diff --git a/demo/image_classification/train.sh b/demo/image_classification/train.sh index ed9b5220fff6a434cd332f0972d39c4149b3ebfe..db0a057bf35b4ad04a08a1e3f1fad3bd6a486350 100755 --- a/demo/image_classification/train.sh +++ b/demo/image_classification/train.sh @@ -24,7 +24,7 @@ paddle train \ --test_all_data_in_one_period=1 \ --use_gpu=1 \ --trainer_count=1 \ ---num_passes=200 \ +--num_passes=300 \ --save_dir=$output \ 2>&1 | tee $log diff --git a/demo/semantic_role_labeling/predict.sh b/demo/semantic_role_labeling/predict.sh index a545b9a5d591b41bdbd54905cbbffc410abc8fb0..111eea95a22d33925f378114b301d3dd3cc54fa0 100644 --- a/demo/semantic_role_labeling/predict.sh +++ b/demo/semantic_role_labeling/predict.sh @@ -18,7 +18,7 @@ set -e function get_best_pass() { cat $1 | grep -Pzo 'Test .*\n.*pass-.*' | \ sed -r 'N;s/Test.* cost=([0-9]+\.[0-9]+).*\n.*pass-([0-9]+)/\1 \2/g' | \ - sort | head -n 1 + sort -n | head -n 1 } log=train.log @@ -26,7 +26,6 @@ LOG=`get_best_pass $log` LOG=(${LOG}) best_model_path="output/pass-${LOG[1]}" - config_file=db_lstm.py dict_file=./data/src.dict label_file=./data/tgt.dict diff --git a/demo/semantic_role_labeling/test.sh b/demo/semantic_role_labeling/test.sh index 844649e8c0f6867dc0766e4ec6f250c5a4a004d9..f9e1bdcd4c752474329d36c4de3378f7d58e7b4b 100644 --- a/demo/semantic_role_labeling/test.sh +++ b/demo/semantic_role_labeling/test.sh @@ -18,7 +18,7 @@ set -e function get_best_pass() { cat $1 | grep -Pzo 'Test .*\n.*pass-.*' | \ sed -r 'N;s/Test.* cost=([0-9]+\.[0-9]+).*\n.*pass-([0-9]+)/\1 \2/g' |\ - sort | head -n 1 + sort -n | head -n 1 } log=train.log @@ -36,4 +36,5 @@ paddle train \ --job=test \ --use_gpu=false \ --config_args=is_test=1 \ + --test_all_data_in_one_period=1 \ 2>&1 | tee 'test.log' diff --git a/demo/sentiment/test.sh b/demo/sentiment/test.sh index 098fbb91389b89c8b69ccf2f5d308e4e715ac950..c8b12a0e89dbddea56b4ee069ebf66f8d8630615 100755 --- a/demo/sentiment/test.sh +++ b/demo/sentiment/test.sh @@ -17,7 +17,7 @@ set -e function get_best_pass() { cat $1 | grep -Pzo 'Test .*\n.*pass-.*' | \ sed -r 'N;s/Test.* classification_error_evaluator=([0-9]+\.[0-9]+).*\n.*pass-([0-9]+)/\1 \2/g' |\ - sort | head -n 1 + sort -n | head -n 1 } log=train.log diff --git a/doc/demo/quick_start/index_en.md b/doc/demo/quick_start/index_en.md index e7d74512292c89233373c48d05895794d56702d8..659485d9be1b6a3e9759a2fd040cb09d1f2a3005 100644 --- a/doc/demo/quick_start/index_en.md +++ b/doc/demo/quick_start/index_en.md @@ -1,4 +1,4 @@ -# Quick Start Tutorial +# Quick Start This tutorial will teach the basics of deep learning (DL), including how to implement many different models in PaddlePaddle. You will learn how to: - Prepare data into the standardized format that PaddlePaddle accepts. @@ -477,7 +477,7 @@ The scripts of data downloading, network configurations, and training scrips are Word embedding 15MB 8.484% -trainer_config.bow.py +trainer_config.emb.py