未验证 提交 594bbcb1 编写于 作者: Z zhang wenhui 提交者: GitHub

【NPU】Fix reshape test & add grad test (#31776)

* fix

* fix
上级 fba994c2
......@@ -46,95 +46,31 @@ class TestReshape2(OpTest):
self.__class__.use_npu = True
def init_data(self):
self.ori_shape = (2, 60)
self.new_shape = (12, 10)
self.infered_shape = (12, 10)
self.ori_shape = (2, 100)
self.new_shape = (20, 10)
self.infered_shape = (20, 10)
def test_check_output(self):
self.check_output(
self.check_output_with_place(
self.place, check_dygraph=False, no_check_set=['XShape'])
def test_check_grad_normal(self):
self.check_grad_with_place(
self.place, ['X'], 'Out', check_dygraph=False)
class TestReshape2_case2(TestReshape2):
def init_data(self):
self.ori_shape = (2, 60)
self.ori_shape = (2, 100)
self.new_shape = (-1, 10)
self.infered_shape = (12, 10)
self.infered_shape = (20, 10)
class TestReshape2_case3(TestReshape2):
def init_data(self):
self.ori_shape = (2, 5, 6)
self.ori_shape = (100, 5, 6)
self.new_shape = (-1, 0, 3)
self.infered_shape = (4, 5, 3)
# TODO(ascendrc): Add grad test
# def test_check_grad(self):
# if self.dtype == np.float16:
# return
# self.check_grad(['X'], 'Out')
#
@unittest.skipIf(not paddle.is_compiled_with_npu(),
"core is not compiled with NPU")
class TestReshapeNet(unittest.TestCase):
def _test(self, run_npu=True):
main_prog = paddle.static.Program()
startup_prog = paddle.static.Program()
main_prog.random_seed = SEED
startup_prog.random_seed = SEED
np.random.seed(SEED)
a_np = np.random.random(size=(32, 32)).astype('float32')
b_np = np.random.random(size=(32, 32)).astype('float32')
label_np = np.random.randint(2, size=(32, 1)).astype('int64')
with paddle.static.program_guard(main_prog, startup_prog):
a = paddle.static.data(name="a", shape=[32, 32], dtype='float32')
b = paddle.static.data(name="b", shape=[32, 32], dtype='float32')
label = paddle.static.data(
name="label", shape=[32, 1], dtype='int64')
sum = paddle.add(a, b)
z = paddle.reshape(sum, shape=[32, 32])
fc_1 = fluid.layers.fc(input=z, size=128)
prediction = fluid.layers.fc(input=fc_1, size=2, act='softmax')
cost = fluid.layers.cross_entropy(input=prediction, label=label)
loss = fluid.layers.reduce_mean(cost)
sgd = fluid.optimizer.SGD(learning_rate=0.01)
sgd.minimize(loss)
if run_npu:
place = paddle.NPUPlace(0)
else:
place = paddle.CPUPlace()
exe = paddle.static.Executor(place)
exe.run(startup_prog)
print("Start run on {}".format(place))
for epoch in range(100):
pred_res, loss_res = exe.run(
main_prog,
feed={"a": a_np,
"b": b_np,
"label": label_np},
fetch_list=[prediction, loss])
if epoch % 10 == 0:
print("Epoch {} | Prediction[0]: {}, Loss: {}".format(
epoch, pred_res[0], loss_res))
return pred_res, loss_res
def test_npu(self):
cpu_pred, cpu_loss = self._test(False)
npu_pred, npu_loss = self._test(True)
self.assertTrue(np.allclose(npu_pred, cpu_pred))
self.assertTrue(np.allclose(npu_loss, cpu_loss))
self.infered_shape = (200, 5, 3)
if __name__ == '__main__':
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册