From 5d6a1fcf16bcb48d2e66306b27d9994d9b07433c Mon Sep 17 00:00:00 2001 From: guru4elephant <35550832+guru4elephant@users.noreply.github.com> Date: Thu, 9 May 2019 09:39:48 +0800 Subject: [PATCH] fix infer_from_dataset and train_from_dataset (#17243) * fix train_from_dataset and infer_from_dataset example * add inductive dim for data_reader, example: shape=[-1, 1], then -1 will be inducted through run-time reading of number of elements --- paddle/fluid/API.spec | 4 +-- paddle/fluid/framework/data_feed.cc | 35 ++++++++++++++++++----- paddle/fluid/framework/data_feed.h | 2 ++ paddle/fluid/framework/downpour_worker.cc | 1 + python/paddle/fluid/executor.py | 21 ++++++++------ 5 files changed, 45 insertions(+), 18 deletions(-) diff --git a/paddle/fluid/API.spec b/paddle/fluid/API.spec index 9052675a9de..f6da8860fe9 100644 --- a/paddle/fluid/API.spec +++ b/paddle/fluid/API.spec @@ -16,9 +16,9 @@ paddle.fluid.cuda_pinned_places (ArgSpec(args=['device_count'], varargs=None, ke paddle.fluid.in_dygraph_mode (ArgSpec(args=[], varargs=None, keywords=None, defaults=None), ('document', 'eddb7a1f0083dcc70e9f6c71ee003cb9')) paddle.fluid.Executor.__init__ (ArgSpec(args=['self', 'place'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754')) paddle.fluid.Executor.close (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '3a584496aa1343f36eebf3c46b323a74')) -paddle.fluid.Executor.infer_from_dataset (ArgSpec(args=['self', 'program', 'dataset', 'scope', 'thread', 'debug', 'fetch_list', 'fetch_info', 'print_period'], varargs=None, keywords=None, defaults=(None, None, None, 0, False, None, None, 100)), ('document', '9c7decb955b9c4f718114179c8985581')) +paddle.fluid.Executor.infer_from_dataset (ArgSpec(args=['self', 'program', 'dataset', 'scope', 'thread', 'debug', 'fetch_list', 'fetch_info', 'print_period'], varargs=None, keywords=None, defaults=(None, None, None, 0, False, None, None, 100)), ('document', 'bedc29ad01c1b911e99032ee1e19ac59')) paddle.fluid.Executor.run (ArgSpec(args=['self', 'program', 'feed', 'fetch_list', 'feed_var_name', 'fetch_var_name', 'scope', 'return_numpy', 'use_program_cache'], varargs=None, keywords=None, defaults=(None, None, None, 'feed', 'fetch', None, True, False)), ('document', '4cfcd9c15b766a51b584cc46d38f1ad8')) -paddle.fluid.Executor.train_from_dataset (ArgSpec(args=['self', 'program', 'dataset', 'scope', 'thread', 'debug', 'fetch_list', 'fetch_info', 'print_period'], varargs=None, keywords=None, defaults=(None, None, None, 0, False, None, None, 100)), ('document', 'd521011d79e71080fe9b5bb179b43518')) +paddle.fluid.Executor.train_from_dataset (ArgSpec(args=['self', 'program', 'dataset', 'scope', 'thread', 'debug', 'fetch_list', 'fetch_info', 'print_period'], varargs=None, keywords=None, defaults=(None, None, None, 0, False, None, None, 100)), ('document', '28f50904a0213f110947a30e0438529c')) paddle.fluid.global_scope (ArgSpec(args=[], varargs=None, keywords=None, defaults=None), ('document', 'f65788d9ead293ada47551339df12203')) paddle.fluid.scope_guard (ArgSpec(args=['scope'], varargs=None, keywords=None, defaults=None), ('document', '6e19f92e2f185320a3a86b77e85eb3b3')) paddle.fluid.DistributeTranspiler.__init__ (ArgSpec(args=['self', 'config'], varargs=None, keywords=None, defaults=(None,)), ('document', '6adf97f83acf6453d4a6a4b1070f3754')) diff --git a/paddle/fluid/framework/data_feed.cc b/paddle/fluid/framework/data_feed.cc index 0291b6f66a9..02e467e853e 100644 --- a/paddle/fluid/framework/data_feed.cc +++ b/paddle/fluid/framework/data_feed.cc @@ -455,6 +455,8 @@ void MultiSlotDataFeed::Init( all_slots_.resize(all_slot_num); all_slots_type_.resize(all_slot_num); use_slots_index_.resize(all_slot_num); + total_dims_without_inductive_.resize(all_slot_num); + inductive_shape_index_.resize(all_slot_num); use_slots_.clear(); use_slots_is_dense_.clear(); for (size_t i = 0; i < all_slot_num; ++i) { @@ -462,14 +464,20 @@ void MultiSlotDataFeed::Init( all_slots_[i] = slot.name(); all_slots_type_[i] = slot.type(); use_slots_index_[i] = slot.is_used() ? use_slots_.size() : -1; + total_dims_without_inductive_[i] = 1; + inductive_shape_index_[i] = -1; if (slot.is_used()) { use_slots_.push_back(all_slots_[i]); use_slots_is_dense_.push_back(slot.is_dense()); std::vector local_shape; if (slot.is_dense()) { - // for batch size holder if is_dense - if (slot.shape(0) > 0) { - local_shape.push_back(0); + for (size_t i = 0; i < slot.shape_size(); ++i) { + if (slot.shape(i) > 0) { + total_dims_without_inductive_[i] *= slot.shape(i); + } + if (slot.shape(i) == -1) { + inductive_shape_index_[i] = i; + } } } for (size_t i = 0; i < slot.shape_size(); ++i) { @@ -762,7 +770,10 @@ void MultiSlotDataFeed::PutToFeedVec( LoD data_lod{offset}; feed_vec_[i]->set_lod(data_lod); if (use_slots_is_dense_[i]) { - use_slots_shape_[i][0] = batch_size_; + if (inductive_shape_index_[i] != -1) { + use_slots_shape_[i][inductive_shape_index_[i]] = + total_instance / total_dims_without_inductive_[i]; + } feed_vec_[i]->Resize(framework::make_ddim(use_slots_shape_[i])); } } @@ -785,6 +796,8 @@ void MultiSlotInMemoryDataFeed::Init( all_slots_.resize(all_slot_num); all_slots_type_.resize(all_slot_num); use_slots_index_.resize(all_slot_num); + total_dims_without_inductive_.resize(all_slot_num); + inductive_shape_index_.resize(all_slot_num); use_slots_.clear(); use_slots_is_dense_.clear(); for (size_t i = 0; i < all_slot_num; ++i) { @@ -797,8 +810,13 @@ void MultiSlotInMemoryDataFeed::Init( use_slots_is_dense_.push_back(slot.is_dense()); std::vector local_shape; if (slot.is_dense()) { - if (slot.shape(0) > 0) { - local_shape.push_back(0); + for (size_t i = 0; i < slot.shape_size(); ++i) { + if (slot.shape(i) > 0) { + total_dims_without_inductive_[i] *= slot.shape(i); + } + if (slot.shape(i) == -1) { + inductive_shape_index_[i] = i; + } } } for (size_t i = 0; i < slot.shape_size(); ++i) { @@ -960,7 +978,10 @@ void MultiSlotInMemoryDataFeed::PutToFeedVec( LoD data_lod{offset}; feed_vec_[i]->set_lod(data_lod); if (use_slots_is_dense_[i]) { - use_slots_shape_[i][0] = batch_size_; + if (inductive_shape_index_[i] != -1) { + use_slots_shape_[i][inductive_shape_index_[i]] = + total_instance / total_dims_without_inductive_[i]; + } feed_vec_[i]->Resize(framework::make_ddim(use_slots_shape_[i])); } } diff --git a/paddle/fluid/framework/data_feed.h b/paddle/fluid/framework/data_feed.h index d098c7858a9..c141059a6d6 100644 --- a/paddle/fluid/framework/data_feed.h +++ b/paddle/fluid/framework/data_feed.h @@ -143,6 +143,8 @@ class DataFeed { std::vector all_slots_; std::vector all_slots_type_; std::vector> use_slots_shape_; + std::vector inductive_shape_index_; + std::vector total_dims_without_inductive_; std::vector use_slots_index_; // -1: not used; >=0: the index of use_slots_ diff --git a/paddle/fluid/framework/downpour_worker.cc b/paddle/fluid/framework/downpour_worker.cc index 386ffd84c57..8e184e5d3cb 100644 --- a/paddle/fluid/framework/downpour_worker.cc +++ b/paddle/fluid/framework/downpour_worker.cc @@ -425,6 +425,7 @@ void DownpourWorker::TrainFiles() { } VLOG(3) << "push dense gradient done."; + // the following code should be more precise and clean // TODO(guru4elephant) int32_t tmp_push_dense_wait_times = -1; diff --git a/python/paddle/fluid/executor.py b/python/paddle/fluid/executor.py index 0b2d4f29ed2..f3988edf08f 100644 --- a/python/paddle/fluid/executor.py +++ b/python/paddle/fluid/executor.py @@ -789,13 +789,15 @@ class Executor(object): .. code-block:: python import paddle.fluid as fluid - place = fluid.CPUPlace() + + place = fluid.CPUPlace() # you can set place = fluid.CUDAPlace(0) to use gpu exe = fluid.Executor(place) - x = fluid.layers.data(name="x", type="int64") - y = fluid.layers.data(name="y", type="int64") + x = fluid.layers.data(name="x", shape=[10, 10], dtype="int64") + y = fluid.layers.data(name="y", shape=[1], dtype="int64", lod_level=1) dataset = fluid.DatasetFactory().create_dataset() dataset.set_use_var([x, y]) - filelist = ["dataA.txt", "dataB.txt"] + dataset.set_thread(1) + filelist = [] # you should set your own filelist, e.g. filelist = ["dataA.txt"] dataset.set_filelist(filelist) exe.run(fluid.default_startup_program()) exe.infer_from_dataset(program=fluid.default_main_program(), @@ -868,14 +870,15 @@ class Executor(object): .. code-block:: python import paddle.fluid as fluid - place = fluid.CPUPlace() + + place = fluid.CPUPlace() # you can set place = fluid.CUDAPlace(0) to use gpu exe = fluid.Executor(place) - x = fluid.layers.data(name="x", type="int64") - y = fluid.layers.data(name="y", type="int64") + x = fluid.layers.data(name="x", shape=[10, 10], dtype="int64") + y = fluid.layers.data(name="y", shape=[1], dtype="int64", lod_level=1) dataset = fluid.DatasetFactory().create_dataset() dataset.set_use_var([x, y]) - dataset.set_thread(2) - filelist = ["dataA.txt", "dataB.txt"] + dataset.set_thread(1) + filelist = [] # you should set your own filelist, e.g. filelist = ["dataA.txt"] dataset.set_filelist(filelist) exe.run(fluid.default_startup_program()) exe.train_from_dataset(program=fluid.default_main_program(), -- GitLab