Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
5325313e
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
提交
5325313e
编写于
1月 11, 2018
作者:
T
typhoonzero
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
debugging shape match
上级
2827607f
变更
1
显示空白变更内容
内联
并排
Showing
1 changed file
with
79 addition
and
16 deletion
+79
-16
python/paddle/v2/fluid/distribute_transpiler.py
python/paddle/v2/fluid/distribute_transpiler.py
+79
-16
未找到文件。
python/paddle/v2/fluid/distribute_transpiler.py
浏览文件 @
5325313e
...
...
@@ -257,7 +257,45 @@ class DistributeTranspiler:
pass
return
orig_shape
def
_append_pserver_ops
(
self
,
program
,
opt_op
,
endpoint
):
def
_is_op_on_pserver
(
self
,
endpoint
,
all_ops
,
idx
):
"""
Recursively check if the op need to run on current server.
Assume that ops are in the execution order.
"""
param_names
=
[
p
.
name
for
p
in
self
.
param_grad_ep_mapping
[
endpoint
][
"params"
]
]
op
=
all_ops
[
idx
]
if
op
.
inputs
.
has_key
(
"Param"
):
if
op
.
inputs
[
"Param"
].
name
in
param_names
:
return
True
else
:
for
n
in
param_names
:
if
n
.
startswith
(
op
.
inputs
[
"Param"
].
name
+
".block"
)
and
\
n
!=
op
.
inputs
[
"Param"
].
name
:
return
True
return
False
else
:
j
=
idx
-
1
while
j
>=
0
:
prev_op
=
all_ops
[
j
]
prev_output_names
=
[
o
.
name
for
o
in
prev_op
.
outputs
.
values
()]
prev_input_names
=
[
o
.
name
for
o
in
prev_op
.
inputs
.
values
()]
found1
=
False
found2
=
False
for
_
,
v
in
op
.
inputs
.
iteritems
():
if
v
.
name
in
prev_output_names
:
found1
=
self
.
_is_op_on_pserver
(
endpoint
,
all_ops
,
j
)
# later ops may produce output for prev op's next batch use.
for
_
,
v
in
op
.
outputs
.
iteritems
():
if
v
.
name
in
prev_input_names
:
found2
=
self
.
_is_op_on_pserver
(
endpoint
,
all_ops
,
j
)
if
found1
or
found2
:
return
True
j
-=
1
return
False
def
_append_pserver_ops
(
self
,
program
,
pserver_program
,
opt_op
,
endpoint
):
new_inputs
=
dict
()
# update param/grad shape first, then other inputs like
# moment can use the updated shape
...
...
@@ -321,6 +359,14 @@ class DistributeTranspiler:
dtype
=
var
.
dtype
,
shape
=
new_shape
)
new_inputs
[
key
]
=
tmpvar
# create var in pserver program global block.
# TODO(typhoonzero): put blocks in one program to avoid create two
# variables.
pserver_program
.
global_block
().
create_var
(
name
=
var
.
name
,
persistable
=
var
.
persistable
,
dtype
=
var
.
dtype
,
shape
=
new_shape
)
# change outputs ParamOut variable
opt_op
.
outputs
[
"ParamOut"
]
=
new_inputs
[
"Param"
]
...
...
@@ -330,13 +376,18 @@ class DistributeTranspiler:
outputs
=
opt_op
.
outputs
,
attrs
=
opt_op
.
attrs
)
def
_append_pserver_non_opt_ops
(
self
,
program
,
opt_op
):
def
_append_pserver_non_opt_ops
(
self
,
program
,
pserver_program
,
opt_op
):
for
_
,
var
in
opt_op
.
inputs
.
iteritems
():
program
.
global_block
().
create_var
(
name
=
var
.
name
,
persistable
=
var
.
persistable
,
dtype
=
var
.
dtype
,
shape
=
var
.
shape
)
pserver_program
.
global_block
().
create_var
(
name
=
var
.
name
,
persistable
=
var
.
persistable
,
dtype
=
var
.
dtype
,
shape
=
var
.
shape
)
program
.
global_block
().
append_op
(
type
=
opt_op
.
type
,
inputs
=
opt_op
.
inputs
,
...
...
@@ -358,13 +409,18 @@ class DistributeTranspiler:
self
.
_clone_var
(
pserver_program
.
global_block
(),
v
)
# step6
optimize_sub_program
=
Program
()
for
opt_op
in
optimize_ops
:
for
idx
,
opt_op
in
enumerate
(
optimize_ops
):
is_op_on_pserver
=
self
.
_is_op_on_pserver
(
endpoint
,
optimize_ops
,
idx
)
if
not
is_op_on_pserver
:
continue
if
opt_op
.
inputs
.
has_key
(
"Grad"
):
# append optimize_op
self
.
_append_pserver_ops
(
optimize_sub_program
,
opt_op
,
endpoint
)
self
.
_append_pserver_ops
(
optimize_sub_program
,
pserver_program
,
opt_op
,
endpoint
)
else
:
self
.
_append_pserver_non_opt_ops
(
optimize_sub_program
,
opt_op
)
self
.
_append_pserver_non_opt_ops
(
optimize_sub_program
,
pserver_program
,
opt_op
)
print
(
"****subprogram"
,
optimize_sub_program
)
pserver_program
.
global_block
().
append_op
(
type
=
"recv"
,
inputs
=
{
"RX"
:
self
.
param_grad_ep_mapping
[
endpoint
][
"grads"
]
...
...
@@ -386,7 +442,7 @@ class DistributeTranspiler:
pserver_program
.
sync_with_cpp
()
return
pserver_program
def
get_startup_program
(
self
,
endpoint
):
def
get_startup_program
(
self
,
endpoint
,
pserver_program
):
"""
Get startup program for current parameter server.
Modify operator input variables if there are variables that
...
...
@@ -405,13 +461,17 @@ class DistributeTranspiler:
# 1. create vars
created_var_map
=
dict
()
for
var
in
params
:
for
_
,
var
in
pserver_program
.
global_block
().
vars
.
iteritems
():
print
(
"create var for startup"
,
var
.
name
,
var
.
shape
)
tmpvar
=
s_prog
.
global_block
().
create_var
(
name
=
var
.
name
,
persistable
=
Tru
e
,
persistable
=
var
.
persistabl
e
,
dtype
=
var
.
dtype
,
shape
=
var
.
shape
)
created_var_map
[
var
.
name
]
=
tmpvar
optimize_op_input_var_names
=
[
v
.
name
for
v
in
pserver_program
.
global_block
().
vars
.
values
()
]
# 2. rename op outputs
for
op
in
orig_s_prog
.
global_block
().
ops
:
...
...
@@ -423,12 +483,15 @@ class DistributeTranspiler:
else
:
new_outputs
[
key
]
=
var
# do not append startup op if var is not on this pserver
var_on_pserver
=
False
for
_
,
var
in
new_outputs
.
iteritems
():
if
var
.
name
in
created_var_map
:
var_on_pserver
=
True
if
var_on_pserver
:
op_on_pserver
=
False
for
_
,
var
in
op
.
outputs
.
iteritems
():
if
var
.
name
in
optimize_op_input_var_names
:
op_on_pserver
=
True
break
if
op_on_pserver
:
# gaussian_random use attr to determine tensor shape
if
op
.
type
in
[
"gaussian_random"
,
"fill_constant"
]:
op
.
attrs
[
"shape"
]
=
new_outputs
[
"Out"
].
shape
s_prog
.
global_block
().
append_op
(
type
=
op
.
type
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录