未验证 提交 651f3d93 编写于 作者: csdn5211's avatar csdn5211 提交者: GitHub

[cherry-pick]Refine seq enum expand mask pad 1.6 (#20628)

* disable nccl test

* Update version.

* fix term core only

* fix transpiler error

* fix protobuf memory leak (#11177)

fix protobuf memory leak

* "change eigen mirror"

* test=document_fix

* test=document_fix
上级 1402ef9e
...@@ -153,9 +153,9 @@ paddle.fluid.layers.data_norm (ArgSpec(args=['input', 'act', 'epsilon', 'param_a ...@@ -153,9 +153,9 @@ paddle.fluid.layers.data_norm (ArgSpec(args=['input', 'act', 'epsilon', 'param_a
paddle.fluid.layers.beam_search_decode (ArgSpec(args=['ids', 'scores', 'beam_size', 'end_id', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'eafa177a7fed6178a51c1affa7f46a40')) paddle.fluid.layers.beam_search_decode (ArgSpec(args=['ids', 'scores', 'beam_size', 'end_id', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'eafa177a7fed6178a51c1affa7f46a40'))
paddle.fluid.layers.conv2d_transpose (ArgSpec(args=['input', 'num_filters', 'output_size', 'filter_size', 'padding', 'stride', 'dilation', 'groups', 'param_attr', 'bias_attr', 'use_cudnn', 'act', 'name', 'data_format'], varargs=None, keywords=None, defaults=(None, None, 0, 1, 1, None, None, None, True, None, None, 'NCHW')), ('document', 'ed24c2d0f82cd9a3b40488157285a584')) paddle.fluid.layers.conv2d_transpose (ArgSpec(args=['input', 'num_filters', 'output_size', 'filter_size', 'padding', 'stride', 'dilation', 'groups', 'param_attr', 'bias_attr', 'use_cudnn', 'act', 'name', 'data_format'], varargs=None, keywords=None, defaults=(None, None, 0, 1, 1, None, None, None, True, None, None, 'NCHW')), ('document', 'ed24c2d0f82cd9a3b40488157285a584'))
paddle.fluid.layers.conv3d_transpose (ArgSpec(args=['input', 'num_filters', 'output_size', 'filter_size', 'padding', 'stride', 'dilation', 'groups', 'param_attr', 'bias_attr', 'use_cudnn', 'act', 'name', 'data_format'], varargs=None, keywords=None, defaults=(None, None, 0, 1, 1, None, None, None, True, None, None, 'NCDHW')), ('document', 'efb1e3bc87339cb26faa2edae210e8b0')) paddle.fluid.layers.conv3d_transpose (ArgSpec(args=['input', 'num_filters', 'output_size', 'filter_size', 'padding', 'stride', 'dilation', 'groups', 'param_attr', 'bias_attr', 'use_cudnn', 'act', 'name', 'data_format'], varargs=None, keywords=None, defaults=(None, None, 0, 1, 1, None, None, None, True, None, None, 'NCDHW')), ('document', 'efb1e3bc87339cb26faa2edae210e8b0'))
paddle.fluid.layers.sequence_expand (ArgSpec(args=['x', 'y', 'ref_level', 'name'], varargs=None, keywords=None, defaults=(-1, None)), ('document', '10e122eb755c2bd1f78ef2332b28f1a0')) paddle.fluid.layers.sequence_expand (ArgSpec(args=['x', 'y', 'ref_level', 'name'], varargs=None, keywords=None, defaults=(-1, None)), ('document', 'daa6ed3caaa0ec1398c8904c757de3a7'))
paddle.fluid.layers.sequence_expand_as (ArgSpec(args=['x', 'y', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '858c432e7cbd8bb952cc2eb555457d50')) paddle.fluid.layers.sequence_expand_as (ArgSpec(args=['x', 'y', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '2421c1766c500a720fd0807f54b80263'))
paddle.fluid.layers.sequence_pad (ArgSpec(args=['x', 'pad_value', 'maxlen', 'name'], varargs=None, keywords=None, defaults=(None, None)), ('document', 'df08b9c499ab3a90f95d08ab5b6c6c62')) paddle.fluid.layers.sequence_pad (ArgSpec(args=['x', 'pad_value', 'maxlen', 'name'], varargs=None, keywords=None, defaults=(None, None)), ('document', 'a527d8f2c661c658725af1c781ec5592'))
paddle.fluid.layers.sequence_unpad (ArgSpec(args=['x', 'length', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'af40ffc8474eaec0112c8fb55a88439a')) paddle.fluid.layers.sequence_unpad (ArgSpec(args=['x', 'length', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'af40ffc8474eaec0112c8fb55a88439a'))
paddle.fluid.layers.lstm_unit (ArgSpec(args=['x_t', 'hidden_t_prev', 'cell_t_prev', 'forget_bias', 'param_attr', 'bias_attr', 'name'], varargs=None, keywords=None, defaults=(0.0, None, None, None)), ('document', 'f5a878b6166f34878376a58d7e6fa95c')) paddle.fluid.layers.lstm_unit (ArgSpec(args=['x_t', 'hidden_t_prev', 'cell_t_prev', 'forget_bias', 'param_attr', 'bias_attr', 'name'], varargs=None, keywords=None, defaults=(0.0, None, None, None)), ('document', 'f5a878b6166f34878376a58d7e6fa95c'))
paddle.fluid.layers.reduce_sum (ArgSpec(args=['input', 'dim', 'keep_dim', 'name'], varargs=None, keywords=None, defaults=(None, False, None)), ('document', 'ecb55075fdf89a866bcede85e60aebad')) paddle.fluid.layers.reduce_sum (ArgSpec(args=['input', 'dim', 'keep_dim', 'name'], varargs=None, keywords=None, defaults=(None, False, None)), ('document', 'ecb55075fdf89a866bcede85e60aebad'))
...@@ -235,11 +235,11 @@ paddle.fluid.layers.brelu (ArgSpec(args=['x', 't_min', 't_max', 'name'], varargs ...@@ -235,11 +235,11 @@ paddle.fluid.layers.brelu (ArgSpec(args=['x', 't_min', 't_max', 'name'], varargs
paddle.fluid.layers.leaky_relu (ArgSpec(args=['x', 'alpha', 'name'], varargs=None, keywords=None, defaults=(0.02, None)), ('document', '11352d3780f62952ea3332658714758c')) paddle.fluid.layers.leaky_relu (ArgSpec(args=['x', 'alpha', 'name'], varargs=None, keywords=None, defaults=(0.02, None)), ('document', '11352d3780f62952ea3332658714758c'))
paddle.fluid.layers.soft_relu (ArgSpec(args=['x', 'threshold', 'name'], varargs=None, keywords=None, defaults=(40.0, None)), ('document', 'f14efa9e5fd2e8b3d976cdda38eff43f')) paddle.fluid.layers.soft_relu (ArgSpec(args=['x', 'threshold', 'name'], varargs=None, keywords=None, defaults=(40.0, None)), ('document', 'f14efa9e5fd2e8b3d976cdda38eff43f'))
paddle.fluid.layers.flatten (ArgSpec(args=['x', 'axis', 'name'], varargs=None, keywords=None, defaults=(1, None)), ('document', '424ff350578992f201f2c5c30959ef89')) paddle.fluid.layers.flatten (ArgSpec(args=['x', 'axis', 'name'], varargs=None, keywords=None, defaults=(1, None)), ('document', '424ff350578992f201f2c5c30959ef89'))
paddle.fluid.layers.sequence_mask (ArgSpec(args=['x', 'maxlen', 'dtype', 'name'], varargs=None, keywords=None, defaults=(None, 'int64', None)), ('document', '6c3f916921b24edaad220f1fcbf039de')) paddle.fluid.layers.sequence_mask (ArgSpec(args=['x', 'maxlen', 'dtype', 'name'], varargs=None, keywords=None, defaults=(None, 'int64', None)), ('document', '41cf72ec41306234906b53b82124cb92'))
paddle.fluid.layers.stack (ArgSpec(args=['x', 'axis'], varargs=None, keywords=None, defaults=(0,)), ('document', '666d995b36e9f287d77f09189370fb3a')) paddle.fluid.layers.stack (ArgSpec(args=['x', 'axis'], varargs=None, keywords=None, defaults=(0,)), ('document', '666d995b36e9f287d77f09189370fb3a'))
paddle.fluid.layers.pad2d (ArgSpec(args=['input', 'paddings', 'mode', 'pad_value', 'data_format', 'name'], varargs=None, keywords=None, defaults=([0, 0, 0, 0], 'constant', 0.0, 'NCHW', None)), ('document', '4e277f064c1765f77f946da194626ca1')) paddle.fluid.layers.pad2d (ArgSpec(args=['input', 'paddings', 'mode', 'pad_value', 'data_format', 'name'], varargs=None, keywords=None, defaults=([0, 0, 0, 0], 'constant', 0.0, 'NCHW', None)), ('document', '4e277f064c1765f77f946da194626ca1'))
paddle.fluid.layers.unstack (ArgSpec(args=['x', 'axis', 'num'], varargs=None, keywords=None, defaults=(0, None)), ('document', 'b9d343d8961dfa30d65b1e59d86f53cd')) paddle.fluid.layers.unstack (ArgSpec(args=['x', 'axis', 'num'], varargs=None, keywords=None, defaults=(0, None)), ('document', 'b9d343d8961dfa30d65b1e59d86f53cd'))
paddle.fluid.layers.sequence_enumerate (ArgSpec(args=['input', 'win_size', 'pad_value', 'name'], varargs=None, keywords=None, defaults=(0, None)), ('document', 'b870fed41abd2aecf929ece65f555fa1')) paddle.fluid.layers.sequence_enumerate (ArgSpec(args=['input', 'win_size', 'pad_value', 'name'], varargs=None, keywords=None, defaults=(0, None)), ('document', 'eee654602349a5271db0eb2d0eceb98b'))
paddle.fluid.layers.unique (ArgSpec(args=['x', 'dtype'], varargs=None, keywords=None, defaults=('int32',)), ('document', 'cab0b06e5683875f12f0efc62fa230a9')) paddle.fluid.layers.unique (ArgSpec(args=['x', 'dtype'], varargs=None, keywords=None, defaults=('int32',)), ('document', 'cab0b06e5683875f12f0efc62fa230a9'))
paddle.fluid.layers.unique_with_counts (ArgSpec(args=['x', 'dtype'], varargs=None, keywords=None, defaults=('int32',)), ('document', '4496682f302007019e458a2f30d8a7c3')) paddle.fluid.layers.unique_with_counts (ArgSpec(args=['x', 'dtype'], varargs=None, keywords=None, defaults=('int32',)), ('document', '4496682f302007019e458a2f30d8a7c3'))
paddle.fluid.layers.expand (ArgSpec(args=['x', 'expand_times', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'e93a1b102ab64b247c1b774e60d4c0d0')) paddle.fluid.layers.expand (ArgSpec(args=['x', 'expand_times', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'e93a1b102ab64b247c1b774e60d4c0d0'))
...@@ -275,7 +275,7 @@ paddle.fluid.layers.mean (ArgSpec(args=['x', 'name'], varargs=None, keywords=Non ...@@ -275,7 +275,7 @@ paddle.fluid.layers.mean (ArgSpec(args=['x', 'name'], varargs=None, keywords=Non
paddle.fluid.layers.mul (ArgSpec(args=['x', 'y', 'x_num_col_dims', 'y_num_col_dims', 'name'], varargs=None, keywords=None, defaults=(1, 1, None)), ('document', 'a91eb670033cd103cd8b24624fef5f69')) paddle.fluid.layers.mul (ArgSpec(args=['x', 'y', 'x_num_col_dims', 'y_num_col_dims', 'name'], varargs=None, keywords=None, defaults=(1, 1, None)), ('document', 'a91eb670033cd103cd8b24624fef5f69'))
paddle.fluid.layers.sigmoid_cross_entropy_with_logits (ArgSpec(args=['x', 'label', 'ignore_index', 'name', 'normalize'], varargs=None, keywords=None, defaults=(-100, None, False)), ('document', '8cdf9e34f73b6f0ed8b60b59a8207fb6')) paddle.fluid.layers.sigmoid_cross_entropy_with_logits (ArgSpec(args=['x', 'label', 'ignore_index', 'name', 'normalize'], varargs=None, keywords=None, defaults=(-100, None, False)), ('document', '8cdf9e34f73b6f0ed8b60b59a8207fb6'))
paddle.fluid.layers.maxout (ArgSpec(args=['x', 'groups', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '406eee439e41988c8a0304186626a0dd')) paddle.fluid.layers.maxout (ArgSpec(args=['x', 'groups', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '406eee439e41988c8a0304186626a0dd'))
paddle.fluid.layers.space_to_depth (ArgSpec(args=['x', 'blocksize', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '26decdea9376b6b9a0d3432d82ca207b')) paddle.fluid.layers.space_to_depth (ArgSpec(args=['x', 'blocksize', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '5923274a4efcc6965100a4842b654488'))
paddle.fluid.layers.affine_grid (ArgSpec(args=['theta', 'out_shape', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '315b50c1cbd9569375b098c56f1e91c9')) paddle.fluid.layers.affine_grid (ArgSpec(args=['theta', 'out_shape', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '315b50c1cbd9569375b098c56f1e91c9'))
paddle.fluid.layers.sequence_reverse (ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '5b32ed21ab89140a8e758002923a0da3')) paddle.fluid.layers.sequence_reverse (ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '5b32ed21ab89140a8e758002923a0da3'))
paddle.fluid.layers.affine_channel (ArgSpec(args=['x', 'scale', 'bias', 'data_layout', 'name', 'act'], varargs=None, keywords=None, defaults=(None, None, 'NCHW', None, None)), ('document', 'ecc4b1323028bde0518d666882d03515')) paddle.fluid.layers.affine_channel (ArgSpec(args=['x', 'scale', 'bias', 'data_layout', 'name', 'act'], varargs=None, keywords=None, defaults=(None, None, 'NCHW', None, None)), ('document', 'ecc4b1323028bde0518d666882d03515'))
......
...@@ -5429,64 +5429,121 @@ def conv3d_transpose(input, ...@@ -5429,64 +5429,121 @@ def conv3d_transpose(input,
def sequence_expand(x, y, ref_level=-1, name=None): def sequence_expand(x, y, ref_level=-1, name=None):
"""Sequence Expand Layer. This layer will expand the input variable **x** """Sequence Expand Layer. This layer will expand the input variable ``x`` \
according to specified level lod of **y**. Please note that lod level of according to specified level ``ref_level`` lod of ``y``. Please note that \
**x** is at most 1 and rank of **x** is at least 2. When rank of **x** the lod level of ``x`` is at most 1. If the lod level of ``x`` is 1, than \
is greater than 2, then it would be viewed as a 2-D tensor. the size of lod of ``x`` must be equal to the length of ``ref_level`` lod \
of ``y``. If the lod level of ``x`` is 0, then the first dim of ``x`` should \
be equal to the size of ``ref_level`` of ``y``. The rank of **x** is at least 2. \
When rank of ``x`` is greater than 2, then it would be viewed as a 2-D tensor.
Please note that the input ``x`` should be LodTensor or Tensor, \
and input ``y`` must be LodTensor.
Following examples will explain how sequence_expand works: Following examples will explain how sequence_expand works:
.. code-block:: text .. code-block:: text
* Case 1 Case 1
x is a LoDTensor:
x.lod = [[2, 2]] Consider 2 sequences [a][b] and [c][d], now we want to expand them to [a][b], [a][b], [c][d] and [c][d].
x.data = [[a], [b], [c], [d]] Sequence [a][b] expand twice and [c][d] expands twice, so the lod which according to is [2, 2].
x.dims = [4, 1]
Input x is a 1-level LoDTensor:
x.lod = [[2, 2]] #lod based on length may be easier to understand
x.data = [[a], [b], [c], [d]]
x.dims = [4, 1]
input y is a LoDTensor:
y.lod = [[2, 2], #the 0th level lod, according to this level
[3, 3, 1, 1]] #the 1st level lod, it has nothing to do with this level
ref_level: 0
then output is a 1-level LoDTensor out:
out.lod = [[2, 2, 2, 2]] #lod based on offfset
out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
out.dims = [8, 1]
y is a LoDTensor:
y.lod = [[2, 2],
[3, 3, 1, 1]]
ref_level: 0 Case 2
then output is a 1-level LoDTensor: Consider 3 sequences [a], [b], [c], now we want to expand them to [a][a], [c][c][c].
out.lod = [[2, 2, 2, 2]] It's obvious that the lod info of expanded sequences is [2, 0, 3].
out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
out.dims = [8, 1]
* Case 2 x is a Tensor:
x is a Tensor: x.data = [[a], [b], [c]]
x.data = [[a], [b], [c]] x.dims = [3, 1]
x.dims = [3, 1]
y is a LoDTensor: y is a LoDTensor:
y.lod = [[2, 0, 3]] y.lod = [[2, 0, 3]]
ref_level: -1 ref_level: -1
then output is a 1-level LodTensor:
out.data = [[a], [a], [c], [c], [c]]
out.dims = [5, 1]
then output is a Tensor:
out.data = [[a], [a], [c], [c], [c]]
out.dims = [5, 1]
Args: Args:
x (Variable): The input variable which is a Tensor or LoDTensor. x (Variable): The input variable which is a Tensor or LoDTensor, with the \
y (Variable): The input variable which is a LoDTensor. dims ``[M, K]``. The lod level is at most 1. The data type should be \
ref_level (int): Lod level of `y` to be referred by `x`. If set to -1, float32, float64, int8, int32 or int64.
y (Variable): The input variable which is a LoDTensor, the lod level is \
at least 1.
ref_level (int): Lod level of ``y`` to be referred by ``x``. If set to -1, \
refer the last level of lod. refer the last level of lod.
name(str|None): A name for this layer(optional). If set None, the layer name(str, optional): For detailed information, please refer \
will be named automatically. to :ref:`api_guide_Name`. Usually name is no need to set and \
None by default.
Returns: Returns: The expanded variable which is a LoDTensor, with dims ``[N, K]``. \
Variable: The expanded variable which is a LoDTensor. ``N`` depends on the lod info of ``x`` and ``y``. \
The data type is same as input.
Return Type: Variable
Examples: Examples:
.. code-block:: python .. code-block:: python
import paddle.fluid as fluid import paddle.fluid as fluid
import paddle.fluid.layers as layers import paddle.fluid.layers as layers
x = fluid.layers.data(name='x', shape=[10], dtype='float32') import numpy as np
y = fluid.layers.data(name='y', shape=[10, 20],
dtype='float32', lod_level=1) x = fluid.data(name='x', shape=[4, 1], dtype='float32')
y = fluid.data(name='y', shape=[8, 1],
dtype='float32', lod_level=1)
out = layers.sequence_expand(x=x, y=y, ref_level=0) out = layers.sequence_expand(x=x, y=y, ref_level=0)
exe = fluid.Executor(fluid.CPUPlace())
place = fluid.CPUPlace()
np_data = np.array([[1], [2], [3], [4]]).astype('float32')
x_lod_tensor = fluid.create_lod_tensor(np_data, [[2, 2]], place)
print(x_lod_tensor)
#lod: [[0, 2, 4]]
# dim: 4, 1
# layout: NCHW
# dtype: float
# data: [1 2 3 4]
np_data = np.array([[1], [2], [3], [4], [5], [6], [7], [8]]).astype('float32')
y_lod_tensor = fluid.create_lod_tensor(np_data, [[2, 2], [3,3,1,1]], place)
print(y_lod_tensor)
#lod: [[0, 2, 4][0, 3, 6, 7, 8]]
# dim: 8, 1
# layout: NCHW
# dtype: int64_t
# data: [0 0 1 1 1 1 1 0]
out_main = exe.run(fluid.default_main_program(),
feed={'x': x_lod_tensor, 'y': y_lod_tensor},
fetch_list=[out], return_numpy=False)
print(out_main[0])
#lod: [[0, 2, 4, 6, 8]]
# dim: 8, 1
# layout: NCHW
# dtype: float
# data: [1 2 1 2 3 4 3 4]
""" """
assert not in_dygraph_mode(), ( assert not in_dygraph_mode(), (
"sequence layer is not supported in dygraph mode yet.") "sequence layer is not supported in dygraph mode yet.")
...@@ -5503,61 +5560,105 @@ def sequence_expand(x, y, ref_level=-1, name=None): ...@@ -5503,61 +5560,105 @@ def sequence_expand(x, y, ref_level=-1, name=None):
def sequence_expand_as(x, y, name=None): def sequence_expand_as(x, y, name=None):
"""Sequence Expand As Layer. This layer will expand the input variable **x** """Sequence Expand As Layer. This OP will expand the input variable ``x`` \
according to the zeroth level lod of **y**. Current implementation requires according to the zeroth level lod of ``y``. Current implementation requires \
the level number of Input(Y)'s lod must be 1, and the first dimension of the level number of ``y``'s lod must be 1, and the first dimension of \
Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and ``x`` should be equal to the size of ``y``'s zeroth level lod, thus \
lod of Input(X) is not considered. the expanded LodTensor has the same lod info as ``y``. The expanded result \
has nothing to do with ``x``'s lod, so the lod of Input(X) is not considered.
Please note that the input ``x`` should be LodTensor or Tensor, \
and input ``y`` must be LodTensor.
Following examples will explain how sequence_expand_as works: Following examples will explain how sequence_expand_as works:
.. code-block:: text .. code-block:: text
* Case 1: Case 1:
Given a 1-level LoDTensor input(X) Consider 4 sequences [a], [b], [c], [d], now we want to expand them to [a][a][a], [b][b][b], [c] and [d].
X.data = [[a], [b], [c], [d]] It's obvious that the lod info of expanded sequences is [0, 3, 6, 7, 8].
X.dims = [4, 1] Given a 1-level LodTensor ``x``:
and input(Y) x.data = [[a], [b], [c], [d]]
Y.lod = [[0, 3, 6, 7, 8]] x.dims = [4, 1]
ref_level: 0 and input ``y``
then we get 1-level LoDTensor y.lod = [[3, 3, 1, 1]] #lod based on length may be easier to understand
Out.lod = [[0, 3, 6, 7, 8]]
Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
Out.dims = [8, 1]
* Case 2: then we get 1-level LoDTensor out:
Out.lod = [[0, 3, 6, 7, 8]] #based on offset
Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
Out.dims = [8, 1]
Given a common Tensor input(X)
X.data = [[a, b], [c, d], [e, f]] Case 2:
X.dims = [3, 2]
and input(Y) Given a common Tensor ``x``:
Y.lod = [[0, 2, 3, 6]] x.data = [[a, b], [c, d], [e, f]]
ref_level: 0 x.dims = [3, 2]
then we get a common LoDTensor and input ``y``:
Out.lod = [[0, 2, 3, 6]] y.lod = [[0, 2, 3, 6]]
Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
Out.dims = [6, 2] then we get a 1-level LoDTensor:
out.lod = [[0, 2, 3, 6]]
out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
out.dims = [6, 2]
Args: Args:
x (Variable): The input variable which is a Tensor or LoDTensor. x (Variable): The input variable which is a Tensor or LoDTensor, with the \
y (Variable): The input variable which is a LoDTensor. dims ``[M, K]``. The data type should be float32, float64, int8, int32 \
name(str|None): A name for this layer(optional). If set None, the layer or int64.
will be named automatically. y (Variable): The input variable which is a LoDTensor with 1-level lod.
name (str, optional): For detailed information, please refer \
to :ref:`api_guide_Name`. Usually name is no need to set and \
None by default.
Returns: Returns: The expanded variable which is a LoDTensor with the dims ``[N, K]``. \
Variable: The expanded variable which is a LoDTensor. ``N`` depends on the lod of ``y``, and the lod level must be 1. \
The data type is same as input.
Return Type: Variable
Examples: Examples:
.. code-block:: python .. code-block:: python
import paddle.fluid as fluid import paddle.fluid as fluid
import paddle.fluid.layers as layers import paddle.fluid.layers as layers
import numpy as np
x = fluid.layers.data(name='x', shape=[10], dtype='float32') x = fluid.data(name='x', shape=[4, 1], dtype='float32')
y = fluid.layers.data(name='y', shape=[10, 20], y = fluid.data(name='y', shape=[8, 1], dtype='float32', lod_level=1)
dtype='float32', lod_level=1)
out = layers.sequence_expand_as(x=x, y=y) out = layers.sequence_expand_as(x=x, y=y)
exe = fluid.Executor(fluid.CPUPlace())
place = fluid.CPUPlace()
np_data = np.array([[1], [2], [3], [4]]).astype('float32')
x_lod_tensor = fluid.create_lod_tensor(np_data, [[2, 2]], place)
print(x_lod_tensor)
#lod: [[0, 2, 4]]
# dim: 4, 1
# layout: NCHW
# dtype: float
# data: [1 2 3 4]
np_data = np.array([[1], [2], [3], [4], [5], [6], [7], [8]]).astype('float32')
y_lod_tensor = fluid.create_lod_tensor(np_data, [[3,3,1,1]], place)
print(y_lod_tensor)
#lod: [[0, 3, 6, 7, 8]]
# dim: 8, 1
# layout: NCHW
# dtype: int64_t
# data: [0 0 1 0 1 1 1 0]
out_main = exe.run(fluid.default_main_program(),
feed={'x': x_lod_tensor, 'y': y_lod_tensor},
fetch_list=[out], return_numpy=False)
print(out_main[0])
#lod: [[0, 3, 6, 7, 8]]
# dim: 8, 1
# layout: NCHW
# dtype: float
# data: [1 1 1 2 2 2 3 4]
""" """
assert not in_dygraph_mode(), ( assert not in_dygraph_mode(), (
"sequence layer is not supported in dygraph mode yet.") "sequence layer is not supported in dygraph mode yet.")
...@@ -5572,28 +5673,78 @@ def sequence_expand_as(x, y, name=None): ...@@ -5572,28 +5673,78 @@ def sequence_expand_as(x, y, name=None):
return tmp return tmp
@templatedoc()
def sequence_pad(x, pad_value, maxlen=None, name=None): def sequence_pad(x, pad_value, maxlen=None, name=None):
""" """
${comment} This layer padding the sequences in a same batch to a common length (according \
to ``maxlen``). The padding value is defined by ``pad_value``, and will be \
appended to the tail of sequences. The result is a Python tuple ``(Out, Length)``: \
the LodTensor ``Out`` is the padded sequences, and LodTensor ``Length`` is \
the length information of input sequences. For removing paddding data (unpadding \
operation), See :ref:`api_fluid_layers_sequence_unpad` .
Please note that the input ``x`` should be LodTensor.
.. code-block:: text
Case 1:
Given input 1-level LoDTensor x:
x.lod = [[0, 2, 5]]
x.data = [[a],[b],[c],[d],[e]]
pad_value:
pad_value.data = [0]
maxlen = 4
the output tuple (Out, Length):
Out.data = [[[a],[b],[0],[0]],[[c],[d],[e],[0]]]
Length.data = [2, 3] #Original sequences length
Case 2:
Given input 1-level LoDTensor x:
x.lod = [[0, 2, 5]]
x.data = [[a1,a2],[b1,b2],[c1,c2],[d1,d2],[e1,e2]]
pad_value:
pad_value.data = [0]
defualt maxlen = None, (the virtual value is 3, according to the shape of x)
the output tuple (Out, Length):
Out.data = [[[a1,a2],[b1,b2],[0,0]],[[c1,c2],[d1,d2],[e1,e2]]]
Length.data = [2, 3]
Case 3:
Given input 1-level LoDTensor x:
x.lod = [[0, 2, 5]]
x.data = [[a1,a2],[b1,b2],[c1,c2],[d1,d2],[e1,e2]]
pad_value:
pad_value.data = [p1,p2]
defualt maxlen = None, (the virtual value is 3)
get tuple (Out, Length):
Out.data = [[[a1,a2],[b1,b2],[p1,p2]],[[c1,c2],[d1,d2],[e1,e2]]]
Length.data = [2, 3]
Args: Args:
x(Variable): Input variable which should contain lod information. x (Variable): Input 1-level LodTensor with dims ``[M, K]``. The batch \
pad_value(Variable): The Variable that holds values that will be fill size is described by lod infor (the number of sequnces ). \
into padded steps. It can be a scalar or a tensor whose shape The data type should be float32, float64, int8, int32 or int64.
equals to time steps in sequences. If it's a scalar, it will be pad_value (Variable): Padding value. It can be a scalar or a 1D tensor \
automatically broadcasted to the shape of time step. with length ``K``. If it's a scalar, it will be automatically broadcasted \
maxlen(int, default None): The length of padded sequences. It can be to a Tensor. The data type should be as same as ``x``.
None or any positive int. When it is None, all sequences will be maxlen (int, optional): The length of padded sequences, None by default. \
padded up to the length of the longest one among them; when it a When it is None, all sequences will be padded up to the length of the \
certain positive value, it must be greater than the length of the longest one among them; when it a certain positive value, it must be \
longest original sequence. greater than the length of the longest original sequence.
name(str|None): A name for this layer(optional). If set None, the layer name (str, optional): For detailed information, please refer \
will be named automatically. to :ref:`api_guide_Name`. Usually name is no need to set and \
None by default.
Returns: Returns: A Python tuple (Out, Length): the 1st is a 0 level LodTensor \
Variable: The padded sequence batch and the original lengths before ``Out``, with the shape ``[batch_size, maxlen, K]``; the second is the original \
padding. All sequences has the same length. sequences length infor ``Length``, which should be a 0-level 1D LodTensor. \
The size of ``Length`` is equal to batch size, and the data type is int64.
Return Type: tuple
Examples: Examples:
.. code-block:: python .. code-block:: python
...@@ -5601,8 +5752,7 @@ def sequence_pad(x, pad_value, maxlen=None, name=None): ...@@ -5601,8 +5752,7 @@ def sequence_pad(x, pad_value, maxlen=None, name=None):
import paddle.fluid as fluid import paddle.fluid as fluid
import numpy import numpy
x = fluid.layers.data(name='x', shape=[10, 5], x = fluid.data(name='x', shape=[10, 5], dtype='float32', lod_level=1)
dtype='float32', lod_level=1)
pad_value = fluid.layers.assign( pad_value = fluid.layers.assign(
input=numpy.array([0.0], dtype=numpy.float32)) input=numpy.array([0.0], dtype=numpy.float32))
out = fluid.layers.sequence_pad(x=x, pad_value=pad_value) out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
...@@ -12317,43 +12467,52 @@ def flatten(x, axis=1, name=None): ...@@ -12317,43 +12467,52 @@ def flatten(x, axis=1, name=None):
def sequence_enumerate(input, win_size, pad_value=0, name=None): def sequence_enumerate(input, win_size, pad_value=0, name=None):
""" """
Generate a new sequence for the input index sequence, which enumerates all the Generate a new sequence for the input index sequence with \
sub-sequences with length `win_size` of the input. shape ``[d_1, win_size]``, which enumerates all the \
The enumerated sequence has the same 1st dimension with variable `input`, and sub-sequences with length ``win_size`` of the input with \
the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation. shape ``[d_1, 1]``, and padded by ``pad_value`` if necessary in generation.
.. code-block:: text Please note that the `input` must be LodTensor.
Case 1: .. code-block:: text
Input: Input x:
X.lod = [[0, 3, 5]] x.lod = [[0, 3, 5]]
X.data = [[1], [2], [3], [4], [5]] x.data = [[1], [2], [3], [4], [5]]
X.dims = [5, 1] x.dims = [5, 1]
Attrs: Attrs:
win_size = 2 win_size = 2
pad_value = 0 pad_value = 0
Output: Output:
Out.lod = [[0, 3, 5]] out.lod = [[0, 3, 5]]
Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]] out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
Out.dims = [5, 2] out.dims = [5, 2]
Args: Args:
input (Variable): The input variable which is a index sequence. input (Variable): The input variable which is a index sequence, \
which should be a LodTensor with shape ``[d_1, 1]`` and 1-level lod info. \
The data type should be float32, float64, int8, int32 or int64.
win_size (int): The window size for enumerating all sub-sequences. win_size (int): The window size for enumerating all sub-sequences.
pad_value (int): The padding value, default 0. pad_value (int, optional): The padding value, default 0.
name(str, optional): For detailed information, please refer \
to :ref:`api_guide_Name`. Usually name is no need to set and \
None by default.
Returns: Returns: The enumerate sequence variable which is a LoDTensor with \
Variable: The enumerate sequence variable which is a LoDTensor. shape ``[d_1, win_size]`` and 1-level lod info. \
The data type is same as ``input``.
Return Type: Variable
Examples: Examples:
.. code-block:: python .. code-block:: python
import paddle.fluid as fluid import paddle.fluid as fluid
x = fluid.layers.data(name='x', shape=[-1, 1], dtype='int32', lod_level=1) x = fluid.data(name='x', shape=[-1, 1], dtype='int32', lod_level=1)
out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0) out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
""" """
assert not in_dygraph_mode(), ( assert not in_dygraph_mode(), (
...@@ -12384,25 +12543,44 @@ def sequence_mask(x, maxlen=None, dtype='int64', name=None): ...@@ -12384,25 +12543,44 @@ def sequence_mask(x, maxlen=None, dtype='int64', name=None):
y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n)) y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))
.. code-block:: text
Case:
Consider input:
x = [3, 1, 1, 0] max_len = 4
then we get out:
mask = [[1, 1, 1, 0],
[1, 0, 0, 0],
[1, 0, 0, 0],
[0, 0, 0, 0]]
Args: Args:
x (Variable): Input tensor of sequence_mask layer, x (Variable): Input tensor of sequence_mask layer, \
whose elements are integers less than :code:`maxlen`. whose elements are integers less than :code:`maxlen`. \
maxlen (int|None): Maximum length of the sequence. If :code:`maxlen` Tensor or LodTensor with shape [d_1, d_2, ..., d_n].
maxlen (int, optional): Maximum length of the sequence. If :code:`maxlen` \
is None, it would be replace with :math:`max(x)`. is None, it would be replace with :math:`max(x)`.
dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output. dtype (np.dtype|core.VarDesc.VarType|str, optional): Data type of the output, \
name (str|None): A name for this layer(optional). If set None, the ``int64`` by default.
layer will be named automatically. name(str, optional): For detailed information, please refer \
to :ref:`api_guide_Name`. Usually name is no need to set and \
None by default.
Returns: Returns: The output sequence mask. Tensor or LodTensor with shape [d_1, d_2, ..., d_n, maxlen] \
Variable: The output sequence mask. and data type of :code:`dtype`. The data type should be float32, float64, int8, \
int32 or int64.
Return Type: Variable
Examples: Examples:
.. code-block:: python .. code-block:: python
import paddle.fluid as fluid import paddle.fluid as fluid
import paddle.fluid.layers as layers import paddle.fluid.layers as layers
x = fluid.layers.data(name='x', shape=[10], dtype='float32', lod_level=1) x = fluid.data(name='x', shape=[10], dtype='float32', lod_level=1)
mask = layers.sequence_mask(x=x) mask = layers.sequence_mask(x=x)
""" """
...@@ -14957,49 +15135,83 @@ def space_to_depth(x, blocksize, name=None): ...@@ -14957,49 +15135,83 @@ def space_to_depth(x, blocksize, name=None):
""" """
Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width] Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of \
input LoDtensor where values from the height and width dimensions are moved to the channel dimension. theinput LoDtensor where values from the height and width dimensions are moved to the channel \
dimension.
The attr blocksize indicates the input block size. The attr blocksize indicates the input block size.
space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] \
to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]: according to blocksize to construct output with shape \
[batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
space_to_depth is used to This operation is useful for resizing the activations between convolutions
(but keeping all data)
- Non-overlapping blocks of size block_size x block size are rearranged into depth at each location. - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
- The depth of the output tensor is block_size * block_size * input channel
- The Y, X coordinates within each block of the input become the high order component of the output channel index - The Y, X coordinates within each block of the input become the high order component of the output channel index
- channel should be divisible by square of blocksize - channel should be divisible by square of blocksize
- height, width should be divsible by blocksize - height, width should be divsible by blocksize
This OP is useful for resizing the activations between convolutions \
(but keeping all data)
.. code-block:: text
Given the input x with the shape [1, 1, 4, 4]:
x.data = [[[[1, 2, 5, 6],
[3, 4, 7, 8],
[9, 10, 13, 14],
[11, 12, 15, 16]]]]
blocksize = 2
then get the output with the shape [1, 4, 2, 2]:
out.data = [[[[1, 2], [3, 4]],
[[5, 6], [7, 8]],
[[9, 10], [11, 12]],
[[13, 14], [15, 16]]]]
Args: Args:
x(variable): The input LoDtensor. x (Variable): The input, which should be 4 dims Tensor or LodTensor, with the shape \
blocksize(variable): The blocksize to select the element on each feature map should be > 2 [batch, channel, height, width]
blocksize (int): The blocksize to select the element on each feature map should be > 2
name(str, optional): For detailed information, please refer \
to :ref:`api_guide_Name`. Usually name is no need to set and \
None by default.
Returns: Returns: The output, which should be 4 dims Tensor or LodTensor, with the shape \
Variable: The output LoDtensor. [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]
Return Type: Variable
Raises: Raises:
TypeError: blocksize type must be a long. TypeError: blocksize type must be int64.
Examples: Examples:
.. code-block:: python .. code-block:: python
import paddle.fluid as fluid import paddle.fluid as fluid
import numpy as np import numpy as np
data = fluid.layers.data( data = fluid.data(
name='data', shape=[1, 4, 2, 2], dtype='float32', append_batch_size=False) name='data', shape=[1, 4, 2, 2], dtype='float32')
space_to_depthed = fluid.layers.space_to_depth( space_to_depthed = fluid.layers.space_to_depth(
x=data, blocksize=2) x=data, blocksize=2)
exe = fluid.Executor(fluid.CPUPlace()) exe = fluid.Executor(fluid.CPUPlace())
data_np = np.arange(0,16).reshape((1,4,2,2)).astype('float32') data_np = np.arange(0,16).reshape((1,4,2,2)).astype('float32')
print(data_np)
#array([[[[ 0., 1.], [ 2., 3.]],
# [[ 4., 5.], [ 6., 7.]],
# [[ 8., 9.], [10., 11.]],
# [[12., 13.], [14., 15.]]]], dtype=float32)
out_main = exe.run(fluid.default_main_program(), out_main = exe.run(fluid.default_main_program(),
feed={'data': data_np}, feed={'data': data_np},
fetch_list=[space_to_depthed]) fetch_list=[space_to_depthed])
print(out_main)
#[array([[[[ 0.]], [[ 4.]], [[ 1.]], [[ 5.]],
# [[ 8.]], [[12.]], [[ 9.]], [[13.]],
# [[ 2.]], [[ 6.]], [[ 3.]], [[ 7.]],
# [[10.]], [[14.]], [[11.]], [[15.]]]], dtype=float32)]
""" """
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册