From 5cf8204171bbe11de9bff1eb6b6e59f2ad1a5263 Mon Sep 17 00:00:00 2001 From: peterzhang2029 Date: Thu, 9 Nov 2017 17:30:12 +0800 Subject: [PATCH] refine docString --- .../operators/bilinear_tensor_product_op.cc | 74 +++++++++---------- .../operators/bilinear_tensor_product_op.cu | 6 +- .../tests/test_bilinear_tensor_product_op.py | 54 -------------- 3 files changed, 40 insertions(+), 94 deletions(-) diff --git a/paddle/operators/bilinear_tensor_product_op.cc b/paddle/operators/bilinear_tensor_product_op.cc index dc02e5811e8..c65ba7eb262 100644 --- a/paddle/operators/bilinear_tensor_product_op.cc +++ b/paddle/operators/bilinear_tensor_product_op.cc @@ -34,35 +34,28 @@ class BilinearTensorProductOp : public framework::OperatorWithKernel { auto y_dims = ctx->GetInputDim("Y"); auto weight_dims = ctx->GetInputDim("Weight"); - PADDLE_ENFORCE_EQ(x_dims.size(), 2UL, "The input X must be a 2D Tensor."); - PADDLE_ENFORCE_EQ(y_dims.size(), 2UL, "The input Y must be a 2D Tensor."); + PADDLE_ENFORCE_EQ(x_dims.size(), 2UL, "The input(X) must be a 2D Tensor."); + PADDLE_ENFORCE_EQ(y_dims.size(), 2UL, "The input(Y) must be a 2D Tensor."); PADDLE_ENFORCE_EQ(weight_dims.size(), 3UL, - "The input Weight must be a 3D tensor."); - PADDLE_ENFORCE(weight_dims[0], - "The first dimension of Weight must be larger than 0."); - PADDLE_ENFORCE(weight_dims[1], - "The second dimension of Weight must be larger than 0."); - PADDLE_ENFORCE(weight_dims[2], - "The third dimension of Weight must be larger than 0."); + "The input(Weight) must be a 3D tensor."); PADDLE_ENFORCE_EQ(x_dims[0], y_dims[0], - "The first dimension(batch_size) of X must be " - "equal to the first dimension of the Y."); + "The first dimension(batch_size) of input(X) must be " + "equal to the first dimension of the input(Y)."); PADDLE_ENFORCE_EQ(x_dims[1], weight_dims[1], - "The second dimension of X must be equal to the second " - "dimension of the Weight."); + "The second dimension of input(X) must be equal to " + "the second dimension of the input(Weight)."); PADDLE_ENFORCE_EQ(y_dims[1], weight_dims[2], - "The second dimension of Y must be equal to the third " - "dimension of the Weight."); + "The second dimension of input(Y) must be equal to " + "the third dimension of the input(Weight)."); if (ctx->HasInput("Bias")) { auto bias_dims = ctx->GetInputDim("Bias"); - PADDLE_ENFORCE_EQ(bias_dims.size(), 2UL, - "The input Bias must have 2 dimensions."); - PADDLE_ENFORCE_EQ(bias_dims[0], 1UL, - "The first dimention of input Bias must be 1."); + PADDLE_ENFORCE(bias_dims.size() == 2UL && bias_dims[0] == 1UL, + "The Input(Bias) must be a 2-D tensor with " + "the 2nd dimension fixed to 1 (a row vector)."); PADDLE_ENFORCE_EQ(bias_dims[1], weight_dims[0], - "The second dimension of Bias must be equal to the " - "first dimension of the Weight."); + "The second dimension of input(Bias) must be equal " + "to the first dimension of the input(Weight)."); } ctx->SetOutputDim("Out", {x_dims[0], weight_dims[0]}); @@ -75,12 +68,13 @@ class BilinearTensorProductOpMaker : public framework::OpProtoAndCheckerMaker { BilinearTensorProductOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { - AddInput("X", "The first input of BilinearTensorProduct op."); - AddInput("Y", "The second input of BilinearTensorProduct op."); - AddInput("Weight", "The input weight of BilinearTensorProduct op."); - AddInput("Bias", "The input bias of BilinearTensorProduct op.") + AddInput("X", "The first input of bilinear_tensor_product operator."); + AddInput("Y", "The second input of bilinear_tensor_product operator."); + AddInput("Weight", + "The learnable parameters of bilinear_tensor_product operator."); + AddInput("Bias", "The learnable bias of bilinear_tensor_product operator.") .AsDispensable(); - AddOutput("Out", "The output of BilinearTensorProduct op."); + AddOutput("Out", "The output of bilinear_tensor_product operator."); AddComment(R"DOC( Bilinear Tensor Product operator. Given input X and Y, a 3D tensor weight, and bias. Each column of the @@ -104,27 +98,29 @@ class BilinearTensorProductOpGrad : public framework::OperatorWithKernel { PADDLE_ENFORCE(ctx->HasInput("Weight"), "Input(Weight) should not be null."); PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")), - "Input (Out@GRAD) should not be null."); + "Input(Out@GRAD) should not be null."); auto x_dims = ctx->GetInputDim("X"); auto y_dims = ctx->GetInputDim("Y"); auto weight_dims = ctx->GetInputDim("Weight"); auto out_dims = ctx->GetInputDim(framework::GradVarName("Out")); PADDLE_ENFORCE_EQ(out_dims.size(), 2UL, - "The Out@GRAD must be a 2D Tensor."); + "The input(Out@GRAD) must be a 2D Tensor."); PADDLE_ENFORCE_EQ( x_dims[0], out_dims[0], - "The first dimension(batch_size) of Out@GRAD must be equal to " - "the first dimension of the Input(X)."); - PADDLE_ENFORCE_EQ(weight_dims[0], out_dims[1], - "The second dimension of Out@GRAD must be equal to " - "the third dimension of the Input(Weight)."); + "The first dimension(batch_size) of input(Out@GRAD) must be " + "equal to the first dimension of the Input(X)."); + PADDLE_ENFORCE_EQ( + weight_dims[0], out_dims[1], + "The second dimension of input(Out@GRAD) must be equal to " + "the third dimension of the Input(Weight)."); if (ctx->HasInput("Bias")) { auto bias_dims = ctx->GetInputDim("Bias"); - PADDLE_ENFORCE_EQ(bias_dims[1], out_dims[1], - "The second dimension of Out@GRAD must be equal to " - "the second dimension of the Input(Bias)."); + PADDLE_ENFORCE_EQ( + bias_dims[1], out_dims[1], + "The second dimension of input(Out@GRAD) must be equal to " + "the second dimension of the Input(Bias)."); auto bias_grad_name = framework::GradVarName("Bias"); if (ctx->HasOutput(bias_grad_name)) ctx->SetOutputDim(bias_grad_name, bias_dims); @@ -155,7 +151,9 @@ REGISTER_OP(bilinear_tensor_product, ops::BilinearTensorProductOp, ops::BilinearTensorProductOpGrad); REGISTER_OP_CPU_KERNEL( bilinear_tensor_product, - ops::BilinearTensorProductKernel); + ops::BilinearTensorProductKernel, + ops::BilinearTensorProductKernel); REGISTER_OP_CPU_KERNEL( bilinear_tensor_product_grad, - ops::BilinearTensorProductGradKernel); + ops::BilinearTensorProductGradKernel, + ops::BilinearTensorProductGradKernel); diff --git a/paddle/operators/bilinear_tensor_product_op.cu b/paddle/operators/bilinear_tensor_product_op.cu index 0f28a01c87e..858d2668d01 100644 --- a/paddle/operators/bilinear_tensor_product_op.cu +++ b/paddle/operators/bilinear_tensor_product_op.cu @@ -18,7 +18,9 @@ limitations under the License. */ namespace ops = paddle::operators; REGISTER_OP_GPU_KERNEL( bilinear_tensor_product, - ops::BilinearTensorProductKernel); + ops::BilinearTensorProductKernel, + ops::BilinearTensorProductKernel); REGISTER_OP_GPU_KERNEL( bilinear_tensor_product_grad, - ops::BilinearTensorProductGradKernel); + ops::BilinearTensorProductGradKernel, + ops::BilinearTensorProductGradKernel); diff --git a/python/paddle/v2/framework/tests/test_bilinear_tensor_product_op.py b/python/paddle/v2/framework/tests/test_bilinear_tensor_product_op.py index 1c1f3880980..080ca43b826 100644 --- a/python/paddle/v2/framework/tests/test_bilinear_tensor_product_op.py +++ b/python/paddle/v2/framework/tests/test_bilinear_tensor_product_op.py @@ -33,59 +33,5 @@ class TestBilinearTensorProductOp(OpTest): self.check_grad(['X', 'Y', 'Weight', 'Bias'], 'Out') -class TestBilinearTensorProductOp2(TestBilinearTensorProductOp): - def setUp(self): - self.op_type = "bilinear_tensor_product" - batch_size = 1 - size0 = 1 - size1 = 1 - size2 = 1 - a = np.random.random((batch_size, size0)).astype("float32") - b = np.random.random((batch_size, size1)).astype("float32") - w = np.random.random((size2, size0, size1)).astype("float32") - bias = np.random.random((1, size2)).astype("float32") - output = np.zeros((batch_size, size2)).astype("float32") - for i in range(size2): - w_i = w[i, :, :] - output[:, i] = np.sum(np.matmul(a, w_i) * b, axis=1) - self.inputs = { - 'X': a, - 'Y': b, - 'Weight': w, - 'Bias': bias, - } - self.outputs = {'Out': output + bias} - - def test_check_output(self): - self.check_output() - - def test_check_grad_normal(self): - self.check_grad(['X', 'Y', 'Weight', 'Bias'], 'Out') - - -class TestBilinearTensorProductOp3(TestBilinearTensorProductOp): - def setUp(self): - self.op_type = "bilinear_tensor_product" - batch_size = 7 - size0 = 4 - size1 = 5 - size2 = 6 - a = np.random.random((batch_size, size0)).astype("float32") - b = np.random.random((batch_size, size1)).astype("float32") - w = np.random.random((size2, size0, size1)).astype("float32") - output = np.zeros((batch_size, size2)).astype("float32") - for i in range(size2): - w_i = w[i, :, :] - output[:, i] = np.sum(np.matmul(a, w_i) * b, axis=1) - self.inputs = {'X': a, 'Y': b, 'Weight': w} - self.outputs = {'Out': output} - - def test_check_output(self): - self.check_output() - - def test_check_grad_normal(self): - self.check_grad(['X', 'Y', 'Weight'], 'Out') - - if __name__ == "__main__": unittest.main() -- GitLab