Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
5439f07d
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
5439f07d
编写于
4月 21, 2022
作者:
Q
qipengh
提交者:
GitHub
4月 21, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[MLU]:add elementwise_div op (#41810)
上级
6becabaa
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
394 addition
and
0 deletion
+394
-0
paddle/fluid/operators/elementwise/elementwise_div_op_mlu.cc
paddle/fluid/operators/elementwise/elementwise_div_op_mlu.cc
+141
-0
python/paddle/fluid/tests/unittests/mlu/test_elementwise_div_op_mlu.py
.../fluid/tests/unittests/mlu/test_elementwise_div_op_mlu.py
+253
-0
未找到文件。
paddle/fluid/operators/elementwise/elementwise_div_op_mlu.cc
0 → 100644
浏览文件 @
5439f07d
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <memory>
#include <string>
#include "paddle/fluid/operators/elementwise/elementwise_div_op.h"
#include "paddle/fluid/operators/elementwise/elementwise_mlu.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
template
<
typename
T
>
class
ElementwiseDivMLUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
MLUBinaryOp
<
DIV
,
T
>
(
ctx
);
}
};
template
<
typename
T
>
class
ElementwiseDivGradMLUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
out
=
ctx
.
Input
<
Tensor
>
(
"Out"
);
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
y
=
ctx
.
Input
<
Tensor
>
(
"Y"
);
auto
*
dout
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
dx
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
dy
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
int
axis
=
ctx
.
Attr
<
int
>
(
"axis"
);
const
auto
&
x_dims
=
x
->
dims
();
const
auto
&
y_dims
=
y
->
dims
();
axis
=
(
axis
<
0
?
(
std
::
abs
(
x_dims
.
size
()
-
y_dims
.
size
())
+
axis
+
1
)
:
axis
);
int
max_dim
=
std
::
max
(
x_dims
.
size
(),
y_dims
.
size
());
std
::
vector
<
int
>
x_dims_array
(
max_dim
);
std
::
vector
<
int
>
y_dims_array
(
max_dim
);
std
::
vector
<
int
>
out_dims_array
(
max_dim
);
GetBroadcastDimsArrays
(
x_dims
,
y_dims
,
x_dims_array
.
data
(),
y_dims_array
.
data
(),
out_dims_array
.
data
(),
max_dim
,
axis
);
MLUCnnlTensorDesc
x_desc
(
max_dim
,
x_dims_array
.
data
(),
ToCnnlDataType
<
T
>
());
MLUCnnlTensorDesc
y_desc
(
max_dim
,
y_dims_array
.
data
(),
ToCnnlDataType
<
T
>
());
MLUCnnlTensorDesc
dout_desc
(
*
dout
);
MLUCnnlOpTensorDesc
mul_op_desc
(
CNNL_OP_TENSOR_MUL
,
ToCnnlDataType
<
T
>
(),
CNNL_NOT_PROPAGATE_NAN
);
// compute dout/y == 1/y * dout
Tensor
dout_div_y
(
dout
->
dtype
());
dout_div_y
.
Resize
(
dout
->
dims
());
dout_div_y
.
mutable_data
<
T
>
(
ctx
.
GetPlace
());
MLUBinary
<
DIV
>
(
ctx
,
CNNL_COMPUTATION_HIGH_PRECISION
,
dout_desc
.
get
(),
GetBasePtr
(
dout
),
y_desc
.
get
(),
GetBasePtr
(
y
),
dout_desc
.
get
(),
GetBasePtr
(
&
dout_div_y
));
if
(
dx
)
{
// compute dx = dout/y = 1/y * dout
if
(
dx
->
dims
()
!=
dout
->
dims
())
{
dx
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
std
::
vector
<
int
>
reduce_axes
;
GetReduceAxes
(
axis
,
dout_div_y
.
dims
(),
dx
->
dims
(),
&
reduce_axes
);
MLUCnnlReduceDesc
reduction_desc
(
reduce_axes
,
CNNL_REDUCE_ADD
,
ToCnnlDataType
<
T
>
(),
CNNL_NOT_PROPAGATE_NAN
,
CNNL_REDUCE_NO_INDICES
,
CNNL_32BIT_INDICES
);
MLUCnnlTensorDesc
dx_desc
(
*
dx
);
MLUCnnl
::
Reduce
(
ctx
,
true
/*need_workspace*/
,
reduction_desc
.
get
(),
nullptr
,
dout_desc
.
get
(),
GetBasePtr
(
&
dout_div_y
),
0
,
nullptr
,
nullptr
,
dx_desc
.
get
(),
GetBasePtr
(
dx
));
}
else
{
dx
->
ShareDataWith
(
dout_div_y
);
}
}
if
(
dy
)
{
// compute dy = -out * (dout/y) = -out/y * dout
Tensor
neg_out
(
out
->
type
());
neg_out
.
mutable_data
<
T
>
(
out
->
dims
(),
ctx
.
GetPlace
());
MLUCnnlTensorDesc
out_desc
(
*
out
);
MLUUnary
<
NEG
>
(
ctx
,
CNNL_COMPUTATION_HIGH_PRECISION
,
out_desc
.
get
(),
GetBasePtr
(
out
),
out_desc
.
get
(),
GetBasePtr
(
&
neg_out
));
Tensor
dy_temp
(
y
->
dtype
());
dy_temp
.
Resize
(
dout
->
dims
());
dy_temp
.
mutable_data
<
T
>
(
ctx
.
GetPlace
());
MLUCnnl
::
OpTensor
(
ctx
,
mul_op_desc
.
get
(),
dout_desc
.
get
(),
GetBasePtr
(
&
neg_out
),
dout_desc
.
get
(),
GetBasePtr
(
&
dout_div_y
),
dout_desc
.
get
(),
GetBasePtr
(
&
dy_temp
),
ToCnnlDataType
<
T
>
());
if
(
dy
->
dims
()
!=
dout
->
dims
())
{
dy
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
std
::
vector
<
int
>
reduce_axes
;
GetReduceAxes
(
axis
,
dy_temp
.
dims
(),
dy
->
dims
(),
&
reduce_axes
);
MLUCnnlReduceDesc
reduction_desc
(
reduce_axes
,
CNNL_REDUCE_ADD
,
ToCnnlDataType
<
T
>
(),
CNNL_NOT_PROPAGATE_NAN
,
CNNL_REDUCE_NO_INDICES
,
CNNL_32BIT_INDICES
);
MLUCnnlTensorDesc
dy_desc
(
*
dy
);
MLUCnnl
::
Reduce
(
ctx
,
true
/*need_workspace*/
,
reduction_desc
.
get
(),
nullptr
,
dout_desc
.
get
(),
GetBasePtr
(
&
dy_temp
),
0
,
nullptr
,
nullptr
,
dy_desc
.
get
(),
GetBasePtr
(
dy
));
}
else
{
dy
->
ShareDataWith
(
dy_temp
);
}
}
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
namespace
plat
=
paddle
::
platform
;
REGISTER_OP_MLU_KERNEL
(
elementwise_div
,
ops
::
ElementwiseDivMLUKernel
<
int
>
,
ops
::
ElementwiseDivMLUKernel
<
float
>
,
ops
::
ElementwiseDivMLUKernel
<
plat
::
float16
>
);
REGISTER_OP_MLU_KERNEL
(
elementwise_div_grad
,
ops
::
ElementwiseDivGradMLUKernel
<
int
>
,
ops
::
ElementwiseDivGradMLUKernel
<
float
>
,
ops
::
ElementwiseDivGradMLUKernel
<
plat
::
float16
>
);
python/paddle/fluid/tests/unittests/mlu/test_elementwise_div_op_mlu.py
0 → 100644
浏览文件 @
5439f07d
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
numpy
as
np
import
unittest
import
sys
sys
.
path
.
append
(
".."
)
from
op_test
import
OpTest
,
skip_check_grad_ci
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid.core
import
ops
paddle
.
enable_static
()
SEED
=
2022
class
TestElementwiseDiv
(
OpTest
):
def
setUp
(
self
):
self
.
set_mlu
()
self
.
op_type
=
"elementwise_div"
self
.
init_dtype
()
np
.
random
.
seed
(
SEED
)
x
=
np
.
random
.
uniform
(
1
,
2
,
[
11
,
17
]).
astype
(
self
.
dtype
)
y
=
np
.
random
.
uniform
(
1
,
2
,
[
11
,
17
]).
astype
(
self
.
dtype
)
out
=
np
.
divide
(
x
,
y
)
self
.
inputs
=
{
'X'
:
OpTest
.
np_dtype_to_fluid_dtype
(
x
),
'Y'
:
OpTest
.
np_dtype_to_fluid_dtype
(
y
)
}
self
.
attrs
=
{}
self
.
outputs
=
{
'Out'
:
out
}
def
set_mlu
(
self
):
self
.
__class__
.
use_mlu
=
True
self
.
place
=
paddle
.
device
.
MLUPlace
(
0
)
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float32
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
def
test_check_grad_normal
(
self
):
self
.
check_grad_with_place
(
self
.
place
,
[
'X'
,
'Y'
],
'Out'
,
max_relative_error
=
0.05
)
def
test_check_grad_ingore_x
(
self
):
self
.
check_grad_with_place
(
self
.
place
,
[
'Y'
],
'Out'
,
max_relative_error
=
0.05
,
no_grad_set
=
set
(
"X"
))
def
test_check_grad_ingore_y
(
self
):
self
.
check_grad_with_place
(
self
.
place
,
[
'X'
],
'Out'
,
max_relative_error
=
0.05
,
no_grad_set
=
set
(
"Y"
))
class
TestElementwiseDivFp16
(
OpTest
):
def
setUp
(
self
):
self
.
set_mlu
()
self
.
op_type
=
"elementwise_div"
self
.
init_dtype
()
np
.
random
.
seed
(
SEED
)
x
=
np
.
random
.
uniform
(
1
,
2
,
[
3
,
4
]).
astype
(
self
.
dtype
)
y
=
np
.
random
.
uniform
(
1
,
2
,
[
3
,
4
]).
astype
(
self
.
dtype
)
out
=
np
.
divide
(
x
,
y
)
self
.
inputs
=
{
'X'
:
OpTest
.
np_dtype_to_fluid_dtype
(
x
),
'Y'
:
OpTest
.
np_dtype_to_fluid_dtype
(
y
)
}
self
.
attrs
=
{}
self
.
outputs
=
{
'Out'
:
out
}
def
set_mlu
(
self
):
self
.
__class__
.
use_mlu
=
True
self
.
__class__
.
no_need_check_grad
=
True
self
.
place
=
paddle
.
device
.
MLUPlace
(
0
)
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float16
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
,
atol
=
1e-5
)
@
skip_check_grad_ci
(
reason
=
"[skip shape check] Use y_shape(1) to test broadcast."
)
class
TestTestElementwiseDiv_scalar
(
TestElementwiseDiv
):
def
setUp
(
self
):
self
.
set_mlu
()
self
.
op_type
=
"elementwise_div"
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
20
,
3
,
4
]).
astype
(
np
.
float32
),
'Y'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
1
]).
astype
(
np
.
float32
)
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
]
/
self
.
inputs
[
'Y'
]}
class
TestTestElementwiseDiv_Vector
(
TestElementwiseDiv
):
def
setUp
(
self
):
self
.
set_mlu
()
self
.
op_type
=
"elementwise_div"
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
100
]).
astype
(
"float32"
),
'Y'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
100
]).
astype
(
"float32"
)
}
self
.
outputs
=
{
'Out'
:
np
.
divide
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])}
class
TestTestElementwiseDiv_broadcast_0
(
TestElementwiseDiv
):
def
setUp
(
self
):
self
.
set_mlu
()
self
.
op_type
=
"elementwise_div"
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
100
,
3
,
4
]).
astype
(
"float32"
),
'Y'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
100
]).
astype
(
"float32"
)
}
self
.
attrs
=
{
'axis'
:
0
}
self
.
outputs
=
{
'Out'
:
np
.
divide
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
].
reshape
(
100
,
1
,
1
))
}
class
TestTestElementwiseDiv_broadcast_1
(
TestElementwiseDiv
):
def
setUp
(
self
):
self
.
set_mlu
()
self
.
op_type
=
"elementwise_div"
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
2
,
100
,
4
]).
astype
(
"float32"
),
'Y'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
100
]).
astype
(
"float32"
)
}
self
.
attrs
=
{
'axis'
:
1
}
self
.
outputs
=
{
'Out'
:
np
.
divide
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
].
reshape
(
1
,
100
,
1
))
}
class
TestTestElementwiseDiv_broadcast_2
(
TestElementwiseDiv
):
def
setUp
(
self
):
self
.
set_mlu
()
self
.
op_type
=
"elementwise_div"
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
2
,
3
,
100
]).
astype
(
"float32"
),
'Y'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
100
]).
astype
(
"float32"
)
}
self
.
outputs
=
{
'Out'
:
np
.
divide
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
].
reshape
(
1
,
1
,
100
))
}
class
TestTestElementwiseDiv_broadcast_3
(
TestElementwiseDiv
):
def
setUp
(
self
):
self
.
set_mlu
()
self
.
op_type
=
"elementwise_div"
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
2
,
10
,
12
,
5
]).
astype
(
"float32"
),
'Y'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
10
,
12
]).
astype
(
"float32"
)
}
self
.
attrs
=
{
'axis'
:
1
}
self
.
outputs
=
{
'Out'
:
np
.
divide
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
].
reshape
(
1
,
10
,
12
,
1
))
}
class
TestTestElementwiseDiv_broadcast_4
(
TestElementwiseDiv
):
def
setUp
(
self
):
self
.
set_mlu
()
self
.
op_type
=
"elementwise_div"
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
2
,
3
,
50
]).
astype
(
"float32"
),
'Y'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
2
,
1
,
50
]).
astype
(
"float32"
)
}
self
.
outputs
=
{
'Out'
:
np
.
divide
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])}
class
TestTestElementwiseDiv_broadcast_5
(
TestElementwiseDiv
):
def
setUp
(
self
):
self
.
set_mlu
()
self
.
op_type
=
"elementwise_div"
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
2
,
3
,
4
,
20
]).
astype
(
"float32"
),
'Y'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
2
,
3
,
1
,
20
]).
astype
(
"float32"
)
}
self
.
outputs
=
{
'Out'
:
np
.
divide
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])}
class
TestTestElementwiseDiv_commonuse_1
(
TestElementwiseDiv
):
def
setUp
(
self
):
self
.
set_mlu
()
self
.
op_type
=
"elementwise_div"
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
2
,
3
,
100
]).
astype
(
"float32"
),
'Y'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
1
,
1
,
100
]).
astype
(
"float32"
),
}
self
.
outputs
=
{
'Out'
:
np
.
divide
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])}
class
TestTestElementwiseDiv_commonuse_2
(
TestElementwiseDiv
):
def
setUp
(
self
):
self
.
set_mlu
()
self
.
op_type
=
"elementwise_div"
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
30
,
3
,
1
,
5
]).
astype
(
"float32"
),
'Y'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
30
,
1
,
4
,
1
]).
astype
(
"float32"
),
}
self
.
outputs
=
{
'Out'
:
np
.
divide
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])}
class
TestTestElementwiseDiv_xsize_lessthan_ysize
(
TestElementwiseDiv
):
def
setUp
(
self
):
self
.
set_mlu
()
self
.
op_type
=
"elementwise_div"
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
10
,
12
]).
astype
(
"float32"
),
'Y'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
2
,
3
,
10
,
12
]).
astype
(
"float32"
),
}
self
.
attrs
=
{
'axis'
:
2
}
self
.
outputs
=
{
'Out'
:
np
.
divide
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])}
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录