未验证 提交 68399947 编写于 作者: W WJJ1995 提交者: GitHub

[NPU] Add relu6 and relu6_grad npu op (#34596)

* Add relu6 and relu6_grad npu op

* fixed pre-commit-config.yaml

* fixed for CI
上级 012d12b5
...@@ -144,6 +144,47 @@ class ReluGradNPUKernel : public framework::OpKernel<T> { ...@@ -144,6 +144,47 @@ class ReluGradNPUKernel : public framework::OpKernel<T> {
} }
}; };
template <typename DeviceContext, typename T>
class Relu6NPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* x = ctx.Input<Tensor>("X");
auto* out = ctx.Output<Tensor>("Out");
out->mutable_data<T>(ctx.GetPlace());
const auto& runner = NpuOpRunner("Relu6",
{
*x,
},
{*out}, {});
auto stream =
ctx.template device_context<paddle::platform::NPUDeviceContext>()
.stream();
runner.Run(stream);
}
};
template <typename DeviceContext, typename T>
class Relu6GradNPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* out = ctx.Input<Tensor>("Out");
auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
auto stream =
ctx.template device_context<paddle::platform::NPUDeviceContext>()
.stream();
dx->mutable_data<T>(ctx.GetPlace());
const auto& runner = NpuOpRunner("Relu6Grad", {*dout, *out}, {*dx}, {});
runner.Run(stream);
}
};
template <typename DeviceContext, typename T> template <typename DeviceContext, typename T>
class SqrtNPUKernel : public framework::OpKernel<T> { class SqrtNPUKernel : public framework::OpKernel<T> {
public: public:
...@@ -457,6 +498,17 @@ REGISTER_OP_NPU_KERNEL( ...@@ -457,6 +498,17 @@ REGISTER_OP_NPU_KERNEL(
ops::ReluGradNPUKernel<paddle::platform::NPUDeviceContext, ops::ReluGradNPUKernel<paddle::platform::NPUDeviceContext,
paddle::platform::float16>); paddle::platform::float16>);
REGISTER_OP_NPU_KERNEL(
relu6, ops::Relu6NPUKernel<paddle::platform::NPUDeviceContext, float>,
ops::Relu6NPUKernel<paddle::platform::NPUDeviceContext,
paddle::platform::float16>);
REGISTER_OP_NPU_KERNEL(
relu6_grad,
ops::Relu6GradNPUKernel<paddle::platform::NPUDeviceContext, float>,
ops::Relu6GradNPUKernel<paddle::platform::NPUDeviceContext,
paddle::platform::float16>);
REGISTER_OP_NPU_KERNEL( REGISTER_OP_NPU_KERNEL(
sqrt, ops::SqrtNPUKernel<paddle::platform::NPUDeviceContext, float>, sqrt, ops::SqrtNPUKernel<paddle::platform::NPUDeviceContext, float>,
ops::SqrtNPUKernel<paddle::platform::NPUDeviceContext, ops::SqrtNPUKernel<paddle::platform::NPUDeviceContext,
......
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import paddle.fluid as fluid
import paddle
from op_test import OpTest
import numpy as np
import unittest
import sys
sys.path.append("..")
paddle.enable_static()
SEED = 2021
def ref_relu6(x, threshold=6.0):
out = np.copy(x)
out[np.abs(x - threshold) < 0.005] = threshold + 0.02
out = np.minimum(np.maximum(x, 0), threshold)
return out
class TestRelu6(OpTest):
def setUp(self):
self.set_npu()
self.op_type = "relu6"
self.place = paddle.NPUPlace(0)
self.init_dtype()
np.random.seed(SEED)
x = np.random.uniform(-1, 10, [10, 12]).astype(self.dtype)
x[np.abs(x) < 0.005] = 0.02
out = ref_relu6(x)
self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
self.attrs = {'threshold': 6.0}
self.outputs = {'Out': out}
def set_npu(self):
self.__class__.use_npu = True
def test_check_output(self):
self.check_output_with_place(self.place)
def test_check_grad(self):
if self.dtype == np.float16:
return
self.check_grad_with_place(self.place, ['X'], 'Out')
def init_dtype(self):
self.dtype = np.float32
class TestRelu6Float16(TestRelu6):
def set_npu(self):
self.__class__.use_npu = True
self.__class__.no_need_check_grad = True
def set_attrs(self):
self.dtype = np.float16
def test_check_output(self):
self.check_output_with_place(self.place)
class TestReluNeg(TestRelu6):
def setUp(self):
self.set_npu()
self.op_type = "relu6"
self.place = paddle.NPUPlace(0)
self.init_dtype()
np.random.seed(SEED)
x = np.random.uniform(-10, -1, [10, 12]).astype(self.dtype)
x[np.abs(x) < 0.005] = 0.02
out = ref_relu6(x)
self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
self.attrs = {'threshold': 6.0}
self.outputs = {'Out': out}
def set_npu(self):
self.__class__.use_npu = True
def init_dtype(self):
self.dtype = np.float32
def test_check_output(self):
self.check_output_with_place(self.place)
class TestRelu6Net(unittest.TestCase):
def _test(self, run_npu=True):
main_prog = paddle.static.Program()
startup_prog = paddle.static.Program()
main_prog.random_seed = SEED
startup_prog.random_seed = SEED
np.random.seed(SEED)
a_np = np.random.random(size=(32, 32)).astype('float32')
b_np = np.random.random(size=(32, 32)).astype('float32')
label_np = np.random.randint(2, size=(32, 1)).astype('int64')
with paddle.static.program_guard(main_prog, startup_prog):
a = paddle.static.data(name="a", shape=[32, 32], dtype='float32')
b = paddle.static.data(name="b", shape=[32, 32], dtype='float32')
label = paddle.static.data(
name="label", shape=[32, 1], dtype='int64')
sum = paddle.add(a, b)
z = paddle.nn.functional.relu6(sum)
fc_1 = fluid.layers.fc(input=z, size=128)
prediction = fluid.layers.fc(input=fc_1, size=2, act='softmax')
cost = fluid.layers.cross_entropy(input=prediction, label=label)
loss = fluid.layers.reduce_mean(cost)
sgd = fluid.optimizer.SGD(learning_rate=0.01)
sgd.minimize(loss)
if run_npu:
place = paddle.NPUPlace(0)
else:
place = paddle.CPUPlace()
exe = paddle.static.Executor(place)
exe.run(startup_prog)
print("Start run on {}".format(place))
for epoch in range(100):
pred_res, loss_res = exe.run(
main_prog,
feed={"a": a_np,
"b": b_np,
"label": label_np},
fetch_list=[prediction, loss])
if epoch % 10 == 0:
print("Epoch {} | Prediction[0]: {}, Loss: {}".format(
epoch, pred_res[0], loss_res))
return pred_res, loss_res
def test_npu(self):
cpu_pred, cpu_loss = self._test(False)
npu_pred, npu_loss = self._test(True)
self.assertTrue(np.allclose(npu_pred, cpu_pred))
self.assertTrue(np.allclose(npu_loss, cpu_loss))
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册