提交 66640822 编写于 作者: L lilong12 提交者: GitHub

Revert "add device attr for regularizer, test=develop (#24981)"

This reverts commit ab5a1fb8.
上级 ab5a1fb8
......@@ -715,8 +715,8 @@ class Optimizer(object):
params_grads = append_gradient_clip_ops(params_grads)
# Add regularization if any
params_grads = append_regularization_ops(
params_grads, self.regularization, self._param_device_map)
params_grads = append_regularization_ops(params_grads,
self.regularization)
optimize_ops = self._create_optimization_pass(params_grads)
if table_optimize_op is not None:
......
......@@ -16,7 +16,7 @@ from __future__ import print_function
import logging
from . import framework
from .framework import in_dygraph_mode, _varbase_creator, device_guard
from .framework import in_dygraph_mode, _varbase_creator
from . import core
__all__ = ['L1Decay', 'L2Decay', 'L1DecayRegularizer', 'L2DecayRegularizer']
......@@ -62,9 +62,7 @@ def _create_regularization_of_grad(param, grad, regularization=None):
return new_grad
def append_regularization_ops(parameters_and_grads,
regularization=None,
param_device_map=None):
def append_regularization_ops(parameters_and_grads, regularization=None):
"""Create and add backward regularization Operators
Creates and adds backward regularization operators in the BlockDesc.
......@@ -95,18 +93,15 @@ def append_regularization_ops(parameters_and_grads,
repeate_regularizer = False
with framework.name_scope('regularization'):
for param, grad in parameters_and_grads:
device = param_device_map[
param.name] if param_device_map else None
if not repeate_regularizer and param.regularizer is not None and regularization is not None:
repeate_regularizer = True
logging.info(
"If regularizer of a Parameter has been set by 'fluid.ParamAttr' or 'fluid.WeightNormParamAttr' already. "
"The Regularization[%s] in Optimizer will not take effect, and it will only be applied to other Parameters!"
% regularization.__str__())
with device_guard(device):
with param.block.program._optimized_guard([param, grad]):
new_grad = _create_regularization_of_grad(
param, grad, regularization)
new_grad = _create_regularization_of_grad(param, grad,
regularization)
params_and_grads.append((param, new_grad))
return params_and_grads
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册