From 608feea2049b8d192c95f0433f62c7498c7d7d1d Mon Sep 17 00:00:00 2001 From: qingqing01 <dangqingqing@baidu.com> Date: Tue, 6 Mar 2018 11:12:35 +0800 Subject: [PATCH] Implement detection mAP evaluator wrapper and unify label format between SSD loss and mAP evaluator (#8736) * Implement mAP evalutor Python interface. * Fix unit testing and uniy label format between SSD loss and mAP evalutor. * Update doc. --- paddle/fluid/operators/detection_map_op.cc | 11 +- paddle/fluid/operators/detection_map_op.h | 9 +- python/paddle/fluid/evaluator.py | 119 ++++++++++++++++++ python/paddle/fluid/layers/detection.py | 31 +++-- python/paddle/fluid/tests/test_detection.py | 19 +-- .../tests/unittests/test_detection_map_op.py | 2 + 6 files changed, 158 insertions(+), 33 deletions(-) diff --git a/paddle/fluid/operators/detection_map_op.cc b/paddle/fluid/operators/detection_map_op.cc index 0af3ba621aa..880bfe3b043 100644 --- a/paddle/fluid/operators/detection_map_op.cc +++ b/paddle/fluid/operators/detection_map_op.cc @@ -47,11 +47,10 @@ class DetectionMAPOp : public framework::OperatorWithKernel { PADDLE_ENFORCE_EQ(det_dims[1], 6UL, "The shape is of Input(DetectRes) [N, 6]."); auto label_dims = ctx->GetInputDim("Label"); - PADDLE_ENFORCE_EQ(label_dims.size(), 2UL, + PADDLE_ENFORCE_EQ(label_dims.size(), 2, "The rank of Input(Label) must be 2, " "the shape is [N, 6]."); - PADDLE_ENFORCE_EQ(label_dims[1], 6UL, - "The shape is of Input(Label) [N, 6]."); + PADDLE_ENFORCE_EQ(label_dims[1], 6, "The shape is of Input(Label) [N, 6]."); if (ctx->HasInput("PosCount")) { PADDLE_ENFORCE(ctx->HasInput("TruePos"), @@ -96,6 +95,10 @@ class DetectionMAPOpMaker : public framework::OpProtoAndCheckerMaker { "instance, the offsets in first dimension are called LoD, " "the number of offset is N + 1, if LoD[i + 1] - LoD[i] == 0, " "means there is no ground-truth data."); + AddInput("HasState", + "(Tensor<int>) A tensor with shape [1], 0 means ignoring input " + "states, which including PosCount, TruePos, FalsePos.") + .AsDispensable(); AddInput("PosCount", "(Tensor) A tensor with shape [Ncls, 1], store the " "input positive example count of each class, Ncls is the count of " @@ -145,7 +148,7 @@ class DetectionMAPOpMaker : public framework::OpProtoAndCheckerMaker { "(float) " "The lower bound jaccard overlap threshold of detection output and " "ground-truth data.") - .SetDefault(.3f); + .SetDefault(.5f); AddAttr<bool>("evaluate_difficult", "(bool, default true) " "Switch to control whether the difficult data is evaluated.") diff --git a/paddle/fluid/operators/detection_map_op.h b/paddle/fluid/operators/detection_map_op.h index 92e05108393..b2b0995b35b 100644 --- a/paddle/fluid/operators/detection_map_op.h +++ b/paddle/fluid/operators/detection_map_op.h @@ -87,7 +87,13 @@ class DetectionMAPOpKernel : public framework::OpKernel<T> { std::map<int, std::vector<std::pair<T, int>>> true_pos; std::map<int, std::vector<std::pair<T, int>>> false_pos; - if (in_pos_count != nullptr) { + auto* has_state = ctx.Input<framework::LoDTensor>("HasState"); + int state = 0; + if (has_state) { + state = has_state->data<int>()[0]; + } + + if (in_pos_count != nullptr && state) { GetInputPos(*in_pos_count, *in_true_pos, *in_false_pos, label_pos_count, true_pos, false_pos); } @@ -202,6 +208,7 @@ class DetectionMAPOpKernel : public framework::OpKernel<T> { int* pos_count_data = output_pos_count.mutable_data<int>( framework::make_ddim({max_class_id + 1, 1}), ctx.GetPlace()); + T* true_pos_data = output_true_pos.mutable_data<T>( framework::make_ddim({true_pos_count, 2}), ctx.GetPlace()); T* false_pos_data = output_false_pos.mutable_data<T>( diff --git a/python/paddle/fluid/evaluator.py b/python/paddle/fluid/evaluator.py index 38c6a982790..364789233bf 100644 --- a/python/paddle/fluid/evaluator.py +++ b/python/paddle/fluid/evaluator.py @@ -18,11 +18,13 @@ import layers from framework import Program, Variable, program_guard import unique_name from layer_helper import LayerHelper +from initializer import Constant __all__ = [ 'Accuracy', 'ChunkEvaluator', 'EditDistance', + 'DetectionMAP', ] @@ -285,3 +287,120 @@ class EditDistance(Evaluator): result = executor.run( eval_program, fetch_list=[avg_distance, avg_instance_error]) return np.array(result[0]), np.array(result[1]) + + +class DetectionMAP(Evaluator): + """ + Calculate the detection mean average precision (mAP). + + TODO (Dang Qingqing): update the following doc. + The general steps are as follows: + 1. calculate the true positive and false positive according to the input + of detection and labels. + 2. calculate mAP value, support two versions: '11 point' and 'integral'. + + Please get more information from the following articles: + https://sanchom.wordpress.com/tag/average-precision/ + https://arxiv.org/abs/1512.02325 + + Args: + input (Variable): The detection results, which is a LoDTensor with shape + [M, 6]. The layout is [label, confidence, xmin, ymin, xmax, ymax]. + gt_label (Variable): The ground truth label index, which is a LoDTensor + with shape [N, 1]. + gt_difficult (Variable): Whether this ground truth is a difficult + bounding box (bbox), which is a LoDTensor [N, 1]. + gt_box (Variable): The ground truth bounding box (bbox), which is a + LoDTensor with shape [N, 6]. The layout is [xmin, ymin, xmax, ymax]. + overlap_threshold (float): The threshold for deciding true/false + positive, 0.5 by defalut. + evaluate_difficult (bool): Whether to consider difficult ground truth + for evaluation, True by defalut. + ap_version (string): The average precision calculation ways, it must be + 'integral' or '11point'. Please check + https://sanchom.wordpress.com/tag/average-precision/ for details. + - 11point: the 11-point interpolated average precision. + - integral: the natural integral of the precision-recall curve. + + Example: + + exe = fluid.executor(place) + map_evaluator = fluid.Evaluator.DetectionMAP(input, + gt_label, gt_difficult, gt_box) + cur_map, accum_map = map_evaluator.get_map_var() + fetch = [cost, cur_map, accum_map] + for epoch in PASS_NUM: + map_evaluator.reset(exe) + for data in batches: + loss, cur_map_v, accum_map_v = exe.run(fetch_list=fetch) + + In the above example: + + 'cur_map_v' is the mAP of current mini-batch. + 'accum_map_v' is the accumulative mAP of one pass. + """ + + def __init__(self, + input, + gt_label, + gt_box, + gt_difficult, + overlap_threshold=0.5, + evaluate_difficult=True, + ap_version='integral'): + super(DetectionMAP, self).__init__("map_eval") + + gt_label = layers.cast(x=gt_label, dtype=gt_box.dtype) + gt_difficult = layers.cast(x=gt_difficult, dtype=gt_box.dtype) + label = layers.concat([gt_label, gt_difficult, gt_box], axis=1) + + # calculate mean average precision (mAP) of current mini-batch + map = layers.detection_map( + input, + label, + overlap_threshold=overlap_threshold, + evaluate_difficult=evaluate_difficult, + ap_version=ap_version) + + self.create_state(dtype='int32', shape=None, suffix='accum_pos_count') + self.create_state(dtype='float32', shape=None, suffix='accum_true_pos') + self.create_state(dtype='float32', shape=None, suffix='accum_false_pos') + + self.has_state = None + var = self.helper.create_variable( + persistable=True, dtype='int32', shape=[1]) + self.helper.set_variable_initializer( + var, initializer=Constant(value=int(0))) + self.has_state = var + + # calculate accumulative mAP + accum_map = layers.detection_map( + input, + label, + overlap_threshold=overlap_threshold, + evaluate_difficult=evaluate_difficult, + has_state=self.has_state, + input_states=self.states, + out_states=self.states, + ap_version=ap_version) + + layers.fill_constant( + shape=self.has_state.shape, + value=1, + dtype=self.has_state.dtype, + out=self.has_state) + + self.cur_map = map + self.accum_map = accum_map + + def get_map_var(self): + return self.cur_map, self.accum_map + + def reset(self, executor, reset_program=None): + if reset_program is None: + reset_program = Program() + with program_guard(main_program=reset_program): + var = _clone_var_(reset_program.current_block(), self.has_state) + layers.fill_constant( + shape=var.shape, value=0, dtype=var.dtype, out=var) + executor.run(reset_program) diff --git a/python/paddle/fluid/layers/detection.py b/python/paddle/fluid/layers/detection.py index d16b4dc3a48..420d3de7f73 100644 --- a/python/paddle/fluid/layers/detection.py +++ b/python/paddle/fluid/layers/detection.py @@ -151,23 +151,34 @@ def detection_output(loc, @autodoc() def detection_map(detect_res, label, - pos_count=None, - true_pos=None, - false_pos=None, overlap_threshold=0.3, evaluate_difficult=True, - ap_type='integral'): + has_state=None, + input_states=None, + out_states=None, + ap_version='integral'): helper = LayerHelper("detection_map", **locals()) - map_out = helper.create_tmp_variable(dtype='float32') - accum_pos_count_out = helper.create_tmp_variable(dtype='int32') - accum_true_pos_out = helper.create_tmp_variable(dtype='float32') - accum_false_pos_out = helper.create_tmp_variable(dtype='float32') + def __create_var(type): + return helper.create_tmp_variable(dtype=type) + + map_out = __create_var('float32') + accum_pos_count_out = out_states[0] if out_states else __create_var('int32') + accum_true_pos_out = out_states[1] if out_states else __create_var( + 'float32') + accum_false_pos_out = out_states[2] if out_states else __create_var( + 'float32') + + pos_count = input_states[0] if input_states else None + true_pos = input_states[1] if input_states else None + false_pos = input_states[2] if input_states else None + helper.append_op( type="detection_map", inputs={ 'Label': label, 'DetectRes': detect_res, + 'HasState': has_state, 'PosCount': pos_count, 'TruePos': true_pos, 'FalsePos': false_pos @@ -181,9 +192,9 @@ def detection_map(detect_res, attrs={ 'overlap_threshold': overlap_threshold, 'evaluate_difficult': evaluate_difficult, - 'ap_type': ap_type + 'ap_type': ap_version }) - return map_out, accum_pos_count_out, accum_true_pos_out, accum_false_pos_out + return map_out def bipartite_match(dist_matrix, diff --git a/python/paddle/fluid/tests/test_detection.py b/python/paddle/fluid/tests/test_detection.py index 0d2d653c01c..b183db55b2a 100644 --- a/python/paddle/fluid/tests/test_detection.py +++ b/python/paddle/fluid/tests/test_detection.py @@ -158,26 +158,9 @@ class TestDetectionMAP(unittest.TestCase): append_batch_size=False, dtype='float32') - map_out, accum_pos_count_out, accum_true_pos_out, accum_false_pos_out = layers.detection_map( - detect_res=detect_res, label=label) + map_out = layers.detection_map(detect_res=detect_res, label=label) self.assertIsNotNone(map_out) - self.assertIsNotNone(accum_pos_count_out) - self.assertIsNotNone(accum_true_pos_out) - self.assertIsNotNone(accum_false_pos_out) self.assertEqual(map_out.shape, (1, )) - map_out, accum_pos_count_out2, accum_true_pos_out2, accum_false_pos_out2 = layers.detection_map( - detect_res=detect_res, label=label) - self.assertIsNotNone(map_out) - self.assertIsNotNone(accum_pos_count_out2) - self.assertIsNotNone(accum_true_pos_out2) - self.assertIsNotNone(accum_false_pos_out2) - self.assertEqual(map_out.shape, (1, )) - self.assertEqual(accum_pos_count_out.shape, - accum_pos_count_out2.shape) - self.assertEqual(accum_true_pos_out.shape, - accum_true_pos_out2.shape) - self.assertEqual(accum_false_pos_out.shape, - accum_false_pos_out2.shape) print(str(program)) diff --git a/python/paddle/fluid/tests/unittests/test_detection_map_op.py b/python/paddle/fluid/tests/unittests/test_detection_map_op.py index 70ccd885d89..9857cc58456 100644 --- a/python/paddle/fluid/tests/unittests/test_detection_map_op.py +++ b/python/paddle/fluid/tests/unittests/test_detection_map_op.py @@ -34,10 +34,12 @@ class TestDetectionMAPOp(OpTest): 'int32') self.true_pos = np.array(self.true_pos).astype('float32') self.false_pos = np.array(self.false_pos).astype('float32') + self.has_state = np.array([1]).astype('int32') self.inputs = { 'Label': (self.label, self.label_lod), 'DetectRes': (self.detect, self.detect_lod), + 'HasState': self.has_state, 'PosCount': self.class_pos_count, 'TruePos': (self.true_pos, self.true_pos_lod), 'FalsePos': (self.false_pos, self.false_pos_lod) -- GitLab