
Matrix
::
create
(
1
,
2
*
2
,
false
,
false
);
real
inputDataT
[]
=
{
1
,
2
,
3
,
4
};
input
->
setData
(
inputDataT
);
resultCpu
=
doOneConvTest
(
/* imgSize */
4
,
/* output_x */
2
,
/* stride */
1
,
/* padding */
0
,
/* filter_size */
3
,
/*channel*/
1
,
/*numfilters*/
2
,
/*groups*/
1
,
input
,
param
,
/*useGpu*/
false
,
/*isDeconv*/
true
);
resultGpu
=
doOneConvTest
(
/* imgSize */
4
,
/* output_x */
2
,
...
...
@@ -132,9 +181,11 @@ TEST(Layer, convParaUnified) {
/*groups*/
1
,
input
,
param
,
true
);
/*useGpu*/
true
,
/*isDeconv*/
true
);
checkMatrixEqual
(
resultCpu
,
resultGpu
);
/// TEST2 for conv ///
input
=
Matrix
::
create
(
1
,
3
*
3
*
2
,
false
,
false
);
real
inputData2
[]
=
{
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
,
10
,
11
,
12
,
13
,
14
,
15
,
16
,
17
,
18
};
...
...
@@ -152,7 +203,7 @@ TEST(Layer, convParaUnified) {
/*groups*/
1
,
input
,
param2
,
false
);
/*useGpu*/
false
);
resultGpu
=
doOneConvTest
(
/* imgSize */
3
,
/* output_x */
2
,
...
...
@@ -164,9 +215,10 @@ TEST(Layer, convParaUnified) {
/*groups*/
1
,
input
,
param2
,
true
);
/*useGpu*/
true
);
checkMatrixEqual
(
resultCpu
,
resultGpu
);
/// TEST3 for conv ///
real
param3
[]
=
{
1
,
2
,
3
,
4
,
4
,
3
,
2
,
1
};
resultCpu
=
doOneConvTest
(
/* imgSize */
3
,
...
...
@@ -179,7 +231,66 @@ TEST(Layer, convParaUnified) {
/*groups*/
2
,
input
,
param3
,
false
);
/*useGpu*/
false
);
resultGpu
=
doOneConvTest
(
/* imgSize */
3
,
/* output_x */
2
,
/* stride */
1
,
/* padding */
0
,
/* filter_size */
2
,
/*channel*/
2
,
/*numfilters*/
2
,
/*groups*/
2
,
input
,
param3
,
/*useGpu*/
true
);
checkMatrixEqual
(
resultCpu
,
resultGpu
);
/// TEST2 for deconv ///
input
=
Matrix
::
create
(
1
,
2
*
2
*
2
,
false
,
false
);
real
inputData2T
[]
=
{
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
};
input
->
setData
(
inputData2T
);
resultCpu
=
doOneConvTest
(
/* imgSize */
3
,
/* output_x */
2
,
/* stride */
1
,
/* padding */
0
,
/* filter_size */
2
,
/*channel*/
2
,
/*numfilters*/
2
,
/*groups*/
1
,
input
,
param2
,
/*useGpu*/
false
,
/*isDeconv*/
true
);
resultGpu
=
doOneConvTest
(
/* imgSize */
3
,
/* output_x */
2
,
/* stride */
1
,
/* padding */
0
,
/* filter_size */
2
,
/*channel*/
2
,
/*numfilters*/
2
,
/*groups*/
1
,
input
,
param2
,
/*useGpu*/
true
,
/*isDeconv*/
true
);
checkMatrixEqual
(
resultCpu
,
resultGpu
);
/// TEST3 for deconv ///
resultCpu
=
doOneConvTest
(
/* imgSize */
3
,
/* output_x */
2
,
/* stride */
1
,
/* padding */
0
,
/* filter_size */
2
,
/*channel*/
2
,
/*numfilters*/
2
,
/*groups*/
2
,
input
,
param3
,
/*useGpu*/
false
,
/*isDeconv*/
true
);
resultGpu
=
doOneConvTest
(
/* imgSize */
3
,
/* output_x */
2
,
...
...
@@ -191,7 +302,8 @@ TEST(Layer, convParaUnified) {
/*groups*/
2
,
input
,
param3
,
true
);
/*useGpu*/
true
,
/*isDeconv*/
true
);
checkMatrixEqual
(
resultCpu
,
resultGpu
);
#endif
}
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录