提交 6016ef4f 编写于 作者: S sandyhouse

update, test=develop

上级 7dbab103
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
from __future__ import print_function
from __future__ import division
import paddle.fluid as fluid
from paddle.fluid import core, unique_name
from ..base.private_helper_function import wait_server_ready
from .meta_optimizer_base import MetaOptimizerBase
from .common import OpRole, OP_ROLE_KEY, OP_ROLE_VAR_KEY, CollectiveHelper, is_update_op, is_loss_grad_op, is_backward_op, is_optimizer_op
class ModelParallelHelper(object):
def __init__(self, role_maker, wait_port=True):
self.wait_port = wait_port
self.role_maker = role_maker
def update_startup_program(self,
startup_program=None,
inner_parallelism=None):
self.startup_program = startup_program
nranks = self.role_maker._worker_num()
rank = self.role_maker._worker_index()
endpoints = self.role_maker._get_trainer_endpoints()
current_endpoint = endpoints[rank]
# Create ring 0 for all model parallel parts within a single model
mp_endpoints = []
mp_rank = rank % inner_parallelism
mp_id = rank // inner_parallelism
for idx, ep in enumerate(endpoints):
if idx // inner_parallelism == mp_id:
mp_endpoints.append(ep)
print("model parallel eps:{}, rank{}".format(mp_endpoints, mp_rank))
self._init_communicator(self.startup_program, current_endpoint,
mp_endpoints, mp_rank, 0, self.wait_port)
self._broadcast_params(0, broadcast_distributed_weight=False)
mp_num = len(endpoints) // inner_parallelism
if mp_num == 1: return
# Create rings for gpus as the same model parallel part
eps = []
dp_rank = rank // inner_parallelism
dp_id = rank % inner_parallelism
#if dp_rank == 1: dp_rank =0
#if dp_rank == 0: dp_rank =1
ring_id = 1
for idx, ep in enumerate(endpoints):
if idx % inner_parallelism == dp_id:
eps.append(ep)
#ep = eps.pop(0)
#eps.insert(1, ep)
print("data parallel eps:{}, rank{}".format(eps, dp_rank))
self._init_communicator(self.startup_program, current_endpoint, eps,
dp_rank, ring_id, self.wait_port)
self._broadcast_params(ring_id, broadcast_distributed_weight=True)
def _init_communicator(self, program, current_endpoint, endpoints, rank,
ring_id, wait_port):
nranks = len(endpoints)
other_endpoints = endpoints[:]
other_endpoints.remove(current_endpoint)
if rank == 0 and wait_port:
wait_server_ready(other_endpoints)
block = program.global_block()
nccl_id_var = block.create_var(
name=unique_name.generate('nccl_id'),
persistable=True,
type=core.VarDesc.VarType.RAW)
block.append_op(
type='c_gen_nccl_id',
inputs={},
outputs={'Out': nccl_id_var},
attrs={
'rank': rank,
'endpoint': current_endpoint,
'other_endpoints': other_endpoints,
OP_ROLE_KEY: OpRole.Forward,
})
block.append_op(
type='c_comm_init',
inputs={'X': nccl_id_var},
outputs={},
attrs={
'nranks': nranks,
'rank': rank,
'ring_id': ring_id,
OP_ROLE_KEY: OpRole.Forward,
})
def _broadcast_params(self, ring_id, broadcast_distributed_weight):
block = self.startup_program.global_block()
for param in block.iter_parameters():
if not broadcast_distributed_weight and param.is_distributed:
continue
block.append_op(
type='c_broadcast',
inputs={'X': param},
outputs={'Out': param},
attrs={
'ring_id': ring_id,
'root': 0,
OP_ROLE_KEY: OpRole.Forward
})
block.append_op(
type='c_sync_comm_stream',
inputs={'X': param},
outputs={'Out': param},
attrs={'ring_id': ring_id,
OP_ROLE_KEY: OpRole.Forward})
class ModelParallelOptimizer(MetaOptimizerBase):
def __init__(self, optimizer):
super(ModelParallelOptimizer, self).__init__(optimizer)
self.inner_opt = optimizer
# we do not allow meta optimizer to be inner optimizer currently
self.meta_optimizers_white_list = []
self.meta_optimizers_black_list = ["GraphExecutionOptimizer", ]
def _set_basic_info(self, loss, role_maker, user_defined_optimizer,
user_defined_strategy):
super(ModelParallelOptimizer, self)._set_basic_info(
loss, role_maker, user_defined_optimizer, user_defined_strategy)
self.inner_parallelism = user_defined_strategy.model_parallel_configs[
'parallelism']
def _can_apply(self):
if not self.role_maker._is_collective:
return False
if self.user_defined_strategy.model_parallel == True:
return True
return False
def _disable_strategy(self, dist_strategy):
dist_strategy.model_parallel = False
dist_strategy.model_parallel_configs = {}
def _enable_strategy(self, dist_strategy, context):
dist_strategy.model_parallel = True
dist_strategy.model_parallel_configs = {"parallelism": 1, }
def minimize_impl(self,
loss,
startup_program=None,
parameter_list=None,
no_grad_set=None):
endpoints = self.role_maker._get_trainer_endpoints()
current_endpoint = endpoints[self.role_maker._worker_index()]
self.startup_program = startup_program
if startup_program is None:
self.startup_program = fluid.default_startup_program()
optimize_ops, params_grads = self.inner_opt.minimize(
loss, self.startup_program, parameter_list, no_grad_set)
self.main_program = loss.block.program
self.inner_parallelism = self.inner_parallelism
self.nranks = len(endpoints)
pipeline_helper = ModelParallelHelper(self.role_maker)
pipeline_helper.update_startup_program(self.startup_program,
self.inner_parallelism)
assert self.nranks % self.inner_parallelism == 0
# data parallelism
dp_parallelism = self.nranks // self.inner_parallelism
self._transpile_main_program(loss, dp_parallelism)
return optimize_ops, params_grads
def _transpile_main_program(self, loss, dp_parallelism):
self._insert_loss_grad_ops(loss, dp_parallelism)
ring_id = 1
print("ring_id: ", ring_id)
# for ring_id in range(1, dp_parallelism + 1):
self._insert_allreduce_ops(loss, ring_id)
def _insert_loss_grad_ops(self, loss, dp_parallelism):
"""
In order to keep the learning rate consistent in different numbers of
training workers, we scale the loss grad by the number of workers
"""
block = loss.block
for idx, op in reversed(list(enumerate(block.ops))):
if is_loss_grad_op(op):
loss_grad_var = block.vars[op.output_arg_names[0]]
block._insert_op(
idx + 1,
type='scale',
inputs={'X': loss_grad_var},
outputs={'Out': loss_grad_var},
attrs={
'scale': 1.0 / dp_parallelism,
OP_ROLE_KEY: OpRole.Backward
})
def _insert_allreduce_ops(self, loss, ring_id):
block = loss.block
grad = None
for idx, op in reversed(list(enumerate(block.ops))):
if is_backward_op(op) and \
OP_ROLE_VAR_KEY in op.attr_names:
op_role_var = op.all_attrs()[OP_ROLE_VAR_KEY]
if len(op_role_var) == 0:
continue
assert len(op_role_var) % 2 == 0
offset = idx
for i in range(0, len(op_role_var), 2):
param = block.vars[op_role_var[i]]
grad = block.vars[op_role_var[i + 1]]
#if param.is_distributed:
# continue
if offset == idx:
offset += 1
block._insert_op(
offset,
type='c_sync_calc_stream',
inputs={'X': grad},
outputs={'Out': grad},
attrs={OP_ROLE_KEY: OpRole.Backward})
offset += 1
block._insert_op(
offset,
type='c_allreduce_sum',
inputs={'X': grad},
outputs={'Out': grad},
attrs={
'ring_id': ring_id,
OP_ROLE_KEY: OpRole.Backward
})
if grad is None:
return
for idx, op in list(enumerate(block.ops)):
if is_optimizer_op(op):
block._insert_op(
idx,
type='c_sync_comm_stream',
inputs={'X': grad},
outputs={'Out': grad},
attrs={'ring_id': ring_id,
OP_ROLE_KEY: OpRole.Backward})
break
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册