Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
589cd878
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
589cd878
编写于
3月 24, 2020
作者:
C
cc
提交者:
GitHub
3月 24, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Post_training_quantizaion supports min_max methon (#23078)
* Post_training_quantizaion supports min_max methon
上级
194a22c5
变更
4
显示空白变更内容
内联
并排
Showing
4 changed file
with
268 addition
and
184 deletion
+268
-184
python/paddle/fluid/contrib/slim/quantization/post_training_quantization.py
...d/contrib/slim/quantization/post_training_quantization.py
+193
-110
python/paddle/fluid/contrib/slim/quantization/quantization_pass.py
...ddle/fluid/contrib/slim/quantization/quantization_pass.py
+47
-66
python/paddle/fluid/contrib/slim/tests/test_post_training_quantization_mobilenetv1.py
...slim/tests/test_post_training_quantization_mobilenetv1.py
+25
-6
python/paddle/fluid/contrib/slim/tests/test_post_training_quantization_resnet50.py
...ib/slim/tests/test_post_training_quantization_resnet50.py
+3
-2
未找到文件。
python/paddle/fluid/contrib/slim/quantization/post_training_quantization.py
浏览文件 @
589cd878
...
...
@@ -37,7 +37,10 @@ def _load_variable_data(scope, var_name):
'''
Load variable value from scope
'''
return
np
.
array
(
scope
.
find_var
(
var_name
).
get_tensor
())
var_node
=
scope
.
find_var
(
var_name
)
assert
var_node
is
not
None
,
\
"Cannot find "
+
var_name
+
" in scope."
return
np
.
array
(
var_node
.
get_tensor
())
def
_set_variable_data
(
scope
,
place
,
var_name
,
np_value
):
...
...
@@ -53,6 +56,12 @@ def _set_variable_data(scope, place, var_name, np_value):
class
PostTrainingQuantization
(
object
):
"""
Utilizing post training quantization methon to quantize the FP32 model,
and it uses calibrate data to get the quantization information for all
quantized variables.
"""
def
__init__
(
self
,
executor
=
None
,
scope
=
None
,
...
...
@@ -70,10 +79,7 @@ class PostTrainingQuantization(object):
is_use_cache_file
=
False
,
cache_dir
=
"./temp_post_training"
):
'''
The class utilizes post training quantization methon to quantize the
fp32 model. It uses calibrate data to calculate the scale factor of
quantized variables, and inserts fake quant/dequant op to obtain the
quantized model.
Constructor.
Args:
executor(fluid.Executor): The executor to load, run and save the
...
...
@@ -96,9 +102,11 @@ class PostTrainingQuantization(object):
batch_nums(int, optional): If batch_nums is not None, the number of
calibrate data is batch_size*batch_nums. If batch_nums is None, use
all data provided by sample_generator as calibrate data.
algo(str, optional): If algo=KL, use KL-divergenc method to
get the more precise scale factor. If algo='direct', use
abs_max methon to get the scale factor. Default is KL.
algo(str, optional): If algo='KL', use KL-divergenc method to
get the KL threshold for quantized activations and get the abs_max
value for quantized weights. If algo='abs_max', get the abs max
value for activations and weights. If algo= 'min_max', get the min
and max value for quantized activations and weights. Default is KL.
quantizable_op_type(list[str], optional): List the type of ops
that will be quantized. Default is ["conv2d", "depthwise_conv2d",
"mul"].
...
...
@@ -159,6 +167,8 @@ class PostTrainingQuantization(object):
assert
model_dir
is
not
None
,
"The model_dir cannot be None."
assert
sample_generator
is
not
None
,
\
"The sample_generator cannot be None."
assert
algo
in
[
'KL'
,
'abs_max'
,
'min_max'
],
\
"The algo should be KL, abs_max or min_max."
self
.
_executor
=
executor
self
.
_scope
=
global_scope
()
if
scope
==
None
else
scope
...
...
@@ -182,8 +192,7 @@ class PostTrainingQuantization(object):
else
:
self
.
_quantizable_op_type
=
quantizable_op_type
for
op_type
in
self
.
_quantizable_op_type
:
assert
op_type
in
supported_quantizable_op_type
+
\
AddQuantDequantPass
.
_activation_type
,
\
assert
op_type
in
supported_quantizable_op_type
,
\
op_type
+
" is not supported for quantization."
self
.
_place
=
self
.
_executor
.
place
...
...
@@ -197,20 +206,25 @@ class PostTrainingQuantization(object):
self
.
_quantized_weight_var_name
=
set
()
self
.
_quantized_act_var_name
=
set
()
self
.
_sampling_data
=
{}
self
.
_quantized_var_scale_factor
=
{}
self
.
_quantized_var_kl_threshold
=
{}
self
.
_quantized_var_min
=
{}
self
.
_quantized_var_max
=
{}
self
.
_quantized_var_abs_max
=
{}
def
quantize
(
self
):
'''
Quantize the fp32 model. Use calibrate data to calculate the scale factor of
quantized variables, and inserts fake quant/dequant op to obtain the
quantized model.
Load the FP32 model, and use the calibrate data to calculate the forward-stage.
Based on the sample data, we can get the quantization information, and obtain
the final
quantized model.
Args:
None
Returns:
the program of quantized model.
'''
self
.
_preprocess
()
self
.
_load_model_data
()
self
.
_collect_quantized_varnames
()
self
.
_set_activation_persistable
()
batch_id
=
0
for
data
in
self
.
_data_loader
():
...
...
@@ -218,22 +232,29 @@ class PostTrainingQuantization(object):
feed
=
data
,
fetch_list
=
self
.
_fetch_list
,
return_numpy
=
False
)
if
self
.
_algo
==
"KL"
:
self
.
_sample_data
(
batch_id
)
else
:
self
.
_sample_threshold
()
if
batch_id
%
5
==
0
:
_logger
.
info
(
"
r
un batch: "
+
str
(
batch_id
))
_logger
.
info
(
"
R
un batch: "
+
str
(
batch_id
))
batch_id
+=
1
if
self
.
_batch_nums
and
batch_id
>=
self
.
_batch_nums
:
break
_logger
.
info
(
"all run batch: "
+
str
(
batch_id
))
_logger
.
info
(
"Finish all batch: "
+
str
(
batch_id
))
self
.
_reset_activation_persistable
()
_logger
.
info
(
"calculate scale factor ..."
)
self
.
_calculate_scale_factor
()
if
self
.
_algo
==
"KL"
:
self
.
_calculate_kl_threshold
()
_logger
.
info
(
"update the program ..."
)
if
self
.
_algo
in
[
"KL"
,
"abs_max"
]:
self
.
_update_program
()
else
:
self
.
_save_input_threhold
()
self
.
_save_output_
scale
()
self
.
_save_output_
threshold
()
return
self
.
_program
def
save_quantized_model
(
self
,
save_model_path
):
...
...
@@ -252,12 +273,11 @@ class PostTrainingQuantization(object):
executor
=
self
.
_executor
,
main_program
=
self
.
_program
)
def
_
preprocess
(
self
):
def
_
load_model_data
(
self
):
'''
Load model and set data loader, collect the variable names for sampling,
and set activation variables to be persistable.
Load model and set data loader.
'''
# load model and set data loader
_logger
.
info
(
"Load model and set data loader ..."
)
[
self
.
_program
,
self
.
_feed_list
,
self
.
_fetch_list
]
=
\
io
.
load_inference_model
(
dirname
=
self
.
_model_dir
,
executor
=
self
.
_executor
,
...
...
@@ -273,7 +293,12 @@ class PostTrainingQuantization(object):
drop_last
=
True
,
places
=
self
.
_place
)
# collect the variable names for sampling.
def
_collect_quantized_varnames
(
self
):
'''
Collect the variable names for sampling, and set activation
variables to be persistable.
'''
_logger
.
info
(
"Collect quantized variable names ..."
)
# TODO(juncaipeng), consider the name_scope of skip_quant and
# reduce the variables for sampling
persistable_var_names
=
[]
...
...
@@ -284,46 +309,109 @@ class PostTrainingQuantization(object):
for
op
in
self
.
_program
.
global_block
().
ops
:
op_type
=
op
.
type
if
op_type
in
self
.
_quantizable_op_type
:
if
op_type
in
(
"conv2d"
,
"depthwise_conv2d"
):
self
.
_quantized_act_var_name
.
add
(
op
.
input
(
"Input"
)[
0
])
self
.
_quantized_weight_var_name
.
add
(
op
.
input
(
"Filter"
)[
0
])
self
.
_quantized_act_var_name
.
add
(
op
.
output
(
"Output"
)[
0
])
elif
op_type
in
[
"mul"
,
"matmul"
]:
x_var_name
=
op
.
input
(
"X"
)[
0
]
if
x_var_name
in
persistable_var_names
:
self
.
_quantized_weight_var_name
.
add
(
x_var_name
)
else
:
self
.
_quantized_act_var_name
.
add
(
x_var_name
)
y_var_name
=
op
.
input
(
"Y"
)[
0
]
if
y_var_name
in
persistable_var_names
:
self
.
_quantized_weight_var_name
.
add
(
y_var_name
)
else
:
self
.
_quantized_act_var_name
.
add
(
y_var_name
)
self
.
_quantized_act_var_name
.
add
(
op
.
output
(
"Out"
)[
0
])
else
:
# process other quantizable op type, the input must all not persistable
if
self
.
_is_input_all_not_persistable
(
op
,
persistable_var_names
):
input_output_name_list
=
self
.
_op_real_in_out_name
[
op_type
]
for
input_name
in
input_output_name_list
[
0
]:
name_list
=
self
.
_op_real_in_out_name
[
op_type
]
for
input_name
in
name_list
[
0
]:
for
var_name
in
op
.
input
(
input_name
):
if
var_name
in
persistable_var_names
:
self
.
_quantized_weight_var_name
.
add
(
var_name
)
else
:
self
.
_quantized_act_var_name
.
add
(
var_name
)
for
output_name
in
input_output_
name_list
[
1
]:
for
output_name
in
name_list
[
1
]:
for
var_name
in
op
.
output
(
output_name
):
if
var_name
in
persistable_var_names
:
self
.
_quantized_weight_var_name
.
add
(
var_name
)
else
:
self
.
_quantized_act_var_name
.
add
(
var_name
)
# set activation variables to be persistable, so can obtain
# the tensor data in sample_data
def
_set_activation_persistable
(
self
):
'''
Set activation variables to be persistable, so can obtain
the tensor data in sample_data
'''
persistable_var_names
=
[]
for
var
in
self
.
_program
.
list_vars
():
if
var
.
persistable
:
persistable_var_names
.
append
(
var
.
name
)
for
var
in
self
.
_program
.
list_vars
():
if
var
.
name
in
self
.
_quantized_act_var_name
:
var
.
persistable
=
True
def
_reset_activation_persistable
(
self
):
'''
Reset activations to be not persistable.
'''
for
var
in
self
.
_program
.
list_vars
():
if
var
.
name
in
self
.
_quantized_act_var_name
:
var
.
persistable
=
False
def
_sample_threshold
(
self
):
'''
Sample the input threshold(min, max, or abs_max) in every iterations.
'''
assert
self
.
_algo
in
[
"abs_max"
,
"min_max"
],
\
"The algo should be abs_max or min_max to sample min max value."
if
self
.
_algo
==
"abs_max"
:
# Only calculate abs_max value for weight for once
if
self
.
_quantized_var_abs_max
==
{}:
for
var_name
in
self
.
_quantized_weight_var_name
:
var_tensor
=
_load_variable_data
(
self
.
_scope
,
var_name
)
abs_max_per_channel
=
[]
for
i
in
range
(
var_tensor
.
shape
[
0
]):
abs_max_per_channel
.
append
(
float
(
np
.
max
(
np
.
abs
(
var_tensor
[
i
]))))
self
.
_quantized_var_abs_max
[
var_name
]
=
abs_max_per_channel
for
var_name
in
self
.
_quantized_act_var_name
:
var_tensor
=
_load_variable_data
(
self
.
_scope
,
var_name
)
abs_max_value
=
float
(
np
.
max
(
np
.
abs
(
var_tensor
)))
if
(
var_name
not
in
self
.
_quantized_var_abs_max
)
or
\
(
abs_max_value
>
self
.
_quantized_var_abs_max
[
var_name
]):
self
.
_quantized_var_abs_max
[
var_name
]
=
abs_max_value
elif
self
.
_algo
==
"min_max"
:
if
self
.
_quantized_var_min
==
{}
and
self
.
_quantized_var_max
==
{}:
for
var_name
in
self
.
_quantized_weight_var_name
:
var_tensor
=
_load_variable_data
(
self
.
_scope
,
var_name
)
min_per_channel
=
[]
max_per_channle
=
[]
for
i
in
range
(
var_tensor
.
shape
[
0
]):
min_per_channel
.
append
(
float
(
np
.
min
(
var_tensor
[
i
])))
max_per_channle
.
append
(
float
(
np
.
max
(
var_tensor
[
i
])))
self
.
_quantized_var_min
[
var_name
]
=
min_per_channel
self
.
_quantized_var_max
[
var_name
]
=
max_per_channle
for
var_name
in
self
.
_quantized_act_var_name
:
var_tensor
=
_load_variable_data
(
self
.
_scope
,
var_name
)
min_value
=
float
(
np
.
min
(
var_tensor
))
max_value
=
float
(
np
.
max
(
var_tensor
))
if
(
var_name
not
in
self
.
_quantized_var_min
)
or
\
(
min_value
<
self
.
_quantized_var_min
[
var_name
]):
self
.
_quantized_var_min
[
var_name
]
=
min_value
if
(
var_name
not
in
self
.
_quantized_var_max
)
or
\
(
max_value
>
self
.
_quantized_var_max
[
var_name
]):
self
.
_quantized_var_max
[
var_name
]
=
max_value
def
_save_input_threhold
(
self
):
'''
Save input threshold to the quantized op.
'''
assert
self
.
_algo
==
"min_max"
,
\
"The algo should be min_max to save input threshold."
for
op
in
self
.
_program
.
global_block
().
ops
:
if
op
.
type
in
self
.
_quantizable_op_type
:
input_name_list
=
self
.
_op_real_in_out_name
[
op
.
type
][
0
]
for
input_name
in
input_name_list
:
for
var_name
in
op
.
input
(
input_name
):
assert
var_name
in
self
.
_quantized_var_min
assert
var_name
in
self
.
_quantized_var_max
op
.
_set_attr
(
var_name
+
".min"
,
self
.
_quantized_var_min
[
var_name
])
op
.
_set_attr
(
var_name
+
".max"
,
self
.
_quantized_var_max
[
var_name
])
def
_sample_data
(
self
,
iter
):
'''
Sample the tensor data of quantized variables,
applied in every iteration.
'''
assert
self
.
_algo
==
"KL"
,
"The algo should be KL to sample data."
for
var_name
in
self
.
_quantized_weight_var_name
:
if
var_name
not
in
self
.
_sampling_data
:
var_tensor
=
_load_variable_data
(
self
.
_scope
,
var_name
)
...
...
@@ -344,19 +432,20 @@ class PostTrainingQuantization(object):
var_tensor
=
var_tensor
.
ravel
()
self
.
_sampling_data
[
var_name
].
append
(
var_tensor
)
def
_calculate_
scale_factor
(
self
):
def
_calculate_
kl_threshold
(
self
):
'''
Calculate the
scale factor
of quantized variables.
Calculate the
KL threshold
of quantized variables.
'''
_logger
.
info
(
"Calculate KL threshold ..."
)
assert
self
.
_algo
==
"KL"
,
"The algo should be KL to calculate kl threshold."
# apply channel_wise_abs_max quantization for weights
for
var_name
in
self
.
_quantized_weight_var_name
:
data
=
self
.
_sampling_data
[
var_name
]
scale_factor
_per_channel
=
[]
threshold
_per_channel
=
[]
for
i
in
range
(
data
.
shape
[
0
]):
abs_max_value
=
np
.
max
(
np
.
abs
(
data
[
i
]))
scale_factor_per_channel
.
append
(
abs_max_value
)
self
.
_quantized_var_scale_factor
[
var_name
]
=
scale_factor_per_channel
threshold_per_channel
.
append
(
abs_max_value
)
self
.
_quantized_var_kl_threshold
[
var_name
]
=
threshold_per_channel
# apply kl quantization for activation
if
self
.
_is_use_cache_file
:
...
...
@@ -369,36 +458,25 @@ class PostTrainingQuantization(object):
sampling_data
.
append
(
np
.
load
(
file_path
))
os
.
remove
(
file_path
)
sampling_data
=
np
.
concatenate
(
sampling_data
)
if
self
.
_algo
==
"KL"
:
self
.
_quantized_var_scale_factor
[
var_name
]
=
\
self
.
_quantized_var_kl_threshold
[
var_name
]
=
\
self
.
_get_kl_scaling_factor
(
np
.
abs
(
sampling_data
))
else
:
self
.
_quantized_var_scale_factor
[
var_name
]
=
\
np
.
max
(
np
.
abs
(
sampling_data
))
else
:
for
var_name
in
self
.
_quantized_act_var_name
:
self
.
_sampling_data
[
var_name
]
=
np
.
concatenate
(
self
.
_sampling_data
[
var_name
])
if
self
.
_algo
==
"KL"
:
self
.
_quantized_var_scale_factor
[
var_name
]
=
\
self
.
_quantized_var_kl_threshold
[
var_name
]
=
\
self
.
_get_kl_scaling_factor
(
np
.
abs
(
self
.
_sampling_data
[
var_name
]))
else
:
self
.
_quantized_var_scale_factor
[
var_name
]
=
\
np
.
max
(
np
.
abs
(
self
.
_sampling_data
[
var_name
]))
def
_update_program
(
self
):
'''
Insert fake_quantize/fake_dequantize op to the program.
Use QuantizationTransformPass and AddQuantDequantPass to insert
fake_quantize, fake_dequantize and fake_quant_dequant op.
Besides, save all kl threshold to the scale var node.
'''
# reset quantized activation variable
for
var
in
self
.
_program
.
list_vars
():
if
var
.
name
in
self
.
_quantized_act_var_name
:
var
.
persistable
=
False
# use QuantizationTransformPass to insert fake_quantize/fake_dequantize op
_logger
.
info
(
"Update the program ..."
)
graph
=
IrGraph
(
core
.
Graph
(
self
.
_program
.
desc
),
for_test
=
True
)
# use QuantizationTransformPass to insert fake_quant/fake_dequantize op
major_quantizable_op_types
=
[]
for
op_type
in
QuantizationTransformPass
.
_supported_quantizable_op_type
:
if
op_type
in
self
.
_quantizable_op_type
:
...
...
@@ -424,8 +502,12 @@ class PostTrainingQuantization(object):
quantizable_op_type
=
minor_quantizable_op_types
)
add_quant_dequant_pass
.
apply
(
graph
)
# save scale factor to scale var node
for
key
,
val
in
self
.
_quantized_var_scale_factor
.
items
():
# save abs_max or KL threshold to scale var node
if
self
.
_algo
==
"KL"
:
scale_dict
=
self
.
_quantized_var_kl_threshold
else
:
scale_dict
=
self
.
_quantized_var_abs_max
for
key
,
val
in
scale_dict
.
items
():
_set_variable_data
(
self
.
_scope
,
self
.
_place
,
...
...
@@ -450,33 +532,34 @@ class PostTrainingQuantization(object):
freeze_pass
.
apply
(
graph
)
self
.
_program
=
graph
.
to_program
()
def
_save_output_
scale
(
self
):
def
_save_output_
threshold
(
self
):
'''
Save output
scale
to the quantized op.
Save output
threshold
to the quantized op.
'''
output_scale_name
=
"output_scale"
for
op
in
self
.
_program
.
global_block
().
ops
:
if
op
.
type
in
self
.
_quantizable_op_type
:
output_name_list
=
self
.
_op_real_in_out_name
[
op
.
type
][
1
]
for
output_name
in
output_name_list
:
for
output_var_name
in
op
.
output
(
output_name
):
if
output_var_name
in
self
.
_quantized_var_scale_factor
:
op
.
_set_attr
(
output_scale_name
,
self
.
_quantized_var_scale_factor
[
output_var_name
])
def
_is_input_all_not_persistable
(
self
,
op
,
persistable_var_names
):
'''
Analyze the real inputs of the op are all not persistable.
'''
is_input_all_not_persistable
=
True
input_name_list
=
self
.
_op_real_in_out_name
[
op
.
type
][
0
]
for
input_name
in
input_name_list
:
for
var_name
in
op
.
input
(
input_name
):
if
var_name
in
persistable_var_names
:
is_input_all_not_persistable
=
False
break
return
is_input_all_not_persistable
for
var_name
in
op
.
output
(
output_name
):
if
self
.
_algo
==
"KL"
:
assert
var_name
in
self
.
_quantized_var_kl_threshold
op
.
_set_attr
(
var_name
+
".threshold"
,
self
.
_quantized_var_kl_threshold
[
var_name
])
op
.
_set_attr
(
"quantization_type"
,
"post_kl"
)
elif
self
.
_algo
==
"abs_max"
:
assert
var_name
in
self
.
_quantized_var_abs_max
op
.
_set_attr
(
var_name
+
".threshold"
,
self
.
_quantized_var_abs_max
[
var_name
])
op
.
_set_attr
(
"quantization_type"
,
"post_abs_max"
)
elif
self
.
_algo
==
"min_max"
:
assert
var_name
in
self
.
_quantized_var_min
assert
var_name
in
self
.
_quantized_var_max
op
.
_set_attr
(
var_name
+
".min"
,
self
.
_quantized_var_min
[
var_name
])
op
.
_set_attr
(
var_name
+
".max"
,
self
.
_quantized_var_max
[
var_name
])
op
.
_set_attr
(
"quantization_type"
,
"post_min_max"
)
def
_get_kl_scaling_factor
(
self
,
activation_blob
,
num_quantized_bins
=
255
):
'''
...
...
python/paddle/fluid/contrib/slim/quantization/quantization_pass.py
浏览文件 @
589cd878
...
...
@@ -35,6 +35,10 @@ _fake_dequant_op_list = [
'fake_dequantize_max_abs'
,
'fake_channel_wise_dequantize_max_abs'
]
_fake_quant_dequant_op_list
=
[
'fake_quantize_dequantize_moving_average_abs_max'
]
_out_scale_op_list
=
[
"mul"
,
"conv2d"
,
"pool2d"
,
"relu"
,
"softmax"
,
"sigmoid"
,
"depthwise_conv2d"
,
"batch_norm"
,
"concat"
,
"tanh"
,
"pad"
,
"elementwise_add"
,
"elementwise_mul"
,
...
...
@@ -44,7 +48,7 @@ _out_scale_op_list = [
# list op real input and output names, to avoid processing input such as AxisTensor.
_op_real_in_out_name
=
{
"conv2d"
:
[[
"Input"
,
"Filter"
],
[
"Output"
]],
"depthwise_conv2d"
:
[[
"Input"
],
[
"Output"
]],
"depthwise_conv2d"
:
[[
"Input"
,
"Filter"
],
[
"Output"
]],
"mul"
:
[[
"X"
,
"Y"
],
[
"Out"
]],
"matmul"
:
[[
"X"
,
"Y"
],
[
"Out"
]],
"pool2d"
:
[[
"X"
],
[
"Out"
]],
...
...
@@ -236,6 +240,7 @@ class QuantizationTransformPass(object):
op_node
.
op
().
_set_attr
(
"skip_quant"
,
True
)
def
_transform_forward
(
graph
,
op
):
op
.
op
().
_set_attr
(
"quantization_type"
,
"qat_with_weight"
)
for
var_node
in
op
.
inputs
:
if
var_node
.
name
()
not
in
op
.
input_arg_names
():
continue
...
...
@@ -290,7 +295,7 @@ class QuantizationTransformPass(object):
# The loop for transforming the forward graph:
for
op
in
ops
:
if
op
.
name
()
in
self
.
_quantizable_ops
:
if
not
QuantizationTransformPass
.
_is_skip_quant
(
graph
,
op
):
if
not
self
.
_is_skip_quant
(
graph
,
op
):
_transform_forward
(
graph
,
op
)
# The loop for renaming the inputs of backward op.
for
op
in
ops
:
...
...
@@ -636,8 +641,7 @@ class QuantizationTransformPass(object):
"""
return
"%s.scale"
%
(
var_name
)
@
staticmethod
def
_is_skip_quant
(
graph
,
op_node
):
def
_is_skip_quant
(
self
,
graph
,
op_node
):
"""
Analyse whether the op node skips quantization.
"""
...
...
@@ -650,20 +654,20 @@ class QuantizationTransformPass(object):
if
op_node
.
name
()
in
[
"mul"
,
"matmul"
]
and
\
_is_input_all_not_persistable
(
graph
,
op_node
):
is_skip
=
True
if
op_node
.
op
().
has_attr
(
"quantization_type"
)
and
\
op_node
.
op
().
attr
(
"quantization_type"
)
==
"qat_without_weight"
:
is_skip
=
True
return
is_skip
class
QuantizationFreezePass
(
object
):
_supported_quantizable_op_type
=
\
QuantizationTransformPass
.
_supported_quantizable_op_type
def
__init__
(
self
,
scope
,
place
,
weight_bits
=
8
,
activation_bits
=
8
,
weight_quantize_type
=
'abs_max'
,
quantizable_op_type
=
[
'conv2d'
,
'depthwise_conv2d'
,
'mul'
]
):
quantizable_op_type
=
None
):
"""
The freeze pass is used to adjust the quantize operator order, for example:
1) `activation -> quant -> dequant -> conv2d` will be frozen into
...
...
@@ -679,9 +683,8 @@ class QuantizationFreezePass(object):
weight_quantize_type(str): quantization type for weights, support 'abs_max' and
'channel_wise_abs_max'. The 'range_abs_max' usually is not used for weight,
since weights are fixed once the model is well trained.
quantizable_op_type(list[str]): List the type of ops that will be quantized.
Default is ["conv2d", "depthwise_conv2d", "mul"]. The quantizable_op_type in
QuantizationTransformPass and ConvertToInt8Pass must be the same as this.
quantizable_op_type(list[str]): This input param will be removed latter. The pass
will process all quantized op, so it is not necessary to set the input param.
"""
assert
scope
is
not
None
,
\
'The scope cannot be set None.'
...
...
@@ -692,16 +695,12 @@ class QuantizationFreezePass(object):
self
.
_weight_bits
=
weight_bits
self
.
_activation_bits
=
activation_bits
self
.
_weight_quantize_type
=
weight_quantize_type
self
.
_quantizable_ops
=
quantizable_op_type
for
op
in
self
.
_quantizable_ops
:
assert
op
in
QuantizationFreezePass
.
_supported_quantizable_op_type
,
\
op
+
" is not supported for quantization."
self
.
_conv_ops
=
[
'conv2d'
,
'depthwise_conv2d'
]
self
.
_fake_quant_op_names
=
_fake_quant_op_list
self
.
_fake_dequant_op_names
=
_fake_dequant_op_list
self
.
_op_input_rename_map
=
collections
.
OrderedDict
()
self
.
_op_output_rename_map
=
collections
.
OrderedDict
()
self
.
_var_scale_map
=
collections
.
OrderedDict
()
self
.
_
quant_
var_scale_map
=
collections
.
OrderedDict
()
def
apply
(
self
,
graph
):
"""
...
...
@@ -712,6 +711,7 @@ class QuantizationFreezePass(object):
Returns:
None
"""
# Get input scales in fake quant op and process weights
persistable_vars
=
[
p
.
name
()
for
p
in
graph
.
all_persistable_nodes
()]
ops
=
graph
.
all_op_nodes
()
for
op_node
in
ops
:
...
...
@@ -733,7 +733,7 @@ class QuantizationFreezePass(object):
else
:
scale_v
=
self
.
_load_var
(
op_node
.
output
(
'OutScale'
)[
0
])[
0
]
self
.
_var_scale_map
[
input_arg_name
]
=
scale_v
self
.
_
quant_
var_scale_map
[
input_arg_name
]
=
scale_v
self
.
_remove_fake_quant_and_dequant_op
(
graph
,
op_node
)
# quantize weight and restore
param_v
=
self
.
_load_var
(
input_arg_name
)
...
...
@@ -743,32 +743,29 @@ class QuantizationFreezePass(object):
else
:
scale_v
=
graph
.
_find_node_by_name
(
op_node
.
outputs
,
op_node
.
output
(
'OutScale'
)[
0
])
self
.
_var_scale_map
[
input_arg_name
]
=
scale_v
self
.
_
quant_
var_scale_map
[
input_arg_name
]
=
scale_v
# Remove all fake dequant op
ops
=
graph
.
all_op_nodes
()
for
op_node
in
ops
:
op_name
=
op_node
.
name
()
if
op_name
in
self
.
_fake_dequant_op_names
:
self
.
_remove_fake_quant_and_dequant_op
(
graph
,
op_node
)
# Insert post dequant op
ops
=
graph
.
all_op_nodes
()
for
op_node
in
ops
:
op_name
=
op_node
.
name
()
if
op_name
in
self
.
_quantizable_ops
:
# only process the node that is quantized by QuantizationTransformPass
is_op_node_quantized
=
False
for
var_node
in
op_node
.
inputs
:
var_name
=
var_node
.
name
()
if
var_name
.
endswith
(
'.dequantized'
):
is_op_node_quantized
=
True
if
is_op_node_quantized
:
if
self
.
_weight_quantize_type
==
'channel_wise_abs_max'
and
op_name
in
self
.
_conv_ops
:
op_node_desc
=
op_node
.
op
()
if
op_node_desc
.
has_attr
(
"quantization_type"
)
and
\
op_node_desc
.
attr
(
"quantization_type"
)
==
"qat_with_weight"
:
if
self
.
_weight_quantize_type
==
'channel_wise_abs_max'
\
and
op_node
.
name
()
in
self
.
_conv_ops
:
self
.
_insert_post_channel_dequant_op
(
graph
,
op_node
)
else
:
self
.
_insert_post_dequant_op
(
graph
,
op_node
)
# Rename inputs of the followed ops after inserting dequant_op after fc/conv
for
op_node
in
ops
:
# insert dequant_op after fc/conv, need to rename inputs of the followed ops
for
var_node
in
op_node
.
inputs
:
if
var_node
.
node
in
self
.
_op_output_rename_map
:
old_in
=
var_node
...
...
@@ -802,7 +799,7 @@ class QuantizationFreezePass(object):
new_in
.
clear_outputs
()
graph
.
update_input_link
(
old_in
,
new_in
,
op_node
)
original_var_name
=
self
.
_original_var_name
(
name
)
scale_v
=
self
.
_var_scale_map
[
original_var_name
]
scale_v
=
self
.
_
quant_
var_scale_map
[
original_var_name
]
if
original_var_name
in
persistable_vars
:
assert
isinstance
(
scale_v
,
...
...
@@ -811,7 +808,7 @@ class QuantizationFreezePass(object):
channel_scale
=
np
.
array
(
scale_v
)
else
:
assert
isinstance
(
scale_v
,
IrNode
)
scale_var_node
=
self
.
_var_scale_map
[
original_var_name
]
scale_var_node
=
self
.
_
quant_
var_scale_map
[
original_var_name
]
if
len
(
op_node
.
output_arg_names
())
!=
1
:
raise
ValueError
(
"Only support one output, but op %s has"
...
...
@@ -867,7 +864,7 @@ class QuantizationFreezePass(object):
new_in
.
clear_outputs
()
graph
.
update_input_link
(
old_in
,
new_in
,
op_node
)
original_var_name
=
self
.
_original_var_name
(
name
)
scale_v
=
self
.
_var_scale_map
[
original_var_name
]
scale_v
=
self
.
_
quant_
var_scale_map
[
original_var_name
]
if
original_var_name
in
persistable_vars
:
assert
self
.
_is_float
(
scale_v
),
'The scale of parameter %s is not a float.'
%
(
...
...
@@ -876,7 +873,7 @@ class QuantizationFreezePass(object):
else
:
max_range
*=
act_range
assert
isinstance
(
scale_v
,
IrNode
)
scale_var_node
=
self
.
_var_scale_map
[
original_var_name
]
scale_var_node
=
self
.
_
quant_
var_scale_map
[
original_var_name
]
if
len
(
op_node
.
output_arg_names
())
!=
1
:
raise
ValueError
(
"Only support one output, but op %s has"
...
...
@@ -963,13 +960,7 @@ class QuantizationFreezePass(object):
class
ConvertToInt8Pass
(
object
):
_supported_quantizable_op_type
=
\
QuantizationTransformPass
.
_supported_quantizable_op_type
def
__init__
(
self
,
scope
,
place
,
quantizable_op_type
=
[
'conv2d'
,
'depthwise_conv2d'
,
'mul'
]):
def
__init__
(
self
,
scope
,
place
,
quantizable_op_type
=
None
):
"""
Convert the weights into int8_t type.
...
...
@@ -977,9 +968,8 @@ class ConvertToInt8Pass(object):
scope(fluid.Scope): scope is used to get the weight tensor values.
place(fluid.CPUPlace|fluid.CUDAPlace): place is used to restore the
8bits weight tensors.
quantizable_op_type(list[str]): List the type of ops that will be quantized.
Default is ["conv2d", "depthwise_conv2d", "mul"]. The quantizable_op_type in
QuantizationTransformPass and QuantizationFreezePass must be the same as this.
quantizable_op_type(list[str]): This input param will be removed latter. The pass
will process all quantized op, so it is not necessary to set the input param.
"""
assert
scope
is
not
None
,
\
'The scope cannot be set None.'
...
...
@@ -987,10 +977,6 @@ class ConvertToInt8Pass(object):
'The place cannot be set None.'
self
.
_scope
=
scope
self
.
_place
=
place
self
.
_quantizable_ops
=
quantizable_op_type
for
op
in
self
.
_quantizable_ops
:
assert
op
in
ConvertToInt8Pass
.
_supported_quantizable_op_type
,
\
op
+
" is not supported for quantization."
def
apply
(
self
,
graph
):
"""
...
...
@@ -1006,10 +992,8 @@ class ConvertToInt8Pass(object):
ops
=
graph
.
all_op_nodes
()
input_map
=
{}
for
op_node
in
ops
:
op_name
=
op_node
.
name
()
if
op_name
in
self
.
_quantizable_ops
:
if
QuantizationTransformPass
.
_is_skip_quant
(
graph
,
op_node
):
continue
if
op_node
.
op
().
has_attr
(
"quantization_type"
)
and
\
op_node
.
op
().
attr
(
"quantization_type"
)
==
"qat_with_weight"
:
for
var_node
in
op_node
.
inputs
:
name
=
var_node
.
name
()
if
name
in
persistable_vars
:
...
...
@@ -1259,9 +1243,9 @@ class AddQuantDequantPass(object):
"equal"
,
"gather"
,
"greater_equal"
,
"greater_than"
,
"less_equal"
,
"less_than"
,
"mean"
,
"not_equal"
,
"reshape"
,
"reshape2"
,
"bilinear_interp"
,
"nearest_interp"
,
"trilinear_interp"
,
"slice"
,
"squeeze"
,
"elementwise_sub"
,
"mul"
,
"matmul"
"squeeze"
,
"elementwise_sub"
,
"mul"
,
"matmul"
,
"relu"
,
"relu6"
,
"leaky_relu"
,
"tanh"
,
"swish"
]
_activation_type
=
[
"relu"
,
"relu6"
,
"leaky_relu"
,
"tanh"
,
"swish"
]
def
__init__
(
self
,
scope
=
None
,
...
...
@@ -1307,8 +1291,7 @@ class AddQuantDequantPass(object):
else
:
self
.
_quantizable_op_type
=
quantizable_op_type
for
op_type
in
quantizable_op_type
:
assert
op_type
in
AddQuantDequantPass
.
_supported_quantizable_op_type
+
\
AddQuantDequantPass
.
_activation_type
,
\
assert
op_type
in
AddQuantDequantPass
.
_supported_quantizable_op_type
,
\
op_type
+
" is not supported for quantization."
self
.
_quantizable_grad_op_type
=
[
'%s_grad'
%
(
op
)
for
op
in
self
.
_quantizable_op_type
...
...
@@ -1343,17 +1326,15 @@ class AddQuantDequantPass(object):
elif
isinstance
(
self
.
_skip_pattern
,
str
):
is_skip
=
op_node
.
op
().
has_attr
(
"op_namescope"
)
and
\
op_node
.
op
().
attr
(
"op_namescope"
).
find
(
self
.
_skip_pattern
)
!=
-
1
is_op_node_quantized
=
False
for
var_node
in
op_node
.
inputs
:
var_name
=
var_node
.
name
()
if
var_name
.
endswith
(
'.dequantized'
):
is_op_node_quantized
=
True
if
is_skip
or
is_op_node_quantized
or
\
is_quantized
=
op_node
.
op
().
has_attr
(
"quantization_type"
)
and
\
op_node
.
op
().
attr
(
"quantization_type"
)
==
"qat_with_weight"
if
is_skip
or
is_quantized
or
\
(
not
_is_input_all_not_persistable
(
graph
,
op_node
)):
continue
op_node
.
op
().
_set_attr
(
"quantization_type"
,
"qat_without_weight"
)
op_node
.
op
().
_set_attr
(
"activation_bits"
,
self
.
_quant_bits
)
input_name_list
=
_op_real_in_out_name
[
op_node
.
name
()][
0
]
arg_names
=
[]
for
input_name
in
input_name_list
:
...
...
python/paddle/fluid/contrib/slim/tests/test_post_training_quantization_mobilenetv1.py
浏览文件 @
589cd878
...
...
@@ -264,7 +264,7 @@ class TestPostTrainingQuantization(unittest.TestCase):
ptq
.
save_quantized_model
(
self
.
int8_model
)
def
run_test
(
self
,
model
,
algo
,
data_urls
,
data_md5s
,
quantizable_op_type
,
is_full_quantize
,
is_use_cache_file
):
is_full_quantize
,
is_use_cache_file
,
diff_threshold
):
infer_iterations
=
self
.
infer_iterations
batch_size
=
self
.
batch_size
sample_iterations
=
self
.
sample_iterations
...
...
@@ -296,11 +296,11 @@ class TestPostTrainingQuantization(unittest.TestCase):
sys
.
stdout
.
flush
()
delta_value
=
fp32_acc1
-
int8_acc1
self
.
assertLess
(
delta_value
,
0.025
)
self
.
assertLess
(
delta_value
,
diff_threshold
)
class
TestPostTrainingForMobilenetv1
(
TestPostTrainingQuantization
):
def
test_post_training_mobilenetv1
(
self
):
class
TestPostTraining
KL
ForMobilenetv1
(
TestPostTrainingQuantization
):
def
test_post_training_
kl_
mobilenetv1
(
self
):
model
=
"MobileNet-V1"
algo
=
"KL"
data_urls
=
[
...
...
@@ -310,10 +310,29 @@ class TestPostTrainingForMobilenetv1(TestPostTrainingQuantization):
quantizable_op_type
=
[
"conv2d"
,
"depthwise_conv2d"
,
"mul"
,
"pool2d"
,
"elementwise_add"
]
is_full_quantize
=
Tru
e
is_full_quantize
=
Fals
e
is_use_cache_file
=
False
diff_threshold
=
0.025
self
.
run_test
(
model
,
algo
,
data_urls
,
data_md5s
,
quantizable_op_type
,
is_full_quantize
,
is_use_cache_file
)
is_full_quantize
,
is_use_cache_file
,
diff_threshold
)
class
TestPostTrainingAbsMaxForMobilenetv1
(
TestPostTrainingQuantization
):
def
test_post_training_abs_max_mobilenetv1
(
self
):
model
=
"MobileNet-V1"
algo
=
"abs_max"
data_urls
=
[
'http://paddle-inference-dist.bj.bcebos.com/int8/mobilenetv1_int8_model.tar.gz'
]
data_md5s
=
[
'13892b0716d26443a8cdea15b3c6438b'
]
quantizable_op_type
=
[
"conv2d"
,
"depthwise_conv2d"
,
"mul"
,
"pool2d"
,
"elementwise_add"
]
is_full_quantize
=
False
is_use_cache_file
=
False
diff_threshold
=
0.05
self
.
run_test
(
model
,
algo
,
data_urls
,
data_md5s
,
quantizable_op_type
,
is_full_quantize
,
is_use_cache_file
,
diff_threshold
)
if
__name__
==
'__main__'
:
...
...
python/paddle/fluid/contrib/slim/tests/test_post_training_quantization_resnet50.py
浏览文件 @
589cd878
...
...
@@ -20,7 +20,7 @@ from test_post_training_quantization_mobilenetv1 import TestPostTrainingQuantiza
class
TestPostTrainingForResnet50
(
TestPostTrainingQuantization
):
def
test_post_training_resnet50
(
self
):
model
=
"ResNet-50"
algo
=
"
direct
"
algo
=
"
min_max
"
data_urls
=
[
'http://paddle-inference-dist.bj.bcebos.com/int8/resnet50_int8_model.tar.gz'
]
...
...
@@ -28,8 +28,9 @@ class TestPostTrainingForResnet50(TestPostTrainingQuantization):
quantizable_op_type
=
[
"conv2d"
,
"mul"
]
is_full_quantize
=
False
is_use_cache_file
=
False
diff_threshold
=
0.025
self
.
run_test
(
model
,
algo
,
data_urls
,
data_md5s
,
quantizable_op_type
,
is_full_quantize
,
is_use_cache_file
)
is_full_quantize
,
is_use_cache_file
,
diff_threshold
)
if
__name__
==
'__main__'
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录