提交 557c7ae3 编写于 作者: C chengduoZH

remove conflict

......@@ -389,13 +389,60 @@ function(go_test TARGET_NAME)
WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR})
endfunction(go_test)
# Modification of standard 'protobuf_generate_cpp()' with protobuf-lite support
# Usage:
# paddle_protobuf_generate_cpp(<proto_srcs> <proto_hdrs> <proto_files>)
function(paddle_protobuf_generate_cpp SRCS HDRS)
if(NOT ARGN)
message(SEND_ERROR "Error: paddle_protobuf_generate_cpp() called without any proto files")
return()
endif()
set(${SRCS})
set(${HDRS})
if (MOBILE_INFERENCE)
set(EXTRA_FLAG "lite:")
else()
set(EXTRA_FLAG "")
endif()
foreach(FIL ${ARGN})
get_filename_component(ABS_FIL ${FIL} ABSOLUTE)
get_filename_component(FIL_WE ${FIL} NAME_WE)
set(_protobuf_protoc_src "${CMAKE_CURRENT_BINARY_DIR}/${FIL_WE}.pb.cc")
set(_protobuf_protoc_hdr "${CMAKE_CURRENT_BINARY_DIR}/${FIL_WE}.pb.h")
list(APPEND ${SRCS} "${_protobuf_protoc_src}")
list(APPEND ${HDRS} "${_protobuf_protoc_hdr}")
add_custom_command(
OUTPUT "${_protobuf_protoc_src}"
"${_protobuf_protoc_hdr}"
COMMAND ${CMAKE_COMMAND} -E make_directory "${CMAKE_CURRENT_BINARY_DIR}"
COMMAND ${PROTOBUF_PROTOC_EXECUTABLE}
-I${CMAKE_CURRENT_SOURCE_DIR}
--cpp_out "${EXTRA_FLAG}${CMAKE_CURRENT_BINARY_DIR}" ${ABS_FIL}
DEPENDS ${ABS_FIL} protoc
COMMENT "Running C++ protocol buffer compiler on ${FIL}"
VERBATIM )
endforeach()
set_source_files_properties(${${SRCS}} ${${HDRS}} PROPERTIES GENERATED TRUE)
set(${SRCS} ${${SRCS}} PARENT_SCOPE)
set(${HDRS} ${${HDRS}} PARENT_SCOPE)
endfunction()
function(proto_library TARGET_NAME)
set(oneValueArgs "")
set(multiValueArgs SRCS DEPS)
cmake_parse_arguments(proto_library "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN})
set(proto_srcs)
set(proto_hdrs)
protobuf_generate_cpp(proto_srcs proto_hdrs ${proto_library_SRCS})
paddle_protobuf_generate_cpp(proto_srcs proto_hdrs ${proto_library_SRCS})
cc_library(${TARGET_NAME} SRCS ${proto_srcs} DEPS ${proto_library_DEPS} protobuf)
endfunction()
......
......@@ -26,7 +26,7 @@ FILE(GLOB PY_PADDLE_PYTHON_FILES ${PADDLE_SOURCE_DIR}/paddle/py_paddle/*.py)
SET_SOURCE_FILES_PROPERTIES(Paddle.i PROPERTIES CPLUSPLUS ON)
SET(CMAKE_SWIG_OUTDIR ${CMAKE_CURRENT_BINARY_DIR})
SET(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wno-parentheses-equality -Wno-missing-field-initializers -Wno-self-assign")
SET(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wno-parentheses-equality -Wno-missing-field-initializers -Wno-self-assign -ftls-model=global-dynamic")
SET(SWIG_MODULE_swig_paddle_EXTRA_DEPS
paddle_parameter
......
......@@ -42,11 +42,13 @@ add_custom_command(TARGET framework_py_proto POST_BUILD
cc_library(backward SRCS backward.cc DEPS net_op)
cc_test(backward_test SRCS backward_test.cc DEPS backward recurrent_op device_context)
cc_library(executor SRCS executor.cc DEPS op_registry device_context scope framework_proto backward ${GLOB_OP_LIB})
cc_library(executor SRCS executor.cc DEPS op_registry device_context scope framework_proto backward)
set(EXECUTOR_TEST_OP elementwise_add_op gaussian_random_op feed_op fetch_op
mul_op sum_op squared_l2_distance_op fill_constant_op sgd_op)
if(WITH_GPU)
nv_test(executor_test SRCS executor_test.cc DEPS executor)
nv_test(executor_test SRCS executor_test.cc DEPS executor ${EXECUTOR_TEST_OP})
else()
cc_test(executor_test SRCS executor_test.cc DEPS executor)
cc_test(executor_test SRCS executor_test.cc DEPS executor ${EXECUTOR_TEST_OP})
endif()
cc_library(tensor_array SRCS tensor_array.cc DEPS lod_tensor)
......
......@@ -27,6 +27,8 @@ extern std::unique_ptr<OperatorBase> Backward(
const OperatorBase& forwardOp,
const std::unordered_set<std::string>& no_grad_vars);
// TODO(jiayi): Add target as parameter and generate backward op
// according to target.
void AppendBackward(ProgramDescBind& program_desc,
const std::unordered_set<std::string>& no_grad_vars);
......
......@@ -24,8 +24,6 @@ limitations under the License. */
#include "paddle/framework/op_registry.h"
#include "paddle/framework/scope.h"
#include <boost/range/adaptor/reversed.hpp>
namespace paddle {
namespace framework {
......
......@@ -211,6 +211,15 @@ static InferShapeFuncMap &InferShapeFuncs() {
return *g_map;
}
void OpDescBind::CheckAttrs() {
PADDLE_ENFORCE(!Type().empty(),
"CheckAttr() can not be called before type is setted.");
const auto *checker = OpInfoMap::Instance().Get(Type()).Checker();
PADDLE_ENFORCE_NOT_NULL(checker, "Operator \"%s\" has no registered checker.",
Type());
checker->Check(attrs_);
}
void OpDescBind::InferShape(const BlockDescBind &block) const {
auto &funcs = InferShapeFuncs();
auto it = funcs.find(this->Type());
......
......@@ -100,6 +100,8 @@ class OpDescBind {
return &this->attrs_;
}
void CheckAttrs();
void InferShape(const BlockDescBind &block) const;
private:
......
......@@ -289,6 +289,15 @@ class ExecutionContext {
return device_context_;
}
#ifdef PADDLE_WITH_CUDA
const platform::CUDADeviceContext& cuda_device_context() const {
PADDLE_ENFORCE(platform::is_gpu_place(device_context_.GetPlace()));
auto cuda_ctx =
reinterpret_cast<const platform::CUDADeviceContext*>(&device_context_);
return *cuda_ctx;
}
#endif
private:
const OperatorBase& op_;
const Scope& scope_;
......
......@@ -88,25 +88,30 @@ class Tensor {
* @brief Copy the content of external tensor to a new place.
*
* @param[in] src The external tensor.
* @param[in] ctx The device context contains place where to store.
* @param[in] dst_place The dst place.
* @param[in] ctx The device context contains device resources.
*
* @note CopyFrom supports CPU <-> GPU, GPU <-> GPU.
*/
// TODO(qijun): https://github.com/PaddlePaddle/Paddle/issues/4647
// Remove `CopyFrom` and `CopyFromVector` from Tensor interface
// and make them global functions
template <typename T>
inline void CopyFrom(const Tensor& src, const platform::Place& dst_place);
inline void CopyFrom(const Tensor& src, const platform::Place& dst_place,
const platform::DeviceContext& ctx);
/**
* @brief Copy the content of an external vector to a tensor.
*
* @param[in] src The external vector.
* @param[in] ctx The device context contains place where to store.
* @param[in] src The external tensor.
* @param[in] ctx The device context contains device resources.
*
* * @note CopyFromVector assumes that the tensor has been resized
* before invoking.
*/
template <typename T>
inline void CopyFromVector(const std::vector<T>& src,
const platform::Place& dst_place);
const platform::DeviceContext& ctx);
/**
* @brief Return the slice of the tensor.
......
......@@ -95,7 +95,8 @@ void TensorArray::Write(size_t index, const LoDTensor& value) {
values_[index].Resize(value.dims());
values_[index].mutable_data<value_type>(platform::CPUPlace());
values_[index].CopyFrom<value_type>(value, platform::CPUPlace());
values_[index].CopyFrom<value_type>(value, platform::CPUPlace(),
platform::CPUDeviceContext());
}
void TensorArray::WriteShared(size_t index, const LoDTensor& value) {
......@@ -151,7 +152,8 @@ LoDTensor TensorArray::Stack() const {
for (size_t idx = 0; idx < size(); idx++) {
result.Slice<value_type>(idx, idx + 1)
.CopyFrom<value_type>(Read(idx), platform::CPUPlace());
.CopyFrom<value_type>(Read(idx), platform::CPUPlace(),
platform::CPUDeviceContext());
}
return result;
}
......@@ -182,7 +184,8 @@ void TensorArray::Unstack(const LoDTensor& source, bool data_shared) const {
// copy
value.Resize(value_dims);
value.CopyFrom<value_type>(source.Slice<value_type>(elem, elem + 1),
platform::CPUPlace());
platform::CPUPlace(),
platform::CPUDeviceContext());
}
}
}
......@@ -236,7 +239,8 @@ LoDTensor DynamicBatchUnpacker::GetBatch(size_t index) {
auto target = result.Slice<value_type>(i, i + 1);
auto source_ = source->Slice<value_type>(index, index + 1);
target.CopyFrom<value_type>(source_, platform::CPUPlace());
target.CopyFrom<value_type>(source_, platform::CPUPlace(),
platform::CPUDeviceContext());
}
return result;
......@@ -269,7 +273,8 @@ LoDTensor PackDynamicBatch(const std::vector<LoDTensor>& source,
if (index >= seq_meta.end) break;
auto source_ = source[batch_id].Slice<float>(seq_id, seq_id + 1);
auto target = result.Slice<float>(index, index + 1);
target.CopyFrom<float>(source_, platform::CPUPlace());
target.CopyFrom<float>(source_, platform::CPUPlace(),
platform::CPUDeviceContext());
}
}
......
......@@ -88,7 +88,8 @@ inline Tensor& Tensor::ShareDataWith(const Tensor& src) {
template <typename T>
inline void Tensor::CopyFrom(const Tensor& src,
const platform::Place& dst_place) {
const platform::Place& dst_place,
const platform::DeviceContext& ctx) {
src.check_memory_size<T>();
Resize(src.dims());
......@@ -106,26 +107,45 @@ inline void Tensor::CopyFrom(const Tensor& src,
#ifdef PADDLE_WITH_CUDA
else if (platform::is_gpu_place(src_place) &&
platform::is_cpu_place(dst_place)) {
memory::Copy(boost::get<platform::CPUPlace>(dst_place), dst_ptr,
boost::get<platform::GPUPlace>(src_place), src_ptr, size, 0);
auto src_gpu_place = boost::get<platform::GPUPlace>(src_place);
auto dst_cpu_place = boost::get<platform::CPUPlace>(dst_place);
auto ctx_place = ctx.GetPlace();
PADDLE_ENFORCE(platform::is_gpu_place(ctx_place));
auto ctx_gpu_place = boost::get<platform::GPUPlace>(ctx_place);
PADDLE_ENFORCE_EQ(src_gpu_place, ctx_gpu_place);
memory::Copy(
dst_cpu_place, dst_ptr, src_gpu_place, src_ptr, size,
reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream());
} else if (platform::is_cpu_place(src_place) &&
platform::is_gpu_place(dst_place)) {
memory::Copy(boost::get<platform::GPUPlace>(dst_place), dst_ptr,
boost::get<platform::CPUPlace>(src_place), src_ptr, size, 0);
auto src_cpu_place = boost::get<platform::CPUPlace>(src_place);
auto dst_gpu_place = boost::get<platform::GPUPlace>(dst_place);
auto ctx_place = ctx.GetPlace();
PADDLE_ENFORCE(platform::is_gpu_place(ctx_place));
auto ctx_gpu_place = boost::get<platform::GPUPlace>(ctx_place);
PADDLE_ENFORCE_EQ(dst_gpu_place, ctx_gpu_place);
memory::Copy(
dst_gpu_place, dst_ptr, src_cpu_place, src_ptr, size,
reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream());
} else if (platform::is_gpu_place(src_place) &&
platform::is_gpu_place(dst_place)) {
memory::Copy(boost::get<platform::GPUPlace>(dst_place), dst_ptr,
boost::get<platform::GPUPlace>(src_place), src_ptr, size, 0);
auto src_gpu_place = boost::get<platform::GPUPlace>(src_place);
auto dst_gpu_place = boost::get<platform::GPUPlace>(dst_place);
auto ctx_place = ctx.GetPlace();
PADDLE_ENFORCE(platform::is_gpu_place(ctx_place));
auto ctx_gpu_place = boost::get<platform::GPUPlace>(ctx_place);
PADDLE_ENFORCE_EQ(src_gpu_place, ctx_gpu_place);
memory::Copy(
dst_gpu_place, dst_ptr, src_gpu_place, src_ptr, size,
reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream());
}
PADDLE_ENFORCE(cudaStreamSynchronize(0),
"cudaStreamSynchronize failed in Tensor CopyFrom");
#endif
}
template <typename T>
inline void Tensor::CopyFromVector(const std::vector<T>& src,
const platform::Place& dst_place) {
const platform::DeviceContext& ctx) {
auto dst_place = ctx.GetPlace();
auto src_ptr = static_cast<const void*>(src.data());
platform::CPUPlace src_place;
auto dst_ptr = static_cast<void*>(mutable_data<T>(dst_place));
......@@ -137,12 +157,11 @@ inline void Tensor::CopyFromVector(const std::vector<T>& src,
}
#ifdef PADDLE_WITH_CUDA
else if (platform::is_gpu_place(dst_place)) {
memory::Copy(boost::get<platform::GPUPlace>(dst_place), dst_ptr, src_place,
src_ptr, size, 0);
memory::Copy(
boost::get<platform::GPUPlace>(dst_place), dst_ptr, src_place, src_ptr,
size,
reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream());
}
PADDLE_ENFORCE(cudaStreamSynchronize(0),
"cudaStreamSynchronize failed in Tensor CopyFromVector");
#endif
}
......
......@@ -194,6 +194,7 @@ TEST(Tensor, CopyFrom) {
{
Tensor src_tensor;
Tensor dst_tensor;
CPUDeviceContext cpu_ctx((CPUPlace()));
int* src_ptr = src_tensor.mutable_data<int>(make_ddim({3, 3}), CPUPlace());
......@@ -201,7 +202,7 @@ TEST(Tensor, CopyFrom) {
memcpy(src_ptr, arr, 9 * sizeof(int));
auto cpu_place = new paddle::platform::CPUPlace();
dst_tensor.CopyFrom<int>(src_tensor, *cpu_place);
dst_tensor.CopyFrom<int>(src_tensor, *cpu_place, cpu_ctx);
const int* dst_ptr = dst_tensor.data<int>();
ASSERT_NE(src_ptr, dst_ptr);
......@@ -210,7 +211,7 @@ TEST(Tensor, CopyFrom) {
}
Tensor slice_tensor = src_tensor.Slice<int>(1, 2);
dst_tensor.CopyFrom<int>(slice_tensor, *cpu_place);
dst_tensor.CopyFrom<int>(slice_tensor, *cpu_place, cpu_ctx);
const int* slice_ptr = slice_tensor.data<int>();
dst_ptr = dst_tensor.data<int>();
ASSERT_NE(dst_ptr, slice_ptr);
......@@ -231,13 +232,15 @@ TEST(Tensor, CopyFrom) {
// CPU Tensor to GPU Tensor
auto gpu_place = new paddle::platform::GPUPlace(0);
gpu_tensor.CopyFrom<int>(src_tensor, *gpu_place);
CUDADeviceContext gpu_ctx(*gpu_place);
gpu_tensor.CopyFrom<int>(src_tensor, *gpu_place, gpu_ctx);
// GPU Tensor to CPU Tensor
auto cpu_place = new paddle::platform::CPUPlace();
dst_tensor.CopyFrom<int>(gpu_tensor, *cpu_place);
dst_tensor.CopyFrom<int>(gpu_tensor, *cpu_place, gpu_ctx);
// Compare Tensors
// Sync before Compare Tensors
gpu_ctx.Wait();
const int* dst_ptr = dst_tensor.data<int>();
ASSERT_NE(src_ptr, dst_ptr);
for (size_t i = 0; i < 9; ++i) {
......@@ -247,12 +250,13 @@ TEST(Tensor, CopyFrom) {
Tensor slice_tensor = src_tensor.Slice<int>(1, 2);
// CPU Slice Tensor to GPU Tensor
gpu_tensor.CopyFrom<int>(slice_tensor, *gpu_place);
gpu_tensor.CopyFrom<int>(slice_tensor, *gpu_place, gpu_ctx);
// GPU Tensor to CPU Tensor
dst_tensor.CopyFrom<int>(gpu_tensor, *cpu_place);
dst_tensor.CopyFrom<int>(gpu_tensor, *cpu_place, gpu_ctx);
// Compare Slice Tensors
// Sync before Compare Slice Tensors
gpu_ctx.Wait();
const int* slice_ptr = slice_tensor.data<int>();
dst_ptr = dst_tensor.data<int>();
ASSERT_NE(dst_ptr, slice_ptr);
......@@ -273,7 +277,8 @@ TEST(Tensor, CopyFromVector) {
// Copy to CPU Tensor
cpu_tensor.Resize(make_ddim({3, 3}));
auto cpu_place = new paddle::platform::CPUPlace();
cpu_tensor.CopyFromVector<int>(src_vec, *cpu_place);
CPUDeviceContext cpu_ctx(*cpu_place);
cpu_tensor.CopyFromVector<int>(src_vec, cpu_ctx);
// Compare Tensors
const int* cpu_ptr = cpu_tensor.data<int>();
......@@ -285,7 +290,7 @@ TEST(Tensor, CopyFromVector) {
src_vec.erase(src_vec.begin(), src_vec.begin() + 5);
cpu_tensor.Resize(make_ddim({2, 2}));
cpu_tensor.CopyFromVector<int>(src_vec, *cpu_place);
cpu_tensor.CopyFromVector<int>(src_vec, cpu_ctx);
cpu_ptr = cpu_tensor.data<int>();
src_ptr = src_vec.data();
ASSERT_NE(src_ptr, cpu_ptr);
......@@ -306,16 +311,19 @@ TEST(Tensor, CopyFromVector) {
// Copy to CPU Tensor
cpu_tensor.Resize(make_ddim({3, 3}));
auto cpu_place = new paddle::platform::CPUPlace();
cpu_tensor.CopyFromVector<int>(src_vec, *cpu_place);
CPUDeviceContext cpu_ctx(*cpu_place);
cpu_tensor.CopyFromVector<int>(src_vec, cpu_ctx);
// Copy to GPUTensor
gpu_tensor.Resize(make_ddim({3, 3}));
auto gpu_place = new paddle::platform::GPUPlace();
gpu_tensor.CopyFromVector<int>(src_vec, *gpu_place);
CUDADeviceContext gpu_ctx(*gpu_place);
gpu_tensor.CopyFromVector<int>(src_vec, gpu_ctx);
// Copy from GPU to CPU tensor for comparison
dst_tensor.CopyFrom<int>(gpu_tensor, *cpu_place);
dst_tensor.CopyFrom<int>(gpu_tensor, *cpu_place, gpu_ctx);
// Compare Tensors
// Sync before Compare Tensors
gpu_ctx.Wait();
const int* src_ptr = src_vec.data();
const int* cpu_ptr = cpu_tensor.data<int>();
const int* dst_ptr = dst_tensor.data<int>();
......@@ -329,11 +337,13 @@ TEST(Tensor, CopyFromVector) {
src_vec.erase(src_vec.begin(), src_vec.begin() + 5);
cpu_tensor.Resize(make_ddim({2, 2}));
cpu_tensor.CopyFromVector<int>(src_vec, *cpu_place);
cpu_tensor.CopyFromVector<int>(src_vec, cpu_ctx);
gpu_tensor.Resize(make_ddim({2, 2}));
gpu_tensor.CopyFromVector<int>(src_vec, *gpu_place);
dst_tensor.CopyFrom<int>(gpu_tensor, *cpu_place);
gpu_tensor.CopyFromVector<int>(src_vec, gpu_ctx);
dst_tensor.CopyFrom<int>(gpu_tensor, *cpu_place, gpu_ctx);
// Sync before Compare Tensors
gpu_ctx.Wait();
src_ptr = src_vec.data();
cpu_ptr = cpu_tensor.data<int>();
dst_ptr = dst_tensor.data<int>();
......
......@@ -113,6 +113,8 @@ set(DEPS_OPS
cross_entropy_op
softmax_with_cross_entropy_op
sum_op
pool_op
pool_with_index_op
conv3d_op)
......@@ -123,7 +125,8 @@ op_library(cross_entropy_op DEPS cross_entropy)
op_library(softmax_with_cross_entropy_op DEPS cross_entropy softmax)
op_library(sum_op DEPS net_op)
op_library(conv3d_op DEPS vol2col)
op_library(pool_op DEPS pooling)
op_library(pool_with_index_op DEPS pooling)
list(REMOVE_ITEM GENERAL_OPS ${DEPS_OPS})
foreach(src ${GENERAL_OPS})
......
......@@ -321,6 +321,23 @@ class STanhOpMaker : public framework::OpProtoAndCheckerMaker {
}
};
template <typename AttrType>
class ThresholdedReluOpMaker : public framework::OpProtoAndCheckerMaker {
public:
ThresholdedReluOpMaker(framework::OpProto *proto,
framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "Input of ThresholdedRelu operator");
AddOutput("Y", "Output of ThresholdedRelu operator");
AddComment(
"ThresholdedRelu activation operator, "
"thresholded_relu = x for x > threshold, "
"thresholded_relu = 0 otherwise.");
AddAttr<AttrType>("threshold", "The threshold location of activation")
.SetDefault(static_cast<AttrType>(1.0));
}
};
} // namespace operators
} // namespace paddle
......@@ -392,6 +409,10 @@ REGISTER_OP(stanh, ops::ActivationOp, ops::STanhOpMaker<float>, stanh_grad,
REGISTER_OP(hard_shrink, ops::ActivationOp, ops::HardShrinkOpMaker<float>,
hard_shrink_grad, ops::ActivationOpGrad);
REGISTER_OP(thresholded_relu, ops::ActivationOp,
ops::ThresholdedReluOpMaker<float>, thresholded_relu_grad,
ops::ActivationOpGrad);
#define REGISTER_ACTIVATION_CPU_KERNEL(act_type, functor, grad_functor) \
REGISTER_OP_CPU_KERNEL( \
act_type, \
......
......@@ -590,6 +590,32 @@ struct STanhGradFunctor : public BaseActivationFunctor<T> {
}
};
template <typename T>
struct ThresholdedReluFunctor : public BaseActivationFunctor<T> {
float threshold;
typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
return {{"threshold", &threshold}};
}
template <typename Device, typename X, typename Y>
void operator()(Device d, X x, Y y) const {
y.device(d) = (x > static_cast<T>(threshold)).template cast<T>() * x;
}
};
template <typename T>
struct ThresholdedReluGradFunctor : public BaseActivationFunctor<T> {
float threshold;
typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
return {{"threshold", &threshold}};
}
template <typename Device, typename X, typename Y, typename dY, typename dX>
void operator()(Device d, X x, Y y, dY dy, dX dx) const {
dx.device(d) = dy * (x > static_cast<T>(threshold)).template cast<T>();
}
};
} // namespace operators
} // namespace paddle
......@@ -615,4 +641,5 @@ struct STanhGradFunctor : public BaseActivationFunctor<T> {
__macro(leaky_relu, LeakyReluFunctor, LeakyReluGradFunctor); \
__macro(tanh_shrink, TanhShrinkFunctor, TanhShrinkGradFunctor); \
__macro(elu, ELUFunctor, ELUGradFunctor); \
__macro(hard_shrink, HardShrinkFunctor, HardShrinkGradFunctor)
__macro(hard_shrink, HardShrinkFunctor, HardShrinkGradFunctor); \
__macro(thresholded_relu, ThresholdedReluFunctor, ThresholdedReluGradFunctor);
......@@ -12,22 +12,12 @@
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/gemm_conv2d_op.h"
#include "paddle/operators/conv2d_op.h"
namespace paddle {
namespace operators {
int outputSize(int input_size, int filter_size, int padding, int stride) {
int output_size = (input_size - filter_size + 2 * padding) / stride + 1;
return output_size;
}
class Conv2DOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(framework::InferShapeContext* ctx) const override {
void Conv2DOp::InferShape(framework::InferShapeContext* ctx) const {
PADDLE_ENFORCE(ctx->HasInput("Input"),
"Input(Input) of Conv2DOp should not be null.");
PADDLE_ENFORCE(ctx->HasInput("Filter"),
......@@ -53,25 +43,22 @@ class Conv2DOp : public framework::OperatorWithKernel {
"The number of output channels should be divided by groups.");
auto output_height =
outputSize(in_dims[2], filter_dims[2], paddings[0], strides[0]);
OutputSize(in_dims[2], filter_dims[2], paddings[0], strides[0]);
auto output_width =
outputSize(in_dims[3], filter_dims[3], paddings[1], strides[1]);
ctx->SetOutputDim(
"Output", {in_dims[0], filter_dims[0], output_height, output_width});
}
};
OutputSize(in_dims[3], filter_dims[3], paddings[1], strides[1]);
ctx->SetOutputDim("Output",
{in_dims[0], filter_dims[0], output_height, output_width});
}
class Conv2DOpMaker : public framework::OpProtoAndCheckerMaker {
public:
Conv2DOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker)
Conv2DOpMaker::Conv2DOpMaker(framework::OpProto* proto,
framework::OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput(
"Input",
"The input tensor of convolution operator. "
"The format of input tensor is NCHW. Where N is batch size, C is the "
"number of channels, H and W is the height and width of image.");
AddInput(
"Filter",
AddInput("Filter",
"The filter tensor of convolution operator."
"The format of the filter tensor is MCHW, where M is the number of "
"output image channels, C is the number of input image channels, "
......@@ -98,15 +85,9 @@ The convolution operation calculates the output based on the input, filter
and strides, paddings, groups parameters. The size of each dimension of the
parameters is checked in the infer-shape.
)DOC");
}
};
class Conv2DOpGrad : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
}
protected:
void InferShape(framework::InferShapeContext* ctx) const override {
void Conv2DOpGrad::InferShape(framework::InferShapeContext* ctx) const {
auto in_dims = ctx->GetInputDim("Input");
auto filter_dims = ctx->GetInputDim("Filter");
if (ctx->HasOutput(framework::GradVarName("Input"))) {
......@@ -115,8 +96,7 @@ class Conv2DOpGrad : public framework::OperatorWithKernel {
if (ctx->HasOutput(framework::GradVarName("Filter"))) {
ctx->SetOutputDim(framework::GradVarName("Filter"), filter_dims);
}
}
};
}
} // namespace operators
} // namespace paddle
......
......@@ -12,7 +12,7 @@
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/gemm_conv2d_op.h"
#include "paddle/operators/conv2d_op.h"
namespace ops = paddle::operators;
......
......@@ -24,6 +24,38 @@ namespace operators {
using Tensor = framework::Tensor;
// Base convolution operator definations for other conv
// like operators to reuse the implementation.
inline int OutputSize(int input_size, int filter_size, int padding,
int stride) {
int output_size = (input_size - filter_size + 2 * padding) / stride + 1;
return output_size;
}
// Define Op classes in .h file so that other conv
// operator implementations can reuse the code.
class Conv2DOpMaker : public framework::OpProtoAndCheckerMaker {
public:
Conv2DOpMaker(framework::OpProto* proto,
framework::OpAttrChecker* op_checker);
};
class Conv2DOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(framework::InferShapeContext* ctx) const override;
};
class Conv2DOpGrad : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(framework::InferShapeContext* ctx) const override;
};
template <typename Place, typename T>
class GemmConv2DKernel : public framework::OpKernel<T> {
public:
......@@ -74,7 +106,6 @@ class GemmConv2DKernel : public framework::OpKernel<T> {
framework::DDim output_matrix_shape = {output_channels,
output_height * output_width};
// convolution operator: im2col + gemm
int in_step = input_channels / groups;
int out_step = output_channels / groups;
......
......@@ -49,7 +49,7 @@ void Conv3DOp::InferShape(framework::InferShapeContext* ctx) const {
std::vector<int64_t> output_shape({in_dims[0], filter_dims[0]});
for (size_t i = 0; i < paddings.size(); ++i) {
output_shape.push_back(OutputSizeConv3d(in_dims[i + 2], filter_dims[i],
output_shape.push_back(OutputSizeConv3d(in_dims[i + 2], filter_dims[i + 2],
paddings[i], strides[i]));
}
ctx->SetOutputDim("Output", framework::make_ddim(output_shape));
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/conv2d_op.h"
namespace paddle {
namespace operators {
class CudnnConvOpMaker : public Conv2DOpMaker {
public:
CudnnConvOpMaker(framework::OpProto* proto,
framework::OpAttrChecker* op_checker)
: Conv2DOpMaker(proto, op_checker) {
AddAttr<std::vector<int>>("dilations", "dilations of convolution operator.")
.SetDefault(std::vector<int>{1, 1});
AddAttr<int>("workspace_size_MB",
"workspace size for cudnn, in MB, "
"workspace is a section of GPU memory which will be "
"allocated/freed each time the operator runs, larger "
"workspace size can increase performance but also requires "
"better hardward. This size should be carefully setted.")
.SetDefault(4096);
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP(conv_cudnn, ops::Conv2DOp, ops::CudnnConvOpMaker, conv_cudnn_grad,
ops::Conv2DOpGrad);
REGISTER_OP_CPU_KERNEL(
conv_cudnn, ops::GemmConv2DKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(
conv_cudnn_grad,
ops::GemmConvGrad2DKernel<paddle::platform::CPUPlace, float>);
/* Copyright (c) 2016 PaddlePaddle Authors All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
#include "paddle/memory/memory.h"
#include "paddle/operators/conv2d_op.h"
#include "paddle/platform/assert.h"
#include "paddle/platform/cudnn_helper.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
using ScopedTensorDescriptor = platform::ScopedTensorDescriptor;
using ScopedFilterDescriptor = platform::ScopedFilterDescriptor;
using ScopedConvolutionDescriptor = platform::ScopedConvolutionDescriptor;
using DataLayout = platform::DataLayout;
using CUDADeviceContext = platform::CUDADeviceContext;
static constexpr size_t kCONV_CUDNN_WORKSPACE_LIMIT_BYTES = 1024 * 1024 * 1024;
// NOTE: framework::vectorize converts to type int64_t
// which does not fit cudnn inputs.
std::vector<int> Dims2Vector(const framework::DDim& dims) {
std::vector<int> ret;
for (int i = 0; i < dims.size(); i++) {
ret.push_back(dims[i]);
}
return ret;
}
template <typename T>
class CudnnConvOpKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
"It must use GPUPlace.");
auto* input = ctx.Input<Tensor>("Input");
auto* filter = ctx.Input<Tensor>("Filter");
auto* output = ctx.Output<Tensor>("Output");
std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
int groups = ctx.Attr<int>("groups");
int user_workspace_size = ctx.Attr<int>("workspace_size_MB");
const T* input_data = input->data<T>();
const T* filter_data = filter->data<T>();
T* output_data = output->mutable_data<T>(ctx.GetPlace());
// ------------------- cudnn descriptors ---------------------
ScopedTensorDescriptor input_desc;
ScopedTensorDescriptor output_desc;
ScopedFilterDescriptor filter_desc;
ScopedConvolutionDescriptor conv_desc;
DataLayout layout = DataLayout::kNCHW;
cudnnTensorDescriptor_t cudnn_input_desc =
input_desc.descriptor<T>(layout, Dims2Vector(input->dims()), groups);
cudnnTensorDescriptor_t cudnn_output_desc =
output_desc.descriptor<T>(layout, Dims2Vector(output->dims()), groups);
cudnnFilterDescriptor_t cudnn_filter_desc =
filter_desc.descriptor<T>(layout, Dims2Vector(filter->dims()), groups);
cudnnConvolutionDescriptor_t cudnn_conv_desc =
conv_desc.descriptor<T>(paddings, strides, dilations);
int input_channels = input->dims()[1];
int input_height = input->dims()[2];
int input_width = input->dims()[3];
int output_channels = output->dims()[1];
int output_height = output->dims()[2];
int output_width = output->dims()[3];
int group_offset_in = input_channels / groups * input_height * input_width;
int group_offset_out =
output_channels / groups * output_height * output_width;
int group_offset_filter = filter->numel() / groups;
// ------------------- cudnn conv workspace ---------------------
void* cudnn_workspace = nullptr;
size_t workspace_size_in_bytes; // final workspace to allocate.
size_t workspace_size_limit = kCONV_CUDNN_WORKSPACE_LIMIT_BYTES;
if (user_workspace_size > 0) {
workspace_size_limit = user_workspace_size * 1024 * 1024;
}
// ------------------- cudnn conv algorithm ---------------------
cudnnConvolutionFwdAlgo_t algo;
auto handle = ctx.cuda_device_context().cudnn_handle();
PADDLE_ENFORCE(platform::dynload::cudnnGetConvolutionForwardAlgorithm(
handle, cudnn_input_desc, cudnn_filter_desc, cudnn_conv_desc,
cudnn_output_desc, CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT,
workspace_size_limit, &algo));
// get workspace size able to allocate
PADDLE_ENFORCE(platform::dynload::cudnnGetConvolutionForwardWorkspaceSize(
handle, cudnn_input_desc, cudnn_filter_desc, cudnn_conv_desc,
cudnn_output_desc, algo, &workspace_size_in_bytes));
// Allocate on GPU memory
platform::GPUPlace gpu = boost::get<platform::GPUPlace>(ctx.GetPlace());
cudnn_workspace = paddle::memory::Alloc(gpu, workspace_size_in_bytes);
// ------------------- cudnn conv forward ---------------------
T alpha = 1.0f, beta = 0.0f;
for (int i = 0; i < groups; i++) {
PADDLE_ENFORCE(platform::dynload::cudnnConvolutionForward(
handle, &alpha, cudnn_input_desc, input_data + i * group_offset_in,
cudnn_filter_desc, filter_data + i * group_offset_filter,
cudnn_conv_desc, algo, cudnn_workspace, workspace_size_in_bytes,
&beta, cudnn_output_desc, output_data + i * group_offset_out));
}
// Release the cudnn workspace
paddle::memory::Free(gpu, cudnn_workspace);
}
};
template <typename T>
class CudnnConvGradOpKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
"It must use GPUPlace.");
auto input = ctx.Input<Tensor>("Input");
auto filter = ctx.Input<Tensor>("Filter");
auto output_grad = ctx.Input<Tensor>(framework::GradVarName("Output"));
auto input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
auto filter_grad = ctx.Output<Tensor>(framework::GradVarName("Filter"));
const T* input_data = input->data<T>();
const T* output_grad_data = output_grad->data<T>();
const T* filter_data = filter->data<T>();
std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
int groups = ctx.Attr<int>("groups");
int user_workspace_size = ctx.Attr<int>("workspace_size_MB");
// ------------------- cudnn descriptors ---------------------
ScopedTensorDescriptor input_desc;
ScopedTensorDescriptor output_grad_desc;
ScopedTensorDescriptor input_grad_desc;
ScopedFilterDescriptor filter_desc;
ScopedFilterDescriptor filter_grad_desc;
ScopedConvolutionDescriptor conv_desc;
DataLayout layout = DataLayout::kNCHW;
cudnnTensorDescriptor_t cudnn_input_desc =
input_desc.descriptor<T>(layout, Dims2Vector(input->dims()), groups);
cudnnTensorDescriptor_t cudnn_output_grad_desc =
output_grad_desc.descriptor<T>(layout, Dims2Vector(output_grad->dims()),
groups);
cudnnFilterDescriptor_t cudnn_filter_desc =
filter_desc.descriptor<T>(layout, Dims2Vector(filter->dims()), groups);
cudnnTensorDescriptor_t cudnn_input_grad_desc = nullptr;
cudnnFilterDescriptor_t cudnn_filter_grad_desc = nullptr;
cudnnConvolutionDescriptor_t cudnn_conv_desc =
conv_desc.descriptor<T>(paddings, strides, dilations);
int input_channels = input->dims()[1];
int input_height = input->dims()[2];
int input_width = input->dims()[3];
int output_grad_channels = filter->dims()[0];
int output_grad_height = output_grad->dims()[2];
int output_grad_width = output_grad->dims()[3];
int group_offset_in = input_channels / groups * input_height * input_width;
int group_offset_out =
output_grad_channels / groups * output_grad_height * output_grad_width;
int group_offset_filter = filter->numel() / groups;
// ------------------- cudnn backward algorithm ---------------------
cudnnConvolutionBwdDataAlgo_t data_algo;
cudnnConvolutionBwdFilterAlgo_t filter_algo;
size_t workspace_size_in_bytes = 0, tmp_size = 0;
size_t workspace_size_limit = kCONV_CUDNN_WORKSPACE_LIMIT_BYTES;
if (user_workspace_size > 0) {
workspace_size_limit = user_workspace_size * 1024 * 1024;
}
auto handle = ctx.cuda_device_context().cudnn_handle();
if (input_grad) {
cudnn_input_grad_desc = input_grad_desc.descriptor<T>(
layout, Dims2Vector(input_grad->dims()), groups);
PADDLE_ENFORCE(
platform::dynload::cudnnGetConvolutionBackwardDataAlgorithm(
handle, cudnn_filter_desc,
// dyDesc: Handle to the previously initialized input differential
// tensor descriptor.
cudnn_output_grad_desc, cudnn_conv_desc,
// dxDesc: Handle to the previously initialized output tensor
// descriptor.
cudnn_input_grad_desc,
CUDNN_CONVOLUTION_BWD_DATA_SPECIFY_WORKSPACE_LIMIT,
workspace_size_limit, &data_algo));
PADDLE_ENFORCE(
platform::dynload::cudnnGetConvolutionBackwardDataWorkspaceSize(
handle, cudnn_filter_desc, cudnn_output_grad_desc,
cudnn_conv_desc, cudnn_input_grad_desc, data_algo, &tmp_size));
workspace_size_in_bytes = std::max(workspace_size_in_bytes, tmp_size);
}
if (filter_grad) {
cudnn_filter_grad_desc = filter_grad_desc.descriptor<T>(
layout, Dims2Vector(filter_grad->dims()), groups);
PADDLE_ENFORCE(
platform::dynload::cudnnGetConvolutionBackwardFilterAlgorithm(
handle, cudnn_input_desc, cudnn_output_grad_desc, cudnn_conv_desc,
cudnn_filter_desc,
CUDNN_CONVOLUTION_BWD_FILTER_SPECIFY_WORKSPACE_LIMIT,
workspace_size_limit, &filter_algo));
PADDLE_ENFORCE(
platform::dynload::cudnnGetConvolutionBackwardFilterWorkspaceSize(
handle, cudnn_input_desc, cudnn_output_grad_desc, cudnn_conv_desc,
cudnn_filter_desc, filter_algo, &tmp_size));
workspace_size_in_bytes = std::max(workspace_size_in_bytes, tmp_size);
}
// ------------------- cudnn conv workspace ---------------------
// Already on GPU
void* cudnn_workspace = nullptr;
platform::GPUPlace gpu = boost::get<platform::GPUPlace>(ctx.GetPlace());
cudnn_workspace = paddle::memory::Alloc(gpu, workspace_size_in_bytes);
// ------------------- cudnn conv backward data ---------------------
// FIXME(typhoonzero): template type T may not be the same as cudnn call.
T alpha = 1.0f, beta = 0.0f;
if (input_grad) {
T* input_grad_data = input_grad->mutable_data<T>(ctx.GetPlace());
auto t = framework::EigenVector<T>::Flatten(*input_grad);
t.device(ctx.GetEigenDevice<platform::GPUPlace>()) =
t.constant(static_cast<T>(0));
for (int i = 0; i < groups; i++) {
PADDLE_ENFORCE(platform::dynload::cudnnConvolutionBackwardData(
handle, &alpha, cudnn_filter_desc,
filter_data + i * group_offset_filter, cudnn_output_grad_desc,
output_grad_data + i * group_offset_out, cudnn_conv_desc, data_algo,
cudnn_workspace, workspace_size_in_bytes, &beta,
cudnn_input_grad_desc, input_grad_data + i * group_offset_in));
}
}
// ------------------- cudnn conv backward filter ---------------------
if (filter_grad) {
T* filter_grad_data = filter_grad->mutable_data<T>(ctx.GetPlace());
auto t = framework::EigenVector<T>::Flatten(*filter_grad);
t.device(ctx.GetEigenDevice<platform::GPUPlace>()) =
t.constant(static_cast<T>(0));
for (int i = 0; i < groups; i++) {
PADDLE_ENFORCE(platform::dynload::cudnnConvolutionBackwardFilter(
handle, &alpha, cudnn_input_desc, input_data + i * group_offset_in,
cudnn_output_grad_desc, output_grad_data + i * group_offset_out,
cudnn_conv_desc, filter_algo, cudnn_workspace,
workspace_size_in_bytes, &beta, cudnn_filter_grad_desc,
filter_grad_data + i * group_offset_filter));
}
}
// Release the cudnn workspace
paddle::memory::Free(gpu, cudnn_workspace);
}
};
} // namespace operators
} // namespace paddle
REGISTER_OP_GPU_KERNEL(conv_cudnn, paddle::operators::CudnnConvOpKernel<float>);
REGISTER_OP_GPU_KERNEL(conv_cudnn_grad,
paddle::operators::CudnnConvGradOpKernel<float>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/decayed_adagrad_op.h"
namespace paddle {
namespace operators {
class DecayedAdagradOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(framework::InferShapeContext *ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("Param"),
"Input(Param) of DecayedAdagradOp should not be null.");
PADDLE_ENFORCE(ctx->HasInput("Grad"),
"Input(Grad) of DecayedAdagradOp should not be null.");
PADDLE_ENFORCE(ctx->HasInput("Moment"),
"Input(Moment) of DecayedAdagradOp should not be null.");
PADDLE_ENFORCE(
ctx->HasInput("LearningRate"),
"Input(LearningRate) of DecayedAdagradOp should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("ParamOut"),
"Output(ParamOut) of DecayedAdagradOp should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("MomentOut"),
"Output(MomentOut) of DecayedAdagradOp should not be null.");
auto lr_dims = ctx->GetInputDim("LearningRate");
PADDLE_ENFORCE_EQ(framework::product(lr_dims), 1,
"LearningRate should have one element");
auto param_dims = ctx->GetInputDim("Param");
PADDLE_ENFORCE_EQ(param_dims, ctx->GetInputDim("Grad"),
"Param and Grad input of DecayedAdagradOp should have "
"the same dimension.");
PADDLE_ENFORCE_EQ(param_dims, ctx->GetInputDim("Moment"),
"Param and Moment input of DecayedAdagradOp should have "
"the same dimension.");
ctx->SetOutputDim("ParamOut", param_dims);
ctx->SetOutputDim("MomentOut", param_dims);
}
};
class DecayedAdagradOpMaker : public framework::OpProtoAndCheckerMaker {
public:
DecayedAdagradOpMaker(framework::OpProto *proto,
framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("Param", "(Tensor) Input parameter");
AddInput("Grad", "(Tensor) Input gradient");
AddInput("Moment", "(Tensor) Second moment");
AddInput("LearningRate", "(Tensor) Learning rate");
AddOutput("ParamOut", "(Tensor) Output parameter");
AddOutput("MomentOut", "(Tensor) Output second moment");
AddAttr<float>("decay",
"(float, default 0.95) "
"Discounting factor for coming gradient")
.SetDefault(0.95);
AddAttr<float>("epsilon",
"(float, default 1.0e-6) "
"Constant for numerical stability")
.SetDefault(1.0e-6f);
AddComment(R"DOC(
Decayed Adagrad
moment_out = decay * moment + (1 - decay) * grad * grad
param_out = param - learning_rate * grad / (sqrt(moment_out) + epsilon)
)DOC");
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_WITHOUT_GRADIENT(decayed_adagrad, ops::DecayedAdagradOp,
ops::DecayedAdagradOpMaker);
REGISTER_OP_CPU_KERNEL(
decayed_adagrad,
ops::DecayedAdagradOpKernel<paddle::platform::CPUPlace, float>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#define EIGEN_USE_GPU
#include "paddle/operators/decayed_adagrad_op.h"
namespace ops = paddle::operators;
REGISTER_OP_GPU_KERNEL(
decayed_adagrad,
ops::DecayedAdagradOpKernel<paddle::platform::GPUPlace, float>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
namespace paddle {
namespace operators {
template <typename Place, typename T>
class DecayedAdagradOpKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto param_out_tensor = ctx.Output<framework::Tensor>("ParamOut");
auto moment_out_tensor = ctx.Output<framework::Tensor>("MomentOut");
param_out_tensor->mutable_data<T>(ctx.GetPlace());
moment_out_tensor->mutable_data<T>(ctx.GetPlace());
float decay = ctx.Attr<float>("decay");
float epsilon = ctx.Attr<float>("epsilon");
auto param = framework::EigenVector<T>::Flatten(
*ctx.Input<framework::Tensor>("Param"));
auto grad = framework::EigenVector<T>::Flatten(
*ctx.Input<framework::Tensor>("Grad"));
auto moment = framework::EigenVector<T>::Flatten(
*ctx.Input<framework::Tensor>("Moment"));
auto lr = framework::EigenVector<T>::Flatten(
*ctx.Input<framework::Tensor>("LearningRate"));
auto param_out = framework::EigenVector<T>::Flatten(*param_out_tensor);
auto moment_out = framework::EigenVector<T>::Flatten(*moment_out_tensor);
auto place = ctx.GetEigenDevice<Place>();
moment_out.device(place) = decay * moment + (1 - decay) * grad * grad;
Eigen::DSizes<int, 1> m_dsize(moment_out_tensor->numel());
param_out.device(place) =
param - lr.broadcast(m_dsize) * grad / (moment_out.sqrt() + epsilon);
}
};
} // namespace operators
} // namespace paddle
......@@ -34,7 +34,7 @@ class FeedKernel : public framework::OpKernel<T> {
// TODO(qijun):
// check tensors[col].dims() with attribute,
// except the first dimenson.
out->CopyFrom<T>(tensors[col], ctx.GetPlace());
out->CopyFrom<T>(tensors[col], ctx.GetPlace(), ctx.device_context());
}
};
......
......@@ -35,7 +35,8 @@ class FetchKernel : public framework::OpKernel<T> {
PADDLE_ENFORCE_GT(tensors->size(), static_cast<size_t>(col));
(*tensors)[col].Resize(input->dims());
(*tensors)[col].mutable_data<T>(platform::CPUPlace());
(*tensors)[col].CopyFrom<T>(*input, platform::CPUPlace());
(*tensors)[col].CopyFrom<T>(*input, platform::CPUPlace(),
ctx.device_context());
// TODO(qijun): need to handle LodTensor later
}
};
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/margin_rank_loss_op.h"
namespace paddle {
namespace operators {
class MarginRankLossOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(framework::InferShapeContext *ctx) const override {
// input check
PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) shouldn't be null.");
PADDLE_ENFORCE(ctx->HasInput("X1"), "Input(X1) shouldn't be null.");
PADDLE_ENFORCE(ctx->HasInput("X2"), "Input(X2) shouldn't be null.");
PADDLE_ENFORCE(ctx->HasOutput("Out"), "Output(Out) shouldn't be null.");
auto label_dims = ctx->GetInputDim("Label");
auto x1_dims = ctx->GetInputDim("X1");
auto x2_dims = ctx->GetInputDim("X2");
PADDLE_ENFORCE(
(label_dims == x1_dims) && (x1_dims == x2_dims) &&
(label_dims.size() == 2) && (label_dims[1] == 1),
"All inputs must be 2-D tensor with shape [batch_size x 1].");
ctx->SetOutputDim("Activated", label_dims);
ctx->SetOutputDim("Out", label_dims);
}
};
template <typename T>
class MarginRankLossOpMaker : public framework::OpProtoAndCheckerMaker {
public:
MarginRankLossOpMaker(framework::OpProto *proto,
framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X1",
"(2-D tensor with shape [batch_size x 1]) The score for "
"one item X1 to be ranked, from pairwise ranking model.");
AddInput("X2",
"(2-D tensor with shape [batch_size x 1]) The score for "
"another item X2 to be ranked, from pairwise ranking model.");
AddInput("Label",
"(2-D tensor with shape [batch_size x 1]) "
"The label indicating X1 ranked higher than X2 or not, "
"can only be +1 or -1.");
AddAttr<T>("margin", "(scalar, default 0) Margin for MarginRankLossOp.")
.SetDefault(static_cast<T>(0));
AddOutput("Activated",
"(2-D tensor with shape [batch_size x 1]) Intermediate tensor "
"to indicate whether each element of Output(Out) is activated.")
.AsIntermediate();
AddOutput("Out",
"(2-D tensor with shape [batch_size x 1]) "
"The output loss of MarginRankLoss operator.");
AddComment(R"DOC(
MarginRankLoss operator measures the loss given a pair of training sample
{`X1`, `X2`} and the `Label` with attribute `margin`, where `Label = +1`
indicating X1 is ranked higher than `X2`, otherwise `Label = -1`. The loss
turns out
loss(X1, X2, Label) = max(0, -Label * (X1 - X2) + margin).
The attribute `margin` involved here helps make the predictions more robust.
Denote the item ranked higher as the positive sample, otherwise the negative
sample. If the score of the two samples satisfies
positive sample - negative sample < margin,
the pair of samples will contribute to the final loss, which will backpropogate
and train the ranking model to enlarge the difference of the two score.
For batch input with size `batch_size`, `X1`, `X2` and `Label`
all have the same shape [batch_size x 1].
)DOC");
}
};
class MarginRankLossGradOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(framework::InferShapeContext *ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) shouldn't be null.");
PADDLE_ENFORCE(ctx->HasInput("X1"), "Input(X1) shouldn't be null.");
PADDLE_ENFORCE(ctx->HasInput("X2"), "Input(X2) shouldn't be null.");
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
"Input(Out@GRAD) shouldn't be null.");
PADDLE_ENFORCE(ctx->HasInput("Activated"),
"Intermediate(Activated) shouldn't be null.");
auto dims = ctx->GetInputDim("Label");
ctx->SetOutputDim(framework::GradVarName("X1"), dims);
ctx->SetOutputDim(framework::GradVarName("X2"), dims);
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP(margin_rank_loss, ops::MarginRankLossOp,
ops::MarginRankLossOpMaker<float>, margin_rank_loss_grad,
ops::MarginRankLossGradOp);
REGISTER_OP_CPU_KERNEL(
margin_rank_loss,
ops::MarginRankLossKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(
margin_rank_loss_grad,
ops::MarginRankLossGradKernel<paddle::platform::CPUPlace, float>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/margin_rank_loss_op.h"
namespace ops = paddle::operators;
REGISTER_OP_GPU_KERNEL(
margin_rank_loss,
ops::MarginRankLossKernel<paddle::platform::GPUPlace, float>);
REGISTER_OP_GPU_KERNEL(
margin_rank_loss_grad,
ops::MarginRankLossGradKernel<paddle::platform::GPUPlace, float>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
namespace paddle {
namespace operators {
template <typename T>
struct ReLU {
HOSTDEVICE T operator()(const T& val) const {
return val > 0 ? val : static_cast<T>(0);
}
};
template <typename T>
struct Heaviside {
HOSTDEVICE T operator()(const T& val) const {
return static_cast<T>(val > 0 ? 1 : 0);
}
};
template <typename Place, typename T>
class MarginRankLossKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const {
auto* out_t = ctx.Output<framework::Tensor>("Out");
auto* act_t = ctx.Output<framework::Tensor>("Activated");
auto* label_t = ctx.Input<framework::Tensor>("Label");
auto* x1_t = ctx.Input<framework::Tensor>("X1");
auto* x2_t = ctx.Input<framework::Tensor>("X2");
out_t->mutable_data<T>(ctx.GetPlace());
act_t->mutable_data<T>(ctx.GetPlace());
auto margin = static_cast<T>(ctx.Attr<T>("margin"));
auto out = framework::EigenVector<T>::Flatten(*out_t);
auto act = framework::EigenVector<T>::Flatten(*act_t);
auto label = framework::EigenVector<T>::Flatten(*label_t);
auto x1 = framework::EigenVector<T>::Flatten(*x1_t);
auto x2 = framework::EigenVector<T>::Flatten(*x2_t);
auto& dev = ctx.GetEigenDevice<Place>();
out.device(dev) = (-label * (x1 - x2) + margin).unaryExpr(ReLU<T>());
act.device(dev) = out.unaryExpr(Heaviside<T>());
}
};
template <typename Place, typename T>
class MarginRankLossGradKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const {
auto* d_x1_t =
ctx.Output<framework::LoDTensor>(framework::GradVarName("X1"));
auto* d_x2_t =
ctx.Output<framework::LoDTensor>(framework::GradVarName("X2"));
auto* act_t = ctx.Input<framework::Tensor>("Activated");
auto* d_out_t = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
auto* label_t = ctx.Input<framework::Tensor>("Label");
auto d_out = framework::EigenVector<T>::Flatten(*d_out_t);
auto act = framework::EigenVector<T>::Flatten(*act_t);
auto label = framework::EigenVector<T>::Flatten(*label_t);
auto& dev = ctx.GetEigenDevice<Place>();
// compute d_x1
if (d_x1_t) {
d_x1_t->mutable_data<T>(ctx.GetPlace());
auto d_x1 = framework::EigenVector<T>::Flatten(*d_x1_t);
d_x1.device(dev) = -d_out * act * label;
}
// compute d_x2
if (d_x2_t) {
d_x2_t->mutable_data<T>(ctx.GetPlace());
auto d_x2 = framework::EigenVector<T>::Flatten(*d_x2_t);
d_x2.device(dev) = d_out * act * label;
}
}
};
} // namespace operators
} // namespace paddle
if(WITH_GPU)
nv_library(math_function SRCS math_function.cc math_function.cu im2col.cc im2col.cu pooling.cc pooling.cu DEPS cblas device_context operator)
nv_library(math_function SRCS math_function.cc math_function.cu im2col.cc im2col.cu DEPS cblas device_context operator)
nv_test(math_function_test SRCS math_function_test.cc DEPS math_function tensor)
nv_library(softmax SRCS softmax.cc softmax.cu DEPS operator)
nv_library(cross_entropy SRCS cross_entropy.cc cross_entropy.cu DEPS operator)
nv_library(pooling SRCS pooling.cc pooling.cu DEPS device_context)
nv_library(vol2col SRCS vol2col.cc vol2col.cu DEPS device_context)
else()
cc_library(math_function SRCS math_function.cc im2col.cc pooling.cc DEPS cblas device_context operator)
cc_library(math_function SRCS math_function.cc im2col.cc DEPS cblas device_context operator)
cc_test(math_function_test SRCS math_function_test.cc DEPS math_function tensor)
cc_library(softmax SRCS softmax.cc DEPS operator)
cc_library(cross_entropy SRCS cross_entropy.cc DEPS operator)
cc_library(pooling SRCS pooling.cc DEPS device_context)
cc_library(vol2col SRCS vol2col.cc DEPS device_context)
endif()
......
......@@ -49,10 +49,22 @@ void testIm2col() {
memcpy(input_ptr, arr, 6 * sizeof(float));
auto* place = new Place();
paddle::platform::DeviceContext* context;
if (paddle::platform::is_cpu_place(*place)) {
context =
new paddle::platform::CPUDeviceContext(paddle::platform::CPUPlace());
} else {
#ifdef PADDLE_WITH_CUDA
context =
new paddle::platform::CUDADeviceContext(paddle::platform::GPUPlace());
#else
PADDLE_THROW("no GPU support");
#endif // PADDLE_ONLY_CPU
}
if (paddle::platform::is_cpu_place(*place)) {
input = input_tmp;
} else {
input.CopyFrom<float>(input_tmp, *place);
input.CopyFrom<float>(input_tmp, *place, *context);
}
output_cfo.mutable_data<float>(
{1, filter_size, filter_size, output_height, output_width}, *place);
......@@ -66,18 +78,6 @@ void testIm2col() {
paddle::operators::math::ColFormat::kOCF, Place, float>
im2col_ocf;
paddle::platform::DeviceContext* context;
if (paddle::platform::is_cpu_place(*place)) {
context =
new paddle::platform::CPUDeviceContext(paddle::platform::CPUPlace());
} else {
#ifdef PADDLE_WITH_CUDA
context =
new paddle::platform::CUDADeviceContext(paddle::platform::GPUPlace());
#else
PADDLE_THROW("no GPU support");
#endif // PADDLE_ONLY_CPU
}
im2col(*context, input, output_cfo, stride, stride, padding, padding);
im2col_ocf(*context, input, output_ocf, stride, stride, padding, padding);
......@@ -85,7 +85,8 @@ void testIm2col() {
if (paddle::platform::is_cpu_place(*place)) {
out_cfo_ptr = output_cfo.data<float>();
} else {
output_tmp.CopyFrom<float>(output_cfo, paddle::platform::CPUPlace());
output_tmp.CopyFrom<float>(output_cfo, paddle::platform::CPUPlace(),
*context);
out_cfo_ptr = output_tmp.data<float>();
}
EXPECT_EQ(out_cfo_ptr[0], 0);
......@@ -101,7 +102,8 @@ void testIm2col() {
if (paddle::platform::is_cpu_place(*place)) {
out_ocf_ptr = output_ocf.data<float>();
} else {
output_tmp.CopyFrom<float>(output_ocf, paddle::platform::CPUPlace());
output_tmp.CopyFrom<float>(output_ocf, paddle::platform::CPUPlace(),
*context);
out_ocf_ptr = output_tmp.data<float>();
}
EXPECT_EQ(out_ocf_ptr[0], 0);
......
......@@ -17,17 +17,18 @@ TEST(math_function, notrans_mul_trans) {
auto* gpu_place = new paddle::platform::GPUPlace(0);
paddle::platform::CUDADeviceContext context(*gpu_place);
input1_gpu.CopyFrom<float>(input1, *gpu_place);
input2_gpu.CopyFrom<float>(input1, *gpu_place);
input1_gpu.CopyFrom<float>(input1, *gpu_place, context);
input2_gpu.CopyFrom<float>(input1, *gpu_place, context);
out_gpu.mutable_data<float>({2, 2}, *gpu_place);
paddle::operators::math::matmul<paddle::platform::GPUPlace, float>(
context, input1_gpu, false, input2_gpu, true, 1, &out_gpu, 0);
out.CopyFrom<float>(out_gpu, *cpu_place);
out.CopyFrom<float>(out_gpu, *cpu_place, context);
float* out_ptr = out.data<float>();
context.Wait();
EXPECT_EQ(out_ptr[0], 5);
EXPECT_EQ(out_ptr[1], 14);
EXPECT_EQ(out_ptr[2], 14);
......@@ -50,17 +51,18 @@ TEST(math_function, trans_mul_notrans) {
auto* gpu_place = new paddle::platform::GPUPlace(0);
paddle::platform::CUDADeviceContext context(*gpu_place);
input1_gpu.CopyFrom<float>(input1, *gpu_place);
input2_gpu.CopyFrom<float>(input1, *gpu_place);
input1_gpu.CopyFrom<float>(input1, *gpu_place, context);
input2_gpu.CopyFrom<float>(input1, *gpu_place, context);
out_gpu.mutable_data<float>({3, 3}, *gpu_place);
paddle::operators::math::matmul<paddle::platform::GPUPlace, float>(
context, input1_gpu, true, input2_gpu, false, 1, &out_gpu, 0);
out.CopyFrom<float>(out_gpu, *cpu_place);
out.CopyFrom<float>(out_gpu, *cpu_place, context);
float* out_ptr = out.data<float>();
context.Wait();
EXPECT_EQ(out_ptr[0], 9);
EXPECT_EQ(out_ptr[1], 12);
EXPECT_EQ(out_ptr[2], 15);
......@@ -98,9 +100,9 @@ TEST(math_function, gemm_notrans_cublas) {
auto* gpu_place = new paddle::platform::GPUPlace(0);
paddle::platform::CUDADeviceContext context(*gpu_place);
input1_gpu.CopyFrom<float>(input1, *gpu_place);
input2_gpu.CopyFrom<float>(input2, *gpu_place);
input3_gpu.CopyFrom<float>(input3, *gpu_place);
input1_gpu.CopyFrom<float>(input1, *gpu_place, context);
input2_gpu.CopyFrom<float>(input2, *gpu_place, context);
input3_gpu.CopyFrom<float>(input3, *gpu_place, context);
float* a = input1_gpu.data<float>();
float* b = input2_gpu.data<float>();
float* c = input3_gpu.mutable_data<float>(*gpu_place);
......@@ -108,7 +110,7 @@ TEST(math_function, gemm_notrans_cublas) {
paddle::operators::math::gemm<paddle::platform::GPUPlace, float>(
context, false, false, m, n, k, 1, a, 3, b + 1, 4, 1, c + 1, 4);
input3.CopyFrom<float>(input3_gpu, *cpu_place);
input3.CopyFrom<float>(input3_gpu, *cpu_place, context);
// numpy code:
// a = np.arange(6).reshape(2, 3)
......@@ -116,6 +118,7 @@ TEST(math_function, gemm_notrans_cublas) {
// c = np.arange(8).reshape(2, 4)[:, 1:]
// out = np.arange(8).reshape(2, 4)
// out[:, 1:] = np.dot(a, b) + c
context.Wait();
EXPECT_EQ(input3_ptr[0], 0);
EXPECT_EQ(input3_ptr[1], 24);
EXPECT_EQ(input3_ptr[2], 28);
......@@ -152,9 +155,9 @@ TEST(math_function, gemm_trans_cublas) {
auto* gpu_place = new paddle::platform::GPUPlace(0);
paddle::platform::CUDADeviceContext context(*gpu_place);
input1_gpu.CopyFrom<float>(input1, *gpu_place);
input2_gpu.CopyFrom<float>(input2, *gpu_place);
input3_gpu.CopyFrom<float>(input3, *gpu_place);
input1_gpu.CopyFrom<float>(input1, *gpu_place, context);
input2_gpu.CopyFrom<float>(input2, *gpu_place, context);
input3_gpu.CopyFrom<float>(input3, *gpu_place, context);
float* a = input1_gpu.data<float>();
float* b = input2_gpu.data<float>();
float* c = input3_gpu.mutable_data<float>(*gpu_place);
......@@ -162,7 +165,8 @@ TEST(math_function, gemm_trans_cublas) {
paddle::operators::math::gemm<paddle::platform::GPUPlace, float>(
context, false, true, m, n, k, 1, a, 3, b + 3, 3, 1, c + 1, 4);
input3.CopyFrom<float>(input3_gpu, *cpu_place);
input3.CopyFrom<float>(input3_gpu, *cpu_place, context);
context.Wait();
EXPECT_EQ(input3_ptr[0], 0);
EXPECT_EQ(input3_ptr[1], 24);
......
......@@ -78,7 +78,7 @@ void testVol2col() {
if (paddle::platform::is_cpu_place(*place)) {
input = input_tmp;
} else {
input.CopyFrom<float>(input_tmp, *place);
input.CopyFrom<float>(input_tmp, *place, *context);
}
output.mutable_data<float>({1, filter_size, filter_size, filter_size,
output_depth, output_height, output_width},
......@@ -93,7 +93,7 @@ void testVol2col() {
if (paddle::platform::is_cpu_place(*place)) {
out_cfo_ptr = output.data<float>();
} else {
output_tmp.CopyFrom<float>(output, paddle::platform::CPUPlace());
output_tmp.CopyFrom<float>(output, paddle::platform::CPUPlace(), *context);
out_cfo_ptr = output_tmp.data<float>();
}
......@@ -107,7 +107,7 @@ void testVol2col() {
if (paddle::platform::is_cpu_place(*place)) {
input = input_tmp;
} else {
input.CopyFrom<float>(input_tmp, *place);
input.CopyFrom<float>(input_tmp, *place, *context);
}
paddle::operators::math::Col2VolFunctor<Place, float> col2vol;
......@@ -118,7 +118,7 @@ void testVol2col() {
if (paddle::platform::is_cpu_place(*place)) {
in_ptr = input.data<float>();
} else {
input_tmp.CopyFrom<float>(input, paddle::platform::CPUPlace());
input_tmp.CopyFrom<float>(input, paddle::platform::CPUPlace(), *context);
in_ptr = input_tmp.data<float>();
}
......
......@@ -33,7 +33,8 @@ class MultiplexGPUKernel : public framework::OpKernel<T> {
auto cols = ins[0]->numel() / rows;
// copy index to cpu
Tensor index_t_cpu;
index_t_cpu.CopyFrom<int32_t>(*ids, platform::CPUPlace());
index_t_cpu.CopyFrom<int32_t>(*ids, platform::CPUPlace(),
ctx.device_context());
auto* index = index_t_cpu.data<int32_t>();
auto stream = reinterpret_cast<const platform::CUDADeviceContext&>(
ctx.device_context())
......@@ -70,7 +71,8 @@ class MultiplexGradGPUKernel : public framework::OpKernel<T> {
auto cols = ins[0]->numel() / rows;
// copy index to cpu
Tensor index_t_cpu;
index_t_cpu.CopyFrom<int32_t>(*ids, platform::CPUPlace());
index_t_cpu.CopyFrom<int32_t>(*ids, platform::CPUPlace(),
ctx.device_context());
auto* index = index_t_cpu.data<int32_t>();
auto stream = reinterpret_cast<const platform::CUDADeviceContext&>(
......
......@@ -22,14 +22,8 @@ int OutputSizePool(int input_size, int filter_size, int padding, int stride) {
return output_size;
}
class PoolOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(framework::InferShapeContext *ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("X"),
"X(Input) of Pooling should not be null.");
void PoolOp::InferShape(framework::InferShapeContext *ctx) const {
PADDLE_ENFORCE(ctx->HasInput("X"), "X(Input) of Pooling should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("Out"),
"Out(Output) of Pooling should not be null.");
......@@ -40,10 +34,8 @@ class PoolOp : public framework::OperatorWithKernel {
std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
PADDLE_ENFORCE(pooling_type == "max" || pooling_type == "avg",
"pooling_type should be 'max' or 'avg'");
PADDLE_ENFORCE(in_x_dims.size() == 4 || in_x_dims.size() == 5,
"Pooling intput should be 4-D or 5-D");
"Pooling intput should be 4-D or 5-D tensor.");
if (ctx->Attrs().Get<bool>("globalPooling")) {
ksize.resize(static_cast<size_t>(in_x_dims.size()) - 2);
......@@ -52,13 +44,11 @@ class PoolOp : public framework::OperatorWithKernel {
}
PADDLE_ENFORCE(in_x_dims.size() - ksize.size() == 2U,
"Input size and Pooling size should be consistent.");
PADDLE_ENFORCE(ksize.size() == 2 || ksize.size() == 3,
"Pooling size should be 2 elements. or 3 elements.");
"Input size and pooling size should be consistent.");
PADDLE_ENFORCE_EQ(ksize.size(), strides.size(),
"strides size and pooling size should be the same.");
"Strides size and pooling size should be the same.");
PADDLE_ENFORCE_EQ(ksize.size(), paddings.size(),
"paddings size and pooling size should be the same.");
"Paddings size and pooling size should be the same.");
std::vector<int64_t> output_shape({in_x_dims[0], in_x_dims[1]});
for (size_t i = 0; i < ksize.size(); ++i) {
......@@ -66,45 +56,41 @@ class PoolOp : public framework::OperatorWithKernel {
OutputSizePool(in_x_dims[i + 2], ksize[i], paddings[i], strides[i]));
}
ctx->SetOutputDim("Out", framework::make_ddim(output_shape));
}
};
class PoolOpGrad : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
}
protected:
void InferShape(framework::InferShapeContext *ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("X"),
"X(Input) of Pooling should not be null.");
void PoolOpGrad::InferShape(framework::InferShapeContext *ctx) const {
PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must not be null.");
PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")),
"Input@Grad of Pooling should not be null.");
"Input(X@GRAD) should not be null.");
ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
}
};
}
class Pool2dOpMaker : public framework::OpProtoAndCheckerMaker {
public:
Pool2dOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
Pool2dOpMaker::Pool2dOpMaker(framework::OpProto *proto,
framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput(
"X",
"The input tensor of pooling operator. "
"(Tensor) The input tensor of pooling operator. "
"The format of input tensor is NCHW. Where N is batch size, C is the "
"number of channels, H and W is the height and width of feature.");
AddOutput("Out",
"The output tensor of pooling operator."
"The format of output tensor is also NCHW.");
"(Tensor) The output tensor of pooling operator."
"The format of output tensor is also NCHW."
"Where N is batch size, C is "
"the number of channels, H and W is the height and "
"width of feature.");
AddAttr<std::string>("poolingType",
"PoolingType of pooling operator."
"Str constant equal to 'max' or 'avg'.")
.InEnum({"max", "avg"});
AddAttr<std::vector<int>>(
"ksize",
"Pooling size(depth, height, width) of pooling operator."
"The pooling window size(height, width) of pooling operator."
"If globalPooling = true, ksize is ignored and need not be "
"specified."); // TODO(Add checker)
"specified."); // TODO(Chengduo): Add checker. (Currently,
// TypedAttrChecker don't support vector type.)
AddAttr<bool>(
"globalPooling",
"Whether to use the globalPooling."
......@@ -113,43 +99,64 @@ class Pool2dOpMaker : public framework::OpProtoAndCheckerMaker {
"If globalPooling = true, ksize is ignored and need not be specified.")
.SetDefault(false);
AddAttr<std::vector<int>>("strides",
"Strides(height, width) of pooling operator."
"Default {1,1}")
.SetDefault({1, 1}); // TODO(Add checker)
"The strides(height, width) of pooling window."
"Default {1,1}.")
.SetDefault({1, 1}); // TODO(Chengduo): Add checker. (Currently,
// TypedAttrChecker don't support vector type.)
AddAttr<std::vector<int>>("paddings",
"Paddings(height, width) of pooling operator."
"The zero padding(height, width) size on both sides"
"Default {0,0}.")
.SetDefault({0, 0}); // TODO(Add checker)
.SetDefault({0, 0}); // TODO(Chengduo): Add checker. (Currently,
// TypedAttrChecker don't support vector type.)
AddComment(R"DOC(
The pooling2d operation calculates the output based on
the input, poolingType and ksize, strides, paddings parameters.
Input(X) and output(Out) are in NCHW format. Where N is batch size, C is the
number of channels, H and W is the height and width of feature.
Parameters(ksize, strides, paddings) are two elements.
These two elements represent height and width, respectively.
The input(X) size and output(Out) size may be different.
Example:
Input:
X shape: (N, C, H_in, W_in)
Output:
Out shape: (N, C, H_out, W_out)
Mask shape: (N, C, H_out, W_out)
where
H_out = (H_in - ksize[0] + 2 * paddings[0]) / strides[0] + 1;
W_out = (W_in - ksize[1] + 2 * paddings[1]) / strides[1] + 1;
)DOC");
}
};
}
class Pool3dOpMaker : public framework::OpProtoAndCheckerMaker {
public:
Pool3dOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
Pool3dOpMaker::Pool3dOpMaker(framework::OpProto *proto,
framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X",
"The input tensor of pooling operator. "
AddInput(
"X",
"(Tensor) The input tensor of pooling operator. "
"The format of input tensor is NCDHW. Where N is batch size, C is "
"the "
"number of channels, D, H and W is the depth, height and width of "
"the number of channels, D, H and W is the depth, height and width of "
"feature.");
AddOutput("Out",
"The output tensor of pooling operator."
"The format of output tensor is also NCDHW.");
"(Tensor) The output tensor of pooling operator."
"The format of output tensor is also NCDHW."
"Where N is batch size, C is "
"the number of channels, D, H and W is the depth, height and "
"width of feature.");
AddAttr<std::string>("poolingType",
"PoolingType of pooling operator."
"str constant equal to 'max' or 'avg'.")
"Str constant equal to 'max' or 'avg'.")
.InEnum({"max", "avg"});
AddAttr<std::vector<int>>(
"ksize",
"Pooling size(depth, height, width) of pooling operator."
"The pooling window size(depth, height, width) of pooling operator."
"If globalPooling = true, ksize is ignored and need not be "
"specified."); // TODO(Add checker)
"specified."); // TODO(Chengduo): Add checker. (Currently,
// TypedAttrChecker don't support vector type.)
AddAttr<bool>(
"globalPooling",
"Whether to use the globalPooling."
......@@ -157,22 +164,39 @@ class Pool3dOpMaker : public framework::OpProtoAndCheckerMaker {
"Default false."
"If globalPooling = true, ksize is ignored and need not be specified.")
.SetDefault(false);
AddAttr<std::vector<int>>(
"strides",
AddAttr<std::vector<int>>("strides",
"Strides(depth, height, width) of pooling operator."
"Default {1,1,1}.")
.SetDefault({1, 1, 1}); // TODO(Add checker)
.SetDefault({1, 1, 1}); // TODO(Chengduo): Add checker. (Currently,
// TypedAttrChecker don't support vector type.)
AddAttr<std::vector<int>>(
"paddings",
"Paddings(depth, height, width) of pooling operator."
"Default {0,0,0}.")
.SetDefault({0, 0, 0}); // TODO(Add checker)
.SetDefault({0, 0, 0}); // TODO(Chengduo): Add checker. (Currently,
// TypedAttrChecker don't support vector type.)
AddComment(R"DOC(
The pooling3d operation calculates the output based on
the input, poolingType and ksize, strides, paddings parameters.
Input(X) and output(Out) are in NCDHW format. Where N is batch
size, C is the number of channels, D, H and W is the depth, height and
width of feature. Parameters(ksize, strides, paddings) are three elements.
These three elements represent depth, height and width, respectively.
The input(X) size and output(Out) size may be different.
Example:
Input:
X shape: (N, C, D_in, H_in, W_in)
Output:
Out shape: (N, C, D_out, H_out, W_out)
Mask shape: (N, C, D_out, H_out, W_out)
where
D_out = (D_in - ksize[0] + 2 * paddings[0]) / strides[0] + 1;
H_out = (H_in - ksize[1] + 2 * paddings[1]) / strides[1] + 1;
W_out = (W_in - ksize[2] + 2 * paddings[2]) / strides[2] + 1;
)DOC");
}
};
}
} // namespace operators
} // namespace paddle
......
......@@ -24,6 +24,34 @@ namespace operators {
using Tensor = framework::Tensor;
class PoolOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(framework::InferShapeContext* ctx) const override;
};
class PoolOpGrad : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(framework::InferShapeContext* ctx) const override;
};
class Pool2dOpMaker : public framework::OpProtoAndCheckerMaker {
public:
Pool2dOpMaker(framework::OpProto* proto,
framework::OpAttrChecker* op_checker);
};
class Pool3dOpMaker : public framework::OpProtoAndCheckerMaker {
public:
Pool3dOpMaker(framework::OpProto* proto,
framework::OpAttrChecker* op_checker);
};
template <typename Place, typename T>
class PoolKernel : public framework::OpKernel<T> {
public:
......
......@@ -43,7 +43,7 @@ class MaxPoolWithIndexOp : public framework::OperatorWithKernel {
std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
PADDLE_ENFORCE(in_x_dims.size() == 4 || in_x_dims.size() == 5,
"Pooling intput should be 4-D or 5-D");
"Pooling intput should be 4-D or 5-D tensor.");
if (ctx->Attrs().Get<bool>("globalPooling")) {
ksize.resize(static_cast<size_t>(in_x_dims.size()) - 2);
......@@ -52,7 +52,7 @@ class MaxPoolWithIndexOp : public framework::OperatorWithKernel {
}
PADDLE_ENFORCE(in_x_dims.size() - ksize.size() == 2U,
"Intput size and pooling size should be consistent.");
"Input size and pooling size should be consistent.");
PADDLE_ENFORCE_EQ(ksize.size(), strides.size(),
"Strides size and pooling size should be the same.");
PADDLE_ENFORCE_EQ(ksize.size(), paddings.size(),
......@@ -74,6 +74,7 @@ class MaxPoolWithIndexOpGrad : public framework::OperatorWithKernel {
protected:
void InferShape(framework::InferShapeContext *ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("Mask"), "Input(Mask) must not be null.");
PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must not be null.");
PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")),
"Input(X@GRAD) should not be null.");
......@@ -88,17 +89,17 @@ class MaxPool2dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker {
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput(
"X",
"The input tensor of pooling operator. "
"(Tensor) The input tensor of pooling operator. "
"The format of input tensor is NCHW. Where N is batch size, C is the "
"number of channels, H and W is the height and width of image.");
AddOutput("Out",
"The output tensor of pooling operator."
"(Tensor) The output tensor of pooling operator."
"The format of output tensor is also NCHW."
"Where N is batch size, C is "
"the number of channels, H and W is the height and "
"width of image.");
AddOutput("Mask",
"The Mask tensor of pooling operator."
"(Tensor) The Mask tensor of pooling operator."
"The format of output tensor is also NCHW."
"Where N is batch size, C is the number of channels, H and W "
"is the height and width of image."
......@@ -106,7 +107,7 @@ class MaxPool2dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker {
AddAttr<std::vector<int>>(
"ksize",
"The pooling size(height, width) of pooling operator."
"The pooling window size(height, width) of pooling operator."
"If globalPooling = true, ksize is ignored and need not be "
"specified."); // TODO(Chengduo): Add checker. (Currently,
// TypedAttrChecker don't support vector type.)
......@@ -118,12 +119,13 @@ class MaxPool2dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker {
"If globalPooling = true, ksize is ignored and need not be specified.")
.SetDefault(false);
AddAttr<std::vector<int>>("strides",
"Strides(height, width) of pooling operator."
"The strides(height, width) of pooling window."
"Default {1,1}.")
.SetDefault({1, 1}); // TODO(Chengduo): Add checker. (Currently,
// TypedAttrChecker don't support vector type.)
AddAttr<std::vector<int>>("paddings",
"Paddings(height, width) of pooling operator."
AddAttr<std::vector<int>>(
"paddings",
"The zero padding(height, width) size on both sides"
"Default {0,0}.")
.SetDefault({0, 0}); // TODO(Chengduo): Add checker. (Currently,
// TypedAttrChecker don't support vector type.)
......@@ -135,6 +137,17 @@ output(Out, Mask) are in NCHW format. Where N is batch size, C is the
number of channels, H and W is the height and width of feature.
Parameters(ksize, strides, paddings) are two elements.
These two elements represent height and width, respectively.
The input(X) size and output(Out, Mask) size may be different.
Example:
Input:
X shape: (N, C, H_in, W_in)
Output:
Out shape: (N, C, H_out, W_out)
Mask shape: (N, C, H_out, W_out)
where
H_out = (H_in - ksize[0] + 2 * paddings[0]) / strides[0] + 1;
W_out = (W_in - ksize[1] + 2 * paddings[1]) / strides[1] + 1;
)DOC");
}
};
......@@ -146,18 +159,18 @@ class MaxPool3dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker {
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput(
"X",
"The input tensor of pooling operator. "
"(Tensor) The input tensor of pooling operator. "
"The format of input tensor is NCDHW. Where N is batch size, C is "
"the number of channels, D, H and W is the depth, height and width of "
"image.");
AddOutput("Out",
"The output tensor of pooling operator."
"(Tensor) The output tensor of pooling operator."
"The format of output tensor is also NCDHW."
"Where N is batch size, C is "
"the number of channels, D, H and W is the depth, height and "
"width of image.");
AddOutput("Mask",
"The Mask tensor of pooling operator."
"(Tensor) The Mask tensor of pooling operator."
"The format of output tensor is also NCDHW."
"Where N is batch size, C is the number of channels, D, H and W "
"is the depth, height and width of image."
......@@ -165,7 +178,7 @@ class MaxPool3dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker {
AddAttr<std::vector<int>>(
"ksize",
"The pooling size(depth, height, width) of pooling operator."
"The pooling window size(depth, height, width) of pooling operator."
"If globalPooling = true, ksize is ignored and need not be "
"specified."); // TODO(Chengduo): Add checker. (Currently,
// TypedAttrChecker don't support vector type.)
......@@ -196,6 +209,18 @@ Input(X) and output(Out, Mask) are in NCDHW format. Where N is batch
size, C is the number of channels, D, H and W is the depth, height and
width of feature. Parameters(ksize, strides, paddings) are three elements.
These three elements represent depth, height and width, respectively.
The input(X) size and output(Out, Mask) size may be different.
Example:
Input:
X shape: (N, C, D_in, H_in, W_in)
Output:
Out shape: (N, C, D_out, H_out, W_out)
Mask shape: (N, C, D_out, H_out, W_out)
where
D_out = (D_in - ksize[0] + 2 * paddings[0]) / strides[0] + 1;
H_out = (H_in - ksize[1] + 2 * paddings[1]) / strides[1] + 1;
W_out = (W_in - ksize[2] + 2 * paddings[2]) / strides[2] + 1;
)DOC");
}
};
......
......@@ -46,7 +46,7 @@ void RecurrentAlgorithm::Run(const Scope& scope,
}
(*stepnet_)->Run(*step_scopes[step_id], dev_ctx);
}
rnn::ConcatOutputs(step_scopes, arg_->outlinks, seq_len);
rnn::ConcatOutputs(step_scopes, arg_->outlinks, seq_len, dev_ctx);
}
void RecurrentAlgorithm::CreateScopes(const Scope& scope,
......@@ -151,12 +151,12 @@ void RecurrentGradientAlgorithm::Run(
auto& step_scopes = GetStepScopes(scope);
rnn::SegmentInputs(step_scopes, arg_->inlinks, seq_len);
for (int step_id = seq_len - 1; step_id >= 0; --step_id) {
if (step_id != seq_len - 1) {
if (static_cast<size_t>(step_id) != seq_len - 1) {
rnn::LinkMemories(step_scopes, arg_->memories, step_id, 1);
}
(*stepnet_)->Run(*step_scopes[step_id], dev_ctx);
}
rnn::ConcatOutputs(step_scopes, arg_->outlinks, seq_len);
rnn::ConcatOutputs(step_scopes, arg_->outlinks, seq_len, dev_ctx);
LinkBootMemoryGradients(step_scopes[0]);
}
......
......@@ -33,7 +33,7 @@ class ReshapeKernel : public framework::OpKernel<T> {
std::transform(shape.begin(), shape.end(), shape_int64.begin(),
[](int a) { return static_cast<int64_t>(a); });
auto out_dims = framework::make_ddim(shape_int64);
out->CopyFrom<T>(*in, ctx.GetPlace());
out->CopyFrom<T>(*in, ctx.GetPlace(), ctx.device_context());
out->Resize(out_dims);
}
};
......@@ -47,7 +47,7 @@ class ReshapeGradKernel : public framework::OpKernel<T> {
d_x->mutable_data<T>(ctx.GetPlace());
auto in_dims = d_x->dims();
d_x->CopyFrom<T>(*d_out, ctx.GetPlace());
d_x->CopyFrom<T>(*d_out, ctx.GetPlace(), ctx.device_context());
d_x->Resize(in_dims);
}
};
......
......@@ -51,7 +51,7 @@ void SegmentInputs(const std::vector<Scope*>& step_scopes,
void ConcatOutputs(const std::vector<Scope*>& step_scopes,
const std::vector<std::string>& outlinks,
const size_t seq_len) {
const size_t seq_len, const platform::DeviceContext& ctx) {
for (size_t i = 0; i < outlinks.size(); i++) {
auto* output_var = step_scopes[0]->parent().FindVar(outlinks[i]);
PADDLE_ENFORCE_NOT_NULL(output_var, "output link [%s] is not in scope.",
......@@ -72,7 +72,7 @@ void ConcatOutputs(const std::vector<Scope*>& step_scopes,
// TODO(luotao02) data type and platform::DeviceContext() should set
// correctly
(output->Slice<float>(j, j + 1))
.CopyFrom<float>(*step_output, platform::CPUPlace());
.CopyFrom<float>(*step_output, platform::CPUPlace(), ctx);
}
}
}
......
......@@ -71,7 +71,7 @@ void SegmentInputs(const std::vector<Scope*>& step_scopes,
*/
void ConcatOutputs(const std::vector<Scope*>& step_scopes,
const std::vector<std::string>& outlinks,
const size_t seq_len);
const size_t seq_len, const platform::DeviceContext& ctx);
void LinkMemories(const std::vector<Scope*>& step_scopes,
const std::vector<MemoryAttr>& memories, const size_t step_id,
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/sequence_concat_op.h"
namespace paddle {
namespace operators {
class SequenceConcatOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(ctx->HasInputs("X"),
"Inputs(X) of SequenceConcatOp should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("Out"),
"Output(Out) of SequenceConcatOp should not be null.");
const size_t level = static_cast<size_t>(ctx->Attrs().Get<int>("level"));
const size_t axis = static_cast<size_t>(ctx->Attrs().Get<int>("axis"));
PADDLE_ENFORCE(level == 0UL || level == 1UL,
"The sequence_concat operator only accepts sequence "
"or a nested sequence as its input.");
auto ins_dims = ctx->GetInputsDim("X");
framework::DDim out_dims = ins_dims[0];
const size_t n = ins_dims.size();
for (size_t i = 1; i < n; ++i) {
out_dims[axis] += ins_dims[i][axis];
}
ctx->SetOutputDim("Out", out_dims);
}
};
class SequenceConcatOpMaker : public framework::OpProtoAndCheckerMaker {
public:
SequenceConcatOpMaker(framework::OpProto* proto,
framework::OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X",
"(A vector of LoDTensor), the input is a vector of LoDTensor, "
"each of which is a variable-length sequence or nested sequence.")
.AsDuplicable();
AddOutput("Out",
"(A LoDTensor), the variable-length output of "
"sequence_concat Op.");
AddAttr<int>("axis",
"(int, default 0)"
"The axis which the inputs will be joined with. "
"If axis is 0, the inputs will be joined with LoD index.")
.SetDefault(0);
AddAttr<int>("level",
"(int, default 0)"
"The level at which the inputs will be joined. "
"If the level is 0, the inputs will be joined at the nested "
"sequence level. "
"If the level is 1, the inputs will be joined at the "
"sequence level. "
"The level should be less than the level number of inputs.")
.SetDefault(0);
AddComment(R"DOC(
The sequence_concat operator concatenates multiple LoDTensors.
It only supports sequence (LoD Tensor with level number is 1)
or a nested sequence (LoD tensor with level number is 2) as its input.
- Case1:
If the axis is other than 0(here, axis is 1 and level is 1),
each input should have the same LoD information and the LoD
information of the output keeps the same as the input.
LoD(x0) = {{0,2,4}, {0,1,2,3,4}}; Dims(x0) = (4,3,4)
LoD(x1) = {{0,2,4}, {0,1,2,3,4}}; Dims(x1) = (4,4,4)
LoD(Out) = {{0,2,4}, {0,1,2,3,4}}; Dims(Out) = (4,7,4)
- Case2:
If the axis is 0(here, leve is 0), the inputs are concatenated along
time steps, the LoD information of the output need to re-compute.
LoD(x0) = {{0,2,4}, {0,1,2,3,4}}; Dims(x0) = (4,3,4)
LoD(x1) = {{0,3,5}, {0,1,2,3,5}}; Dims(x1) = (5,3,4)
LoD(Out) = {{0,5,9}, {0,1,2,3,4,5,6,7,9}}; Dims(Out) = (9,3,4)
- Case3:
If the axis is 0(here, level is 1).
LoD(x0) = {{0,2,4}, {0,1,2,3,4}}; Dims(x0) = (4,3,4)
LoD(x1) = {{0,3,5}, {0,1,3,4,5}}; Dims(x1) = (5,3,4)
LoD(Out) = {{0,5,9}, {0,2,5,7,9}}; Dims(Out) = (9,3,4)
NOTE: The levels of all the inputs should be the same.
)DOC");
}
};
class SequenceConcatGradOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
"The gradient of Out should not be null.");
PADDLE_ENFORCE(ctx->HasOutputs(framework::GradVarName("X")),
"The gradient of X should not be null.");
ctx->SetOutputsDim(framework::GradVarName("X"), ctx->GetInputsDim("X"));
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP(sequence_concat, ops::SequenceConcatOp, ops::SequenceConcatOpMaker,
sequence_concat_grad, ops::SequenceConcatGradOp);
REGISTER_OP_CPU_KERNEL(
sequence_concat,
ops::SequenceConcatOpKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(
sequence_concat_grad,
ops::SequenceConcatGradOpKernel<paddle::platform::CPUPlace, float>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#define EIGEN_USE_GPU
#include "paddle/operators/sequence_concat_op.h"
namespace ops = paddle::operators;
REGISTER_OP_GPU_KERNEL(
sequence_concat,
ops::SequenceConcatOpKernel<paddle::platform::GPUPlace, float>);
REGISTER_OP_GPU_KERNEL(
sequence_concat_grad,
ops::SequenceConcatGradOpKernel<paddle::platform::GPUPlace, float>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/framework/op_registry.h"
#include "paddle/operators/strided_memcpy.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
using LoD = framework::LoD;
template <typename T>
LoD concatLoD(const std::vector<const T*> ins, const size_t axis,
const size_t level) {
auto out_lod = ins[0]->lod();
const size_t n = ins.size();
if (axis == 0UL) {
for (size_t i = 1; i < n; ++i) {
for (size_t j = 0; j < ins[i]->lod()[0].size(); ++j) {
out_lod[0][j] += ins[i]->lod()[0][j];
}
if (ins[0]->NumLevels() == 2) {
for (size_t j = 1; j < ins[i]->lod()[1].size(); ++j) {
if (level == 0UL) {
out_lod[1].push_back(out_lod[1].back() + ins[i]->lod()[1][j] -
ins[i]->lod()[1][j - 1]);
} else if (level == 1UL) {
out_lod[1][j] += ins[1]->lod()[1][j];
}
}
}
}
}
return out_lod;
}
template <typename Place, typename T>
class SequenceConcatOpKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto ins = ctx.MultiInput<LoDTensor>("X");
auto* out = ctx.Output<LoDTensor>("Out");
const size_t axis = static_cast<size_t>(ctx.Attr<int>("axis"));
const size_t level = static_cast<size_t>(ctx.Attr<int>("level"));
const size_t n = ins.size();
for (size_t i = 1; i < n; ++i) {
PADDLE_ENFORCE_EQ(ins[0]->NumLevels(), ins[i]->NumLevels(),
"The levels of all the input LoDTensors "
"should be the same.");
PADDLE_ENFORCE_EQ(ins[0]->dims().size(), ins[i]->dims().size(),
"The dimension size of all the input LoDTensors "
"should be the same.");
const size_t dims_size = ins[i]->dims().size();
for (size_t j = 0; j < dims_size; ++j) {
if (j == axis) continue;
PADDLE_ENFORCE_EQ(ins[0]->dims()[j], ins[i]->dims()[j],
"Except for the dimension of the specified "
"axis along which all the inputs are concatenated, "
"dimensions of all the other axises of the input "
"LoDTensors should be the same.");
}
}
PADDLE_ENFORCE_GT(ins[0]->NumLevels(), level,
"The levels of all the input LoDTensors "
"should be greater than the specify level");
out->mutable_data<T>(ctx.GetPlace());
auto out_lod = concatLoD<LoDTensor>(ins, axis, level);
out->set_lod(out_lod);
auto out_lod_level = out_lod[level];
for (size_t i = 0; i < out_lod_level.size() - 1; ++i) {
Tensor out_t = out->Slice<T>(static_cast<int>(out_lod_level[i]),
static_cast<int>(out_lod_level[i + 1]));
auto out_stride = framework::stride(out_t.dims());
size_t offset = 0;
for (size_t j = 0; j < n; ++j) {
auto in_lod_level = ins[j]->lod()[level];
auto in_stride = framework::stride(ins[j]->dims());
Tensor in_t = ins[j]->Slice<T>(static_cast<int>(in_lod_level[i]),
static_cast<int>(in_lod_level[i + 1]));
size_t axis_dim = in_t.dims()[axis];
StridedMemcpy<T>(ctx.device_context(), in_t.data<T>(), in_stride,
in_t.dims(), out_stride, out_t.data<T>() + offset);
offset += axis_dim * in_stride[axis];
}
}
}
};
template <typename Place, typename T>
class SequenceConcatGradOpKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto ins = ctx.MultiInput<framework::LoDTensor>("X");
auto* out_grad =
ctx.Input<framework::LoDTensor>(framework::GradVarName("Out"));
auto x_grads =
ctx.MultiOutput<framework::LoDTensor>(framework::GradVarName("X"));
size_t axis = static_cast<size_t>(ctx.Attr<int>("axis"));
size_t level = static_cast<size_t>(ctx.Attr<int>("level"));
const size_t n = x_grads.size();
// Set Grad(X) LoD as X
for (size_t i = 0; i < n; i++) {
x_grads[i]->set_lod(ins[i]->lod());
x_grads[i]->mutable_data<T>(ctx.GetPlace());
}
auto out_lod = concatLoD<LoDTensor>(ins, axis, level);
auto out_lod_level = out_lod[level];
for (size_t i = 0; i < out_lod_level.size() - 1; ++i) {
Tensor out_grad_t =
out_grad->Slice<T>(static_cast<int>(out_lod_level[i]),
static_cast<int>(out_lod_level[i + 1]));
auto out_grad_stride = framework::stride(out_grad_t.dims());
size_t offset = 0;
for (size_t j = 0; j < n; ++j) {
auto x_grad_lod_level = x_grads[j]->lod()[level];
auto x_grad_stride = framework::stride(x_grads[j]->dims());
Tensor x_grad_t =
x_grads[j]->Slice<T>(static_cast<int>(x_grad_lod_level[i]),
static_cast<int>(x_grad_lod_level[i + 1]));
size_t axis_dim = x_grad_t.dims()[axis];
StridedMemcpy<T>(ctx.device_context(), out_grad_t.data<T>() + offset,
out_grad_stride, out_grad_t.dims(), x_grad_stride,
x_grad_t.data<T>());
offset += axis_dim * out_grad_stride[axis];
}
}
}
};
} // namespace operators
} // namespace paddle
......@@ -71,23 +71,32 @@ class ScopedTensorDescriptor {
inline cudnnTensorDescriptor_t descriptor(const cudnnTensorFormat_t format,
const cudnnDataType_t type,
const std::vector<int>& dims) {
// the format is not used now, but it maybe useful feature
const std::vector<int>& dims,
const int groups = 1) {
// the format is not used now, will add later
std::vector<int> strides(dims.size());
strides[dims.size() - 1] = 1;
for (int i = dims.size() - 2; i >= 0; i--) {
strides[i] = dims[i + 1] * strides[i + 1];
}
// Update tensor descriptor dims setting if groups > 1
// FIXME(typhoonzero): Assume using NCHW order
std::vector<int> dims_with_group(dims.begin(), dims.end()); // copy
if (groups > 1) {
dims_with_group[1] = dims_with_group[1] / groups;
}
PADDLE_ENFORCE(dynload::cudnnSetTensorNdDescriptor(
desc_, type, dims.size(), dims.data(), strides.data()));
desc_, type, dims_with_group.size(), dims_with_group.data(),
strides.data()));
return desc_;
}
template <typename T>
inline cudnnTensorDescriptor_t descriptor(const DataLayout& order,
const std::vector<int>& dims) {
return descriptor(GetCudnnTensorFormat(order), CudnnDataType<T>::type,
dims);
const std::vector<int>& dims,
const int groups = 1) {
return descriptor(GetCudnnTensorFormat(order), CudnnDataType<T>::type, dims,
groups);
}
private:
......@@ -106,18 +115,29 @@ class ScopedFilterDescriptor {
inline cudnnFilterDescriptor_t descriptor(const cudnnTensorFormat_t format,
const cudnnDataType_t type,
const std::vector<int>& kernel) {
// filter layout: output input spatial_dim_y spatial_dim_x
const std::vector<int>& kernel,
const int groups = 1) {
// filter layout: MCHW, where M is the number of
// output image channels, C is the number of input image channels,
// H and W is height and width of filter.
std::vector<int> kernel_with_group(kernel.begin(), kernel.end());
if (groups > 1) {
// M /= groups
kernel_with_group[0] /= groups;
// NOTE: input filter(C) of the filter is already asserted to be C/groups.
}
PADDLE_ENFORCE(dynload::cudnnSetFilterNdDescriptor(
desc_, type, format, kernel.size(), kernel.data()));
desc_, type, format, kernel_with_group.size(),
kernel_with_group.data()));
return desc_;
}
template <typename T>
inline cudnnFilterDescriptor_t descriptor(const DataLayout& order,
const std::vector<int>& kernel) {
const std::vector<int>& kernel,
const int groups = 1) {
return descriptor(GetCudnnTensorFormat(order), CudnnDataType<T>::type,
kernel);
kernel, groups);
}
private:
......
if(WITH_PYTHON)
cc_library(paddle_pybind SHARED
SRCS pybind.cc exception.cc protobuf.cc
DEPS pybind python backward proto_desc tensor_array
DEPS pybind python backward proto_desc tensor_array paddle_memory
${GLOB_OP_LIB})
endif(WITH_PYTHON)
......@@ -15,6 +15,7 @@ limitations under the License. */
#include "paddle/pybind/protobuf.h"
#include <deque>
#include <iostream>
#include "paddle/framework/backward.h"
#include "paddle/framework/block_desc.h"
#include "paddle/framework/op_desc.h"
#include "paddle/framework/program_desc.h"
......@@ -116,6 +117,11 @@ void BindProgramDesc(py::module &m) {
py::return_value_policy::reference)
.def("append_block", &ProgramDescBind::AppendBlock,
py::return_value_policy::reference)
.def("append_backward",
[](ProgramDescBind &program_desc,
const std::unordered_set<std::string> &no_grad_vars) {
AppendBackward(program_desc, no_grad_vars);
})
.def("block", &ProgramDescBind::Block, py::return_value_policy::reference)
.def("num_blocks", &ProgramDescBind::Size);
}
......@@ -199,6 +205,7 @@ void BindOpDesc(py::module &m) {
.def("attr", &OpDescBind::GetAttr)
.def("set_block_attr", &OpDescBind::SetBlockAttr)
.def("get_block_attr", &OpDescBind::GetBlockAttr)
.def("check_attrs", &OpDescBind::CheckAttrs)
.def("infer_shape", &OpDescBind::InferShape);
}
......
......@@ -57,7 +57,18 @@ struct CastToPyBufferImpl<true, I, ARGS...> {
}
framework::Tensor dst_tensor;
if (paddle::platform::is_gpu_place(tensor.place())) {
dst_tensor.CopyFrom<CUR_TYPE>(tensor, platform::CPUPlace());
#ifdef PADDLE_WITH_CUDA
auto *src_ptr = static_cast<const void *>(tensor.data<CUR_TYPE>());
auto *dst_ptr = static_cast<void *>(dst_tensor.mutable_data<CUR_TYPE>(
tensor.dims(), platform::CPUPlace()));
// TODO(qijun): Here we use default CUDA stream to set GPU Tensor to
// a Python numpy array. It's better to manage CDUA stream unifiedly.
paddle::platform::GpuMemcpySync(dst_ptr, src_ptr,
sizeof(CUR_TYPE) * tensor.numel(),
cudaMemcpyDeviceToHost);
#else
PADDLE_THROW("'GPUPlace' is not supported in CPU only device.");
#endif
} else if (paddle::platform::is_cpu_place(tensor.place())) {
dst_tensor = tensor;
}
......@@ -120,6 +131,8 @@ void PyCUDATensorSetFromArray(
self.Resize(framework::make_ddim(dims));
auto *dst = self.mutable_data<T>(place);
// TODO(qijun): Here we use default CUDA stream to set a Python numpy
// array to a GPU Tensor. It's better to manage CDUA stream unifiedly.
paddle::platform::GpuMemcpySync(dst, array.data(), sizeof(T) * array.size(),
cudaMemcpyHostToDevice);
}
......
file(GLOB proto_filenames . *.proto)
if (MOBILE_INFERENCE)
file(GLOB proto_filenames . ModelConfig.proto ParameterConfig.proto
TrainerConfig.proto DataConfig.proto)
else()
file(GLOB proto_filenames . *.proto)
endif()
include_directories(${CMAKE_CURRENT_BINARY_DIR})
proto_library(paddle_proto SRCS ${proto_filenames})
......
......@@ -363,5 +363,26 @@ class TestSoftsign(OpTest):
self.check_grad(['X'], 'Y', max_relative_error=0.007)
class TestThresholdedRelu(OpTest):
def setUp(self):
self.op_type = "thresholded_relu"
threshold = 0.25
self.relative_error = 0.005
X = np.random.uniform(-1, 1, [11, 17]).astype("float32")
# Same reason as TestAbs
X[np.abs(X - threshold) < self.relative_error] = threshold + 0.2
self.inputs = {'X': X}
self.attrs = {'threshold': threshold}
self.outputs = {'Y': (X > threshold) * X}
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(['X'], 'Y', max_relative_error=self.relative_error)
if __name__ == "__main__":
unittest.main()
......@@ -3,70 +3,56 @@ import numpy as np
from op_test import OpTest
def conv2d_forward_naive(input, filter, group, conv_param):
in_n, in_c, in_h, in_w = input.shape
out_c, f_c, f_h, f_w = filter.shape
assert f_c * group == in_c
assert np.mod(out_c, group) == 0
sub_out_c = out_c / group
stride, pad = conv_param['stride'], conv_param['pad']
out_h = 1 + (in_h + 2 * pad[0] - f_h) / stride[0]
out_w = 1 + (in_w + 2 * pad[1] - f_w) / stride[1]
out = np.zeros((in_n, out_c, out_h, out_w))
input_pad = np.pad(input, ((0, ), (0, ), (pad[0], ), (pad[1], )),
mode='constant',
constant_values=0)
for i in range(out_h):
for j in range(out_w):
for g in range(group):
input_pad_masked = \
input_pad[:, g * f_c:(g + 1) * f_c,
i * stride[0]:i * stride[0] + f_h,
j * stride[1]:j * stride[1] + f_w]
f_sub = filter[g * sub_out_c:(g + 1) * sub_out_c, :, :, :]
for k in range(sub_out_c):
out[:, g * sub_out_c + k, i, j] = \
np.sum(input_pad_masked * f_sub[k, :, :, :],
axis=(1, 2, 3))
return out
class TestConv2dOp(OpTest):
def setUp(self):
self.init_groups()
self.op_type = "conv2d"
batch_size = 2
input_channels = 3
input_height = 5
input_width = 5
output_channels = 6
filter_height = 3
filter_width = 3
stride = 1
padding = 0
output_height = (input_height - filter_height + 2 * padding
) / stride + 1
output_width = (input_width - filter_width + 2 * padding) / stride + 1
input = np.random.random((batch_size, input_channels, input_height,
input_width)).astype("float32")
filter = np.random.random(
(output_channels, input_channels / self.groups, filter_height,
filter_width)).astype("float32")
output = np.ndarray(
(batch_size, output_channels, output_height, output_width))
self.init_op_type()
self.init_group()
self.init_test_case()
conv2d_param = {'stride': self.stride, 'pad': self.pad}
input = np.random.random(self.input_size).astype("float32")
filter = np.random.random(self.filter_size).astype("float32")
output = conv2d_forward_naive(input, filter, self.groups, conv2d_param)
self.inputs = {'Input': input, 'Filter': filter}
self.attrs = {
'strides': [1, 1],
'paddings': [0, 0],
'groups': self.groups
'strides': self.stride,
'paddings': self.pad,
'groups': self.groups,
'dilations': self.dilations
}
output_group_channels = output_channels / self.groups
input_group_channels = input_channels / self.groups
for batchid in xrange(batch_size):
for group in xrange(self.groups):
for outchannelid in range(group * output_group_channels,
(group + 1) * output_group_channels):
for rowid in xrange(output_height):
for colid in xrange(output_width):
start_h = (rowid * stride) - padding
start_w = (colid * stride) - padding
output_value = 0.0
for inchannelid in range(
group * input_group_channels,
(group + 1) * input_group_channels):
for frowid in xrange(filter_height):
for fcolid in xrange(filter_width):
input_value = 0.0
inrowid = start_h + frowid
incolid = start_w + fcolid
if ((inrowid >= 0 and
inrowid < input_height) and
(incolid >= 0 and
incolid < input_width)):
input_value = input[batchid][
inchannelid][inrowid][incolid]
filter_value = filter[outchannelid][
inchannelid % input_group_channels][
frowid][fcolid]
output_value += input_value * filter_value
output[batchid][outchannelid][rowid][
colid] = output_value
self.outputs = {'Output': output}
def test_check_output(self):
......@@ -90,14 +76,47 @@ class TestConv2dOp(OpTest):
max_relative_error=0.05,
no_grad_set=set(['Input']))
def init_groups(self):
def init_test_case(self):
# self.groups = 1
# self.op_type = "conv2d"
self.pad = [0, 0]
self.stride = [1, 1]
self.dilations = [1, 1]
self.input_size = [2, 3, 5, 5] # NCHW
assert np.mod(self.input_size[1], self.groups) == 0
f_c = self.input_size[1] / self.groups
self.filter_size = [6, f_c, 3, 3]
def init_group(self):
self.groups = 1
def init_op_type(self):
self.op_type = "conv2d"
class TestWithGroup(TestConv2dOp):
def init_groups(self):
def init_group(self):
self.groups = 3
def init_op_type(self):
self.op_type = "conv2d"
class TestCudnn(TestConv2dOp):
def init_group(self):
self.groups = 1
def init_op_type(self):
self.op_type = "conv_cudnn"
class TestCudnnWithGroup(TestConv2dOp):
def init_group(self):
self.groups = 3
def init_op_type(self):
self.op_type = "conv_cudnn"
if __name__ == '__main__':
unittest.main()
......@@ -96,7 +96,26 @@ class TestConv3dOp(OpTest):
self.op_type = "conv3d"
class TestWithGroup(TestConv3dOp):
class TestCase1(TestConv3dOp):
def init_test_case(self):
# self.groups = 1
# self.op_type = "conv3d"
self.pad = [1, 1, 1]
self.stride = [1, 1, 1]
self.input_size = [2, 3, 5, 5, 5] # NCDHW
assert np.mod(self.input_size[1], self.groups) == 0
f_c = self.input_size[1] / self.groups
self.filter_size = [6, f_c, 3, 3, 3]
def init_group(self):
self.groups = 1
def init_op_type(self):
self.op_type = "conv3d"
'''
class TestWithGroup1(TestConv3dOp):
def init_group(self):
self.groups = 3
......@@ -104,5 +123,13 @@ class TestWithGroup(TestConv3dOp):
self.op_type = "conv3d"
class TestWithGroup2(TestCase1):
def init_group(self):
self.groups = 3
def init_op_type(self):
self.op_type = "conv3d"
'''
if __name__ == '__main__':
unittest.main()
import unittest
import numpy as np
from op_test import OpTest
class TestDecayedAdagradOp1(OpTest):
''' Test DecayedAdagrad operator with explicit attributes
'''
def setUp(self):
self.op_type = "decayed_adagrad"
param = np.random.random((123, 321)).astype("float32")
grad = np.random.random((123, 321)).astype("float32")
moment = np.zeros((123, 321)).astype("float32")
lr = 0.01
decay = 0.80
epsilon = 1e-8
self.inputs = {
'Param': param,
'Grad': grad,
'Moment': moment,
'LearningRate': np.array([lr]).astype("float32")
}
self.attrs = {'decay': decay, 'epsilon': epsilon}
moment_out = decay * moment + (1 - decay) * grad * grad
param_out = param - lr * grad / (np.sqrt(moment_out) + epsilon)
self.outputs = {'ParamOut': param_out, 'MomentOut': moment_out}
def test_check_output(self):
self.check_output()
class TestDecayedAdagradOp2(OpTest):
''' Test DecayedAdagrad operator with default attributes
'''
def setUp(self):
self.op_type = "decayed_adagrad"
param = np.random.random((123, 321)).astype("float32")
grad = np.random.random((123, 321)).astype("float32")
moment = np.zeros((123, 321)).astype("float32")
lr = 0.01
decay = 0.95
epsilon = 1e-6
self.inputs = {
'Param': param,
'Grad': grad,
'Moment': moment,
'LearningRate': np.array([lr]).astype("float32")
}
self.attrs = {'decay': decay, 'epsilon': epsilon}
moment_out = decay * moment + (1 - decay) * grad * grad
param_out = param - lr * grad / (np.sqrt(moment_out) + epsilon)
self.outputs = {'ParamOut': param_out, 'MomentOut': moment_out}
def test_check_output(self):
self.check_output()
if __name__ == "__main__":
unittest.main()
import unittest
import numpy as np
from op_test import OpTest
class TestMarginRankLossOp(OpTest):
def setUp(self):
self.op_type = "margin_rank_loss"
batch_size = 5
margin = 0.5
# labels_{i} = {-1, 1}
label = 2 * np.random.randint(
0, 2, size=(batch_size, 1)).astype("float32") - 1
x1 = np.random.random((batch_size, 1)).astype("float32")
x2 = np.random.random((batch_size, 1)).astype("float32")
# loss = max(0, -label * (x1 - x2) + margin)
loss = -label * (x1 - x2) + margin
loss = np.where(loss > 0, loss, 0)
act = np.where(loss > 0, 1., 0.)
self.attrs = {'margin': margin}
self.inputs = {'Label': label, 'X1': x1, 'X2': x2}
self.outputs = {'Activated': act, 'Out': loss}
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(["X1", "X2"], "Out")
def test_check_grad_ignore_x1(self):
self.check_grad(["X2"], "Out", no_grad_set=set('X1'))
def test_check_grad_ignore_x2(self):
self.check_grad(["X1"], "Out", no_grad_set=set('X2'))
if __name__ == '__main__':
unittest.main()
import unittest
import paddle.v2.framework.core as core
from paddle.v2.framework.graph import g_program
......@@ -31,6 +33,34 @@ class TestProgram(unittest.TestCase):
self.assertEqual(1, b.idx)
self.assertEqual(0, b.parent_idx)
def test_append_backward(self):
prog = core.ProgramDesc.__create_program_desc__()
self.assertIsNotNone(prog)
block = prog.block(0)
self.assertIsNotNone(block)
mul_op_desc = block.append_op()
mul_op_desc.set_type("mul")
mul_op_desc.set_input("X", ["x1"])
mul_op_desc.set_input("Y", ["y1"])
mul_op_desc.set_output("Out", ["out1"])
sum_op_desc = block.append_op()
sum_op_desc.set_type("elementwise_add")
sum_op_desc.set_input("X", ["out1"])
sum_op_desc.set_input("Y", ["b1"])
sum_op_desc.set_output("Out", ["out2"])
expect_ops = [
"mul", "elementwise_add", "elementwise_add_grad", "mul_grad"
]
actual_ops = []
prog.append_backward(set())
for op in block.all_ops():
actual_ops.append(op.type())
print(actual_ops)
self.assertEqual(actual_ops, expect_ops)
if __name__ == '__main__':
unittest.main()
......@@ -55,6 +55,12 @@ class TestOpDesc(unittest.TestCase):
op.set_block_attr("block_attr", prog.block(0))
self.assertEqual(0, op.get_block_attr("block_attr"))
mul_op = block.append_op()
mul_op.set_type("mul")
mul_op.check_attrs()
self.assertEqual(mul_op.attr("x_num_col_dims"), 1)
self.assertEqual(mul_op.attr("y_num_col_dims"), 1)
class TestProgramDesc(unittest.TestCase):
def test_instance(self):
......
import unittest
import numpy as np
import sys
from op_test import OpTest
class TestConcatOp(OpTest):
def set_data(self):
# two level, batch size is 3
x0 = np.random.random((4, 6, 3)).astype('float32')
lod0 = [[0, 2, 4], [0, 1, 2, 3, 4]]
x1 = np.random.random((4, 8, 3)).astype('float32')
lod1 = [[0, 2, 4], [0, 1, 2, 3, 4]]
axis = 1
level = 1
self.inputs = {'X': [('x0', (x0, lod0)), ('x1', (x1, lod1))]}
self.attrs = {'axis': axis, 'level': level}
outs = []
for i in range(4):
sub_x0 = x0[lod0[level][i]:lod0[level][i + 1], :]
sub_x1 = x1[lod1[level][i]:lod1[level][i + 1], :]
outs.append(np.concatenate((sub_x0, sub_x1), axis=axis))
self.outputs = {'Out': np.concatenate(outs, axis=0)}
def setUp(self):
self.op_type = "sequence_concat"
self.set_data()
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(['x0'], 'Out')
class TestConcatOpDiffLod(TestConcatOp):
def set_data(self):
# two level, batch size is 3
x0 = np.random.random((4, 6, 3)).astype('float32')
lod0 = [[0, 2, 4], [0, 1, 2, 3, 4]]
x1 = np.random.random((5, 6, 3)).astype('float32')
lod1 = [[0, 3, 5], [0, 1, 2, 3, 5]]
axis = 0
level = 1
self.inputs = {'X': [('x0', (x0, lod0)), ('x1', (x1, lod1))]}
self.attrs = {'axis': axis, 'level': level}
outs = []
for i in range(4):
sub_x0 = x0[lod0[level][i]:lod0[level][i + 1], :]
sub_x1 = x1[lod1[level][i]:lod1[level][i + 1], :]
outs.append(np.concatenate((sub_x0, sub_x1), axis=axis))
self.outputs = {'Out': np.concatenate(outs, axis=0)}
class TestConcatOpLevelZero(TestConcatOp):
def set_data(self):
# two level, batch size is 3
x0 = np.random.random((4, 3, 4)).astype('float32')
lod0 = [[0, 2, 4], [0, 1, 2, 3, 4]]
x1 = np.random.random((5, 3, 4)).astype('float32')
lod1 = [[0, 3, 5], [0, 1, 3, 4, 5]]
axis = 0
level = 0
self.inputs = {'X': [('x0', (x0, lod0)), ('x1', (x1, lod1))]}
self.attrs = {'axis': axis, 'level': level}
outs = []
for i in range(2):
sub_x0 = x0[lod0[level][i]:lod0[level][i + 1], :]
sub_x1 = x1[lod1[level][i]:lod1[level][i + 1], :]
outs.append(np.concatenate((sub_x0, sub_x1), axis=axis))
self.outputs = {'Out': np.concatenate(outs, axis=0)}
if __name__ == '__main__':
sys.exit(0)
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册