Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
53788640
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
53788640
编写于
1月 30, 2018
作者:
D
dangqingqing
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Fix the output order and add more unit test cases.
上级
35dec3d7
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
57 addition
and
27 deletion
+57
-27
paddle/operators/multiclass_nms_op.cc
paddle/operators/multiclass_nms_op.cc
+11
-5
python/paddle/v2/fluid/tests/test_multiclass_nms_op.py
python/paddle/v2/fluid/tests/test_multiclass_nms_op.py
+46
-22
未找到文件。
paddle/operators/multiclass_nms_op.cc
浏览文件 @
53788640
...
...
@@ -201,7 +201,7 @@ class MulticlassNMSKernel : public framework::OpKernel<T> {
}
}
// Keep top k results per image.
std
::
sort
(
score_index_pairs
.
begin
(),
score_index_pairs
.
end
(),
std
::
s
table_s
ort
(
score_index_pairs
.
begin
(),
score_index_pairs
.
end
(),
SortScorePairDescend
<
std
::
pair
<
int
,
int
>>
);
score_index_pairs
.
resize
(
keep_top_k
);
...
...
@@ -269,7 +269,8 @@ class MulticlassNMSKernel : public framework::OpKernel<T> {
int
num_kept
=
batch_starts
.
back
();
if
(
num_kept
==
0
)
{
outs
->
Resize
({
0
,
0
});
T
*
od
=
outs
->
mutable_data
<
T
>
({
1
},
ctx
.
GetPlace
());
od
[
0
]
=
-
1
;
}
else
{
outs
->
mutable_data
<
T
>
({
num_kept
,
kOutputDim
},
ctx
.
GetPlace
());
for
(
int64_t
i
=
0
;
i
<
batch_size
;
++
i
)
{
...
...
@@ -349,11 +350,16 @@ is larger than -1. Then this operator pruns away boxes that have high IOU
(intersection over union) overlap with already selected boxes by adaptive
threshold NMS based on parameters of nms_threshold and nms_eta.
Aftern NMS step,
only
at most keep_top_k number of total bboxes are to be kept
Aftern NMS step, at most keep_top_k number of total bboxes are to be kept
per image if keep_top_k is larger than -1.
This operator support multi-class and batched inputs. It applying NMS
independently for each class.
independently for each class. The outputs is a 2-D LoDTenosr, for each
image, the offsets in first dimension of LoDTensor are called LoD, the number
of offset is N + 1, where N is the batch size. If LoD[i + 1] - LoD[i] == 0,
means there is no detected bbox for this image. If there is no detected boxes
for all images, all the elements in LoD are 0, and the Out only contains one
value which is -1.
)DOC"
);
}
};
...
...
python/paddle/v2/fluid/tests/test_multiclass_nms_op.py
浏览文件 @
53788640
...
...
@@ -56,8 +56,12 @@ def nms(boxes, scores, score_threshold, nms_threshold, top_k=200, eta=1.0):
Args:
boxes: (tensor) The location preds for the img, Shape: [num_priors,4].
scores: (tensor) The class predscores for the img, Shape:[num_priors].
overlap: (float) The overlap thresh for suppressing unnecessary boxes.
top_k: (int) The Maximum number of box preds to consider.
score_threshold: (float) The confidence thresh for filtering low
confidence boxes.
nms_threshold: (float) The overlap thresh for suppressing unnecessary
boxes.
top_k: (int) The maximum number of box preds to consider.
eta: (float) The parameter for adaptive NMS.
Return:
The indices of the kept boxes with respect to num_priors.
"""
...
...
@@ -67,7 +71,7 @@ def nms(boxes, scores, score_threshold, nms_threshold, top_k=200, eta=1.0):
selected_indices
=
selected_indices
.
flatten
()
all_scores
=
all_scores
[
selected_indices
]
sorted_indices
=
np
.
argsort
(
-
all_scores
,
axis
=
0
)
sorted_indices
=
np
.
argsort
(
-
all_scores
,
axis
=
0
,
kind
=
'mergesort'
)
sorted_scores
=
all_scores
[
sorted_indices
]
if
top_k
>
-
1
and
top_k
<
sorted_indices
.
shape
[
0
]:
sorted_indices
=
sorted_indices
[:
top_k
]
...
...
@@ -97,29 +101,33 @@ def multiclass_nms(boxes, scores, background, score_threshold, nms_threshold,
class_num
=
scores
.
shape
[
0
]
priorbox_num
=
scores
.
shape
[
1
]
selected_indices
=
[]
selected_indices
=
{}
num_det
=
0
for
c
in
range
(
class_num
):
if
c
==
background
:
continue
indices
=
nms
(
boxes
,
scores
[
c
],
score_threshold
,
nms_threshold
,
nms_top_k
)
for
idx
in
indices
:
selected_indices
.
append
((
c
,
idx
))
selected_indices
[
c
]
=
indices
num_det
+=
len
(
indices
)
if
keep_top_k
>
-
1
and
num_det
>
keep_top_k
:
score_index
=
[]
for
c
,
idx
in
selected_indices
:
for
c
,
indices
in
selected_indices
.
iteritems
():
for
idx
in
indices
:
score_index
.
append
((
scores
[
c
][
idx
],
c
,
idx
))
sorted_score_index
=
sorted
(
score_index
,
key
=
lambda
tup
:
tup
[
0
],
reverse
=
True
)
sorted_score_index
=
sorted_score_index
[:
keep_top_k
]
selected_indices
=
[]
selected_indices
=
{}
for
_
,
c
,
_
in
sorted_score_index
:
selected_indices
[
c
]
=
[]
for
s
,
c
,
idx
in
sorted_score_index
:
selected_indices
.
append
((
c
,
idx
))
selected_indices
[
c
].
append
(
idx
)
num_det
=
keep_top_k
return
selected_indices
return
selected_indices
,
num_det
def
batched_multiclass_nms
(
boxes
,
scores
,
background
,
score_threshold
,
...
...
@@ -129,28 +137,36 @@ def batched_multiclass_nms(boxes, scores, background, score_threshold,
det_outs
=
[]
lod
=
[
0
]
for
n
in
range
(
batch_size
):
nmsed_outs
=
multiclass_nms
(
boxes
,
scores
[
n
],
background
,
score_threshold
,
nms_threshold
,
nms_top_k
,
keep_top_k
)
lod
.
append
(
lod
[
-
1
]
+
len
(
nmsed_outs
))
if
len
(
nmsed_outs
)
==
0
:
continue
for
c
,
idx
in
nmsed_outs
:
nmsed_outs
,
nmsed_num
=
multiclass_nms
(
boxes
,
scores
[
n
],
background
,
score_threshold
,
nms_threshold
,
nms_top_k
,
keep_top_k
)
lod
.
append
(
lod
[
-
1
]
+
nmsed_num
)
if
nmsed_num
==
0
:
continue
for
c
,
indices
in
nmsed_outs
.
iteritems
():
for
idx
in
indices
:
xmin
,
ymin
,
xmax
,
ymax
=
boxes
[
idx
][:]
det_outs
.
append
([
c
,
scores
[
n
][
c
][
idx
],
xmin
,
ymin
,
xmax
,
ymax
])
return
det_outs
,
lod
class
TestMulticlassNMSOp
(
OpTest
):
def
set_argument
(
self
):
self
.
score_threshold
=
0.01
def
setUp
(
self
):
self
.
set_argument
()
N
=
7
M
=
12
4
0
M
=
12
0
0
C
=
21
BOX_SIZE
=
4
background
=
0
nms_threshold
=
0.3
nms_top_k
=
400
keep_top_k
=
200
score_threshold
=
0.01
score_threshold
=
self
.
score_threshold
scores
=
np
.
random
.
random
((
N
*
M
,
C
)).
astype
(
'float32'
)
...
...
@@ -165,11 +181,12 @@ class TestMulticlassNMSOp(OpTest):
boxes
=
np
.
random
.
random
((
M
,
BOX_SIZE
)).
astype
(
'float32'
)
boxes
[:,
0
:
2
]
=
boxes
[:,
0
:
2
]
*
0.5
boxes
[:,
2
:
4
]
=
boxes
[:,
0
:
2
]
*
0.5
+
0.5
boxes
[:,
2
:
4
]
=
boxes
[:,
2
:
4
]
*
0.5
+
0.5
nmsed_outs
,
lod
=
batched_multiclass_nms
(
boxes
,
scores
,
background
,
score_threshold
,
nms_threshold
,
nms_top_k
,
keep_top_k
)
nmsed_outs
=
[
-
1
]
if
not
nmsed_outs
else
nmsed_outs
nmsed_outs
=
np
.
array
(
nmsed_outs
).
astype
(
'float32'
)
self
.
op_type
=
'multiclass_nms'
...
...
@@ -188,6 +205,13 @@ class TestMulticlassNMSOp(OpTest):
self
.
check_output
()
class
TestMulticlassNMSOpNoOutput
(
TestMulticlassNMSOp
):
def
set_argument
(
self
):
# Here set 2.0 to test the case there is no outputs.
# In practical use, 0.0 < score_threshold < 1.0
self
.
score_threshold
=
2.0
class
TestIOU
(
unittest
.
TestCase
):
def
test_iou
(
self
):
box1
=
np
.
array
([
4.0
,
3.0
,
7.0
,
5.0
]).
astype
(
'float32'
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录