From 5c162fe66e2582633f6873dabab18f770865209c Mon Sep 17 00:00:00 2001 From: littletomatodonkey <2120160898@bit.edu.cn> Date: Mon, 28 Dec 2020 10:53:00 +0800 Subject: [PATCH] fix reg api ut fail (#29921) --- .../fluid/tests/unittests/test_regularizer.py | 15 ++++++++------- .../fluid/tests/unittests/test_regularizer_api.py | 14 ++++++++------ 2 files changed, 16 insertions(+), 13 deletions(-) diff --git a/python/paddle/fluid/tests/unittests/test_regularizer.py b/python/paddle/fluid/tests/unittests/test_regularizer.py index 04c6e456257..edd69d67aaf 100644 --- a/python/paddle/fluid/tests/unittests/test_regularizer.py +++ b/python/paddle/fluid/tests/unittests/test_regularizer.py @@ -18,6 +18,7 @@ import unittest from functools import partial import contextlib import numpy as np +import random import paddle import paddle.fluid.core as core import paddle.fluid as fluid @@ -29,6 +30,7 @@ from paddle.fluid.backward import append_backward class TestL2DecayRegularizer(unittest.TestCase): def test_l2decay_regularizer(self): + paddle.enable_static() program = framework.Program() block = program.global_block() mul_x = block.create_parameter( @@ -66,6 +68,7 @@ class TestL2DecayRegularizer(unittest.TestCase): class TestL1DecayRegularizer(unittest.TestCase): def test_l2decay_regularizer(self): + paddle.enable_static() program = framework.Program() block = program.global_block() mul_x = block.create_parameter( @@ -124,16 +127,14 @@ def bow_net(data, prediction = fluid.layers.fc(input=[fc_2], size=class_dim, act="softmax") cost = fluid.layers.cross_entropy(input=prediction, label=label) avg_cost = fluid.layers.mean(x=cost) - return avg_cost class TestRegularizer(unittest.TestCase): def setUp(self): - self.word_dict = paddle.dataset.imdb.word_dict() - reader = paddle.batch( - paddle.dataset.imdb.train(self.word_dict), batch_size=1)() - self.train_data = [next(reader) for _ in range(1)] + self.word_len = 1500 + self.train_data = [[(random.sample(range(1000), 10), [0])] + for _ in range(2)] def get_places(self): places = [core.CPUPlace()] @@ -179,7 +180,7 @@ class TestRegularizer(unittest.TestCase): name="words", shape=[1], dtype="int64", lod_level=1) label = fluid.layers.data(name="label", shape=[1], dtype="int64") - avg_cost = model(data, label, len(self.word_dict)) + avg_cost = model(data, label, self.word_len) optimizer = fluid.optimizer.Adagrad( learning_rate=0.1, @@ -200,7 +201,7 @@ class TestRegularizer(unittest.TestCase): name="words", shape=[1], dtype="int64", lod_level=1) label = fluid.layers.data(name="label", shape=[1], dtype="int64") - avg_cost_l2 = model(data, label, len(self.word_dict)) + avg_cost_l2 = model(data, label, self.word_len) param_list = fluid.default_main_program().block(0).all_parameters() para_sum = [] diff --git a/python/paddle/fluid/tests/unittests/test_regularizer_api.py b/python/paddle/fluid/tests/unittests/test_regularizer_api.py index e00a97aaa17..afa2441aac2 100644 --- a/python/paddle/fluid/tests/unittests/test_regularizer_api.py +++ b/python/paddle/fluid/tests/unittests/test_regularizer_api.py @@ -18,6 +18,7 @@ import unittest from functools import partial import contextlib import numpy as np +import random import paddle import paddle.fluid.core as core import paddle.fluid as fluid @@ -55,10 +56,9 @@ def bow_net(data, class TestRegularizer(unittest.TestCase): def setUp(self): - self.word_dict = paddle.dataset.imdb.word_dict() - reader = paddle.batch( - paddle.dataset.imdb.train(self.word_dict), batch_size=1)() - self.train_data = [next(reader) for _ in range(1)] + self.word_len = 1500 + self.train_data = [[(random.sample(range(1000), 10), [0])] + for _ in range(2)] def get_places(self): places = [core.CPUPlace()] @@ -104,7 +104,7 @@ class TestRegularizer(unittest.TestCase): name="words", shape=[1], dtype="int64", lod_level=1) label = fluid.layers.data(name="label", shape=[1], dtype="int64") - avg_cost = model(data, label, len(self.word_dict)) + avg_cost = model(data, label, self.word_len) optimizer = fluid.optimizer.Adagrad( learning_rate=0.1, @@ -125,7 +125,7 @@ class TestRegularizer(unittest.TestCase): name="words", shape=[1], dtype="int64", lod_level=1) label = fluid.layers.data(name="label", shape=[1], dtype="int64") - avg_cost_l2 = model(data, label, len(self.word_dict)) + avg_cost_l2 = model(data, label, self.word_len) param_list = fluid.default_main_program().block(0).all_parameters() para_sum = [] @@ -140,6 +140,7 @@ class TestRegularizer(unittest.TestCase): return param_sum def test_l2(self): + paddle.enable_static() for place in self.get_places(): dense_sparse_p_sum = [] for sparse in [True, False]: @@ -159,6 +160,7 @@ class TestRegularizer(unittest.TestCase): rtol=5e-5) def test_repeated_regularization(self): + paddle.enable_static() l1 = paddle.regularizer.L1Decay(0.1) l2 = paddle.regularizer.L2Decay(0.01) fc_param_attr = fluid.ParamAttr(regularizer=l1) -- GitLab