From 68811bcb5d93a9bcbafae81c0ec866e936e3de25 Mon Sep 17 00:00:00 2001 From: Yibing Liu Date: Fri, 15 Jun 2018 05:08:32 -0700 Subject: [PATCH] Format the doc of layers.auc --- python/paddle/fluid/layers/metric.py | 18 +++++++++--------- 1 file changed, 9 insertions(+), 9 deletions(-) diff --git a/python/paddle/fluid/layers/metric.py b/python/paddle/fluid/layers/metric.py index 15d7c50bf45..ed2f05e5a9b 100644 --- a/python/paddle/fluid/layers/metric.py +++ b/python/paddle/fluid/layers/metric.py @@ -59,14 +59,14 @@ def auc(input, label, curve='ROC', num_thresholds=200): This implementation computes the AUC according to forward output and label. It is used very widely in binary classification evaluation. - As a note: If input label contains values other than 0 and 1, it will be - cast to bool. You can find the relevant definitions `here - `_. + Note: If input label contains values other than 0 and 1, it will be cast + to `bool`. Find the relevant definitions `here `_. There are two types of possible curves: - 1. ROC: Receiver operating characteristic - 2. PR: Precision Recall + + 1. ROC: Receiver operating characteristic; + 2. PR: Precision Recall Args: input(Variable): A floating-point 2D Variable, values are in the range @@ -85,9 +85,9 @@ def auc(input, label, curve='ROC', num_thresholds=200): Examples: .. code-block:: python - # network is a binary classification model and label the ground truth - prediction = network(image, is_infer=True) - auc_out=fluid.layers.auc(input=prediction, label=label) + # network is a binary classification model and label the ground truth + prediction = network(image, is_infer=True) + auc_out=fluid.layers.auc(input=prediction, label=label) """ warnings.warn( -- GitLab