From 564b8c6cede75f844ba238a4573a6514d899a90d Mon Sep 17 00:00:00 2001 From: zchen0211 Date: Fri, 6 Oct 2017 16:07:57 -0700 Subject: [PATCH] gan api --- doc/design/gan_api.md | 18 ++++++++++-------- 1 file changed, 10 insertions(+), 8 deletions(-) diff --git a/doc/design/gan_api.md b/doc/design/gan_api.md index d35309079f9..9864e8b7de6 100644 --- a/doc/design/gan_api.md +++ b/doc/design/gan_api.md @@ -19,12 +19,12 @@ In our GAN design, we wrap it as a user-friendly easily customized python API to | softmax loss (done) | ? | Y | | reshape op (done) | ? | Y | | Dependency Engine (done) | Jiayi | Y * | -| Python API (done) | Jiayi | Y * | +| Python API (done) | Longfei, Jiayi | Y * | | Executor (done) | Tony | Y * | -| Multi optimizer | ? | Y * | +| Multi optimizer (woking) | Longfei | Y * | | Optimizer with any para | ? | Y * | -| Concat op | ? | N (Cond) | -| Repmat op | ? | N (Cond) | +| Concat op (done) | ? | N (Cond) | +| Repmat op (done) | ? | N (Cond) |

@@ -91,7 +91,8 @@ class DCGAN(object): - Concatenation, batch-norm, FC operations required; - Deconv layer required, which is missing now... ```python -def generator(self, z, y = None): +class DCGAN(object): + def generator(self, z, y = None): # input z: the random noise # input y: input data label (optional) # output G_im: generated fake images @@ -116,7 +117,8 @@ def generator(self, z, y = None): - Given a noisy input z, returns a fake image. - Concatenation, Convolution, batch-norm, FC, Leaky-ReLU operations required; ```python -def discriminator(self, image): +class DCGAN(object): + def discriminator(self, image): # input image: either generated images or real ones # output D_h2: binary logit of the label @@ -137,8 +139,8 @@ def discriminator(self, image): - Build generator and discriminators; - Define two training losses for discriminator and generator, respectively. ```python -def build_model(self): - +class DCGAN(object): + def build_model(self): # input data if self.y_dim: self.y = pd.data(pd.float32, [self.batch_size, self.y_dim]) -- GitLab