Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
6a351708
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
6a351708
编写于
9月 09, 2020
作者:
P
pangyoki
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add multinomial cpu kernel
上级
189e10f1
变更
3
显示空白变更内容
内联
并排
Showing
3 changed file
with
327 addition
and
0 deletion
+327
-0
paddle/fluid/operators/multinomial_op.cc
paddle/fluid/operators/multinomial_op.cc
+103
-0
paddle/fluid/operators/multinomial_op.h
paddle/fluid/operators/multinomial_op.h
+127
-0
python/paddle/fluid/tests/unittests/test_multinomial_op.py
python/paddle/fluid/tests/unittests/test_multinomial_op.py
+97
-0
未找到文件。
paddle/fluid/operators/multinomial_op.cc
0 → 100644
浏览文件 @
6a351708
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/multinomial_op.h"
#include <algorithm>
#include <string>
#include <vector>
#include "paddle/fluid/framework/generator.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/operators/common_infer_shape_functions.h"
namespace
paddle
{
namespace
operators
{
class
MultinomialOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
{
AddInput
(
"X"
,
"A tensor contains probabilities of categories"
);
AddOutput
(
"Out"
,
"The output tensor of multinomial op"
);
AddAttr
<
int
>
(
"num_samples"
,
"number of the generated samples"
)
.
SetDefault
(
1
);
AddAttr
<
bool
>
(
"replacement"
,
"can a category be sampled more than once"
)
.
SetDefault
(
false
);
AddComment
(
R"DOC(
This OP returns a Tensor filled with the sampled categoris according to Multinomial probabilities.
Out ~ Multinomial(X)
)DOC"
);
}
};
class
MultinomialOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"X"
),
"Input"
,
"X"
,
"Multinomial"
);
OP_INOUT_CHECK
(
ctx
->
HasOutput
(
"Out"
),
"Output"
,
"Out"
,
"Multinomial"
);
auto
x_dim
=
ctx
->
GetInputDim
(
"X"
);
int64_t
x_rank
=
x_dim
.
size
();
std
::
vector
<
int64_t
>
out_dims
(
x_rank
);
for
(
int64_t
i
=
0
;
i
<
x_rank
-
1
;
i
++
)
{
out_dims
[
i
]
=
x_dim
[
i
];
}
int64_t
num_samples
=
ctx
->
Attrs
().
Get
<
int
>
(
"num_samples"
);
out_dims
[
x_rank
-
1
]
=
num_samples
;
ctx
->
SetOutputDim
(
"Out"
,
framework
::
make_ddim
(
out_dims
));
}
};
template
<
typename
T
>
class
MultinomialOpKernel
<
platform
::
CPUDeviceContext
,
T
>
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
auto
x
=
ctx
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
out
=
ctx
.
Output
<
framework
::
Tensor
>
(
"Out"
);
const
int64_t
num_samples
=
ctx
.
Attr
<
int
>
(
"num_samples"
);
const
bool
replacement
=
ctx
.
Attr
<
bool
>
(
"replacement"
);
auto
*
in_data
=
x
->
data
<
T
>
();
auto
*
out_data
=
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
in_dims
=
x
->
dims
();
int64_t
in_rank
=
in_dims
.
size
();
const
int64_t
num_categories
=
in_dims
[
in_rank
-
1
];
const
int64_t
num_distributions
=
in_rank
>
1
?
in_dims
[
in_rank
-
2
]
:
1
;
MultinomialFunctor
(
out_data
,
in_data
,
num_samples
,
replacement
,
num_categories
,
num_distributions
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
namespace
plat
=
paddle
::
platform
;
REGISTER_OPERATOR
(
multinomial
,
ops
::
MultinomialOp
,
ops
::
MultinomialOpMaker
,
paddle
::
framework
::
EmptyGradOpMaker
<
paddle
::
framework
::
OpDesc
>
,
paddle
::
framework
::
EmptyGradOpMaker
<
paddle
::
imperative
::
OpBase
>
);
REGISTER_OP_CPU_KERNEL
(
multinomial
,
ops
::
MultinomialOpKernel
<
plat
::
CPUDeviceContext
,
float
>
,
ops
::
MultinomialOpKernel
<
plat
::
CPUDeviceContext
,
double
>
);
paddle/fluid/operators/multinomial_op.h
0 → 100644
浏览文件 @
6a351708
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/fluid/framework/generator.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/hostdevice.h"
namespace
paddle
{
namespace
operators
{
/**
* Samples a multinomial distribution given a probability input
*/
template
<
typename
T
>
void
MultinomialFunctor
(
T
*
out_data
,
const
T
*
in_data
,
const
int64_t
num_samples
,
const
bool
replacement
,
const
int64_t
num_categories
,
const
int64_t
num_distributions
)
{
C
=
num_categories
;
T
cumulative_probs
[
C
];
std
::
uniform_real_distribution
<
T
>
dist
(
0
,
1
);
auto
gen_ptr
=
framework
::
DefaultCPUGenerator
();
auto
engine
=
gen_ptr
->
GetCPUEngine
();
for
(
int64_t
i
=
0
;
i
<
num_distributions
;
i
++
)
{
T
probs_sum
=
0
;
T
prob_value
;
int64_t
num_zeros
=
0
;
for
(
int64_t
j
=
0
;
j
<
num_categories
;
j
++
)
{
prob_value
=
in_data
[
i
*
num_categories
+
j
];
PADDLE_ENFORCE_GE
(
prob_value
,
0.0
,
platform
::
errors
::
OutOfRange
(
"The input of multinomial distribution should be >= 0"
));
PADDLE_ENFORCE_EQ
((
std
::
isinf
(
static_cast
<
double
>
(
prob_value
))
||
std
::
isnan
(
static_cast
<
double
>
(
prob_value
))),
false
,
platform
::
errors
::
OutOfRange
(
"The input of multinomial distribution "
"shoud not be infinity or NaN"
));
probs_sum
+=
prob_value
;
if
(
prob_value
==
0
)
{
num_zeros
+=
1
;
}
cumulative_probs
[
j
]
=
probs_sum
;
}
PADDLE_ENFORCE_GT
(
probs_sum
,
0.0
,
platform
::
errors
::
OutOfRange
(
"The sum of input should not be 0"
));
PADDLE_ENFORCE_EQ
(
(
replacement
||
(
num_categories
-
num_zeros
>=
num_samples
)),
true
,
platform
::
errors
::
OutOfRange
(
"When replacement is False, number of "
"samples should be less than non-zero "
"categories"
));
for
(
int64_t
j
=
0
;
j
<
num_categories
;
j
++
)
{
cumulative_probs
[
j
]
/=
probs_sum
;
}
for
(
int64_t
s
=
0
;
s
<
num_samples
;
s
++
)
{
T
uniform_rand
=
dist
(
*
engine
);
// use binary search to get the selected category sample id.
// let cumulative_probs[id-1] < uniform_rand < cumulative_probs[id].
int64_t
left
=
0
;
int64_t
right
=
num_categories
;
int64_t
mid
;
int64_t
sample_id
;
T
temp_prob
;
cumulative_probs
[(
num_categories
-
1
)]
=
1
;
while
(
right
>
left
)
{
mid
=
left
+
(
right
-
left
)
/
2
;
temp_prob
=
cumulative_probs
[
mid
];
if
(
temp_prob
<
uniform_rand
)
{
left
=
mid
+
1
;
}
else
{
right
=
mid
;
}
}
sample_id
=
left
;
out_data
[
i
*
num_samples
+
s
]
=
sample_id
;
// if replacement is false, the selected category should be removed.
if
(
!
replacement
&&
s
<
num_samples
-
1
)
{
T
sample_prob
;
T
new_prob
=
0
;
T
new_sum
;
if
(
sample_id
!=
0
)
{
new_prob
=
cumulative_probs
[
sample_id
-
1
];
}
sample_prob
=
cumulative_probs
[
sample_id
]
-
new_prob
;
new_sum
=
1.0
-
sample_prob
;
for
(
int64_t
j
=
0
;
j
<
num_categories
;
j
++
)
{
new_prob
=
cumulative_probs
[
j
];
if
(
j
>=
sample_id
)
{
new_prob
-=
sample_prob
;
}
new_prob
/=
new_sum
;
cumulative_probs
[
j
]
=
new_prob
;
}
}
}
}
}
template
<
typename
DeviceContext
,
typename
T
>
class
MultinomialOpKernel
;
}
// namespace operators
}
// namespace paddle
python/paddle/fluid/tests/unittests/test_multinomial_op.py
0 → 100644
浏览文件 @
6a351708
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
paddle
from
op_test
import
OpTest
import
numpy
as
np
class
TestMultinomialOp
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"multinomial"
self
.
init_data
()
self
.
inputs
=
{
"X"
:
self
.
input_np
}
def
init_data
(
self
):
# input probability is a vector, and replacement is True
self
.
input_np
=
np
.
random
.
rand
(
4
)
self
.
outputs
=
{
"Out"
:
np
.
zeros
(
100000
).
astype
(
"int64"
)}
self
.
attrs
=
{
"num_samples"
:
100000
,
"replacement"
:
True
}
def
test_check_output
(
self
):
self
.
check_output_customized
(
self
.
verify_output
)
def
sample_output
(
self
,
out
):
# count numbers of different categories
sample_prob
=
np
.
unique
(
out
,
return_counts
=
True
)[
1
].
astype
(
"float32"
)
sample_prob
/=
sample_prob
.
sum
()
return
sample_prob
def
verify_output
(
self
,
outs
):
# normalize the input to get the probability
prob
=
self
.
input_np
/
self
.
input_np
.
sum
(
axis
=-
1
,
keepdims
=
True
)
sample_prob
=
self
.
sample_output
(
np
.
array
(
outs
[
0
]))
self
.
assertTrue
(
np
.
allclose
(
sample_prob
,
prob
,
rtol
=
0
,
atol
=
0.01
),
"sample_prob: "
+
str
(
sample_prob
)
+
"
\n
prob: "
+
str
(
prob
))
class
TestMultinomialOp2
(
TestMultinomialOp
):
def
init_data
(
self
):
# input probability is a matrix
self
.
input_np
=
np
.
random
.
rand
(
3
,
4
)
self
.
outputs
=
{
"Out"
:
np
.
zeros
((
3
,
100000
)).
astype
(
"int64"
)}
self
.
attrs
=
{
"num_samples"
:
100000
,
"replacement"
:
True
}
def
sample_output
(
self
,
out
):
out_list
=
np
.
split
(
out
,
3
,
axis
=
0
)
count_array
=
[
0
]
*
3
for
i
in
range
(
3
):
count_array
[
i
]
=
np
.
unique
(
out_list
[
i
],
return_counts
=
True
)[
1
].
astype
(
"float32"
)
sample_prob
=
np
.
stack
(
count_array
,
axis
=
0
)
sample_prob
/=
sample_prob
.
sum
(
axis
=-
1
,
keepdims
=
True
)
return
sample_prob
class
TestMultinomialOp3
(
TestMultinomialOp
):
def
init_data
(
self
):
# replacement is False. number of samples must be less than number of categories.
self
.
input_np
=
np
.
random
.
rand
(
1000
)
self
.
outputs
=
{
"Out"
:
np
.
zeros
(
100
).
astype
(
"int64"
)}
self
.
attrs
=
{
"num_samples"
:
100
,
"replacement"
:
False
}
def
verify_output
(
self
,
outs
):
out
=
np
.
array
(
outs
[
0
])
unique_out
=
np
.
unique
(
out
)
self
.
assertEqual
(
len
(
unique_out
),
100
,
"replacement is False. categories can't be sampled repeatedly"
)
"""
class TestReplacementError(unittest.TestCase):
def init_data(self):
# replacement is False. if number of samples is larger than number of categories, raise error.
self.input_np = np.random.rand(4)
self.outputs = {"Out": np.zeros(10).astype("int64")}
self.attrs = {"num_samples": 10, "replacement": False}
"""
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录