diff --git a/paddle/fluid/operators/nce_op.cc b/paddle/fluid/operators/nce_op.cc index 06092e680a1efbef379ccf40fdf476769f820429..e471f04662a1fa3e8e77a2db37f0da4521682018 100644 --- a/paddle/fluid/operators/nce_op.cc +++ b/paddle/fluid/operators/nce_op.cc @@ -128,8 +128,10 @@ class NCEOpMaker : public framework::OpProtoAndCheckerMaker { "user should avoid setting this attribute.") .SetDefault({}); AddComment(R"DOC( -Compute and return the noise-contrastive estimation training loss. -See [Noise-contrastive estimation: A new estimation principle for unnormalized statistical models](http://www.jmlr.org/proceedings/papers/v9/gutmann10a/gutmann10a.pdf). +Compute and return the noise-contrastive estimation training loss. See +`Noise-contrastive estimation: A new estimation principle for unnormalized +statistical models + `_. By default this operator uses a uniform distribution for sampling. )DOC"); } diff --git a/python/paddle/fluid/layers/nn.py b/python/paddle/fluid/layers/nn.py index 27fbb0f053e592d156221bb81a56ba3e9c4efe32..0a45098bda831b977a55868ff9108f7a291d9fb6 100644 --- a/python/paddle/fluid/layers/nn.py +++ b/python/paddle/fluid/layers/nn.py @@ -3472,7 +3472,33 @@ def nce(input, num_neg_samples (int): ${num_neg_samples_comment} Returns: - Variable: output of nce layer. + Variable: The output nce loss. + + Examples: + .. code-block:: python + + window_size = 5 + words = [] + for i in xrange(window_size): + words.append(layers.data( + name='word_{0}'.format(i), shape=[1], dtype='int64')) + + dict_size = 10000 + label_word = int(window_size / 2) + 1 + + embs = [] + for i in xrange(window_size): + if i == label_word: + continue + + emb = layers.embedding(input=words[i], size=[dict_size, 32], + param_attr='emb.w', is_sparse=True) + embs.append(emb) + + embs = layers.concat(input=embs, axis=1) + loss = layers.nce(input=embs, label=words[label_word], + num_total_classes=dict_size, param_attr='nce.w', + bias_attr='nce.b') """ helper = LayerHelper('nce', **locals()) assert isinstance(input, Variable)