未验证 提交 54ef9d06 编写于 作者: H Hui Zhang 提交者: GitHub

ctc grad compute on gpu (#36756)

* Revert "Align CTC grad scale same with ESPNet (#34729)"

This reverts commit 10f9644c.

* ctc grad compute on gpu
上级 e7842ba6
......@@ -33,8 +33,7 @@ void CopyValidData(framework::Tensor* dst_tensor,
const framework::Tensor* src_tensor,
const framework::Vector<size_t>& seq_offsets,
int pad_seq_len, int step_width, bool norm_by_len,
bool norm_by_batchsize, bool norm_by_total_logits_len,
int total_logits_len, CopyType type, PadLayout layout) {
CopyType type, PadLayout layout) {
int seq_num = seq_offsets.size() - 1;
const T* src_data = src_tensor->data<T>();
T* dst_data = dst_tensor->data<T>();
......@@ -55,21 +54,7 @@ void CopyValidData(framework::Tensor* dst_tensor,
int pad_data_offset = layout == kBatchLengthWidth
? seq_idx * pad_seq_len * step_width
: seq_idx * step_width;
float scale = 1.0f;
if (norm_by_total_logits_len) {
scale = 1.0f / static_cast<float>(total_logits_len);
VLOG(3) << "[warpctc grad][norm_by_total_logits_len]: scale " << scale
<< "total_logits_len " << total_logits_len;
} else if (norm_by_batchsize) {
scale = 1.0f / static_cast<float>(seq_num);
VLOG(3) << "[warpctc grad][norm_by_batchsize]: scale " << scale << "B "
<< seq_num;
} else if (norm_by_len) {
scale = 1.0f / static_cast<float>(valid_seq_len);
VLOG(3) << "[warpctc grad][norm_by_len]: scale " << scale << "T "
<< valid_seq_len;
}
float scale = 1.0f / static_cast<float>(valid_seq_len);
for (int step_idx = 0; step_idx < valid_seq_len; ++step_idx) {
const T* src =
......@@ -112,8 +97,6 @@ class PaddingLoDTensorFunctor<platform::CPUDeviceContext, T> {
framework::LoDTensor* pad_tensor,
const framework::LoDTensor& pad_value, int pad_seq_len = -1,
int lod_level = 0, bool norm_by_times = false,
bool norm_by_batchsize = false,
bool norm_by_total_logits_len = false,
const PadLayout layout = kBatchLengthWidth) {
auto seq_lod = seq_tensor.lod();
const auto seq_offsets = framework::ToAbsOffset(seq_lod)[lod_level];
......@@ -148,8 +131,7 @@ class PaddingLoDTensorFunctor<platform::CPUDeviceContext, T> {
}
CopyValidData<T>(pad_tensor, &seq_tensor, seq_offsets, pad_seq_len,
step_width, norm_by_times, false, false, 0, kSeqToPad,
layout);
step_width, norm_by_times, kSeqToPad, layout);
}
};
......@@ -160,8 +142,6 @@ class UnpaddingLoDTensorFunctor<platform::CPUDeviceContext, T> {
const framework::LoDTensor& pad_tensor,
framework::LoDTensor* seq_tensor, int pad_seq_len = -1,
int lod_level = 0, bool norm_by_times = false,
bool norm_by_batchsize = false,
bool norm_by_total_logits_len = false,
const PadLayout layout = kBatchLengthWidth) {
auto seq_offsets = framework::ToAbsOffset(seq_tensor->lod())[lod_level];
const auto& seq_tensor_dims = seq_tensor->dims();
......@@ -169,16 +149,13 @@ class UnpaddingLoDTensorFunctor<platform::CPUDeviceContext, T> {
if (pad_seq_len == -1) {
pad_seq_len = MaximumSequenceLength(seq_offsets);
}
int total_logits_len = TotalSequenceLength(seq_offsets);
int step_width = seq_tensor->numel() / seq_tensor_dims[0];
CheckDims(seq_tensor_dims, pad_tensor_dims, seq_offsets, pad_seq_len,
step_width, layout);
CopyValidData<T>(seq_tensor, &pad_tensor, seq_offsets, pad_seq_len,
step_width, norm_by_times, norm_by_batchsize,
norm_by_total_logits_len, total_logits_len, kPadToSeq,
layout);
step_width, norm_by_times, kPadToSeq, layout);
}
};
......
......@@ -23,9 +23,7 @@ template <typename T, CopyType Type>
__global__ void SequencePaddingKernel(
T* dst, const T* src, const T* pad_value, bool is_constant_pad,
const size_t* seq_offsets, const size_t seq_num, const size_t pad_seq_len,
const size_t step_width, bool norm_by_len, bool norm_by_batchsize,
bool norm_by_total_logits_len, int total_logits_len,
const PadLayout layout) {
const size_t step_width, bool norm_by_len, const PadLayout layout) {
size_t seq_idx = blockIdx.y;
size_t seq_len = seq_offsets[seq_idx + 1] - seq_offsets[seq_idx];
......@@ -40,15 +38,7 @@ __global__ void SequencePaddingKernel(
src + (Type == kSeqToPad ? seq_data_offset : pad_data_offset);
if (step_idx < seq_len) {
float scale = 1.0f;
if (norm_by_total_logits_len) {
scale = 1.0f / static_cast<float>(total_logits_len);
} else if (norm_by_batchsize) {
scale = 1.0f / static_cast<float>(seq_num);
} else if (norm_by_len) {
scale = norm_by_len ? (1.0f / static_cast<float>(seq_len)) : 1.0f;
}
float scale = norm_by_len ? (1.0f / static_cast<float>(seq_len)) : 1.0f;
for (size_t i = threadIdx.x; i < step_width; i += blockDim.x) {
dst_data[i] = scale * src_data[i];
}
......@@ -67,8 +57,6 @@ class PaddingLoDTensorFunctor<platform::CUDADeviceContext, T> {
framework::LoDTensor* pad_tensor,
const framework::LoDTensor& pad_value, int pad_seq_len = -1,
int lod_level = 0, bool norm_by_times = false,
bool norm_by_batchsize = false,
bool norm_by_total_logits_len = false,
const PadLayout layout = kBatchLengthWidth) {
auto seq_lod = seq_tensor.lod();
const auto seq_offsets = framework::ToAbsOffset(seq_lod)[lod_level];
......@@ -119,7 +107,7 @@ class PaddingLoDTensorFunctor<platform::CUDADeviceContext, T> {
SequencePaddingKernel<T, kSeqToPad><<<grid, threads, 0, context.stream()>>>(
pad_data, seq_data, pad_value_data, pad_value.numel() == 1,
seq_offsets.CUDAData(context.GetPlace()), seq_num, pad_seq_len,
step_width, norm_by_times, false, false, 0, layout);
step_width, norm_by_times, layout);
}
};
......@@ -130,8 +118,6 @@ class UnpaddingLoDTensorFunctor<platform::CUDADeviceContext, T> {
const framework::LoDTensor& pad_tensor,
framework::LoDTensor* seq_tensor, int pad_seq_len = -1,
int lod_level = 0, bool norm_by_times = false,
bool norm_by_batchsize = false,
bool norm_by_total_logits_len = false,
const PadLayout layout = kBatchLengthWidth) {
auto seq_offsets = framework::ToAbsOffset(seq_tensor->lod())[lod_level];
const auto& seq_tensor_dims = seq_tensor->dims();
......@@ -140,7 +126,6 @@ class UnpaddingLoDTensorFunctor<platform::CUDADeviceContext, T> {
if (pad_seq_len == -1) {
pad_seq_len = max_seq_len;
}
int total_logits_len = TotalSequenceLength(seq_offsets);
int step_width = seq_tensor->numel() / seq_tensor_dims[0];
int seq_num = seq_offsets.size() - 1;
......@@ -174,8 +159,7 @@ class UnpaddingLoDTensorFunctor<platform::CUDADeviceContext, T> {
SequencePaddingKernel<T, kPadToSeq><<<grid, threads, 0, context.stream()>>>(
seq_data, pad_data, nullptr, false,
seq_offsets.CUDAData(context.GetPlace()), seq_num, pad_seq_len,
step_width, norm_by_times, norm_by_batchsize, norm_by_total_logits_len,
total_logits_len, layout);
step_width, norm_by_times, layout);
}
};
......
......@@ -107,8 +107,6 @@ class PaddingLoDTensorFunctor {
framework::LoDTensor* pad_tensor,
const framework::LoDTensor& pad_value, int pad_seq_len = -1,
int lod_level = 0, bool norm_by_times = false,
bool norm_by_batchsize = false,
bool norm_by_total_logits_len = false,
const PadLayout layout = kBatchLengthWidth);
};
......@@ -119,8 +117,6 @@ class UnpaddingLoDTensorFunctor {
const framework::LoDTensor& pad_tensor,
framework::LoDTensor* seq_tensor, int pad_seq_len = -1,
int lod_level = 0, bool norm_by_times = false,
bool norm_by_batchsize = false,
bool norm_by_total_logits_len = false,
const PadLayout layout = kBatchLengthWidth);
};
......
......@@ -66,13 +66,13 @@ void TestSequencePadding(const DeviceContext &context,
}
paddle::operators::math::PaddingLoDTensorFunctor<DeviceContext, T>()(
context, seq, &padding, pad_value, -1, 0, false, false, false,
context, seq, &padding, pad_value, -1, 0, false,
paddle::operators::math::kLengthBatchWidth);
seq_back.set_lod(lod);
seq_back.mutable_data<T>(seq_dims, place);
paddle::operators::math::UnpaddingLoDTensorFunctor<DeviceContext, T>()(
context, padding, &seq_back, -1, 0, false, false, false,
context, padding, &seq_back, -1, 0, false,
paddle::operators::math::kLengthBatchWidth);
if (paddle::platform::is_cpu_place(place)) {
......
......@@ -46,7 +46,7 @@ class SequencePadOpKernel : public framework::OpKernel<T> {
math::PaddingLoDTensorFunctor<DeviceContext, T>()(
ctx.template device_context<DeviceContext>(), *x, out, *pad_value,
padded_length, 0, false, false, false, math::kBatchLengthWidth);
padded_length, 0, false, math::kBatchLengthWidth);
LoDTensor seq_len;
seq_len.Resize(len_t->dims());
......@@ -72,7 +72,7 @@ class SequencePadGradOpKernel : public framework::OpKernel<T> {
math::UnpaddingLoDTensorFunctor<DeviceContext, T>()(
ctx.template device_context<DeviceContext>(), *d_out, d_x,
padded_length, 0, false, false, false, math::kBatchLengthWidth);
padded_length, 0, false, math::kBatchLengthWidth);
}
}
};
......
......@@ -69,8 +69,7 @@ class SequenceUnpadOpKernel : public framework::OpKernel<T> {
int64_t padded_length = x_t->dims()[1];
math::UnpaddingLoDTensorFunctor<DeviceContext, T>()(
dev_ctx, *x_t, out_t, padded_length, 0, false, false, false,
math::kBatchLengthWidth);
dev_ctx, *x_t, out_t, padded_length, 0, false, math::kBatchLengthWidth);
}
};
......@@ -94,7 +93,7 @@ class SequenceUnpadGradOpKernel : public framework::OpKernel<T> {
math::PaddingLoDTensorFunctor<DeviceContext, T>()(
ctx.template device_context<DeviceContext>(), *d_out, d_x, zero_pads,
padded_length, 0, false, false, false, math::kBatchLengthWidth);
padded_length, 0, false, math::kBatchLengthWidth);
}
}
};
......
......@@ -125,17 +125,6 @@ class WarpCTCOpMaker : public framework::OpProtoAndCheckerMaker {
"normalize the gradients by the number of time-step, "
"which is also the sequence's length.")
.SetDefault(false);
AddAttr<bool>(
"norm_by_batchsize",
"(bool, default: false), normalize the loss by the batch size."
"If True, supersedes norm_by_times")
.SetDefault(false);
AddAttr<bool>(
"norm_by_total_logits_len",
"(bool, default: false), normalize the loss by the total number of "
"frames"
"in the batch. If True, supersedes norm_by_batchsize and norm_by_times")
.SetDefault(false);
AddComment(R"DOC(
An operator integrating the open-source
[warp-ctc](https://github.com/baidu-research/warp-ctc) library, which is used in
......@@ -217,21 +206,3 @@ REGISTER_OP_CPU_KERNEL(
warpctc_grad,
ops::WarpCTCGradKernel<paddle::platform::CPUDeviceContext, float>,
ops::WarpCTCGradKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_VERSION(warpctc)
.AddCheckpoint(
R"ROC(
Upgrade warpctc add a new attribute [norm_by_batchsize] and [norm_by_total_logits_len])ROC",
paddle::framework::compatible::OpVersionDesc()
.NewAttr(
"norm_by_batchsize",
"(bool, default: false), normalize the loss by the batch size."
"If True, supersedes norm_by_times",
false)
.NewAttr("norm_by_total_logits_len",
"(bool, default: false), normalize the loss by the total "
"number of "
"frames"
"in the batch. If True, supersedes norm_by_batchsize and "
"norm_by_times",
false));
\ No newline at end of file
......@@ -12,185 +12,9 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <typeinfo>
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/operators/warpctc_op.h"
#include "paddle/fluid/platform/cuda_primitives.h"
#include "paddle/fluid/platform/gpu_info.h"
namespace paddle {
namespace operators {
using platform::PADDLE_CUDA_NUM_THREADS;
template <typename T>
void PrintTensor(const framework::LoDTensor& src,
const framework::ExecutionContext& ctx) {
std::vector<T> vec(src.numel());
TensorToVector(src, ctx.device_context(), &vec);
for (int i = 0; i < static_cast<int>(vec.size()); ++i) {
VLOG(3) << "vec[" << i << "] : " << vec[i];
}
}
template <typename T>
__global__ void ReduceSumKernel(const T* d_in, T* d_out) {
// Allocate shared memory
extern __shared__ int partial_sum[];
// Calculate thread ID
int tid = blockIdx.x * blockDim.x + threadIdx.x;
// Load elements into shared memory
partial_sum[threadIdx.x] = d_in[tid];
__syncthreads();
// Start at 1/2 block stride and divide by two each iteration
for (int s = blockDim.x / 2; s > 0; s >>= 1) {
// Each thread does work unless it is further than the stride
if (threadIdx.x < s) {
partial_sum[threadIdx.x] += partial_sum[threadIdx.x + s];
}
__syncthreads();
}
// Let the thread 0 for this block write it's result to main memory
// Result is inexed by this block
if (threadIdx.x == 0) {
d_out[blockIdx.x] = partial_sum[0];
}
}
template <typename T>
__global__ void CTCGradScaleKernel(T* d_out, const T* d_ctc, const T* d_loss,
int scale, int Tmax, int B, int D) {
int tid = blockIdx.x * blockDim.x + threadIdx.x;
int n_elems = Tmax * B * D;
int b_idx = (tid / D) % B;
for (; tid < n_elems; tid += gridDim.x * blockDim.x) {
d_out[tid] = d_ctc[tid] * d_loss[b_idx] / static_cast<T>(scale);
}
}
template <typename T>
__global__ void CTCGradScaleKernel(T* d_out, const T* d_ctc, const T* d_loss,
int64_t* scale, int Tmax, int B, int D) {
int tid = blockIdx.x * blockDim.x + threadIdx.x;
int n_elems = Tmax * B * D;
int b_idx = (tid / D) % B;
for (; tid < n_elems; tid += gridDim.x * blockDim.x) {
d_out[tid] = d_ctc[tid] * d_loss[b_idx] / static_cast<T>(scale[0]);
}
}
template <typename T>
__global__ void CTCGradBatchScaleKernel(T* d_out, const T* d_ctc,
const T* d_loss, const int64_t* scales,
int Tmax, int B, int D) {
int tid = blockIdx.x * blockDim.x + threadIdx.x;
int n_elems = Tmax * B * D;
int b_idx = (tid / D) % B;
// scale is vector, (B)
for (; tid < n_elems; tid += gridDim.x * blockDim.x) {
d_out[tid] = d_ctc[tid] * d_loss[b_idx] / scales[b_idx];
}
}
template <typename DeviceContext, typename T>
class WarpCTCGradCUDAKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* warpctc_grad = ctx.Input<LoDTensor>("WarpCTCGrad");
auto* logits_grad = ctx.Output<LoDTensor>(framework::GradVarName("Logits"));
const Tensor* loss_grad = ctx.Input<Tensor>(framework::GradVarName("Loss"));
logits_grad->mutable_data<T>(ctx.GetPlace());
bool norm_by_times = ctx.Attr<bool>("norm_by_times");
bool norm_by_batchsize = ctx.Attr<bool>("norm_by_batchsize");
bool norm_by_total_logits_len = ctx.Attr<bool>("norm_by_total_logits_len");
if ((norm_by_times && norm_by_batchsize) ||
(norm_by_times && norm_by_total_logits_len) ||
(norm_by_batchsize && norm_by_total_logits_len)) {
PADDLE_THROW(platform::errors::InvalidArgument(
"[warpctc grad] norm_by_times, norm_by_batchsize and "
"norm_by_total_logits_len "
"should one be true."));
}
if (ctx.HasInput("LogitsLength")) {
auto& dev_ctx = ctx.template device_context<DeviceContext>();
auto stream = dev_ctx.stream();
int max_seq_length = warpctc_grad->dims()[0]; // Tmax
int num_sequences = warpctc_grad->dims()[1]; // B
int seq_width = warpctc_grad->dims()[2]; // D
auto* logits_length = ctx.Input<framework::Tensor>("LogitsLength");
const int64_t* logits_length_ptr = logits_length->data<int64_t>();
int n_elems = max_seq_length * num_sequences * seq_width;
int num_blocks =
(n_elems + PADDLE_CUDA_NUM_THREADS - 1) / PADDLE_CUDA_NUM_THREADS;
int shm_bytes = PADDLE_CUDA_NUM_THREADS * sizeof(T);
auto logits_grad_ptr =
logits_grad->mutable_data<T>(ctx.GetPlace()); // (Tmax, B, D)
auto warpctc_grad_ptr = warpctc_grad->data<T>(); // (Tmax, B, D)
auto loss_grad_ptr = loss_grad->data<T>(); // (B, 1)
if (norm_by_total_logits_len) {
VLOG(3) << "norm_by_total_logits_len no impl ";
// total length
Tensor total_length;
int64_t* total_length_ptr =
total_length.mutable_data<int64_t>({1}, ctx.GetPlace());
int bytes = num_sequences * sizeof(int64_t);
ReduceSumKernel<int64_t><<<1, num_sequences, bytes, stream>>>(
logits_length_ptr, total_length_ptr);
CTCGradScaleKernel<
T><<<num_blocks, PADDLE_CUDA_NUM_THREADS, shm_bytes, stream>>>(
logits_grad_ptr, warpctc_grad_ptr, loss_grad_ptr, total_length_ptr,
max_seq_length, num_sequences, seq_width);
} else if (norm_by_batchsize) {
VLOG(3) << "norm_by_batchsize ";
CTCGradScaleKernel<
T><<<num_blocks, PADDLE_CUDA_NUM_THREADS, shm_bytes, stream>>>(
logits_grad_ptr, warpctc_grad_ptr, loss_grad_ptr, num_sequences,
max_seq_length, num_sequences, seq_width);
} else if (norm_by_times) {
VLOG(3) << "norm_by_times ";
CTCGradBatchScaleKernel<
T><<<num_blocks, PADDLE_CUDA_NUM_THREADS, shm_bytes, stream>>>(
logits_grad_ptr, warpctc_grad_ptr, loss_grad_ptr, logits_length_ptr,
max_seq_length, num_sequences, seq_width);
} else {
VLOG(3) << "default ";
CTCGradScaleKernel<
T><<<num_blocks, PADDLE_CUDA_NUM_THREADS, shm_bytes, stream>>>(
logits_grad_ptr, warpctc_grad_ptr, loss_grad_ptr, 1, max_seq_length,
num_sequences, seq_width);
}
} else {
math::UnpaddingLoDTensorFunctor<DeviceContext, T>()(
ctx.template device_context<DeviceContext>(), *warpctc_grad,
logits_grad, -1, 0, norm_by_times, norm_by_batchsize,
norm_by_total_logits_len, math::kLengthBatchWidth);
const T* loss_grad_data = loss_grad->data<T>();
math::ScaleLoDTensorFunctor<DeviceContext, T>()(
ctx.template device_context<DeviceContext>(), loss_grad_data,
logits_grad);
}
}
};
} // operators
} // paddle
namespace ops = paddle::operators;
// register forward and backward of CUDA OP must in same *.cu file.
// Eigen can be used on GPU device, but must be in *.cu file not *.cu.cc file.
// *.cu.cc also using GCC compiler. *.cu using NVCC compiler
......@@ -199,5 +23,5 @@ REGISTER_OP_CUDA_KERNEL(
ops::WarpCTCKernel<paddle::platform::CUDADeviceContext, double>);
REGISTER_OP_CUDA_KERNEL(
warpctc_grad,
ops::WarpCTCGradCUDAKernel<paddle::platform::CUDADeviceContext, float>,
ops::WarpCTCGradCUDAKernel<paddle::platform::CUDADeviceContext, double>);
ops::WarpCTCGradKernel<paddle::platform::CUDADeviceContext, float>,
ops::WarpCTCGradKernel<paddle::platform::CUDADeviceContext, double>);
\ No newline at end of file
......@@ -17,7 +17,6 @@ limitations under the License. */
#include <vector>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/op_version_registry.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/sequence_padding.h"
#include "paddle/fluid/operators/math/sequence_scale.h"
......@@ -152,7 +151,7 @@ class WarpCTCFunctor {
PADDLE_ENFORCE_EQ(
CTC_STATUS_SUCCESS, status,
platform::errors::PreconditionNotMet(
"warp-ctc [version %d] Error in ComputeCtcLossFunctor: %s",
"warp-ctc [version %d] Error in get_workspace_size: %s",
warpctc_version_, platform::dynload::ctcGetStatusString(status)));
}
......@@ -315,8 +314,8 @@ class WarpCTCKernel : public framework::OpKernel<T> {
math::PaddingLoDTensorFunctor<DeviceContext, T>()(
ctx.template device_context<DeviceContext>(), *logits,
&warpctc_logits, pad_value, -1, 0, false /* norm_by_times */, false,
false, math::kLengthBatchWidth);
&warpctc_logits, pad_value, -1, 0, false /* norm_by_times */,
math::kLengthBatchWidth);
}
const T* warpctc_logits_data = warpctc_logits.data<T>();
......@@ -351,7 +350,7 @@ class WarpCTCKernel : public framework::OpKernel<T> {
math::UnpaddingLoDTensorFunctor<DeviceContext, int>()(
ctx.template device_context<DeviceContext>(), *label,
&warpctc_label, label->dims()[1] /*pad_seq_len*/, 0 /*lod_level*/,
false /*norm_by_times*/, false, false, math::kBatchLengthWidth);
false /*norm_by_times*/, math::kBatchLengthWidth);
} else {
LoDTensor gpu_label;
gpu_label.mutable_data<int>(
......@@ -361,7 +360,7 @@ class WarpCTCKernel : public framework::OpKernel<T> {
math::UnpaddingLoDTensorFunctor<DeviceContext, int>()(
ctx.template device_context<DeviceContext>(), *label, &gpu_label,
label->dims()[1] /*pad_seq_len*/, 0 /*lod_level*/,
false /*norm_by_times*/, false, false, math::kBatchLengthWidth);
false /*norm_by_times*/, math::kBatchLengthWidth);
TensorCopySync(gpu_label, platform::CPUPlace(), &warpctc_label);
}
} else {
......@@ -390,23 +389,12 @@ template <typename DeviceContext, typename T>
class WarpCTCGradKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
const Tensor* loss_grad = ctx.Input<Tensor>(framework::GradVarName("Loss"));
auto* warpctc_grad = ctx.Input<LoDTensor>("WarpCTCGrad");
auto* logits_grad = ctx.Output<LoDTensor>(framework::GradVarName("Logits"));
const Tensor* loss_grad = ctx.Input<Tensor>(framework::GradVarName("Loss"));
logits_grad->mutable_data<T>(ctx.GetPlace());
bool norm_by_times = ctx.Attr<bool>("norm_by_times");
bool norm_by_batchsize = ctx.Attr<bool>("norm_by_batchsize");
bool norm_by_total_logits_len = ctx.Attr<bool>("norm_by_total_logits_len");
if ((norm_by_times && norm_by_batchsize) ||
(norm_by_times && norm_by_total_logits_len) ||
(norm_by_batchsize && norm_by_total_logits_len)) {
PADDLE_THROW(platform::errors::InvalidArgument(
"[warpctc grad] norm_by_times, norm_by_batchsize and "
"norm_by_total_logits_len "
"should one be true."));
}
if (ctx.HasInput("LogitsLength")) {
int max_seq_length = warpctc_grad->dims()[0]; // Tmax
......@@ -430,20 +418,7 @@ class WarpCTCGradKernel : public framework::OpKernel<T> {
loss_grad_e.reshape(grad_shape).broadcast(bcast).eval();
auto* place = ctx.template device_context<DeviceContext>().eigen_device();
if (norm_by_total_logits_len) {
// Compute the avg. log-probability per batch sample and frame.
// Rank is 0
auto inv_len = logits_len_e.sum().cast<T>().inverse().eval();
logits_grad_e.device(*place) =
logits_g *
inv_len.reshape(Eigen::DSizes<int, 3>{1, 1, 1})
.broadcast(Eigen::DSizes<int, 3>{max_seq_length, num_sequences,
seq_width});
} else if (norm_by_batchsize) {
// Compute the avg. log-probability per batch sample.
T scale = 1.0 / static_cast<T>(num_sequences);
logits_grad_e.device(*place) = logits_g * scale;
} else if (norm_by_times) {
if (norm_by_times) {
auto scales = logits_len_e.cast<T>()
.inverse()
.reshape(grad_shape)
......@@ -456,8 +431,7 @@ class WarpCTCGradKernel : public framework::OpKernel<T> {
} else {
math::UnpaddingLoDTensorFunctor<DeviceContext, T>()(
ctx.template device_context<DeviceContext>(), *warpctc_grad,
logits_grad, -1, 0, norm_by_times, norm_by_batchsize,
norm_by_total_logits_len, math::kLengthBatchWidth);
logits_grad, -1, 0, norm_by_times, math::kLengthBatchWidth);
const T* loss_grad_data = loss_grad->data<T>();
math::ScaleLoDTensorFunctor<DeviceContext, T>()(
......
......@@ -479,9 +479,7 @@ def warpctc(input,
blank=0,
norm_by_times=False,
input_length=None,
label_length=None,
norm_by_batchsize=False,
norm_by_total_logits_len=False):
label_length=None):
"""
An operator integrating the open source Warp-CTC library
(https://github.com/baidu-research/warp-ctc)
......@@ -518,12 +516,6 @@ def warpctc(input,
of Tensor type, it should have shape `[batch_size]` and dtype int64.
label_length(Variable): The length for each label sequence if it is
of Tensor type, it should have shape `[batch_size]` and dtype int64.
norm_by_batchsize (bool): normalize the loss by the batch size.
If `True`, supersedes `norm_by_times`
(default: `False`)
norm_by_total_logits_len (bool): normalize the loss by the total number of frames
in the batch. If `True`, supersedes `norm_by_batchsize` and `norm_by_times`
(default: `False`)
Returns:
Variable: The Connectionist Temporal Classification (CTC) loss,
......@@ -611,12 +603,15 @@ def warpctc(input,
"input_length and label_length must not be None in dygraph mode!"
)
grad, loss_out = _C_ops.warpctc(
input, label, input_length, label_length, 'blank', blank,
'norm_by_times', norm_by_times, 'norm_by_batchsize',
norm_by_batchsize, 'norm_by_total_logits_len',
norm_by_total_logits_len)
input,
label,
input_length,
label_length,
'blank',
blank,
'norm_by_times',
norm_by_times, )
return loss_out
helper = LayerHelper('warpctc', **locals())
check_variable_and_dtype(input, 'input', ['float32', 'float64'], "warpctc")
check_variable_and_dtype(label, 'label', ['int32'], "warpctc")
......@@ -640,8 +635,6 @@ def warpctc(input,
attrs={
'blank': blank,
'norm_by_times': norm_by_times,
'norm_by_batchsize': norm_by_batchsize,
'norm_by_total_logits_len': norm_by_total_logits_len,
})
return loss_out
......
......@@ -18,7 +18,6 @@ import sys
import unittest
import numpy as np
from op_test import OpTest
from op_test import skip_check_grad_ci
from test_softmax_op import stable_softmax
import paddle.fluid as fluid
import paddle.fluid.core as core
......@@ -457,220 +456,6 @@ class TestWarpCTCOpFp64(OpTest):
self.check_grad(["Logits"], "Loss")
@skip_check_grad_ci(reason="For warpctc, not check grad.")
class TestWarpCTCOpAttr(OpTest):
def config(self):
self.batch_size = 4
self.num_classes = 8
self.logits_lod = [[4, 1, 5, 5]]
self.labels_lod = [[3, 1, 4, 2]]
self.logits_length = np.array([4, 1, 5, 5], dtype=np.int64)
self.labels_length = np.array([3, 1, 4, 2], dtype=np.int64)
self.blank = self.num_classes - 1
self.norm_by_times = False
self.norm_by_batchsize = False
self.norm_by_total_logits_len = False
def setUp(self):
self.op_type = "warpctc"
self.config()
logits = np.random.uniform(
0.1, 1.0,
[sum(self.logits_length), self.num_classes]).astype("float64")
softmax = np.apply_along_axis(stable_softmax, 1, logits)
# labels should not be blank
labels = np.random.randint(
0,
self.num_classes - 1, [sum(self.labels_length), 1],
dtype="int32")
ctc = CTCForward(softmax, self.logits_lod, labels, self.labels_lod,
self.num_classes, self.batch_size, self.blank,
self.norm_by_times)
loss = ctc.forward()
max_sequence_length = 0
for i in range(self.batch_size):
max_sequence_length = max(max_sequence_length,
self.logits_length[i])
# reshape logits to T*N*S
new_logits = np.zeros(
[max_sequence_length, self.batch_size, self.num_classes],
dtype=logits.dtype)
cur = 0
for batch_id in range(self.batch_size):
for i in range(self.logits_length[batch_id]):
for j in range(self.num_classes):
new_logits[i, batch_id, j] = logits[cur + i, j]
cur = cur + self.logits_length[batch_id]
# reshape labels to N*S
max_target_seq_length = 0
for i in range(self.batch_size):
max_target_seq_length = max(max_target_seq_length,
self.labels_length[i])
new_labels = np.zeros(
[self.batch_size, max_target_seq_length], dtype="int32")
cur = 0
for batch_id in range(self.batch_size):
for i in range(self.labels_length[batch_id]):
new_labels[batch_id, i] = labels[cur + i]
cur = cur + self.labels_length[batch_id]
self.gradient = np.zeros(
[max_sequence_length, self.batch_size, self.num_classes],
dtype=logits.dtype)
self.inputs = {
"Logits": new_logits,
"Label": new_labels,
"LogitsLength": self.logits_length,
"LabelLength": self.labels_length
}
self.outputs = {"Loss": loss}
self.attrs = {
"blank": self.blank,
"norm_by_times": self.norm_by_times,
"norm_by_batchsize": self.norm_by_batchsize,
"norm_by_total_logits_len": self.norm_by_total_logits_len,
}
def test_check_output(self):
self.check_output()
@skip_check_grad_ci(reason="For warpctc, not check grad.")
class TestWarpCTCOpFp64NormByTimes(TestWarpCTCOpAttr):
def config(self):
self.batch_size = 4
self.num_classes = 8
self.logits_lod = [[4, 1, 5, 5]]
self.labels_lod = [[3, 1, 4, 2]]
self.logits_length = np.array([4, 1, 5, 5], dtype=np.int64)
self.labels_length = np.array([3, 1, 4, 2], dtype=np.int64)
self.blank = self.num_classes - 1
self.norm_by_times = True
self.norm_by_batchsize = False
self.norm_by_total_logits_len = False
@skip_check_grad_ci(reason="For warpctc, not check grad.")
class TestWarpCTCOpFp64SizeAverage(TestWarpCTCOpAttr):
def config(self):
self.batch_size = 4
self.num_classes = 8
self.logits_lod = [[4, 1, 5, 5]]
self.labels_lod = [[3, 1, 4, 2]]
self.logits_length = np.array([4, 1, 5, 5], dtype=np.int64)
self.labels_length = np.array([3, 1, 4, 2], dtype=np.int64)
self.blank = self.num_classes - 1
self.norm_by_times = False
self.norm_by_batchsize = True
self.norm_by_total_logits_len = False
@skip_check_grad_ci(reason="For warpctc, not check grad.")
class TestWarpCTCOpFp64LengthAverage(TestWarpCTCOpAttr):
def config(self):
self.batch_size = 4
self.num_classes = 8
self.logits_lod = [[4, 1, 5, 5]]
self.labels_lod = [[3, 1, 4, 2]]
self.logits_length = np.array([4, 1, 5, 5], dtype=np.int64)
self.labels_length = np.array([3, 1, 4, 2], dtype=np.int64)
self.blank = self.num_classes - 1
self.norm_by_times = False
self.norm_by_batchsize = False
self.norm_by_total_logits_len = True
class TestWarpCTCOpDygraph(unittest.TestCase):
def test_dygraph(self):
places = ['cpu']
if paddle.is_compiled_with_cuda():
places += ['gpu:0']
for p in places:
paddle.set_device(p)
paddle.disable_static()
paddle.seed(1)
np.random.seed(1)
#(B=2)
log_probs = np.array(
[[[4.17021990e-01, 7.20324516e-01, 1.14374816e-04],
[3.02332580e-01, 1.46755889e-01, 9.23385918e-02]], [
[1.86260208e-01, 3.45560730e-01, 3.96767467e-01],
[5.38816750e-01, 4.19194520e-01, 6.85219526e-01]
], [[2.04452246e-01, 8.78117442e-01, 2.73875929e-02],
[6.70467496e-01, 4.17304814e-01, 5.58689833e-01]],
[[1.40386939e-01, 1.98101491e-01, 8.00744593e-01],
[9.68261600e-01, 3.13424170e-01, 6.92322612e-01]],
[[8.76389146e-01, 8.94606650e-01, 8.50442126e-02],
[3.90547849e-02, 1.69830427e-01,
8.78142476e-01]]]).astype("float32")
labels = np.array([[1, 2, 2], [1, 2, 2]]).astype("int32")
input_lengths = np.array([5, 5]).astype("int64")
label_lengths = np.array([3, 3]).astype("int64")
log_probs = paddle.to_tensor(log_probs, stop_gradient=False)
labels = paddle.to_tensor(labels)
input_lengths = paddle.to_tensor(input_lengths)
label_lengths = paddle.to_tensor(label_lengths)
loss = paddle.nn.CTCLoss(
blank=0, reduction='sum')(log_probs,
labels,
input_lengths,
label_lengths,
norm_by_times=False,
norm_by_batchsize=False,
norm_by_total_logits_len=False)
self.assertTrue(np.allclose(loss, [6.82563686], atol=1))
loss.backward()
log_probs.clear_gradient()
loss = paddle.nn.CTCLoss(
blank=0, reduction='sum')(log_probs,
labels,
input_lengths,
label_lengths,
norm_by_times=True,
norm_by_batchsize=False,
norm_by_total_logits_len=False)
self.assertTrue(np.allclose(loss, [6.82563686], atol=1))
loss.backward()
log_probs.clear_gradient()
loss = paddle.nn.CTCLoss(
blank=0, reduction='sum')(log_probs,
labels,
input_lengths,
label_lengths,
norm_by_times=False,
norm_by_batchsize=True,
norm_by_total_logits_len=False)
self.assertTrue(np.allclose(loss, [6.82563686], atol=1))
loss.backward()
log_probs.clear_gradient()
loss = paddle.nn.CTCLoss(
blank=0, reduction='sum')(log_probs,
labels,
input_lengths,
label_lengths,
norm_by_times=False,
norm_by_batchsize=False,
norm_by_total_logits_len=True)
self.assertTrue(np.allclose(loss, [6.82563686], atol=1))
loss.backward()
log_probs.clear_gradient()
paddle.enable_static()
class TestWarpCTCOpError(unittest.TestCase):
def test_errors(self):
with program_guard(Program(), Program()):
......
......@@ -1001,9 +1001,7 @@ def ctc_loss(log_probs,
label_lengths,
blank=0,
reduction='mean',
norm_by_times=False,
norm_by_batchsize=False,
norm_by_total_logits_len=False):
norm_by_times=False):
"""
An operator integrating the open source Warp-CTC library (https://github.com/baidu-research/warp-ctc)
......@@ -1019,8 +1017,6 @@ def ctc_loss(log_probs,
blank (int, optional): The blank label index of Connectionist Temporal Classification (CTC) loss, which is in the half-opened interval [0, num_classes + 1). The data type must be int32. Default is 0.
reduction (string, optional): Indicate how to average the loss, the candicates are ``'none'`` | ``'mean'`` | ``'sum'``. If :attr:`reduction` is ``'mean'``, the output loss will be divided by the label_lengths, and then return the mean of quotient; If :attr:`reduction` is ``'sum'``, return the sum of loss; If :attr:`reduction` is ``'none'``, no reduction will be applied. Default is ``'mean'``.
norm_by_times (bool, default False) – Whether to normalize the gradients by the number of time-step, which is also the sequence’s length. There is no need to normalize the gradients if reduction mode is 'mean'.
norm_by_batchsize (bool): normalize the loss by the batch size (default: `False`). If `True`, supersedes `norm_by_times` (default: `False`)
norm_by_total_logits_len (bool): normalize the loss by the total number of frames in the batch. If `True`, supersedes `norm_by_batchsize` and `norm_by_times` (default: `False`)
Returns:
Tensor, The Connectionist Temporal Classification (CTC) loss between ``log_probs`` and ``labels``. If attr:`reduction` is ``'none'``, the shape of loss is [batch_size], otherwise, the shape of loss is [1]. Data type is the same as ``log_probs``.
......@@ -1029,7 +1025,6 @@ def ctc_loss(log_probs,
.. code-block:: python
# required: skiptest
# declarative mode
import paddle.nn.functional as F
import numpy as np
......@@ -1086,10 +1081,9 @@ def ctc_loss(log_probs,
"""
loss_out = fluid.layers.warpctc(log_probs, labels, blank, norm_by_times,
input_lengths, label_lengths,
norm_by_batchsize, norm_by_total_logits_len)
input_lengths, label_lengths)
loss_out = fluid.layers.squeeze(loss_out, [-1]) # (B)
loss_out = fluid.layers.squeeze(loss_out, [-1])
assert reduction in ['mean', 'sum', 'none']
if reduction == 'mean':
loss_out = paddle.mean(loss_out / label_lengths)
......@@ -1544,7 +1538,7 @@ def cross_entropy(input,
Indicate how to average the loss by batch_size,
the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
If :attr:`norm_by_batchsize` is ``'sum'``, the reduced sum loss is returned.
If :attr:`size_average` is ``'sum'``, the reduced sum loss is returned.
If :attr:`reduction` is ``'none'``, the unreduced loss is returned.
Default is ``'mean'``.
......
......@@ -1119,9 +1119,7 @@ class CTCLoss(Layer):
labels,
input_lengths,
label_lengths,
norm_by_times=False,
norm_by_batchsize=False,
norm_by_total_logits_len=False):
norm_by_times=False):
return paddle.nn.functional.ctc_loss(
log_probs,
labels,
......@@ -1129,9 +1127,7 @@ class CTCLoss(Layer):
label_lengths,
self.blank,
self.reduction,
norm_by_times=norm_by_times,
norm_by_batchsize=norm_by_batchsize,
norm_by_total_logits_len=norm_by_total_logits_len)
norm_by_times=norm_by_times)
class SmoothL1Loss(Layer):
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册