diff --git a/paddle/fluid/operators/cvm_op.cc b/paddle/fluid/operators/cvm_op.cc index bbcb847ae6b961f7a193c89f37e39a0e879b6b11..b548401168c84c0494bace8bedf93ea93e7ef102 100644 --- a/paddle/fluid/operators/cvm_op.cc +++ b/paddle/fluid/operators/cvm_op.cc @@ -114,11 +114,12 @@ class CVMOpMaker : public framework::OpProtoAndCheckerMaker { AddAttr("use_cvm", "bool, use cvm or not").SetDefault(true); AddComment(R"DOC( CVM Operator. + We assume that input is a embedding vector with cvm_feature(show and click), which shape is [N * D] (D is 2(cvm_feature) + embedding dim, N is batch_size) if use_cvm is True, we will log(cvm_feature), and output shape is [N * D]. if use_cvm is False, we will remove cvm_feature from input, and output shape is [N * (D - 2)]. - Example: + Example: input = fluid.layers.data(name=\"input\", shape=[-1, 1], lod_level=1, append_batch_size=False, dtype=\"int64\") label = fluid.layers.data(name=\"label\", shape=[-1, 1], append_batch_size=False, dtype=\"int64\")