Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
51d4afaa
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
51d4afaa
编写于
11月 04, 2017
作者:
Y
Yu Yang
提交者:
GitHub
11月 04, 2017
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Rename program->main_program, init_program->startup_program (#5360)
上级
e745bcfc
变更
24
显示空白变更内容
内联
并排
Showing
24 changed file
with
486 addition
and
418 deletion
+486
-418
python/paddle/v2/framework/framework.py
python/paddle/v2/framework/framework.py
+2
-2
python/paddle/v2/framework/io.py
python/paddle/v2/framework/io.py
+35
-29
python/paddle/v2/framework/layer_helper.py
python/paddle/v2/framework/layer_helper.py
+15
-15
python/paddle/v2/framework/layers.py
python/paddle/v2/framework/layers.py
+30
-29
python/paddle/v2/framework/net_drawer.py
python/paddle/v2/framework/net_drawer.py
+3
-3
python/paddle/v2/framework/nets.py
python/paddle/v2/framework/nets.py
+22
-22
python/paddle/v2/framework/optimizer.py
python/paddle/v2/framework/optimizer.py
+7
-5
python/paddle/v2/framework/tests/test_executor_and_mul.py
python/paddle/v2/framework/tests/test_executor_and_mul.py
+2
-2
python/paddle/v2/framework/tests/test_fit_a_line.py
python/paddle/v2/framework/tests/test_fit_a_line.py
+20
-16
python/paddle/v2/framework/tests/test_image_classification_layer.py
...dle/v2/framework/tests/test_image_classification_layer.py
+35
-31
python/paddle/v2/framework/tests/test_image_classification_train.py
...dle/v2/framework/tests/test_image_classification_train.py
+66
-50
python/paddle/v2/framework/tests/test_inference_model_io.py
python/paddle/v2/framework/tests/test_inference_model_io.py
+10
-10
python/paddle/v2/framework/tests/test_layers.py
python/paddle/v2/framework/tests/test_layers.py
+53
-36
python/paddle/v2/framework/tests/test_lod_rank_table.py
python/paddle/v2/framework/tests/test_lod_rank_table.py
+2
-2
python/paddle/v2/framework/tests/test_operator_desc.py
python/paddle/v2/framework/tests/test_operator_desc.py
+2
-2
python/paddle/v2/framework/tests/test_parameter.py
python/paddle/v2/framework/tests/test_parameter.py
+2
-2
python/paddle/v2/framework/tests/test_program.py
python/paddle/v2/framework/tests/test_program.py
+9
-9
python/paddle/v2/framework/tests/test_recognize_digits_conv.py
...n/paddle/v2/framework/tests/test_recognize_digits_conv.py
+25
-19
python/paddle/v2/framework/tests/test_recognize_digits_mlp.py
...on/paddle/v2/framework/tests/test_recognize_digits_mlp.py
+25
-18
python/paddle/v2/framework/tests/test_recommender_system.py
python/paddle/v2/framework/tests/test_recommender_system.py
+66
-64
python/paddle/v2/framework/tests/test_recurrent_op.py
python/paddle/v2/framework/tests/test_recurrent_op.py
+16
-14
python/paddle/v2/framework/tests/test_understand_sentiment_conv.py
...ddle/v2/framework/tests/test_understand_sentiment_conv.py
+3
-3
python/paddle/v2/framework/tests/test_variable.py
python/paddle/v2/framework/tests/test_variable.py
+2
-2
python/paddle/v2/framework/tests/test_word2vec.py
python/paddle/v2/framework/tests/test_word2vec.py
+34
-33
未找到文件。
python/paddle/v2/framework/framework.py
浏览文件 @
51d4afaa
...
...
@@ -550,5 +550,5 @@ class Parameter(Variable):
# program is a global instance.
g_program
=
Program
()
g_
init
_program
=
Program
()
g_
main_
program
=
Program
()
g_
startup
_program
=
Program
()
python/paddle/v2/framework/io.py
浏览文件 @
51d4afaa
import
os
import
cPickle
as
pickle
from
paddle.v2.framework.framework
import
Program
,
Parameter
,
g_program
,
\
from
paddle.v2.framework.framework
import
Program
,
Parameter
,
g_
main_
program
,
\
Variable
__all__
=
[
...
...
@@ -29,13 +29,13 @@ def _clone_var_in_block_(block, var):
persistable
=
True
)
def
save_vars
(
executor
,
dirname
,
program
=
None
,
vars
=
None
,
predicate
=
None
):
def
save_vars
(
executor
,
dirname
,
main_
program
=
None
,
vars
=
None
,
predicate
=
None
):
"""
Save variables to directory by executor.
:param executor: executor that save variable
:param dirname: directory path
:param program: program. If vars is None, then filter all variables in this
:param
main_
program: program. If vars is None, then filter all variables in this
program which fit `predicate`. Default g_program.
:param predicate: The Predicate describes a callable that returns a variable
as a bool. If it returns true, the variables will be saved.
...
...
@@ -44,15 +44,15 @@ def save_vars(executor, dirname, program=None, vars=None, predicate=None):
:return: None
"""
if
vars
is
None
:
if
program
is
None
:
program
=
g
_program
if
not
isinstance
(
program
,
Program
):
if
main_
program
is
None
:
main_program
=
g_main
_program
if
not
isinstance
(
main_
program
,
Program
):
raise
TypeError
(
"program should be as Program type or None"
)
save_vars
(
executor
,
dirname
=
dirname
,
vars
=
filter
(
predicate
,
program
.
list_vars
()))
vars
=
filter
(
predicate
,
main_
program
.
list_vars
()))
else
:
save_program
=
Program
()
save_block
=
save_program
.
global_block
()
...
...
@@ -66,37 +66,37 @@ def save_vars(executor, dirname, program=None, vars=None, predicate=None):
executor
.
run
(
save_program
)
def
save_params
(
executor
,
dirname
,
program
=
None
):
def
save_params
(
executor
,
dirname
,
main_
program
=
None
):
"""
Save all parameters to directory with executor.
"""
save_vars
(
executor
,
dirname
=
dirname
,
program
=
program
,
main_program
=
main_
program
,
vars
=
None
,
predicate
=
is_parameter
)
def
save_persistables
(
executor
,
dirname
,
program
=
None
):
def
save_persistables
(
executor
,
dirname
,
main_
program
=
None
):
"""
Save all persistables to directory with executor.
"""
save_vars
(
executor
,
dirname
=
dirname
,
program
=
program
,
main_program
=
main_
program
,
vars
=
None
,
predicate
=
is_persistable
)
def
load_vars
(
executor
,
dirname
,
program
=
None
,
vars
=
None
,
predicate
=
None
):
def
load_vars
(
executor
,
dirname
,
main_
program
=
None
,
vars
=
None
,
predicate
=
None
):
"""
Load variables from directory by executor.
:param executor: executor that save variable
:param dirname: directory path
:param program: program. If vars is None, then filter all variables in this
:param
main_
program: program. If vars is None, then filter all variables in this
program which fit `predicate`. Default g_program.
:param predicate: The Predicate describes a callable that returns a variable
as a bool. If it returns true, the variables will be loaded.
...
...
@@ -105,15 +105,15 @@ def load_vars(executor, dirname, program=None, vars=None, predicate=None):
:return: None
"""
if
vars
is
None
:
if
program
is
None
:
program
=
g
_program
if
not
isinstance
(
program
,
Program
):
if
main_
program
is
None
:
main_program
=
g_main
_program
if
not
isinstance
(
main_
program
,
Program
):
raise
TypeError
(
"program's type should be Program"
)
load_vars
(
executor
,
dirname
=
dirname
,
vars
=
filter
(
predicate
,
program
.
list_vars
()))
vars
=
filter
(
predicate
,
main_
program
.
list_vars
()))
else
:
load_prog
=
Program
()
load_block
=
load_prog
.
global_block
()
...
...
@@ -129,27 +129,33 @@ def load_vars(executor, dirname, program=None, vars=None, predicate=None):
executor
.
run
(
load_prog
)
def
load_params
(
executor
,
dirname
,
program
=
None
):
def
load_params
(
executor
,
dirname
,
main_
program
=
None
):
"""
load all parameters from directory by executor.
"""
load_vars
(
executor
,
dirname
=
dirname
,
program
=
program
,
predicate
=
is_parameter
)
executor
,
dirname
=
dirname
,
main_program
=
main_program
,
predicate
=
is_parameter
)
def
load_persistables
(
executor
,
dirname
,
program
=
None
):
def
load_persistables
(
executor
,
dirname
,
main_
program
=
None
):
"""
load all persistables from directory by executor.
"""
load_vars
(
executor
,
dirname
=
dirname
,
program
=
program
,
predicate
=
is_persistable
)
executor
,
dirname
=
dirname
,
main_program
=
main_program
,
predicate
=
is_persistable
)
def
save_inference_model
(
dirname
,
feeded_var_names
,
target_vars
,
executor
,
program
=
None
):
main_
program
=
None
):
"""
Build a model especially for inference,
and save it to directory by the executor.
...
...
@@ -158,20 +164,20 @@ def save_inference_model(dirname,
:param feeded_var_names: Names of variables that need to be feeded data during inference
:param target_vars: Variables from which we can get inference results.
:param executor: executor that save inference model
:param program: original program, which will be pruned to build the inference model.
:param
main_
program: original program, which will be pruned to build the inference model.
Default g_program.
:return: None
"""
if
program
is
None
:
program
=
g
_program
if
main_
program
is
None
:
main_program
=
g_main
_program
if
not
isinstance
(
target_vars
,
list
):
target_vars
=
[
target_vars
]
if
not
os
.
path
.
isdir
(
dirname
):
os
.
makedirs
(
dirname
)
pruned_program
=
program
.
prune
(
target_vars
)
pruned_program
=
main_
program
.
prune
(
target_vars
)
fetch_var_names
=
[
v
.
name
for
v
in
target_vars
]
model_file_name
=
dirname
+
"/__model__"
...
...
@@ -182,10 +188,10 @@ def save_inference_model(dirname,
"fetch_var_names"
:
fetch_var_names
},
f
,
-
1
)
save_params
(
executor
,
dirname
,
program
)
save_params
(
executor
,
dirname
,
main_
program
)
def
load_persistables_if_exist
(
executor
,
dirname
,
program
=
None
):
def
load_persistables_if_exist
(
executor
,
dirname
,
main_
program
=
None
):
filenames
=
next
(
os
.
walk
(
dirname
))[
2
]
filenames
=
set
(
filenames
)
...
...
@@ -198,7 +204,7 @@ def load_persistables_if_exist(executor, dirname, program=None):
load_vars
(
executor
,
dirname
,
program
=
program
,
main_program
=
main_
program
,
vars
=
None
,
predicate
=
_is_presistable_and_exist_
)
...
...
python/paddle/v2/framework/layer_helper.py
浏览文件 @
51d4afaa
import
copy
import
itertools
from
paddle.v2.framework.framework
import
Variable
,
g_program
,
\
g_
init
_program
,
unique_name
,
Program
from
paddle.v2.framework.framework
import
Variable
,
g_
main_
program
,
\
g_
startup
_program
,
unique_name
,
Program
from
paddle.v2.framework.initializer
import
ConstantInitializer
,
\
UniformInitializer
...
...
@@ -20,23 +20,23 @@ class LayerHelper(object):
return
self
.
kwargs
[
'name'
]
@
property
def
program
(
self
):
prog
=
self
.
kwargs
.
get
(
'program'
,
None
)
def
main_
program
(
self
):
prog
=
self
.
kwargs
.
get
(
'
main_
program'
,
None
)
if
prog
is
None
:
return
g_program
return
g_
main_
program
else
:
return
prog
@
property
def
init
_program
(
self
):
prog
=
self
.
kwargs
.
get
(
'
init
_program'
,
None
)
def
startup
_program
(
self
):
prog
=
self
.
kwargs
.
get
(
'
startup
_program'
,
None
)
if
prog
is
None
:
return
g_
init
_program
return
g_
startup
_program
else
:
return
prog
def
append_op
(
self
,
*
args
,
**
kwargs
):
return
self
.
program
.
current_block
().
append_op
(
*
args
,
**
kwargs
)
return
self
.
main_
program
.
current_block
().
append_op
(
*
args
,
**
kwargs
)
def
multiple_input
(
self
,
input_param_name
=
'input'
):
inputs
=
self
.
kwargs
.
get
(
input_param_name
,
[])
...
...
@@ -120,27 +120,27 @@ class LayerHelper(object):
attr_copy
[
'initializer'
]
=
initializer
if
attr_copy
[
'name'
]
is
None
:
attr_copy
[
'name'
]
=
unique_name
(
"."
.
join
([
self
.
name
,
suffix
]))
self
.
init
_program
.
global_block
().
create_parameter
(
self
.
startup
_program
.
global_block
().
create_parameter
(
dtype
=
dtype
,
shape
=
shape
,
**
attr_copy
)
return
self
.
program
.
global_block
().
create_parameter
(
return
self
.
main_
program
.
global_block
().
create_parameter
(
name
=
attr_copy
[
'name'
],
dtype
=
dtype
,
shape
=
shape
)
def
create_tmp_variable
(
self
,
dtype
):
return
self
.
program
.
current_block
().
create_var
(
return
self
.
main_
program
.
current_block
().
create_var
(
name
=
unique_name
(
"."
.
join
([
self
.
name
,
'tmp'
])),
dtype
=
dtype
,
persistable
=
False
)
def
create_variable
(
self
,
*
args
,
**
kwargs
):
return
self
.
program
.
current_block
().
create_var
(
*
args
,
**
kwargs
)
return
self
.
main_
program
.
current_block
().
create_var
(
*
args
,
**
kwargs
)
def
create_global_variable
(
self
,
persistable
=
False
,
*
args
,
**
kwargs
):
return
self
.
program
.
global_block
().
create_var
(
return
self
.
main_
program
.
global_block
().
create_var
(
*
args
,
persistable
=
persistable
,
**
kwargs
)
def
set_variable_initializer
(
self
,
var
,
initializer
):
assert
isinstance
(
var
,
Variable
)
self
.
init
_program
.
global_block
().
create_var
(
self
.
startup
_program
.
global_block
().
create_var
(
name
=
var
.
name
,
type
=
var
.
type
,
dtype
=
var
.
data_type
,
...
...
python/paddle/v2/framework/layers.py
浏览文件 @
51d4afaa
...
...
@@ -18,8 +18,8 @@ def fc(input,
name
=
None
,
act
=
None
,
num_flatten_dims
=
1
,
program
=
None
,
init
_program
=
None
):
main_
program
=
None
,
startup
_program
=
None
):
# create helper
helper
=
LayerHelper
(
'fc'
,
**
locals
())
...
...
@@ -64,8 +64,8 @@ def embedding(input,
data_type
=
'float32'
,
is_sparse
=
False
,
param_attr
=
None
,
program
=
None
,
init
_program
=
None
):
main_
program
=
None
,
startup
_program
=
None
):
helper
=
LayerHelper
(
'embedding'
,
**
locals
())
w
=
helper
.
create_parameter
(
attr
=
helper
.
param_attr
,
shape
=
size
,
dtype
=
data_type
)
...
...
@@ -84,8 +84,8 @@ def data(name,
data_type
=
'float32'
,
type
=
core
.
VarDesc
.
VarType
.
LOD_TENSOR
,
append_batch_size
=
True
,
program
=
None
,
init
_program
=
None
):
main_
program
=
None
,
startup
_program
=
None
):
helper
=
LayerHelper
(
'data'
,
**
locals
())
shape
=
list
(
shape
)
for
i
in
xrange
(
len
(
shape
)):
...
...
@@ -178,7 +178,7 @@ _create_op_func_('sigmoid')
_create_op_func_
(
'scale'
)
def
cast
(
x
,
data_type
,
program
=
None
):
def
cast
(
x
,
data_type
,
main_
program
=
None
):
helper
=
LayerHelper
(
'cast'
,
**
locals
())
out
=
helper
.
create_tmp_variable
(
dtype
=
data_type
)
helper
.
append_op
(
...
...
@@ -190,7 +190,7 @@ def cast(x, data_type, program=None):
return
out
def
concat
(
input
,
axis
,
program
=
None
,
init
_program
=
None
):
def
concat
(
input
,
axis
,
main_program
=
None
,
startup
_program
=
None
):
helper
=
LayerHelper
(
'concat'
,
**
locals
())
out
=
helper
.
create_tmp_variable
(
dtype
=
helper
.
input_dtype
())
helper
.
append_op
(
...
...
@@ -201,7 +201,7 @@ def concat(input, axis, program=None, init_program=None):
return
out
def
sums
(
input
,
program
=
None
,
init
_program
=
None
):
def
sums
(
input
,
main_program
=
None
,
startup
_program
=
None
):
helper
=
LayerHelper
(
'sum'
,
**
locals
())
out
=
helper
.
create_tmp_variable
(
dtype
=
helper
.
input_dtype
())
helper
.
append_op
(
type
=
'sum'
,
inputs
=
{
'X'
:
input
},
outputs
=
{
'Out'
:
out
})
...
...
@@ -281,8 +281,8 @@ def sequence_conv(input,
padding
=
None
,
bias_attr
=
None
,
param_attr
=
None
,
program
=
None
,
init
_program
=
None
):
main_
program
=
None
,
startup
_program
=
None
):
# FIXME(dzh) : want to unify the argument of python layer
# function. So we ignore some unecessary attributes.
# such as, padding_trainable, context_start.
...
...
@@ -321,8 +321,8 @@ def conv2d(input,
padding
=
None
,
bias_attr
=
None
,
param_attr
=
None
,
program
=
None
,
init
_program
=
None
):
main_
program
=
None
,
startup
_program
=
None
):
helper
=
LayerHelper
(
'conv2d'
,
**
locals
())
dtype
=
helper
.
input_dtype
()
...
...
@@ -388,8 +388,8 @@ def pool2d(input,
pool_stride
=
[
1
,
1
],
pool_padding
=
[
0
,
0
],
global_pooling
=
False
,
program
=
None
,
init
_program
=
None
):
main_
program
=
None
,
startup
_program
=
None
):
if
pool_type
not
in
[
"max"
,
"avg"
]:
raise
ValueError
(
"Unknown pool_type: '%s'. It can only be 'max' or 'avg'."
,
...
...
@@ -428,8 +428,8 @@ def batch_norm(input,
param_attr
=
None
,
bias_attr
=
None
,
data_layout
=
'NCHW'
,
program
=
None
,
init
_program
=
None
):
main_
program
=
None
,
startup
_program
=
None
):
helper
=
LayerHelper
(
'batch_norm'
,
**
locals
())
dtype
=
helper
.
input_dtype
()
...
...
@@ -505,16 +505,16 @@ class BlockGuard(object):
keyword.
"""
def
__init__
(
self
,
program
):
if
not
isinstance
(
program
,
Program
):
def
__init__
(
self
,
main_
program
):
if
not
isinstance
(
main_
program
,
Program
):
raise
TypeError
(
"BlockGuard takes a program"
)
self
.
program
=
program
self
.
main_program
=
main_
program
def
__enter__
(
self
):
self
.
program
.
create_block
()
self
.
main_
program
.
create_block
()
def
__exit__
(
self
,
exc_type
,
exc_val
,
exc_tb
):
self
.
program
.
rollback
()
self
.
main_
program
.
rollback
()
if
exc_type
is
not
None
:
return
False
# re-raise exception
return
True
...
...
@@ -524,7 +524,7 @@ class StaticRNNGuard(BlockGuard):
def
__init__
(
self
,
rnn
):
if
not
isinstance
(
rnn
,
StaticRNN
):
raise
TypeError
(
"StaticRNNGuard takes an StaticRNN"
)
super
(
StaticRNNGuard
,
self
).
__init__
(
rnn
.
helper
.
program
)
super
(
StaticRNNGuard
,
self
).
__init__
(
rnn
.
helper
.
main_
program
)
self
.
rnn
=
rnn
def
__enter__
(
self
):
...
...
@@ -560,8 +560,9 @@ class StaticRNN(object):
IN_RNN_BLOCK
=
1
AFTER_RNN_BLOCK
=
2
def
__init__
(
self
,
name
=
None
,
program
=
None
):
self
.
helper
=
LayerHelper
(
"static_rnn"
,
name
=
name
,
program
=
program
)
def
__init__
(
self
,
name
=
None
,
main_program
=
None
):
self
.
helper
=
LayerHelper
(
"static_rnn"
,
name
=
name
,
main_program
=
main_program
)
self
.
memories
=
{}
# memory map, from pre_mem.name --> MemoryLink
self
.
inputs
=
[]
# input variable list in current block
self
.
outputs
=
[]
# output variable list in parent block
...
...
@@ -653,7 +654,7 @@ class StaticRNN(object):
self
.
memories
[
mem
.
name
].
mem
=
var
def
parent_block
(
self
):
prog
=
self
.
helper
.
program
prog
=
self
.
helper
.
main_
program
parent_idx
=
prog
.
current_block
().
parent_idx
assert
parent_idx
>=
0
parent_block
=
prog
.
block
(
parent_idx
)
...
...
@@ -670,8 +671,8 @@ class StaticRNN(object):
return
self
.
outputs
def
complete_rnn_op
(
self
):
program
=
self
.
helper
.
program
rnn_block
=
program
.
current_block
()
main_program
=
self
.
helper
.
main_
program
rnn_block
=
main_
program
.
current_block
()
parent_block
=
self
.
parent_block
()
local_inputs
=
set
()
...
...
@@ -737,7 +738,7 @@ class StaticRNN(object):
})
def
lod_rank_table
(
x
,
level
=
0
,
program
=
None
):
def
lod_rank_table
(
x
,
level
=
0
,
main_
program
=
None
):
helper
=
LayerHelper
(
"lod_rank_table"
,
**
locals
())
table
=
helper
.
create_variable
(
type
=
core
.
VarDesc
.
VarType
.
LOD_RANK_TABLE
,
...
...
python/paddle/v2/framework/net_drawer.py
浏览文件 @
51d4afaa
...
...
@@ -80,7 +80,7 @@ def parse_graph(program, graph, var_dict, **kwargs):
graph
.
edge
(
**
draw_edge
(
var_dict
,
op
,
e
,
arg
))
def
draw_graph
(
init_program
,
program
,
**
kwargs
):
def
draw_graph
(
startup_program
,
main_
program
,
**
kwargs
):
if
kwargs
.
has_key
(
"graph_attr"
):
GRAPH_STYLE
.
update
(
kwargs
[
graph_attr
])
if
kwargs
.
has_key
(
"node_attr"
):
...
...
@@ -101,8 +101,8 @@ def draw_graph(init_program, program, **kwargs):
**
kwargs
)
var_dict
=
{}
parse_graph
(
init
_program
,
g
,
var_dict
)
parse_graph
(
program
,
g
,
var_dict
)
parse_graph
(
startup
_program
,
g
,
var_dict
)
parse_graph
(
main_
program
,
g
,
var_dict
)
if
filename
!=
None
:
g
.
save
()
...
...
python/paddle/v2/framework/nets.py
浏览文件 @
51d4afaa
...
...
@@ -10,23 +10,23 @@ def simple_img_conv_pool(input,
pool_stride
,
act
,
pool_type
=
'max'
,
program
=
None
,
init
_program
=
None
):
main_
program
=
None
,
startup
_program
=
None
):
conv_out
=
layers
.
conv2d
(
input
=
input
,
num_filters
=
num_filters
,
filter_size
=
filter_size
,
act
=
act
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
pool_out
=
layers
.
pool2d
(
input
=
conv_out
,
pool_size
=
pool_size
,
pool_type
=
pool_type
,
pool_stride
=
pool_stride
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
return
pool_out
...
...
@@ -40,8 +40,8 @@ def img_conv_group(input,
conv_batchnorm_drop_rate
=
None
,
pool_stride
=
1
,
pool_type
=
None
,
program
=
None
,
init
_program
=
None
):
main_
program
=
None
,
startup
_program
=
None
):
"""
Image Convolution Group, Used for vgg net.
"""
...
...
@@ -71,30 +71,30 @@ def img_conv_group(input,
filter_size
=
conv_filter_size
[
i
],
padding
=
conv_padding
[
i
],
act
=
local_conv_act
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
if
conv_with_batchnorm
[
i
]:
tmp
=
layers
.
batch_norm
(
input
=
tmp
,
act
=
conv_act
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
drop_rate
=
conv_batchnorm_drop_rate
[
i
]
if
abs
(
drop_rate
)
>
1e-5
:
tmp
=
layers
.
dropout
(
x
=
tmp
,
dropout_prob
=
drop_rate
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
pool_out
=
layers
.
pool2d
(
input
=
tmp
,
pool_size
=
pool_size
,
pool_type
=
pool_type
,
pool_stride
=
pool_stride
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
return
pool_out
...
...
@@ -103,19 +103,19 @@ def sequence_conv_pool(input,
filter_size
,
act
=
"sigmoid"
,
pool_type
=
"max"
,
program
=
None
,
init
_program
=
None
):
main_
program
=
None
,
startup
_program
=
None
):
conv_out
=
layers
.
sequence_conv
(
input
=
input
,
num_filters
=
num_filters
,
filter_size
=
filter_size
,
act
=
act
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
pool_out
=
layers
.
sequence_pool
(
input
=
conv_out
,
pool_type
=
pool_type
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
return
pool_out
python/paddle/v2/framework/optimizer.py
浏览文件 @
51d4afaa
...
...
@@ -132,7 +132,7 @@ class Optimizer(object):
def
create_optimization_pass
(
self
,
parameters_and_grads
,
loss
,
init
_program
=
None
):
startup
_program
=
None
):
"""Add optimization operators to update gradients to variables.
Args:
...
...
@@ -144,7 +144,7 @@ class Optimizer(object):
optimization. This will include parameter update ops, global step
update ops and any other custom ops required by subclasses to manage
their internal state.
:param
init
_program:
:param
startup
_program:
"""
# This is a default implementation of create_optimization_pass that
# can be shared by most optimizers. This implementation assumes that
...
...
@@ -156,7 +156,9 @@ class Optimizer(object):
# Create any accumulators
program
=
loss
.
block
.
program
self
.
helper
=
LayerHelper
(
self
.
__class__
.
__name__
,
program
=
program
,
init_program
=
init_program
)
self
.
__class__
.
__name__
,
main_program
=
program
,
startup_program
=
startup_program
)
self
.
_create_accumulators
(
loss
.
block
,
[
p
[
0
]
for
p
in
parameters_and_grads
])
# Create any necessary tensors
...
...
@@ -185,7 +187,7 @@ class Optimizer(object):
def
minimize
(
self
,
loss
,
init
_program
=
None
,
startup
_program
=
None
,
parameter_list
=
None
,
no_grad_set
=
None
):
"""Add operations to minimize `loss` by updating `parameter_list`.
...
...
@@ -198,7 +200,7 @@ class Optimizer(object):
# Add regularization if any
params_grads
=
append_regularization_ops
(
params_grads
)
optimize_ops
=
self
.
create_optimization_pass
(
params_grads
,
loss
,
init
_program
)
startup
_program
)
return
optimize_ops
...
...
python/paddle/v2/framework/tests/test_executor_and_mul.py
浏览文件 @
51d4afaa
...
...
@@ -2,7 +2,7 @@ import unittest
from
paddle.v2.framework.layers
import
mul
,
data
import
paddle.v2.framework.core
as
core
from
paddle.v2.framework.executor
import
Executor
from
paddle.v2.framework.framework
import
g_program
from
paddle.v2.framework.framework
import
g_
main_
program
import
numpy
...
...
@@ -23,7 +23,7 @@ class TestExecutor(unittest.TestCase):
tensor_b
=
core
.
LoDTensor
()
tensor_b
.
set
(
b_np
,
place
)
exe
=
Executor
(
place
)
outs
=
exe
.
run
(
g_program
,
outs
=
exe
.
run
(
g_
main_
program
,
feed
=
{
'a'
:
tensor_a
,
'b'
:
tensor_b
},
fetch_list
=
[
out
])
...
...
python/paddle/v2/framework/tests/test_fit_a_line.py
浏览文件 @
51d4afaa
...
...
@@ -3,40 +3,44 @@ import paddle.v2.framework.layers as layers
import
paddle.v2.framework.core
as
core
import
paddle.v2.framework.optimizer
as
optimizer
from
paddle.v2.framework.framework
import
Program
,
g_program
from
paddle.v2.framework.framework
import
Program
,
g_
main_
program
from
paddle.v2.framework.io
import
save_persistables
,
load_persistables
from
paddle.v2.framework.executor
import
Executor
import
numpy
as
np
init
_program
=
Program
()
program
=
Program
()
startup
_program
=
Program
()
main_
program
=
Program
()
x
=
layers
.
data
(
name
=
'x'
,
shape
=
[
13
],
data_type
=
'float32'
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
y_predict
=
layers
.
fc
(
input
=
x
,
size
=
1
,
act
=
None
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
y
=
layers
.
data
(
name
=
'y'
,
shape
=
[
1
],
data_type
=
'float32'
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
cost
=
layers
.
square_error_cost
(
input
=
y_predict
,
label
=
y
,
program
=
program
,
init_program
=
init_program
)
avg_cost
=
layers
.
mean
(
x
=
cost
,
program
=
program
,
init_program
=
init_program
)
input
=
y_predict
,
label
=
y
,
main_program
=
main_program
,
startup_program
=
startup_program
)
avg_cost
=
layers
.
mean
(
x
=
cost
,
main_program
=
main_program
,
startup_program
=
startup_program
)
sgd_optimizer
=
optimizer
.
SGDOptimizer
(
learning_rate
=
0.001
)
opts
=
sgd_optimizer
.
minimize
(
avg_cost
,
init
_program
)
opts
=
sgd_optimizer
.
minimize
(
avg_cost
,
startup
_program
)
BATCH_SIZE
=
20
...
...
@@ -48,12 +52,12 @@ train_reader = paddle.batch(
place
=
core
.
CPUPlace
()
exe
=
Executor
(
place
)
exe
.
run
(
init
_program
,
feed
=
{},
fetch_list
=
[])
exe
.
run
(
startup
_program
,
feed
=
{},
fetch_list
=
[])
PASS_NUM
=
100
for
pass_id
in
range
(
PASS_NUM
):
save_persistables
(
exe
,
"./fit_a_line.model/"
,
program
=
program
)
load_persistables
(
exe
,
"./fit_a_line.model/"
,
program
=
program
)
save_persistables
(
exe
,
"./fit_a_line.model/"
,
main_program
=
main_
program
)
load_persistables
(
exe
,
"./fit_a_line.model/"
,
main_program
=
main_
program
)
for
data
in
train_reader
():
x_data
=
np
.
array
(
map
(
lambda
x
:
x
[
0
],
data
)).
astype
(
"float32"
)
y_data
=
np
.
array
(
map
(
lambda
x
:
x
[
1
],
data
)).
astype
(
"float32"
)
...
...
@@ -65,7 +69,7 @@ for pass_id in range(PASS_NUM):
tensor_y
=
core
.
LoDTensor
()
tensor_y
.
set
(
y_data
,
place
)
# print tensor_y.get_dims()
outs
=
exe
.
run
(
program
,
outs
=
exe
.
run
(
main_
program
,
feed
=
{
'x'
:
tensor_x
,
'y'
:
tensor_y
},
fetch_list
=
[
avg_cost
])
...
...
python/paddle/v2/framework/tests/test_image_classification_layer.py
浏览文件 @
51d4afaa
...
...
@@ -9,8 +9,8 @@ def conv_block(input,
num_filter
,
groups
,
dropouts
,
program
=
None
,
init
_program
=
None
):
main_
program
=
None
,
startup
_program
=
None
):
return
nets
.
img_conv_group
(
input
=
input
,
pool_size
=
2
,
...
...
@@ -21,77 +21,81 @@ def conv_block(input,
conv_with_batchnorm
=
True
,
conv_batchnorm_drop_rate
=
dropouts
,
pool_type
=
'max'
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
class
TestLayer
(
unittest
.
TestCase
):
def
test_batch_norm_layer
(
self
):
program
=
Program
()
init
_program
=
Program
()
main_
program
=
Program
()
startup
_program
=
Program
()
images
=
layers
.
data
(
name
=
'pixel'
,
shape
=
[
3
,
48
,
48
],
data_type
=
'float32'
,
program
=
program
)
main_program
=
main_
program
)
layers
.
batch_norm
(
input
=
images
,
program
=
program
,
init_program
=
init_program
)
input
=
images
,
main_program
=
main_program
,
startup_program
=
startup_program
)
# print str(program)
# print str(
main_
program)
def
test_dropout_layer
(
self
):
program
=
Program
()
init
_program
=
Program
()
main_
program
=
Program
()
startup
_program
=
Program
()
images
=
layers
.
data
(
name
=
'pixel'
,
shape
=
[
3
,
48
,
48
],
data_type
=
'float32'
,
program
=
program
)
main_program
=
main_
program
)
layers
.
dropout
(
x
=
images
,
dropout_prob
=
0.5
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
# print str(program)
# print str(
main_
program)
def
test_img_conv_group
(
self
):
program
=
Program
()
init
_program
=
Program
()
main_
program
=
Program
()
startup
_program
=
Program
()
images
=
layers
.
data
(
name
=
'pixel'
,
shape
=
[
3
,
48
,
48
],
data_type
=
'float32'
,
program
=
program
,
init_program
=
init_program
)
conv1
=
conv_block
(
images
,
64
,
2
,
[
0.3
,
0
],
program
,
init_program
)
conv2
=
conv_block
(
conv1
,
256
,
3
,
[
0.4
,
0.4
,
0
],
program
,
init_program
)
main_program
=
main_program
,
startup_program
=
startup_program
)
conv1
=
conv_block
(
images
,
64
,
2
,
[
0.3
,
0
],
main_program
,
startup_program
)
conv2
=
conv_block
(
conv1
,
256
,
3
,
[
0.4
,
0.4
,
0
],
main_program
,
startup_program
)
# print str(program)
# print str(
main_
program)
def
test_elementwise_add_with_act
(
self
):
program
=
Program
()
init
_program
=
Program
()
main_
program
=
Program
()
startup
_program
=
Program
()
image1
=
layers
.
data
(
name
=
'pixel1'
,
shape
=
[
3
,
48
,
48
],
data_type
=
'float32'
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
image2
=
layers
.
data
(
name
=
'pixel2'
,
shape
=
[
3
,
48
,
48
],
data_type
=
'float32'
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
out
=
layers
.
elementwise_add
(
x
=
image1
,
y
=
image2
,
act
=
'relu'
,
program
=
program
,
init_program
=
init
_program
)
# print(program)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
# print(
main_
program)
if
__name__
==
'__main__'
:
...
...
python/paddle/v2/framework/tests/test_image_classification_train.py
浏览文件 @
51d4afaa
...
...
@@ -5,19 +5,19 @@ import paddle.v2.framework.layers as layers
import
paddle.v2.framework.nets
as
nets
import
paddle.v2.framework.optimizer
as
optimizer
from
paddle.v2.framework.executor
import
Executor
from
paddle.v2.framework.framework
import
g_
init_program
,
g
_program
from
paddle.v2.framework.framework
import
g_
startup_program
,
g_main
_program
from
paddle.v2.framework.initializer
import
XavierInitializer
def
resnet_cifar10
(
input
,
depth
=
32
,
program
=
None
,
init
_program
=
None
):
def
resnet_cifar10
(
input
,
depth
=
32
,
main_program
=
None
,
startup
_program
=
None
):
def
conv_bn_layer
(
input
,
ch_out
,
filter_size
,
stride
,
padding
,
act
=
'relu'
,
program
=
None
,
init
_program
=
None
):
main_
program
=
None
,
startup
_program
=
None
):
tmp
=
layers
.
conv2d
(
input
=
input
,
filter_size
=
filter_size
,
...
...
@@ -26,10 +26,13 @@ def resnet_cifar10(input, depth=32, program=None, init_program=None):
padding
=
padding
,
act
=
None
,
bias_attr
=
False
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
return
layers
.
batch_norm
(
input
=
tmp
,
act
=
act
,
program
=
program
,
init_program
=
init_program
)
input
=
tmp
,
act
=
act
,
main_program
=
main_program
,
startup_program
=
startup_program
)
def
shortcut
(
input
,
ch_in
,
ch_out
,
stride
,
program
,
init_program
):
if
ch_in
!=
ch_out
:
...
...
@@ -42,16 +45,16 @@ def resnet_cifar10(input, depth=32, program=None, init_program=None):
ch_in
,
ch_out
,
stride
,
program
=
program
,
init_program
=
init
_program
):
main_program
=
main_
program
,
startup_program
=
startup
_program
):
tmp
=
conv_bn_layer
(
input
,
ch_out
,
3
,
stride
,
1
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
tmp
=
conv_bn_layer
(
tmp
,
ch_out
,
...
...
@@ -59,21 +62,22 @@ def resnet_cifar10(input, depth=32, program=None, init_program=None):
1
,
1
,
act
=
None
,
program
=
program
,
init_program
=
init_program
)
short
=
shortcut
(
input
,
ch_in
,
ch_out
,
stride
,
program
,
init_program
)
main_program
=
main_program
,
startup_program
=
startup_program
)
short
=
shortcut
(
input
,
ch_in
,
ch_out
,
stride
,
main_program
,
startup_program
)
return
layers
.
elementwise_add
(
x
=
tmp
,
y
=
short
,
act
=
'relu'
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
def
layer_warp
(
block_func
,
input
,
ch_in
,
ch_out
,
count
,
stride
,
program
,
init
_program
):
tmp
=
block_func
(
input
,
ch_in
,
ch_out
,
stride
,
program
,
init
_program
)
startup
_program
):
tmp
=
block_func
(
input
,
ch_in
,
ch_out
,
stride
,
program
,
startup
_program
)
for
i
in
range
(
1
,
count
):
tmp
=
block_func
(
tmp
,
ch_out
,
ch_out
,
1
,
program
,
init
_program
)
tmp
=
block_func
(
tmp
,
ch_out
,
ch_out
,
1
,
program
,
startup
_program
)
return
tmp
assert
(
depth
-
2
)
%
6
==
0
...
...
@@ -84,8 +88,8 @@ def resnet_cifar10(input, depth=32, program=None, init_program=None):
filter_size
=
3
,
stride
=
1
,
padding
=
1
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
res1
=
layer_warp
(
basicblock
,
conv1
,
...
...
@@ -93,8 +97,8 @@ def resnet_cifar10(input, depth=32, program=None, init_program=None):
16
,
n
,
1
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
res2
=
layer_warp
(
basicblock
,
res1
,
...
...
@@ -102,8 +106,8 @@ def resnet_cifar10(input, depth=32, program=None, init_program=None):
32
,
n
,
2
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
res3
=
layer_warp
(
basicblock
,
res2
,
...
...
@@ -111,25 +115,25 @@ def resnet_cifar10(input, depth=32, program=None, init_program=None):
64
,
n
,
2
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
pool
=
layers
.
pool2d
(
input
=
res3
,
pool_size
=
8
,
pool_type
=
'avg'
,
pool_stride
=
1
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
return
pool
def
vgg16_bn_drop
(
input
,
program
=
None
,
init
_program
=
None
):
def
vgg16_bn_drop
(
input
,
main_program
=
None
,
startup
_program
=
None
):
def
conv_block
(
input
,
num_filter
,
groups
,
dropouts
,
program
=
None
,
init
_program
=
None
):
main_
program
=
None
,
startup
_program
=
None
):
return
nets
.
img_conv_group
(
input
=
input
,
pool_size
=
2
,
...
...
@@ -140,38 +144,50 @@ def vgg16_bn_drop(input, program=None, init_program=None):
conv_with_batchnorm
=
True
,
conv_batchnorm_drop_rate
=
dropouts
,
pool_type
=
'max'
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
conv1
=
conv_block
(
input
,
64
,
2
,
[
0.3
,
0
],
program
,
init_program
)
conv2
=
conv_block
(
conv1
,
128
,
2
,
[
0.4
,
0
],
program
,
init_program
)
conv3
=
conv_block
(
conv2
,
256
,
3
,
[
0.4
,
0.4
,
0
],
program
,
init_program
)
conv4
=
conv_block
(
conv3
,
512
,
3
,
[
0.4
,
0.4
,
0
],
program
,
init_program
)
conv5
=
conv_block
(
conv4
,
512
,
3
,
[
0.4
,
0.4
,
0
],
program
,
init_program
)
conv1
=
conv_block
(
input
,
64
,
2
,
[
0.3
,
0
],
main_program
,
startup_program
)
conv2
=
conv_block
(
conv1
,
128
,
2
,
[
0.4
,
0
],
main_program
,
startup_program
)
conv3
=
conv_block
(
conv2
,
256
,
3
,
[
0.4
,
0.4
,
0
],
main_program
,
startup_program
)
conv4
=
conv_block
(
conv3
,
512
,
3
,
[
0.4
,
0.4
,
0
],
main_program
,
startup_program
)
conv5
=
conv_block
(
conv4
,
512
,
3
,
[
0.4
,
0.4
,
0
],
main_program
,
startup_program
)
drop
=
layers
.
dropout
(
x
=
conv5
,
dropout_prob
=
0.5
,
program
=
program
,
init_program
=
init_program
)
x
=
conv5
,
dropout_prob
=
0.5
,
main_program
=
main_program
,
startup_program
=
startup_program
)
fc1
=
layers
.
fc
(
input
=
drop
,
size
=
512
,
act
=
None
,
param_attr
=
{
"initializer"
:
XavierInitializer
()},
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
reshape1
=
layers
.
reshape
(
x
=
fc1
,
shape
=
list
(
fc1
.
shape
+
(
1
,
1
)),
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
bn
=
layers
.
batch_norm
(
input
=
reshape1
,
act
=
'relu'
,
program
=
program
,
init_program
=
init_program
)
input
=
reshape1
,
act
=
'relu'
,
main_program
=
main_program
,
startup_program
=
startup_program
)
drop2
=
layers
.
dropout
(
x
=
bn
,
dropout_prob
=
0.5
,
program
=
program
,
init_program
=
init_program
)
x
=
bn
,
dropout_prob
=
0.5
,
main_program
=
main_program
,
startup_program
=
startup_program
)
fc2
=
layers
.
fc
(
input
=
drop2
,
size
=
512
,
act
=
None
,
param_attr
=
{
"initializer"
:
XavierInitializer
()},
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
return
fc2
...
...
@@ -209,7 +225,7 @@ train_reader = paddle.batch(
place
=
core
.
CPUPlace
()
exe
=
Executor
(
place
)
exe
.
run
(
g_
init
_program
,
feed
=
{},
fetch_list
=
[])
exe
.
run
(
g_
startup
_program
,
feed
=
{},
fetch_list
=
[])
for
pass_id
in
range
(
PASS_NUM
):
batch_id
=
0
...
...
@@ -227,7 +243,7 @@ for pass_id in range(PASS_NUM):
tensor_img
.
set
(
img_data
,
place
)
tensor_y
.
set
(
y_data
,
place
)
outs
=
exe
.
run
(
g_program
,
outs
=
exe
.
run
(
g_
main_
program
,
feed
=
{
"pixel"
:
tensor_img
,
"label"
:
tensor_y
},
fetch_list
=
[
avg_cost
,
accuracy
])
...
...
python/paddle/v2/framework/tests/test_inference_model_io.py
浏览文件 @
51d4afaa
...
...
@@ -3,7 +3,7 @@ import paddle.v2.framework.layers as layers
import
paddle.v2.framework.core
as
core
import
paddle.v2.framework.optimizer
as
optimizer
from
paddle.v2.framework.framework
import
Program
,
g_program
from
paddle.v2.framework.framework
import
Program
,
g_
main_
program
from
paddle.v2.framework.io
import
save_inference_model
,
load_inference_model
import
paddle.v2.framework.executor
as
executor
import
unittest
...
...
@@ -20,28 +20,28 @@ class TestBook(unittest.TestCase):
name
=
'x'
,
shape
=
[
2
],
data_type
=
'float32'
,
program
=
program
,
init
_program
=
init_program
)
main_
program
=
program
,
startup
_program
=
init_program
)
y
=
layers
.
data
(
name
=
'y'
,
shape
=
[
1
],
data_type
=
'float32'
,
program
=
program
,
init
_program
=
init_program
)
main_
program
=
program
,
startup
_program
=
init_program
)
y_predict
=
layers
.
fc
(
input
=
x
,
size
=
1
,
act
=
None
,
program
=
program
,
init
_program
=
init_program
)
main_
program
=
program
,
startup
_program
=
init_program
)
cost
=
layers
.
square_error_cost
(
input
=
y_predict
,
label
=
y
,
program
=
program
,
init
_program
=
init_program
)
main_
program
=
program
,
startup
_program
=
init_program
)
avg_cost
=
layers
.
mean
(
x
=
cost
,
program
=
program
,
init
_program
=
init_program
)
x
=
cost
,
main_program
=
program
,
startup
_program
=
init_program
)
sgd_optimizer
=
optimizer
.
SGDOptimizer
(
learning_rate
=
0.001
)
opts
=
sgd_optimizer
.
minimize
(
avg_cost
,
init_program
)
...
...
python/paddle/v2/framework/tests/test_layers.py
浏览文件 @
51d4afaa
import
paddle.v2.framework.layers
as
layers
import
paddle.v2.framework.nets
as
nets
from
paddle.v2.framework.framework
import
Program
,
g_program
from
paddle.v2.framework.framework
import
Program
,
g_
main_
program
import
paddle.v2.framework.core
as
core
import
unittest
...
...
@@ -9,15 +9,15 @@ class TestBook(unittest.TestCase):
def
test_fit_a_line
(
self
):
program
=
Program
()
x
=
layers
.
data
(
name
=
'x'
,
shape
=
[
13
],
data_type
=
'float32'
,
program
=
program
)
y_predict
=
layers
.
fc
(
input
=
x
,
size
=
1
,
act
=
None
,
program
=
program
)
name
=
'x'
,
shape
=
[
13
],
data_type
=
'float32'
,
main_
program
=
program
)
y_predict
=
layers
.
fc
(
input
=
x
,
size
=
1
,
act
=
None
,
main_
program
=
program
)
y
=
layers
.
data
(
name
=
'y'
,
shape
=
[
1
],
data_type
=
'float32'
,
program
=
program
)
name
=
'y'
,
shape
=
[
1
],
data_type
=
'float32'
,
main_
program
=
program
)
cost
=
layers
.
square_error_cost
(
input
=
y_predict
,
label
=
y
,
program
=
program
)
input
=
y_predict
,
label
=
y
,
main_
program
=
program
)
avg_cost
=
layers
.
mean
(
x
=
cost
,
program
=
program
)
avg_cost
=
layers
.
mean
(
x
=
cost
,
main_
program
=
program
)
self
.
assertIsNotNone
(
avg_cost
)
program
.
append_backward
(
avg_cost
)
print
str
(
program
)
...
...
@@ -27,26 +27,42 @@ class TestBook(unittest.TestCase):
# Change g_program, so the rest layers use `g_program`
images
=
layers
.
data
(
name
=
'pixel'
,
shape
=
[
784
],
data_type
=
'float32'
,
program
=
program
)
name
=
'pixel'
,
shape
=
[
784
],
data_type
=
'float32'
,
main_program
=
program
)
label
=
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
data_type
=
'int32'
,
program
=
program
)
hidden1
=
layers
.
fc
(
input
=
images
,
size
=
128
,
act
=
'relu'
,
program
=
program
)
hidden2
=
layers
.
fc
(
input
=
hidden1
,
size
=
64
,
act
=
'relu'
,
program
=
program
)
name
=
'label'
,
shape
=
[
1
],
data_type
=
'int32'
,
main_program
=
program
)
hidden1
=
layers
.
fc
(
input
=
images
,
size
=
128
,
act
=
'relu'
,
main_program
=
program
)
hidden2
=
layers
.
fc
(
input
=
hidden1
,
size
=
64
,
act
=
'relu'
,
main_program
=
program
)
predict
=
layers
.
fc
(
input
=
hidden2
,
size
=
10
,
act
=
'softmax'
,
program
=
program
)
cost
=
layers
.
cross_entropy
(
input
=
predict
,
label
=
label
,
program
=
program
)
avg_cost
=
layers
.
mean
(
x
=
cost
,
program
=
program
)
main_program
=
program
)
cost
=
layers
.
cross_entropy
(
input
=
predict
,
label
=
label
,
main_program
=
program
)
avg_cost
=
layers
.
mean
(
x
=
cost
,
main_program
=
program
)
self
.
assertIsNotNone
(
avg_cost
)
print
str
(
program
)
def
test_simple_conv2d
(
self
):
program
=
Program
()
images
=
layers
.
data
(
name
=
'pixel'
,
shape
=
[
3
,
48
,
48
],
data_type
=
'int32'
,
program
=
program
)
name
=
'pixel'
,
shape
=
[
3
,
48
,
48
],
data_type
=
'int32'
,
main_program
=
program
)
layers
.
conv2d
(
input
=
images
,
num_filters
=
3
,
filter_size
=
[
4
,
4
],
program
=
program
)
input
=
images
,
num_filters
=
3
,
filter_size
=
[
4
,
4
],
main_program
=
program
)
print
str
(
program
)
...
...
@@ -57,9 +73,9 @@ class TestBook(unittest.TestCase):
name
=
'pixel'
,
shape
=
[
1
,
28
,
28
],
data_type
=
'float32'
,
program
=
program
)
main_
program
=
program
)
label
=
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
data_type
=
'int32'
,
program
=
program
)
name
=
'label'
,
shape
=
[
1
],
data_type
=
'int32'
,
main_
program
=
program
)
conv_pool_1
=
nets
.
simple_img_conv_pool
(
input
=
images
,
filter_size
=
5
,
...
...
@@ -67,7 +83,7 @@ class TestBook(unittest.TestCase):
pool_size
=
2
,
pool_stride
=
2
,
act
=
"relu"
,
program
=
program
)
main_
program
=
program
)
conv_pool_2
=
nets
.
simple_img_conv_pool
(
input
=
conv_pool_1
,
filter_size
=
5
,
...
...
@@ -75,14 +91,15 @@ class TestBook(unittest.TestCase):
pool_size
=
2
,
pool_stride
=
2
,
act
=
"relu"
,
program
=
program
)
main_
program
=
program
)
predict
=
layers
.
fc
(
input
=
conv_pool_2
,
size
=
10
,
act
=
"softmax"
,
program
=
program
)
cost
=
layers
.
cross_entropy
(
input
=
predict
,
label
=
label
,
program
=
program
)
avg_cost
=
layers
.
mean
(
x
=
cost
,
program
=
program
)
main_program
=
program
)
cost
=
layers
.
cross_entropy
(
input
=
predict
,
label
=
label
,
main_program
=
program
)
avg_cost
=
layers
.
mean
(
x
=
cost
,
main_program
=
program
)
program
.
append_backward
(
avg_cost
)
...
...
@@ -93,58 +110,58 @@ class TestBook(unittest.TestCase):
dict_size
=
10000
embed_size
=
32
first_word
=
layers
.
data
(
name
=
'firstw'
,
shape
=
[
1
],
data_type
=
'int64'
,
program
=
program
)
name
=
'firstw'
,
shape
=
[
1
],
data_type
=
'int64'
,
main_
program
=
program
)
second_word
=
layers
.
data
(
name
=
'secondw'
,
shape
=
[
1
],
data_type
=
'int64'
,
program
=
program
)
name
=
'secondw'
,
shape
=
[
1
],
data_type
=
'int64'
,
main_
program
=
program
)
third_word
=
layers
.
data
(
name
=
'thirdw'
,
shape
=
[
1
],
data_type
=
'int64'
,
program
=
program
)
name
=
'thirdw'
,
shape
=
[
1
],
data_type
=
'int64'
,
main_
program
=
program
)
forth_word
=
layers
.
data
(
name
=
'forthw'
,
shape
=
[
1
],
data_type
=
'int64'
,
program
=
program
)
name
=
'forthw'
,
shape
=
[
1
],
data_type
=
'int64'
,
main_
program
=
program
)
next_word
=
layers
.
data
(
name
=
'nextw'
,
shape
=
[
1
],
data_type
=
'int64'
,
program
=
program
)
name
=
'nextw'
,
shape
=
[
1
],
data_type
=
'int64'
,
main_
program
=
program
)
embed_first
=
layers
.
embedding
(
input
=
first_word
,
size
=
[
dict_size
,
embed_size
],
data_type
=
'float32'
,
param_attr
=
{
'name'
:
'shared_w'
},
program
=
program
)
main_
program
=
program
)
embed_second
=
layers
.
embedding
(
input
=
second_word
,
size
=
[
dict_size
,
embed_size
],
data_type
=
'float32'
,
param_attr
=
{
'name'
:
'shared_w'
},
program
=
program
)
main_
program
=
program
)
embed_third
=
layers
.
embedding
(
input
=
third_word
,
size
=
[
dict_size
,
embed_size
],
data_type
=
'float32'
,
param_attr
=
{
'name'
:
'shared_w'
},
program
=
program
)
main_
program
=
program
)
embed_forth
=
layers
.
embedding
(
input
=
forth_word
,
size
=
[
dict_size
,
embed_size
],
data_type
=
'float32'
,
param_attr
=
{
'name'
:
'shared_w'
},
program
=
program
)
main_
program
=
program
)
concat_embed
=
layers
.
concat
(
input
=
[
embed_first
,
embed_second
,
embed_third
,
embed_forth
],
axis
=
1
,
program
=
program
)
main_
program
=
program
)
hidden1
=
layers
.
fc
(
input
=
concat_embed
,
size
=
256
,
act
=
'sigmoid'
,
program
=
program
)
main_
program
=
program
)
predict_word
=
layers
.
fc
(
input
=
hidden1
,
size
=
dict_size
,
act
=
'softmax'
,
program
=
program
)
main_
program
=
program
)
cost
=
layers
.
cross_entropy
(
input
=
predict_word
,
label
=
next_word
,
program
=
program
)
avg_cost
=
layers
.
mean
(
x
=
cost
,
program
=
program
)
input
=
predict_word
,
label
=
next_word
,
main_
program
=
program
)
avg_cost
=
layers
.
mean
(
x
=
cost
,
main_
program
=
program
)
self
.
assertIsNotNone
(
avg_cost
)
print
str
(
program
)
...
...
python/paddle/v2/framework/tests/test_lod_rank_table.py
浏览文件 @
51d4afaa
from
paddle.v2.framework.layers
import
lod_rank_table
,
data
from
paddle.v2.framework.executor
import
Executor
from
paddle.v2.framework.framework
import
g_program
from
paddle.v2.framework.framework
import
g_
main_
program
import
paddle.v2.framework.core
as
core
import
numpy
import
unittest
...
...
@@ -19,7 +19,7 @@ class TestLoDRankTable(unittest.TestCase):
tensor
.
set
(
numpy
.
random
.
random
(
size
=
(
17
,
100
)),
cpu
)
tensor
.
set_lod
([[
0
,
1
,
3
],
[
0
,
5
,
6
,
7
],
[
0
,
3
,
4
,
9
,
10
,
13
,
16
,
17
]])
exe
.
run
(
g_program
,
scope
=
scope
,
feed
=
{
'x'
:
tensor
})
exe
.
run
(
g_
main_
program
,
scope
=
scope
,
feed
=
{
'x'
:
tensor
})
var
=
scope
.
find_var
(
rank_table
.
name
)
table
=
var
.
get_lod_rank_table
()
self
.
assertEqual
([(
0
,
5
),
(
1
,
1
),
(
2
,
1
)],
table
.
items
())
...
...
python/paddle/v2/framework/tests/test_operator_desc.py
浏览文件 @
51d4afaa
import
unittest
from
paddle.v2.framework.framework
import
Variable
,
Program
,
g_program
from
paddle.v2.framework.framework
import
Variable
,
Program
,
g_
main_
program
import
paddle.v2.framework.core
as
core
class
TestOperator
(
unittest
.
TestCase
):
def
test_error_type
(
self
):
block
=
g_program
.
create_block
()
block
=
g_
main_
program
.
create_block
()
try
:
block
.
append_op
()
self
.
assertFail
()
...
...
python/paddle/v2/framework/tests/test_parameter.py
浏览文件 @
51d4afaa
import
unittest
from
paddle.v2.framework.framework
import
g_program
from
paddle.v2.framework.framework
import
g_
main_
program
import
paddle.v2.framework.core
as
core
class
TestParameter
(
unittest
.
TestCase
):
def
test_param
(
self
):
b
=
g_program
.
create_block
()
b
=
g_
main_
program
.
create_block
()
param
=
b
.
create_parameter
(
name
=
'fc.w'
,
shape
=
[
784
,
100
],
...
...
python/paddle/v2/framework/tests/test_program.py
浏览文件 @
51d4afaa
...
...
@@ -2,35 +2,35 @@ import unittest
import
paddle.v2.framework.core
as
core
from
paddle.v2.framework.framework
import
Program
from
paddle.v2.framework.framework
import
g_program
from
paddle.v2.framework.framework
import
g_
main_
program
class
TestProgram
(
unittest
.
TestCase
):
def
test_program
(
self
):
b
=
g_program
.
current_block
()
b
=
g_
main_
program
.
current_block
()
self
.
assertEqual
(
-
1
,
b
.
parent_idx
)
self
.
assertEqual
(
0
,
b
.
idx
)
b
=
g_program
.
create_block
()
b
=
g_
main_
program
.
create_block
()
self
.
assertEqual
(
1
,
b
.
idx
)
self
.
assertEqual
(
0
,
b
.
parent_idx
)
b
=
g_program
.
create_block
()
b
=
g_
main_
program
.
create_block
()
self
.
assertEqual
(
2
,
b
.
idx
)
self
.
assertEqual
(
1
,
b
.
parent_idx
)
g_program
.
rollback
()
g_
main_
program
.
rollback
()
b
=
g_program
.
current_block
()
b
=
g_
main_
program
.
current_block
()
self
.
assertEqual
(
1
,
b
.
idx
)
self
.
assertEqual
(
0
,
b
.
parent_idx
)
b
=
g_program
.
create_block
()
b
=
g_
main_
program
.
create_block
()
self
.
assertEqual
(
3
,
b
.
idx
)
self
.
assertEqual
(
1
,
b
.
parent_idx
)
g_program
.
rollback
()
b
=
g_program
.
current_block
()
g_
main_
program
.
rollback
()
b
=
g_
main_
program
.
current_block
()
self
.
assertEqual
(
1
,
b
.
idx
)
self
.
assertEqual
(
0
,
b
.
parent_idx
)
...
...
python/paddle/v2/framework/tests/test_recognize_digits_conv.py
浏览文件 @
51d4afaa
...
...
@@ -4,26 +4,26 @@ import paddle.v2.framework.nets as nets
import
paddle.v2.framework.core
as
core
import
paddle.v2.framework.optimizer
as
optimizer
from
paddle.v2.framework.framework
import
Program
,
g_program
from
paddle.v2.framework.framework
import
Program
,
g_
main_
program
from
paddle.v2.framework.executor
import
Executor
import
numpy
as
np
init
_program
=
Program
()
program
=
Program
()
startup
_program
=
Program
()
main_
program
=
Program
()
images
=
layers
.
data
(
name
=
'pixel'
,
shape
=
[
1
,
28
,
28
],
data_type
=
'float32'
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
label
=
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
data_type
=
'int64'
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
conv_pool_1
=
nets
.
simple_img_conv_pool
(
input
=
images
,
filter_size
=
5
,
...
...
@@ -31,8 +31,8 @@ conv_pool_1 = nets.simple_img_conv_pool(
pool_size
=
2
,
pool_stride
=
2
,
act
=
"relu"
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
conv_pool_2
=
nets
.
simple_img_conv_pool
(
input
=
conv_pool_1
,
filter_size
=
5
,
...
...
@@ -40,24 +40,30 @@ conv_pool_2 = nets.simple_img_conv_pool(
pool_size
=
2
,
pool_stride
=
2
,
act
=
"relu"
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
predict
=
layers
.
fc
(
input
=
conv_pool_2
,
size
=
10
,
act
=
"softmax"
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
cost
=
layers
.
cross_entropy
(
input
=
predict
,
label
=
label
,
program
=
program
,
init_program
=
init_program
)
avg_cost
=
layers
.
mean
(
x
=
cost
,
program
=
program
)
input
=
predict
,
label
=
label
,
main_program
=
main_program
,
startup_program
=
startup_program
)
avg_cost
=
layers
.
mean
(
x
=
cost
,
main_program
=
main_program
)
accuracy
=
layers
.
accuracy
(
input
=
predict
,
label
=
label
,
program
=
program
,
init_program
=
init_program
)
input
=
predict
,
label
=
label
,
main_program
=
main_program
,
startup_program
=
startup_program
)
# optimizer = optimizer.MomentumOptimizer(learning_rate=0.1 / 128.0,
# momentum=0.9)
optimizer
=
optimizer
.
AdamOptimizer
(
learning_rate
=
0.01
,
beta1
=
0.9
,
beta2
=
0.999
)
opts
=
optimizer
.
minimize
(
avg_cost
,
init
_program
)
opts
=
optimizer
.
minimize
(
avg_cost
,
startup
_program
)
BATCH_SIZE
=
50
PASS_NUM
=
3
...
...
@@ -69,7 +75,7 @@ train_reader = paddle.batch(
place
=
core
.
CPUPlace
()
exe
=
Executor
(
place
)
exe
.
run
(
init
_program
,
feed
=
{},
fetch_list
=
[])
exe
.
run
(
startup
_program
,
feed
=
{},
fetch_list
=
[])
for
pass_id
in
range
(
PASS_NUM
):
count
=
0
...
...
@@ -84,7 +90,7 @@ for pass_id in range(PASS_NUM):
tensor_img
.
set
(
img_data
,
place
)
tensor_y
.
set
(
y_data
,
place
)
outs
=
exe
.
run
(
program
,
outs
=
exe
.
run
(
main_
program
,
feed
=
{
"pixel"
:
tensor_img
,
"label"
:
tensor_y
},
fetch_list
=
[
avg_cost
,
accuracy
])
...
...
python/paddle/v2/framework/tests/test_recognize_digits_mlp.py
浏览文件 @
51d4afaa
...
...
@@ -11,14 +11,14 @@ from paddle.v2.framework.initializer import UniformInitializer
import
numpy
as
np
BATCH_SIZE
=
128
init
_program
=
Program
()
program
=
Program
()
startup
_program
=
Program
()
main_
program
=
Program
()
image
=
layers
.
data
(
name
=
'x'
,
shape
=
[
784
],
data_type
=
'float32'
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
param_attr
=
{
'name'
:
None
,
...
...
@@ -30,38 +30,45 @@ param_attr = {
hidden1
=
layers
.
fc
(
input
=
image
,
size
=
128
,
act
=
'relu'
,
program
=
program
,
init_program
=
init
_program
,
main_program
=
main_
program
,
startup_program
=
startup
_program
,
param_attr
=
param_attr
)
hidden2
=
layers
.
fc
(
input
=
hidden1
,
size
=
64
,
act
=
'relu'
,
program
=
program
,
init_program
=
init
_program
,
main_program
=
main_
program
,
startup_program
=
startup
_program
,
param_attr
=
param_attr
)
predict
=
layers
.
fc
(
input
=
hidden2
,
size
=
10
,
act
=
'softmax'
,
program
=
program
,
init_program
=
init
_program
,
main_program
=
main_
program
,
startup_program
=
startup
_program
,
param_attr
=
param_attr
)
label
=
layers
.
data
(
name
=
'y'
,
shape
=
[
1
],
data_type
=
'int64'
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
cost
=
layers
.
cross_entropy
(
input
=
predict
,
label
=
label
,
program
=
program
,
init_program
=
init_program
)
avg_cost
=
layers
.
mean
(
x
=
cost
,
program
=
program
,
init_program
=
init_program
)
input
=
predict
,
label
=
label
,
main_program
=
main_program
,
startup_program
=
startup_program
)
avg_cost
=
layers
.
mean
(
x
=
cost
,
main_program
=
main_program
,
startup_program
=
startup_program
)
accuracy
=
layers
.
accuracy
(
input
=
predict
,
label
=
label
,
program
=
program
,
init_program
=
init_program
)
input
=
predict
,
label
=
label
,
main_program
=
main_program
,
startup_program
=
startup_program
)
optimizer
=
optimizer
.
MomentumOptimizer
(
learning_rate
=
0.001
,
momentum
=
0.9
)
opts
=
optimizer
.
minimize
(
avg_cost
,
init
_program
)
opts
=
optimizer
.
minimize
(
avg_cost
,
startup
_program
)
train_reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
...
...
@@ -71,7 +78,7 @@ train_reader = paddle.batch(
place
=
core
.
CPUPlace
()
exe
=
Executor
(
place
)
exe
.
run
(
init
_program
,
feed
=
{},
fetch_list
=
[])
exe
.
run
(
startup
_program
,
feed
=
{},
fetch_list
=
[])
PASS_NUM
=
100
for
pass_id
in
range
(
PASS_NUM
):
...
...
@@ -86,7 +93,7 @@ for pass_id in range(PASS_NUM):
tensor_y
=
core
.
LoDTensor
()
tensor_y
.
set
(
y_data
,
place
)
outs
=
exe
.
run
(
program
,
outs
=
exe
.
run
(
main_
program
,
feed
=
{
'x'
:
tensor_x
,
'y'
:
tensor_y
},
fetch_list
=
[
avg_cost
,
accuracy
])
...
...
python/paddle/v2/framework/tests/test_recommender_system.py
浏览文件 @
51d4afaa
...
...
@@ -4,13 +4,13 @@ import paddle.v2.framework.nets as nets
import
paddle.v2.framework.core
as
core
import
paddle.v2.framework.optimizer
as
optimizer
from
paddle.v2.framework.framework
import
Program
,
g_program
from
paddle.v2.framework.framework
import
Program
,
g_
main_
program
from
paddle.v2.framework.executor
import
Executor
import
numpy
as
np
init
_program
=
Program
()
program
=
Program
()
startup
_program
=
Program
()
main_
program
=
Program
()
is_sparse
=
True
use_gpu
=
False
BATCH_SIZE
=
256
...
...
@@ -26,8 +26,8 @@ def get_usr_combined_features():
name
=
'user_id'
,
shape
=
[
1
],
data_type
=
'int64'
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
usr_emb
=
layers
.
embedding
(
input
=
uid
,
...
...
@@ -35,13 +35,13 @@ def get_usr_combined_features():
size
=
[
USR_DICT_SIZE
,
32
],
param_attr
=
{
'name'
:
'user_table'
},
is_sparse
=
is_sparse
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
usr_fc
=
layers
.
fc
(
input
=
usr_emb
,
size
=
32
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
USR_GENDER_DICT_SIZE
=
2
...
...
@@ -49,75 +49,75 @@ def get_usr_combined_features():
name
=
'gender_id'
,
shape
=
[
1
],
data_type
=
'int64'
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
usr_gender_emb
=
layers
.
embedding
(
input
=
usr_gender_id
,
size
=
[
USR_GENDER_DICT_SIZE
,
16
],
param_attr
=
{
'name'
:
'gender_table'
},
is_sparse
=
is_sparse
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
usr_gender_fc
=
layers
.
fc
(
input
=
usr_gender_emb
,
size
=
16
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
USR_AGE_DICT_SIZE
=
len
(
paddle
.
dataset
.
movielens
.
age_table
)
usr_age_id
=
layers
.
data
(
name
=
'age_id'
,
shape
=
[
1
],
data_type
=
"int64"
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
usr_age_emb
=
layers
.
embedding
(
input
=
usr_age_id
,
size
=
[
USR_AGE_DICT_SIZE
,
16
],
is_sparse
=
is_sparse
,
param_attr
=
{
'name'
:
'age_table'
},
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
usr_age_fc
=
layers
.
fc
(
input
=
usr_age_emb
,
size
=
16
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
USR_JOB_DICT_SIZE
=
paddle
.
dataset
.
movielens
.
max_job_id
()
+
1
usr_job_id
=
layers
.
data
(
name
=
'job_id'
,
shape
=
[
1
],
data_type
=
"int64"
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
usr_job_emb
=
layers
.
embedding
(
input
=
usr_job_id
,
size
=
[
USR_JOB_DICT_SIZE
,
16
],
param_attr
=
{
'name'
:
'job_table'
},
is_sparse
=
is_sparse
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
usr_job_fc
=
layers
.
fc
(
input
=
usr_job_emb
,
size
=
16
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
concat_embed
=
layers
.
concat
(
input
=
[
usr_fc
,
usr_gender_fc
,
usr_age_fc
,
usr_job_fc
],
axis
=
1
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
usr_combined_features
=
layers
.
fc
(
input
=
concat_embed
,
size
=
200
,
act
=
"tanh"
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
return
usr_combined_features
...
...
@@ -130,8 +130,8 @@ def get_mov_combined_features():
name
=
'movie_id'
,
shape
=
[
1
],
data_type
=
'int64'
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
mov_emb
=
layers
.
embedding
(
input
=
mov_id
,
...
...
@@ -139,13 +139,13 @@ def get_mov_combined_features():
size
=
[
MOV_DICT_SIZE
,
32
],
param_attr
=
{
'name'
:
'movie_table'
},
is_sparse
=
is_sparse
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
mov_fc
=
layers
.
fc
(
input
=
mov_emb
,
size
=
32
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
CATEGORY_DICT_SIZE
=
len
(
paddle
.
dataset
.
movielens
.
movie_categories
())
...
...
@@ -153,21 +153,21 @@ def get_mov_combined_features():
name
=
'category_id'
,
shape
=
[
1
],
data_type
=
'int64'
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
mov_categories_emb
=
layers
.
embedding
(
input
=
category_id
,
size
=
[
CATEGORY_DICT_SIZE
,
32
],
is_sparse
=
is_sparse
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
mov_categories_hidden
=
layers
.
sequence_pool
(
input
=
mov_categories_emb
,
pool_type
=
"sum"
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
MOV_TITLE_DICT_SIZE
=
len
(
paddle
.
dataset
.
movielens
.
get_movie_title_dict
())
...
...
@@ -175,15 +175,15 @@ def get_mov_combined_features():
name
=
'movie_title'
,
shape
=
[
1
],
data_type
=
'int64'
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
mov_title_emb
=
layers
.
embedding
(
input
=
mov_title_id
,
size
=
[
MOV_TITLE_DICT_SIZE
,
32
],
is_sparse
=
is_sparse
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
mov_title_conv
=
nets
.
sequence_conv_pool
(
input
=
mov_title_emb
,
...
...
@@ -191,21 +191,21 @@ def get_mov_combined_features():
filter_size
=
3
,
act
=
"tanh"
,
pool_type
=
"sum"
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
concat_embed
=
layers
.
concat
(
input
=
[
mov_fc
,
mov_categories_hidden
,
mov_title_conv
],
axis
=
1
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
# FIXME(dzh) : need tanh operator
mov_combined_features
=
layers
.
fc
(
input
=
concat_embed
,
size
=
200
,
act
=
"tanh"
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
return
mov_combined_features
...
...
@@ -218,24 +218,26 @@ def model():
inference
=
layers
.
cos_sim
(
X
=
usr_combined_features
,
Y
=
mov_combined_features
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
label
=
layers
.
data
(
name
=
'score'
,
shape
=
[
1
],
data_type
=
'float32'
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
square_cost
=
layers
.
square_error_cost
(
input
=
inference
,
label
=
label
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
avg_cost
=
layers
.
mean
(
x
=
square_cost
,
program
=
program
,
init_program
=
init_program
)
x
=
square_cost
,
main_program
=
main_program
,
startup_program
=
startup_program
)
return
avg_cost
...
...
@@ -243,8 +245,8 @@ def model():
def
main
():
cost
=
model
()
sgd_optimizer
=
optimizer
.
SGDOptimizer
(
learning_rate
=
0.2
)
opts
=
sgd_optimizer
.
minimize
(
cost
,
init_program
=
init
_program
)
block
=
program
.
block
(
0
)
opts
=
sgd_optimizer
.
minimize
(
cost
,
startup_program
=
startup
_program
)
block
=
main_
program
.
block
(
0
)
if
use_gpu
:
place
=
core
.
GPUPlace
(
0
)
...
...
@@ -252,7 +254,7 @@ def main():
place
=
core
.
CPUPlace
()
exe
=
Executor
(
place
)
exe
.
run
(
init
_program
,
feed
=
{},
fetch_list
=
[])
exe
.
run
(
startup
_program
,
feed
=
{},
fetch_list
=
[])
train_reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
...
...
@@ -301,7 +303,7 @@ def main():
PASS_NUM
=
100
for
pass_id
in
range
(
PASS_NUM
):
for
data
in
train_reader
():
outs
=
exe
.
run
(
program
,
outs
=
exe
.
run
(
main_
program
,
feed
=
func_feed
(
feeding
,
data
),
fetch_list
=
[
cost
])
out
=
np
.
array
(
outs
[
0
])
...
...
python/paddle/v2/framework/tests/test_recurrent_op.py
浏览文件 @
51d4afaa
...
...
@@ -99,17 +99,17 @@ class RecurrentOpTest1(unittest.TestCase):
batch_size
=
1
sent_len
=
1
def
init
_program
(
self
):
self
.
program
=
Program
()
self
.
init
_program
=
Program
()
def
setup
_program
(
self
):
self
.
main_
program
=
Program
()
self
.
startup
_program
=
Program
()
self
.
p_info
=
{
"
program"
:
self
.
program
,
"
init_program"
:
self
.
init
_program
"
main_program"
:
self
.
main_
program
,
"
startup_program"
:
self
.
startup
_program
}
self
.
place
=
core
.
CPUPlace
()
def
setUp
(
self
):
self
.
init
_program
()
self
.
setup
_program
()
self
.
data_field
=
{
"x"
,
"h_boot"
}
self
.
input_shape
=
(
self
.
sent_len
,
self
.
batch_size
,
self
.
input_dim
)
...
...
@@ -131,7 +131,7 @@ class RecurrentOpTest1(unittest.TestCase):
name
=
'h_boot'
,
**
self
.
p_info
)
rnn
=
StaticRNN
(
program
=
self
.
program
)
rnn
=
StaticRNN
(
main_program
=
self
.
main_
program
)
with
rnn
.
step
():
h_pre
=
rnn
.
memory
(
init
=
h_boot
)
x_t
=
rnn
.
step_input
(
x
)
...
...
@@ -153,7 +153,7 @@ class RecurrentOpTest1(unittest.TestCase):
for
x
in
self
.
data_field
}
exe
=
Executor
(
self
.
place
)
out
=
exe
.
run
(
self
.
program
,
out
=
exe
.
run
(
self
.
main_
program
,
feed
=
self
.
feed_map
,
fetch_list
=
[
self
.
output
])
...
...
@@ -165,12 +165,14 @@ class RecurrentOpTest1(unittest.TestCase):
for
x
in
self
.
data_field
}
fetch_list
=
[
self
.
program
.
global_block
().
var
(
x
+
"@GRAD"
)
self
.
main_
program
.
global_block
().
var
(
x
+
"@GRAD"
)
for
x
in
self
.
data_field
]
exe
=
Executor
(
self
.
place
)
return
exe
.
run
(
self
.
program
,
feed
=
self
.
feed_map
,
fetch_list
=
fetch_list
)
return
exe
.
run
(
self
.
main_program
,
feed
=
self
.
feed_map
,
fetch_list
=
fetch_list
)
def
test_backward
(
self
):
self
.
check_forward
()
...
...
@@ -237,7 +239,7 @@ class RecurrentOpTest2(RecurrentOpTest1):
sent_len
=
2
def
setUp
(
self
):
self
.
init
_program
()
self
.
setup
_program
()
self
.
data_field
=
{
"x"
,
"h_boot"
,
"W"
,
"U"
}
...
...
@@ -260,7 +262,7 @@ class RecurrentOpTest2(RecurrentOpTest1):
name
=
'h_boot'
,
**
self
.
p_info
)
rnn
=
StaticRNN
(
program
=
self
.
program
)
rnn
=
StaticRNN
(
main_program
=
self
.
main_
program
)
with
rnn
.
step
():
h_pre
=
rnn
.
memory
(
init
=
h_boot
)
x_t
=
rnn
.
step_input
(
x
)
...
...
@@ -333,7 +335,7 @@ class RecurrentOpTest3(RecurrentOpTest1):
sent_len
=
2
def
setUp
(
self
):
self
.
init
_program
()
self
.
setup
_program
()
self
.
data_field
=
{
"x"
,
"h_boot1"
,
"h_boot2"
}
...
...
@@ -364,7 +366,7 @@ class RecurrentOpTest3(RecurrentOpTest1):
append_batch_size
=
False
,
**
self
.
p_info
)
rnn
=
StaticRNN
(
program
=
self
.
program
)
rnn
=
StaticRNN
(
main_program
=
self
.
main_
program
)
with
rnn
.
step
():
h_pre1
=
rnn
.
memory
(
init
=
h_boot1
)
h_pre2
=
rnn
.
memory
(
init
=
h_boot2
)
...
...
python/paddle/v2/framework/tests/test_understand_sentiment_conv.py
浏览文件 @
51d4afaa
...
...
@@ -4,7 +4,7 @@ import paddle.v2.framework.nets as nets
import
paddle.v2.framework.core
as
core
import
paddle.v2.framework.optimizer
as
optimizer
from
paddle.v2.framework.framework
import
Program
,
g_
program
,
g_init
_program
from
paddle.v2.framework.framework
import
Program
,
g_
main_program
,
g_startup
_program
from
paddle.v2.framework.executor
import
Executor
import
numpy
as
np
...
...
@@ -70,7 +70,7 @@ def main():
place
=
core
.
CPUPlace
()
exe
=
Executor
(
place
)
exe
.
run
(
g_
init
_program
)
exe
.
run
(
g_
startup
_program
)
for
pass_id
in
xrange
(
PASS_NUM
):
for
data
in
train_data
():
...
...
@@ -82,7 +82,7 @@ def main():
tensor_label
=
core
.
LoDTensor
()
tensor_label
.
set
(
label
,
place
)
outs
=
exe
.
run
(
g_program
,
outs
=
exe
.
run
(
g_
main_
program
,
feed
=
{
"words"
:
tensor_words
,
"label"
:
tensor_label
},
fetch_list
=
[
cost
,
acc
])
...
...
python/paddle/v2/framework/tests/test_variable.py
浏览文件 @
51d4afaa
import
unittest
from
paddle.v2.framework.framework
import
Variable
,
g_program
,
Program
from
paddle.v2.framework.framework
import
Variable
,
g_
main_
program
,
Program
import
paddle.v2.framework.core
as
core
import
numpy
as
np
...
...
@@ -18,7 +18,7 @@ class TestVariable(unittest.TestCase):
self
.
assertRaises
(
ValueError
,
lambda
:
convert
(
"int8"
))
def
test_var
(
self
):
b
=
g_program
.
current_block
()
b
=
g_
main_
program
.
current_block
()
w
=
b
.
create_var
(
dtype
=
"float64"
,
shape
=
[
784
,
100
],
lod_level
=
0
,
name
=
"fc.w"
)
self
.
assertNotEqual
(
str
(
w
),
""
)
...
...
python/paddle/v2/framework/tests/test_word2vec.py
浏览文件 @
51d4afaa
...
...
@@ -3,13 +3,13 @@ import paddle.v2.framework.layers as layers
import
paddle.v2.framework.core
as
core
import
paddle.v2.framework.optimizer
as
optimizer
from
paddle.v2.framework.framework
import
Program
,
g_program
from
paddle.v2.framework.framework
import
Program
,
g_
main_
program
from
paddle.v2.framework.executor
import
Executor
import
numpy
as
np
init
_program
=
Program
()
program
=
Program
()
startup
_program
=
Program
()
main_
program
=
Program
()
embed_size
=
32
hidden_size
=
256
...
...
@@ -24,32 +24,32 @@ first_word = layers.data(
name
=
'firstw'
,
shape
=
[
1
],
data_type
=
'int64'
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
second_word
=
layers
.
data
(
name
=
'secondw'
,
shape
=
[
1
],
data_type
=
'int64'
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
third_word
=
layers
.
data
(
name
=
'thirdw'
,
shape
=
[
1
],
data_type
=
'int64'
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
forth_word
=
layers
.
data
(
name
=
'forthw'
,
shape
=
[
1
],
data_type
=
'int64'
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
next_word
=
layers
.
data
(
name
=
'nextw'
,
shape
=
[
1
],
data_type
=
'int64'
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
embed_first
=
layers
.
embedding
(
input
=
first_word
,
...
...
@@ -57,16 +57,16 @@ embed_first = layers.embedding(
data_type
=
'float32'
,
is_sparse
=
is_sparse
,
param_attr
=
{
'name'
:
'shared_w'
},
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
embed_second
=
layers
.
embedding
(
input
=
second_word
,
size
=
[
dict_size
,
embed_size
],
data_type
=
'float32'
,
is_sparse
=
is_sparse
,
param_attr
=
{
'name'
:
'shared_w'
},
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
embed_third
=
layers
.
embedding
(
input
=
third_word
,
...
...
@@ -74,42 +74,43 @@ embed_third = layers.embedding(
data_type
=
'float32'
,
is_sparse
=
is_sparse
,
param_attr
=
{
'name'
:
'shared_w'
},
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
embed_forth
=
layers
.
embedding
(
input
=
forth_word
,
size
=
[
dict_size
,
embed_size
],
data_type
=
'float32'
,
is_sparse
=
is_sparse
,
param_attr
=
{
'name'
:
'shared_w'
},
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
concat_embed
=
layers
.
concat
(
input
=
[
embed_first
,
embed_second
,
embed_third
,
embed_forth
],
axis
=
1
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
hidden1
=
layers
.
fc
(
input
=
concat_embed
,
size
=
hidden_size
,
act
=
'sigmoid'
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
predict_word
=
layers
.
fc
(
input
=
hidden1
,
size
=
dict_size
,
act
=
'softmax'
,
program
=
program
,
init_program
=
init
_program
)
main_program
=
main_
program
,
startup_program
=
startup
_program
)
cost
=
layers
.
cross_entropy
(
input
=
predict_word
,
label
=
next_word
,
program
=
program
,
init_program
=
init_program
)
avg_cost
=
layers
.
mean
(
x
=
cost
,
program
=
program
,
init_program
=
init_program
)
main_program
=
main_program
,
startup_program
=
startup_program
)
avg_cost
=
layers
.
mean
(
x
=
cost
,
main_program
=
main_program
,
startup_program
=
startup_program
)
sgd_optimizer
=
optimizer
.
SGDOptimizer
(
learning_rate
=
0.001
)
opts
=
sgd_optimizer
.
minimize
(
avg_cost
,
init
_program
)
opts
=
sgd_optimizer
.
minimize
(
avg_cost
,
startup
_program
)
train_reader
=
paddle
.
batch
(
paddle
.
dataset
.
imikolov
.
train
(
word_dict
,
N
),
batch_size
)
...
...
@@ -117,7 +118,7 @@ train_reader = paddle.batch(
place
=
core
.
CPUPlace
()
exe
=
Executor
(
place
)
exe
.
run
(
init
_program
,
feed
=
{},
fetch_list
=
[])
exe
.
run
(
startup
_program
,
feed
=
{},
fetch_list
=
[])
PASS_NUM
=
100
for
pass_id
in
range
(
PASS_NUM
):
for
data
in
train_reader
():
...
...
@@ -145,7 +146,7 @@ for pass_id in range(PASS_NUM):
next_tensor
=
core
.
LoDTensor
()
next_tensor
.
set
(
next_data
,
place
)
outs
=
exe
.
run
(
program
,
outs
=
exe
.
run
(
main_
program
,
feed
=
{
'firstw'
:
first_tensor
,
'secondw'
:
second_tensor
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录