提交 63ffe525 编写于 作者: 武毅 提交者: GitHub

Cluster train doc for v2 API (#2072)

* update cluster train v2 doc

* WIP cluster train doc

* update

* cluster train doc

* add TOC for en doc

* fix sphix build issue

* fix error links

* fix link errors

* fix image link

* polish cluster train docs

* update general distributed training document

* fix sphinx compile error

* fix doc image error
上级 ba5ebe53
import gzip
import math
import paddle.v2 as paddle
embsize = 32
hiddensize = 256
N = 5
def wordemb(inlayer):
wordemb = paddle.layer.embedding(
input=inlayer,
size=embsize,
param_attr=paddle.attr.Param(
name="_proj",
initial_std=0.001,
learning_rate=1,
l2_rate=0,
sparse_update=True))
return wordemb
def main():
# for local training
cluster_train = False
if not cluster_train:
paddle.init(use_gpu=False, trainer_count=1)
else:
paddle.init(
use_gpu=False,
trainer_count=2,
port=7164,
ports_num=1,
ports_num_for_sparse=1,
num_gradient_servers=1)
word_dict = paddle.dataset.imikolov.build_dict()
dict_size = len(word_dict)
firstword = paddle.layer.data(
name="firstw", type=paddle.data_type.integer_value(dict_size))
secondword = paddle.layer.data(
name="secondw", type=paddle.data_type.integer_value(dict_size))
thirdword = paddle.layer.data(
name="thirdw", type=paddle.data_type.integer_value(dict_size))
fourthword = paddle.layer.data(
name="fourthw", type=paddle.data_type.integer_value(dict_size))
nextword = paddle.layer.data(
name="fifthw", type=paddle.data_type.integer_value(dict_size))
Efirst = wordemb(firstword)
Esecond = wordemb(secondword)
Ethird = wordemb(thirdword)
Efourth = wordemb(fourthword)
contextemb = paddle.layer.concat(input=[Efirst, Esecond, Ethird, Efourth])
hidden1 = paddle.layer.fc(input=contextemb,
size=hiddensize,
act=paddle.activation.Sigmoid(),
layer_attr=paddle.attr.Extra(drop_rate=0.5),
bias_attr=paddle.attr.Param(learning_rate=2),
param_attr=paddle.attr.Param(
initial_std=1. / math.sqrt(embsize * 8),
learning_rate=1))
predictword = paddle.layer.fc(input=hidden1,
size=dict_size,
bias_attr=paddle.attr.Param(learning_rate=2),
act=paddle.activation.Softmax())
def event_handler(event):
if isinstance(event, paddle.event.EndIteration):
if event.batch_id % 100 == 0:
with gzip.open("batch-" + str(event.batch_id) + ".tar.gz",
'w') as f:
trainer.save_parameter_to_tar(f)
result = trainer.test(
paddle.batch(
paddle.dataset.imikolov.test(word_dict, N), 32))
print "Pass %d, Batch %d, Cost %f, %s, Testing metrics %s" % (
event.pass_id, event.batch_id, event.cost, event.metrics,
result.metrics)
cost = paddle.layer.classification_cost(input=predictword, label=nextword)
parameters = paddle.parameters.create(cost)
adagrad = paddle.optimizer.AdaGrad(
learning_rate=3e-3,
regularization=paddle.optimizer.L2Regularization(8e-4))
trainer = paddle.trainer.SGD(cost,
parameters,
adagrad,
is_local=not cluster_train)
trainer.train(
paddle.batch(paddle.dataset.imikolov.train(word_dict, N), 32),
num_passes=30,
event_handler=event_handler)
if __name__ == '__main__':
main()
import math
import os
import paddle.v2 as paddle
import pickle
embsize = 32
hiddensize = 256
N = 5
cluster_train_file = "./train_data_dir/train/train.txt"
cluster_test_file = "./test_data_dir/test/test.txt"
node_id = os.getenv("OMPI_COMM_WORLD_RANK")
if not node_id:
raise EnvironmentError("must provied OMPI_COMM_WORLD_RANK")
def wordemb(inlayer):
wordemb = paddle.layer.embedding(
input=inlayer,
size=embsize,
param_attr=paddle.attr.Param(
name="_proj",
initial_std=0.001,
learning_rate=1,
l2_rate=0,
sparse_update=True))
return wordemb
def cluster_reader_cluster(filename, node_id):
def cluster_reader():
with open("-".join([filename, "%05d" % int(node_id)]), "r") as f:
for l in f:
csv_data = [int(cell) for cell in l.split(",")]
yield tuple(csv_data)
return cluster_reader
def main():
# get arguments from env
# for local training
TRUTH = ["true", "True", "TRUE", "1", "yes", "Yes", "YES"]
cluster_train = os.getenv('PADDLE_CLUSTER_TRAIN', "False") in TRUTH
use_gpu = os.getenv('PADDLE_INIT_USE_GPU', "False")
if not cluster_train:
paddle.init(
use_gpu=use_gpu,
trainer_count=int(os.getenv("PADDLE_INIT_TRAINER_COUNT", "1")))
else:
paddle.init(
use_gpu=use_gpu,
trainer_count=int(os.getenv("PADDLE_INIT_TRAINER_COUNT", "1")),
port=int(os.getenv("PADDLE_INIT_PORT", "7164")),
ports_num=int(os.getenv("PADDLE_INIT_PORTS_NUM", "1")),
ports_num_for_sparse=int(
os.getenv("PADDLE_INIT_PORTS_NUM_FOR_SPARSE", "1")),
num_gradient_servers=int(
os.getenv("PADDLE_INIT_NUM_GRADIENT_SERVERS", "1")),
trainer_id=int(os.getenv("PADDLE_INIT_TRAINER_ID", "0")),
pservers=os.getenv("PADDLE_INIT_PSERVERS", "127.0.0.1"))
fn = open("thirdparty/wuyi_train_thdpty/word_dict.pickle", "r")
word_dict = pickle.load(fn)
fn.close()
dict_size = len(word_dict)
firstword = paddle.layer.data(
name="firstw", type=paddle.data_type.integer_value(dict_size))
secondword = paddle.layer.data(
name="secondw", type=paddle.data_type.integer_value(dict_size))
thirdword = paddle.layer.data(
name="thirdw", type=paddle.data_type.integer_value(dict_size))
fourthword = paddle.layer.data(
name="fourthw", type=paddle.data_type.integer_value(dict_size))
nextword = paddle.layer.data(
name="fifthw", type=paddle.data_type.integer_value(dict_size))
Efirst = wordemb(firstword)
Esecond = wordemb(secondword)
Ethird = wordemb(thirdword)
Efourth = wordemb(fourthword)
contextemb = paddle.layer.concat(input=[Efirst, Esecond, Ethird, Efourth])
hidden1 = paddle.layer.fc(input=contextemb,
size=hiddensize,
act=paddle.activation.Sigmoid(),
layer_attr=paddle.attr.Extra(drop_rate=0.5),
bias_attr=paddle.attr.Param(learning_rate=2),
param_attr=paddle.attr.Param(
initial_std=1. / math.sqrt(embsize * 8),
learning_rate=1))
predictword = paddle.layer.fc(input=hidden1,
size=dict_size,
bias_attr=paddle.attr.Param(learning_rate=2),
act=paddle.activation.Softmax())
def event_handler(event):
if isinstance(event, paddle.event.EndIteration):
if event.batch_id % 100 == 0:
result = trainer.test(
paddle.batch(
cluster_reader_cluster(cluster_test_file, node_id), 32))
print "Pass %d, Batch %d, Cost %f, %s, Testing metrics %s" % (
event.pass_id, event.batch_id, event.cost, event.metrics,
result.metrics)
cost = paddle.layer.classification_cost(input=predictword, label=nextword)
parameters = paddle.parameters.create(cost)
adagrad = paddle.optimizer.AdaGrad(
learning_rate=3e-3,
regularization=paddle.optimizer.L2Regularization(8e-4))
trainer = paddle.trainer.SGD(cost,
parameters,
adagrad,
is_local=not cluster_train)
trainer.train(
paddle.batch(cluster_reader_cluster(cluster_train_file, node_id), 32),
num_passes=30,
event_handler=event_handler)
if __name__ == '__main__':
main()
import paddle.v2 as paddle
import tarfile
import os
import pickle
SPLIT_COUNT = 3
N = 5
def file_len(fd):
for i, l in enumerate(fd):
pass
return i + 1
def split_from_reader_by_line(filename, reader, split_count):
fn = open(filename, "w")
for batch_id, batch_data in enumerate(reader()):
batch_data_str = [str(d) for d in batch_data]
fn.write(",".join(batch_data_str))
fn.write("\n")
fn.close()
fn = open(filename, "r")
total_line_count = file_len(fn)
fn.close()
per_file_lines = total_line_count / split_count + 1
cmd = "split -d -a 5 -l %d %s %s-" % (per_file_lines, filename, filename)
os.system(cmd)
word_dict = paddle.dataset.imikolov.build_dict()
with open("word_dict.pickle", "w") as dict_f:
pickle.dump(word_dict, dict_f)
split_from_reader_by_line("train.txt",
paddle.dataset.imikolov.train(word_dict, N),
SPLIT_COUNT)
split_from_reader_by_line("test.txt",
paddle.dataset.imikolov.test(word_dict, N),
SPLIT_COUNT)
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
HOSTS = [
"root@10.1.9.7",
"root@10.1.18.7",
"root@10.1.32.9",
]
'''
workspace configuration
'''
#root dir for workspace, can be set as any director with real user account
ROOT_DIR = "/root"
'''
network configuration
'''
#pserver nics
PADDLE_NIC = "eth0"
#pserver port
PADDLE_PORT = 7164
#pserver ports num
PADDLE_PORTS_NUM = 1
#pserver sparse ports num
PADDLE_PORTS_NUM_FOR_SPARSE = 1
#trainer whether use gpu
PADDLE_USE_GPU = "False"
#environments setting for all processes in cluster job
LD_LIBRARY_PATH = "/usr/local/cuda/lib64:/usr/lib64"
FROM docker.paddlepaddlehub.com/paddle:0.10.0rc2
RUN apt-get update && apt-get install -y openssh-server
RUN mkdir /var/run/sshd
RUN echo 'root:root' |chpasswd
RUN sed -ri 's/^PermitRootLogin\s+.*/PermitRootLogin yes/' /etc/ssh/sshd_config
RUN sed -ri 's/UsePAM yes/#UsePAM yes/g' /etc/ssh/sshd_config
EXPOSE 22
CMD ["/usr/sbin/sshd", "-D"]
apiVersion: extensions/v1beta1
kind: Deployment
metadata:
name: ssh-servers
spec:
replicas: 3
template:
metadata:
labels:
app: ssh-servers
spec:
containers:
- name: ssh-servers
image: docker.paddlepaddlehub.com/paddlessh
resources:
limits:
cpu: 500m
memory: 1Gi
requests:
cpu: 500m
memory: 1Gi
ports:
- containerPort: 22
#!/bin/bash
python paddle.py \
--job_dispatch_package="/root/wuyi/fabric_submit/workspace" \
--dot_period=10 \
--ports_num_for_sparse=1 \
--log_period=50 \
--num_passes=5 \
--trainer_count=2 \
--saving_period=1 \
--local=0 \
--config=./trainer_config.py \
--save_dir=./output \
--use_gpu=0
# Build this image: docker build -t mpi .
#
FROM paddledev/paddle:0.10.0rc3
ENV DEBIAN_FRONTEND noninteractive
RUN apt-get update -y && \
apt-get upgrade -y && \
apt-get install -y openssh-server zip unzip vim sudo \
gcc gfortran openmpi-checkpoint binutils wget curl git openmpi-bin openmpi-common libopenmpi-dev && \
pip install mpi4py numpy virtualenv scipy matplotlib lxml sqlalchemy suds ipython obspy && \
mkdir /var/run/sshd && \
echo 'root:tutorial' | chpasswd && \
sed -i 's/PermitRootLogin without-password/PermitRootLogin yes/' /etc/ssh/sshd_config && \
# SSH login fix. Otherwise user is kicked off after login
sed 's@session\s*required\s*pam_loginuid.so@session optional pam_loginuid.so@g' -i /etc/pam.d/sshd && \
echo "export VISIBLE=now" >> /etc/profile && \
adduser --disabled-password --gecos "" tutorial && \
echo "tutorial ALL=(ALL) NOPASSWD:ALL" >> /etc/sudoers && \
mkdir /home/tutorial/.ssh/
ENV HOME /home/tutorial
ENV NOTVISIBLE "in users profile"
# ------------------------------------------------------------
# Set-Up SSH with our Github deploy key
# ------------------------------------------------------------
ADD ssh/config /home/tutorial/.ssh/config
ADD ssh/id_rsa.mpi /home/tutorial/.ssh/id_rsa
ADD ssh/id_rsa.mpi.pub /home/tutorial/.ssh/id_rsa.pub
ADD ssh/id_rsa.mpi.pub /home/tutorial/.ssh/authorized_keys
#---------------------------------------------------------------
#LD_LIBRARY_PATH
#---------------------------------------------------------------
RUN export LD_LIBRARY_PATH=/usr/lib/openmpi/lib/
WORKDIR /home/tutorial
EXPOSE 22
CMD ["/usr/sbin/sshd", "-D"]
apiVersion: extensions/v1beta1
kind: Deployment
metadata:
name: mpi-header
labels:
app: mpi-header
spec:
replicas: 1
template:
metadata:
labels:
app: mpi-header
spec:
containers:
- image: typhoon1986/paddle-openmpi
name : mpi-header
resources:
limits:
cpu: 500m
memory: 2Gi
requests:
cpu: 500m
memory: 2Gi
ports:
- containerPort: 22
apiVersion: extensions/v1beta1
kind: Deployment
metadata:
name: mpi-nodes
labels:
app: mpi-nodes
spec:
replicas: 3
template:
metadata:
labels:
app: mpi-nodes
spec:
containers:
- image: typhoon1986/paddle-openmpi
name : mpi-nodes
resources:
limits:
cpu: 500m
memory: 2Gi
requests:
cpu: 500m
memory: 2Gi
ports:
- containerPort: 22
imagePullPolicy: Always
-----BEGIN RSA PRIVATE KEY-----
MIIEogIBAAKCAQEA7PWLZmgdJ508dD15T6+xqGDvL9Ehzo9SgsnN6xJ+qpUvvOi4
1axW0AqR4MnPTg/uuvk+x4tUpuufOW4w22UTGjsdvmIVWa9ujLtcRiN3YPY+SU+Y
O5FfqKg7r/hBn+/GMcSoffwSs7vVgmhBBnp/mJh2O1cOAFZEe98/47mbg3/kHBAk
36NOQktaU3l48B38EhBTnjWfcEGm1HcTRPFxXV5Wiko6ZhKFEuHcTVKng4ROtUqE
mgHyI0aB7TAxg4na0ejItsYWEPWGeDOw6ms/4MwylxNosWzHFPW9p4zgLCLNr+b6
bDDfYKjXZflAuTQtQhLmJUwD9uuYLAijpSE2fQIDAQABAoIBADgcgRET8Gt0CV/B
OtvKz/f+VEVvcWD3gWNlJDTZIVOFllNWjIZUlA4ZoqenQkbK8Q4nfV1FOht4yjCQ
TlN1oMtiWk297i5Zo4UBzPzy4w774I39oh/g8dT/WXr2/5s+7SDV38xNh6Q2A34o
79T35wUcfUrZ93/O7dKjb/6d8hx2FMha0wVKqY4lmG1lQE3bbx3kakec0PdvU5kO
YHKlpqj3pMR7CpMa+4yL/iXFwWYmnK+uu+zw7JR7PwvH1CzrnvW438wjQ1QmYbSx
mHHOE89X67Lsl5hn81qYWBhpwAlBwi1qscsE0cV9GcFyKqWFqZsj5coM9u3CRfvy
lrWe1OUCgYEA+LBUFEd3Hxs4sFiYElJ8R9SAs1udaqPvAl01hTEijJLfYlMMVs/y
rgNN7j22zjDak2f8QdyMJZX7EZdRmdYcHO0csYOwbYvalzcnwk+U3mxmdD3r4xSo
DSvkJ70fogAqUlcVIg2re6fCmZVJQTvMQYTVEM8zQomJRt/Lb2esSfsCgYEA8+zv
44aToe8uqiDs4w8guRW7LCDkTw4z4IVo9JUibIaPjaAs5bZEBXSB43EEywXCR75H
fML0rU1PVvKh1rqcvZdVzm+XMWVr3asPk0sapaiHaTcmyZvJRDxxqbLFp0zRP1T6
cCtXNFdHWU4KiuKrUi6cDyOKchpfkSZa4seiT+cCgYB+n4FgBfdQPlMB70oW4irn
g/q32CjxuGCk6oKqu5bkzo+xB6obtavSEFqouIGQwO056tNVUY+GP7Rjg5GH663K
yKw4cl3tmS0Gm43B8TVSfw03mKO3rrfWZQe5eCFYIg9qd26KNT2gK435FzsCXQkm
PxUhhu6JrW/ZR2/U3Iur6wKBgADrWLAb1ryagSuE+j+U1AO+kDkHWrTtkcZ72jxp
v3p3O11GSEUJXdJDcSXhTCpTuDq6/dv7hB6PFwh126RKicKxKlKf2wsFndV1Cpb8
hnovW2tLGOtTmfuW2rrQAKyzvmolsNfxYd/BoHQ2thV16z1hDZeFA8WQUeHjKh6G
sBbrAoGATdtQlaUxx4izua6k02ihkxx/cRYwDl2N8UDvDBHokS7vJFMX8b8NpsGg
zMElnqSpu/pe/0UG7N2MtPF6uyMcX8AZzzcsRkiMkDvWJzYt8Jpf+Eyd/uryF+Yv
yrXaOEY83tm6x/fny5ZaZmk8lNth7bfWywuTMkZLX3fYpWtIeE4=
-----END RSA PRIVATE KEY-----
ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQDs9YtmaB0nnTx0PXlPr7GoYO8v0SHOj1KCyc3rEn6qlS+86LjVrFbQCpHgyc9OD+66+T7Hi1Sm6585bjDbZRMaOx2+YhVZr26Mu1xGI3dg9j5JT5g7kV+oqDuv+EGf78YxxKh9/BKzu9WCaEEGen+YmHY7Vw4AVkR73z/juZuDf+QcECTfo05CS1pTeXjwHfwSEFOeNZ9wQabUdxNE8XFdXlaKSjpmEoUS4dxNUqeDhE61SoSaAfIjRoHtMDGDidrR6Mi2xhYQ9YZ4M7Dqaz/gzDKXE2ixbMcU9b2njOAsIs2v5vpsMN9gqNdl+UC5NC1CEuYlTAP265gsCKOlITZ9 oweidner@peahi
#!/bin/bash
# General trainning configurations
NICS=eth0
PADDLE_INIT_PORT=7164
PADDLE_INIT_PORTS_NUM=1
PADDLE_INIT_PORTS_NUM_FOR_SPARSE=1
PADDLE_INIT_PSERVERS=$(cat machines | sed -e ':a' -e 'N' -e '$!ba' -e 's/\n/,/g')
PADDLE_INIT_USE_GPU=False
PADDLE_INIT_NUM_GRADIENT_SERVERS=${OMPI_COMM_WORLD_SIZE}
PADDLE_INIT_TRAINER_ID=${OMPI_COMM_WORLD_RANK}
PADDLE_CLUSTER_TRAIN=True
env
# start pserver
stdbuf -oL nohup paddle pserver --port=$PADDLE_INIT_PORT --ports_num=$PADDLE_INIT_PORTS_NUM \
--ports_num_for_sparse=$PADDLE_INIT_PORTS_NUM_FOR_SPARSE --nics=$NICS \
--comment=paddle_cluster_pserver \
--num_gradient_servers=$PADDLE_INIT_NUM_GRADIENT_SERVERS &> logs/pserver.log &
# start trainer
# NOTE: train.py will use the above environment variables as configuration
python train.py &> logs/train.log
# kill background pservers when train finishes
ps -ef | grep pserver | awk '{print $2}' | xargs kill
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册