Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
4cf01462
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
4cf01462
编写于
6月 09, 2021
作者:
L
liym27
提交者:
GitHub
6月 09, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Polish code for slice and set_value op (#32947)
上级
a039fd7b
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
382 addition
and
472 deletion
+382
-472
paddle/fluid/operators/set_value_op.h
paddle/fluid/operators/set_value_op.h
+3
-102
paddle/fluid/operators/slice_op.cc
paddle/fluid/operators/slice_op.cc
+27
-74
paddle/fluid/operators/slice_op.h
paddle/fluid/operators/slice_op.h
+209
-296
paddle/fluid/operators/slice_utils.h
paddle/fluid/operators/slice_utils.h
+143
-0
未找到文件。
paddle/fluid/operators/set_value_op.h
浏览文件 @
4cf01462
...
...
@@ -23,6 +23,7 @@
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/operators/assign_value_op.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
#include "paddle/fluid/operators/slice_utils.h"
#include "paddle/fluid/operators/utils.h"
#include "paddle/fluid/platform/enforce.h"
...
...
@@ -59,106 +60,6 @@ inline std::string GetValueName(framework::proto::VarType::Type data_type) {
return
value_name
;
}
inline
void
CheckAndUpdateSlice
(
const
framework
::
DDim
in_dims
,
const
std
::
vector
<
int64_t
>
axes
,
std
::
vector
<
int64_t
>*
starts
,
std
::
vector
<
int64_t
>*
ends
,
std
::
vector
<
int64_t
>*
steps
)
{
for
(
size_t
i
=
0
;
i
<
axes
.
size
();
++
i
)
{
int64_t
axis
=
axes
[
i
];
int64_t
dim_value
=
in_dims
[
axis
];
int64_t
start
=
(
*
starts
)[
i
]
<
0
?
((
*
starts
)[
i
]
+
dim_value
)
:
(
*
starts
)[
i
];
int64_t
end
=
(
*
ends
)[
i
]
<
0
?
((
*
ends
)[
i
]
+
dim_value
)
:
(
*
ends
)[
i
];
start
=
std
::
max
(
start
,
static_cast
<
int64_t
>
(
0
));
end
=
std
::
min
(
end
,
dim_value
);
int64_t
step
=
(
*
steps
)[
i
];
PADDLE_ENFORCE_NE
(
step
,
0
,
platform
::
errors
::
InvalidArgument
(
"Step should not be 0, but received step = %d."
,
step
));
if
(
step
>
0
)
{
start
=
std
::
min
(
start
,
dim_value
);
end
=
std
::
max
(
end
,
static_cast
<
int64_t
>
(
0
));
PADDLE_ENFORCE_GT
(
end
,
start
,
platform
::
errors
::
InvalidArgument
(
"When step > 0, end should be greater than start, but "
"received end = %d, start = %d."
,
end
,
start
));
}
else
{
// NOTE(liym27): When step < 0, start should less and equal to dim_value-1
// "end is -1" means contain the 0-th element of this axis.
start
=
std
::
min
(
start
,
dim_value
-
1
);
end
=
std
::
max
(
end
,
static_cast
<
int64_t
>
(
-
1
));
PADDLE_ENFORCE_GT
(
start
,
end
,
platform
::
errors
::
InvalidArgument
(
"When step < 0, start should be greater than end, but "
"received start = %d, end = %d."
,
start
,
end
));
}
(
*
starts
)[
i
]
=
start
;
(
*
ends
)[
i
]
=
end
;
}
}
inline
framework
::
DDim
GetSliceDims
(
const
framework
::
DDim
in_dims
,
const
std
::
vector
<
int64_t
>&
axes
,
const
std
::
vector
<
int64_t
>&
starts
,
const
std
::
vector
<
int64_t
>&
ends
,
const
std
::
vector
<
int64_t
>&
steps
)
{
framework
::
DDim
slice_dims
(
in_dims
);
for
(
size_t
i
=
0
;
i
<
axes
.
size
();
++
i
)
{
int64_t
axis
=
axes
[
i
];
int64_t
start
=
starts
[
i
];
int64_t
end
=
ends
[
i
];
int64_t
step
=
steps
[
i
];
if
(
step
>
0
)
{
slice_dims
[
axis
]
=
(
end
-
start
+
step
-
1
)
/
step
;
}
else
{
slice_dims
[
axis
]
=
(
end
-
start
+
step
+
1
)
/
step
;
}
}
return
slice_dims
;
}
inline
framework
::
DDim
GetDecreasedDims
(
const
framework
::
DDim
slice_dims
,
const
std
::
vector
<
int64_t
>&
decrease_axes
)
{
// Get dims after decreasing axes.
framework
::
DDim
decreased_dims
(
slice_dims
);
if
(
decrease_axes
.
size
()
>
0
)
{
for
(
size_t
i
=
0
;
i
<
decrease_axes
.
size
();
++
i
)
{
int64_t
axis
=
decrease_axes
[
i
];
PADDLE_ENFORCE_EQ
(
decreased_dims
[
axis
],
1
,
platform
::
errors
::
InvalidArgument
(
"decrease dim should be 1"
));
decreased_dims
[
axis
]
=
0
;
}
std
::
vector
<
int64_t
>
new_shape
;
for
(
int
i
=
0
;
i
<
decreased_dims
.
size
();
++
i
)
{
if
(
decreased_dims
[
i
]
!=
0
)
{
new_shape
.
push_back
(
decreased_dims
[
i
]);
}
}
// NOTE(liym27): Paddle does not support that the rank of Tensor is 0, and
// uses [1] instead.
if
(
new_shape
.
size
()
==
0
)
{
new_shape
.
push_back
(
1
);
}
decreased_dims
=
framework
::
make_ddim
(
new_shape
);
}
return
decreased_dims
;
}
template
<
typename
DeviceContext
,
typename
T
>
class
SetValueKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
...
...
@@ -225,8 +126,8 @@ class SetValueKernel : public framework::OpKernel<T> {
}
auto
in_dims
=
in
->
dims
();
CheckAndUpdateSlice
(
in_dims
,
axes
,
&
starts
,
&
ends
,
&
steps
);
auto
slice_dims
=
GetSliceDims
(
in_dims
,
axes
,
starts
,
ends
,
steps
);
CheckAndUpdateSlice
Attrs
(
in_dims
,
axes
,
&
starts
,
&
ends
,
&
steps
);
auto
slice_dims
=
GetSliceDims
(
in_dims
,
axes
,
starts
,
ends
,
&
steps
);
auto
decrease_slice_dims
=
GetDecreasedDims
(
slice_dims
,
decrease_axes
);
auto
place
=
ctx
.
GetPlace
();
...
...
paddle/fluid/operators/slice_op.cc
浏览文件 @
4cf01462
...
...
@@ -28,13 +28,10 @@ class SliceOp : public framework::OperatorWithKernel {
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
"Input"
),
true
,
platform
::
errors
::
InvalidArgument
(
"Input (Input) of slice op should not be null."
));
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"Input"
),
"Input"
,
"Input"
,
"slice"
);
OP_INOUT_CHECK
(
ctx
->
HasOutput
(
"Out"
),
"Output"
,
"Out"
,
"slice"
);
PADDLE_ENFORCE_EQ
(
ctx
->
HasOutput
(
"Out"
),
true
,
platform
::
errors
::
InvalidArgument
(
"Output (Out) of slice op should not be null."
));
// Case 1: Special treatment when input is a tensor array.
auto
x_var_type
=
ctx
->
GetInputsVarType
(
"Input"
)[
0
];
auto
axes
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"axes"
);
if
(
x_var_type
==
framework
::
proto
::
VarType
::
LOD_TENSOR_ARRAY
)
{
...
...
@@ -57,6 +54,8 @@ class SliceOp : public framework::OperatorWithKernel {
return
;
}
}
// Case 2: input is a tensor.
auto
in_dims
=
ctx
->
GetInputDim
(
"Input"
);
PADDLE_ENFORCE_LT
(
in_dims
.
size
(),
7
,
platform
::
errors
::
InvalidArgument
(
...
...
@@ -65,101 +64,54 @@ class SliceOp : public framework::OperatorWithKernel {
auto
starts
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"starts"
);
auto
ends
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"ends"
);
auto
infer_flags
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"infer_flags"
);
auto
decrease_axis
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"decrease_axis"
);
auto
starts_size
=
starts
.
size
();
auto
ends_size
=
ends
.
size
();
auto
infer_flags
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"infer_flags"
);
if
(
infer_flags
.
empty
())
{
// Initialize infer_flags with 1.
// To be compatible with other op tests in which infer_flags is not set.
infer_flags
=
std
::
vector
<
int
>
(
axes
.
size
(),
1
);
}
// 2.1 Check attrs.
auto
starts_size
=
starts
.
size
();
auto
ends_size
=
ends
.
size
();
if
(
ctx
->
HasInputs
(
"StartsTensorList"
))
{
auto
StartsTensorList
=
ctx
->
Inputs
(
"StartsTensorList"
);
PADDLE_ENFORCE_GT
(
StartsTensorList
.
size
()
,
0
,
starts_size
=
ctx
->
Inputs
(
"StartsTensorList"
).
size
(
);
PADDLE_ENFORCE_GT
(
starts_size
,
0
,
platform
::
errors
::
InvalidArgument
(
"StartsTensorList size can't be zero"
));
starts_size
=
StartsTensorList
.
size
();
}
if
(
ctx
->
HasInputs
(
"EndsTensorList"
))
{
auto
EndsTensorList
=
ctx
->
Inputs
(
"EndsTensorList"
);
PADDLE_ENFORCE_GT
(
EndsTensorList
.
size
(),
0
,
platform
::
errors
::
InvalidArgument
(
"EndsTensorList size can't be zero"
));
ends_size
=
EndsTensorList
.
size
();
ends_size
=
ctx
->
Inputs
(
"EndsTensorList"
).
size
();
PADDLE_ENFORCE_GT
(
ends_size
,
0
,
platform
::
errors
::
InvalidArgument
(
"EndsTensorList size can't be zero"
));
}
if
(
ctx
->
HasInput
(
"StartsTensor"
)
==
false
)
{
if
(
!
ctx
->
HasInput
(
"StartsTensor"
)
)
{
PADDLE_ENFORCE_EQ
(
starts_size
,
axes
.
size
(),
platform
::
errors
::
InvalidArgument
(
"The size of starts must be equal to the size of axes."
));
}
if
(
ctx
->
HasInput
(
"EndsTensor"
)
==
false
)
{
if
(
!
ctx
->
HasInput
(
"EndsTensor"
)
)
{
PADDLE_ENFORCE_EQ
(
ends_size
,
axes
.
size
(),
platform
::
errors
::
InvalidArgument
(
"The size of ends must be equal to the size of axes."
));
}
int
dim_value
,
start
,
end
;
for
(
size_t
i
=
0
;
i
<
axes
.
size
();
++
i
)
{
PADDLE_ENFORCE_LT
(
static_cast
<
int
>
(
axes
[
i
]),
in_dims
.
size
(),
platform
::
errors
::
InvalidArgument
(
"The index of dimension in axes must be less "
"than the size of input shape."
));
if
(
infer_flags
[
i
]
==
-
1
)
{
out_dims
[
axes
[
i
]]
=
-
1
;
}
else
{
// infer out_dim shape
dim_value
=
out_dims
[
axes
[
i
]];
if
(
dim_value
>
0
)
{
start
=
starts
[
i
]
<
0
?
(
starts
[
i
]
+
dim_value
)
:
starts
[
i
];
end
=
ends
[
i
]
<
0
?
(
ends
[
i
]
+
dim_value
)
:
ends
[
i
];
start
=
std
::
max
(
start
,
0
);
end
=
std
::
max
(
end
,
0
);
end
=
std
::
min
(
end
,
dim_value
);
PADDLE_ENFORCE_LE
(
start
,
dim_value
,
platform
::
errors
::
InvalidArgument
(
"start should be less than or equal to the "
"dimension value, but received "
"start = %d, shape[%d] = %d."
,
starts
[
i
],
axes
[
i
],
out_dims
[
axes
[
i
]]));
PADDLE_ENFORCE_GT
(
end
,
start
,
platform
::
errors
::
InvalidArgument
(
"end should greater than start, but received "
"end = %d, start = %d."
,
ends
[
i
],
starts
[
i
]));
out_dims
[
axes
[
i
]]
=
end
-
start
;
}
}
}
// generate new shape
if
(
decrease_axis
.
size
()
>
0
)
{
std
::
vector
<
int
>
new_out_shape
;
for
(
size_t
i
=
0
;
i
<
decrease_axis
.
size
();
++
i
)
{
if
(
ctx
->
IsRuntime
()
&&
infer_flags
[
i
]
!=
-
1
)
{
PADDLE_ENFORCE_EQ
(
out_dims
[
decrease_axis
[
i
]],
1
,
platform
::
errors
::
InvalidArgument
(
"decrease dim should be 1"
));
}
out_dims
[
decrease_axis
[
i
]]
=
0
;
}
CheckAndUpdateSliceAttrs
<
int
>
(
in_dims
,
axes
,
&
starts
,
&
ends
,
nullptr
,
&
infer_flags
);
for
(
int
i
=
0
;
i
<
out_dims
.
size
();
++
i
)
{
if
(
out_dims
[
i
]
!=
0
)
{
new_out_shape
.
push_back
(
out_dims
[
i
]);
}
}
if
(
new_out_shape
.
size
()
==
0
)
{
new_out_shape
.
push_back
(
1
);
}
out_dims
=
framework
::
make_ddim
(
new_out_shape
);
auto
slice_dims
=
GetSliceDims
<
int
>
(
in_dims
,
axes
,
starts
,
ends
,
nullptr
,
&
infer_flags
);
if
(
ctx
->
IsRuntime
())
{
out_dims
=
GetDecreasedDims
<
int
>
(
slice_dims
,
decrease_axis
,
&
infer_flags
);
}
else
{
out_dims
=
GetDecreasedDims
<
int
>
(
slice_dims
,
decrease_axis
,
nullptr
);
}
ctx
->
SetOutputDim
(
"Out"
,
out_dims
);
if
(
axes
[
0
]
!=
0
)
{
ctx
->
ShareLoD
(
"Input"
,
/*->*/
"Out"
);
...
...
@@ -185,6 +137,7 @@ class SliceOp : public framework::OperatorWithKernel {
return
framework
::
OpKernelType
(
OperatorWithKernel
::
IndicateVarDataType
(
ctx
,
"Input"
),
ctx
.
GetPlace
());
}
framework
::
OpKernelType
GetKernelTypeForVar
(
const
std
::
string
&
var_name
,
const
Tensor
&
tensor
,
const
framework
::
OpKernelType
&
expected_kernel_type
)
const
override
{
...
...
paddle/fluid/operators/slice_op.h
浏览文件 @
4cf01462
...
...
@@ -19,21 +19,67 @@ limitations under the License. */
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/eigen/eigen_function.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/slice_utils.h"
#include "paddle/fluid/operators/utils.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
using
Variable
=
framework
::
Variable
;
using
LoDTensorArray
=
framework
::
LoDTensorArray
;
using
DDim
=
framework
::
DDim
;
inline
void
DealTensorArray
(
const
framework
::
ExecutionContext
&
ctx
,
const
std
::
vector
<
int64_t
>&
starts
,
const
std
::
vector
<
int64_t
>&
ends
,
bool
out_is_array
)
{
auto
in_array
=
ctx
.
Input
<
LoDTensorArray
>
(
"Input"
);
// If the input is LoDTensorArray, the rank of input is 1.
int64_t
in_size
=
in_array
->
size
();
int64_t
start
=
starts
[
0
]
<
0
?
(
starts
[
0
]
+
in_size
)
:
starts
[
0
];
int64_t
end
=
ends
[
0
]
<
0
?
(
ends
[
0
]
+
in_size
)
:
ends
[
0
];
start
=
std
::
max
(
start
,
static_cast
<
int64_t
>
(
0
));
end
=
std
::
max
(
end
,
static_cast
<
int64_t
>
(
0
));
end
=
std
::
min
(
end
,
in_size
);
PADDLE_ENFORCE_GT
(
end
,
start
,
platform
::
errors
::
InvalidArgument
(
"Attr(ends) should be greater than attr(starts) in "
"slice op. But received end = %d, start = %d."
,
ends
[
0
],
starts
[
0
]));
int64_t
out_size
=
end
-
start
;
if
(
out_is_array
)
{
auto
out_array
=
ctx
.
Output
<
LoDTensorArray
>
(
"Out"
);
out_array
->
resize
(
out_size
);
for
(
int
i
=
0
;
i
<
out_size
;
++
i
)
{
auto
*
out_tensor
=
&
out_array
->
at
(
i
);
auto
in_tensor
=
in_array
->
at
(
i
+
start
);
out_tensor
->
set_lod
(
in_tensor
.
lod
());
if
(
in_tensor
.
memory_size
()
>
0
)
{
TensorCopy
(
in_tensor
,
ctx
.
GetPlace
(),
out_tensor
);
}
else
{
VLOG
(
10
)
<<
"WARNING: The input tensor 'x_tensor' holds no memory, so "
"nothing has been written to output array["
<<
i
<<
"]."
;
}
}
}
else
{
auto
out
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
auto
in_tensor
=
in_array
->
at
(
start
);
TensorCopy
(
in_tensor
,
ctx
.
GetPlace
(),
out
);
}
}
template
<
typename
DeviceContext
,
typename
T
>
class
SliceKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
framework
::
Variable
*
input_var
=
ctx
.
InputVar
(
"Input"
);
bool
is_tensor_array
=
input_var
->
IsType
<
framework
::
LoDTensorArray
>
();
int
rank
=
is_tensor_array
?
1
:
ctx
.
Input
<
framework
::
Tensor
>
(
"Input"
)
->
dims
().
size
();
const
Variable
*
input_var
=
ctx
.
InputVar
(
"Input"
);
bool
is_tensor_array
=
input_var
->
IsType
<
LoDTensorArray
>
();
int
rank
=
is_tensor_array
?
1
:
ctx
.
Input
<
Tensor
>
(
"Input"
)
->
dims
().
size
();
switch
(
rank
)
{
case
1
:
...
...
@@ -54,53 +100,45 @@ class SliceKernel : public framework::OpKernel<T> {
case
6
:
SliceCompute
<
6
>
(
ctx
);
break
;
default:
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"The rank of input should be less than 7, but received %d."
,
rank
));
}
}
private:
template
<
size_t
D
>
void
SliceCompute
(
const
framework
::
ExecutionContext
&
context
)
const
{
auto
&
place
=
*
context
.
template
device_context
<
DeviceContext
>().
eigen_device
();
const
framework
::
Variable
*
input_var
=
context
.
InputVar
(
"Input"
);
framework
::
Variable
*
out_var
=
context
.
OutputVar
(
"Out"
);
bool
input_is_tensor_array
=
input_var
->
IsType
<
framework
::
LoDTensorArray
>
();
bool
out_is_tensor_array
=
out_var
->
IsType
<
framework
::
LoDTensorArray
>
();
auto
axes
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"axes"
);
auto
starts_int
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"starts"
);
void
SliceCompute
(
const
framework
::
ExecutionContext
&
ctx
)
const
{
const
Variable
*
input_var
=
ctx
.
InputVar
(
"Input"
);
Variable
*
out_var
=
ctx
.
OutputVar
(
"Out"
);
bool
input_is_array
=
input_var
->
IsType
<
LoDTensorArray
>
();
bool
out_is_array
=
out_var
->
IsType
<
LoDTensorArray
>
();
auto
axes_int
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"axes"
);
auto
starts_int
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"starts"
);
auto
ends_int
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"ends"
);
std
::
vector
<
int64_t
>
axes
(
axes_int
.
begin
(),
axes_int
.
end
());
std
::
vector
<
int64_t
>
starts
(
starts_int
.
begin
(),
starts_int
.
end
());
auto
ends_int
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"ends"
);
std
::
vector
<
int64_t
>
ends
(
ends_int
.
begin
(),
ends_int
.
end
());
auto
decrease_axis
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"decrease_axis"
);
auto
infer_flags
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"infer_flags"
);
auto
list_new_ends_tensor
=
context
.
MultiInput
<
framework
::
Tensor
>
(
"EndsTensorList"
);
auto
list_new_starts_tensor
=
context
.
MultiInput
<
framework
::
Tensor
>
(
"StartsTensorList"
);
bool
need_infer
=
false
;
if
(
context
.
HasInput
(
"StartsTensor"
)
||
context
.
HasInput
(
"EndsTensor"
))
{
need_infer
=
true
;
}
if
(
list_new_starts_tensor
.
size
()
>
0
||
list_new_ends_tensor
.
size
()
>
0
)
{
need_infer
=
true
;
auto
decrease_axis
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"decrease_axis"
);
auto
infer_flags
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"infer_flags"
);
// Step 1: Get the accurate attribute value of starts and ends
auto
starts_tensor_list
=
ctx
.
MultiInput
<
Tensor
>
(
"StartsTensorList"
);
if
(
ctx
.
HasInput
(
"StartsTensor"
))
{
starts
=
GetDataFromTensor
<
int64_t
>
(
ctx
.
Input
<
Tensor
>
(
"StartsTensor"
));
}
else
if
(
starts_tensor_list
.
size
()
>
0
)
{
starts
=
GetDataFromTensorList
<
int64_t
>
(
starts_tensor_list
);
}
if
(
need_infer
)
{
if
(
context
.
HasInput
(
"StartsTensor"
))
{
auto
*
starts_tensor
=
context
.
Input
<
framework
::
Tensor
>
(
"StartsTensor"
);
starts
=
GetDataFromTensor
<
int64_t
>
(
starts_tensor
);
}
else
if
(
list_new_starts_tensor
.
size
()
>
0
)
{
starts
=
GetDataFromTensorList
<
int64_t
>
(
list_new_starts_tensor
);
}
if
(
context
.
HasInput
(
"EndsTensor"
))
{
auto
*
ends_tensor
=
context
.
Input
<
framework
::
Tensor
>
(
"EndsTensor"
);
ends
=
GetDataFromTensor
<
int64_t
>
(
ends_tensor
);
}
else
if
(
list_new_ends_tensor
.
size
()
>
0
)
{
ends
=
GetDataFromTensorList
<
int64_t
>
(
list_new_ends_tensor
);
}
auto
ends_tensor_list
=
ctx
.
MultiInput
<
Tensor
>
(
"EndsTensorList"
);
if
(
ctx
.
HasInput
(
"EndsTensor"
))
{
ends
=
GetDataFromTensor
<
int64_t
>
(
ctx
.
Input
<
Tensor
>
(
"EndsTensor"
));
}
else
if
(
ends_tensor_list
.
size
()
>
0
)
{
ends
=
GetDataFromTensorList
<
int64_t
>
(
ends_tensor_list
);
}
PADDLE_ENFORCE_EQ
(
starts
.
size
(),
axes
.
size
(),
platform
::
errors
::
InvalidArgument
(
...
...
@@ -109,175 +147,74 @@ class SliceKernel : public framework::OpKernel<T> {
ends
.
size
(),
axes
.
size
(),
platform
::
errors
::
InvalidArgument
(
"The size of ends must be equal to the size of axes."
));
if
(
input_is_tensor_array
)
{
auto
in_array
=
context
.
Input
<
framework
::
LoDTensorArray
>
(
"Input"
);
// If the input is LoDTensorArray, the rank of input is 1.
int64_t
in_size
=
in_array
->
size
();
int64_t
start
=
starts
[
0
]
<
0
?
(
starts
[
0
]
+
in_size
)
:
starts
[
0
];
int64_t
end
=
ends
[
0
]
<
0
?
(
ends
[
0
]
+
in_size
)
:
ends
[
0
];
start
=
std
::
max
(
start
,
static_cast
<
int64_t
>
(
0
));
end
=
std
::
max
(
end
,
static_cast
<
int64_t
>
(
0
));
end
=
std
::
min
(
end
,
in_size
);
PADDLE_ENFORCE_GT
(
end
,
start
,
platform
::
errors
::
InvalidArgument
(
"Attr(ends) should be greater than attr(starts) in "
"slice op. But received end = %d, start = %d."
,
ends
[
0
],
starts
[
0
]));
int64_t
out_size
=
end
-
start
;
if
(
out_is_tensor_array
)
{
auto
out_array
=
context
.
Output
<
framework
::
LoDTensorArray
>
(
"Out"
);
out_array
->
resize
(
out_size
);
for
(
int
i
=
0
;
i
<
out_size
;
++
i
)
{
auto
*
out_tensor
=
&
out_array
->
at
(
i
);
auto
in_tensor
=
in_array
->
at
(
i
+
start
);
out_tensor
->
set_lod
(
in_tensor
.
lod
());
if
(
in_tensor
.
memory_size
()
>
0
)
{
TensorCopy
(
in_tensor
,
context
.
GetPlace
(),
out_tensor
);
}
else
{
VLOG
(
10
)
<<
"WARNING: The input tensor 'x_tensor' holds no memory, so "
"nothing has been written to output array["
<<
i
<<
"]."
;
}
}
}
else
{
auto
out
=
context
.
Output
<
framework
::
Tensor
>
(
"Out"
);
auto
in_tensor
=
in_array
->
at
(
start
);
TensorCopy
(
in_tensor
,
context
.
GetPlace
(),
out
);
}
// Step 2: Compute output
if
(
input_is_array
)
{
DealTensorArray
(
ctx
,
starts
,
ends
,
out_is_array
);
return
;
}
}
else
{
auto
in
=
ctx
.
Input
<
Tensor
>
(
"Input"
);
auto
out
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
auto
in
=
context
.
Input
<
framework
::
Tensor
>
(
"Input"
);
auto
out
=
context
.
Output
<
framework
::
Tensor
>
(
"Out"
);
auto
in_dims
=
in
->
dims
();
auto
out_dims
=
out
->
dims
();
auto
slice_dims
=
out_dims
;
auto
out_dims
=
out
->
dims
();
auto
in_dims
=
in
->
dims
();
if
(
need_infer
)
{
out_dims
=
in_dims
;
int64_t
dim_value
,
start
,
end
;
// 2.1 Infer output dims
for
(
size_t
i
=
0
;
i
<
axes
.
size
();
++
i
)
{
dim_value
=
out_dims
[
axes
[
i
]];
if
(
dim_value
>
0
)
{
// when end = start+1 and start == -1
if
(
starts
[
i
]
==
-
1
&&
ends
[
i
]
==
0
&&
infer_flags
[
i
]
==
-
1
)
{
auto
ret
=
std
::
find
(
decrease_axis
.
begin
(),
decrease_axis
.
end
(),
axes
[
i
]);
if
(
ret
!=
decrease_axis
.
end
())
{
ends
[
i
]
=
10000000
;
}
}
start
=
starts
[
i
]
<
0
?
(
starts
[
i
]
+
dim_value
)
:
starts
[
i
];
end
=
ends
[
i
]
<
0
?
(
ends
[
i
]
+
dim_value
)
:
ends
[
i
];
start
=
std
::
max
(
start
,
static_cast
<
int64_t
>
(
0
));
end
=
std
::
max
(
end
,
static_cast
<
int64_t
>
(
0
));
end
=
std
::
min
(
end
,
dim_value
);
PADDLE_ENFORCE_GT
(
end
,
start
,
platform
::
errors
::
InvalidArgument
(
"Attr(ends) should be greater than attr(starts) in "
"slice op. But received end = %d, start = %d."
,
ends
[
i
],
starts
[
i
]));
out_dims
[
axes
[
i
]]
=
end
-
start
;
}
}
out
->
Resize
(
out_dims
);
// generate new shape
if
(
decrease_axis
.
size
()
>
0
)
{
std
::
vector
<
int64_t
>
new_out_shape
;
for
(
size_t
i
=
0
;
i
<
decrease_axis
.
size
();
++
i
)
{
PADDLE_ENFORCE_EQ
(
out_dims
[
decrease_axis
[
i
]],
1
,
platform
::
errors
::
InvalidArgument
(
"decrease dim should be 1"
));
out_dims
[
decrease_axis
[
i
]]
=
0
;
}
for
(
int
i
=
0
;
i
<
out_dims
.
size
();
++
i
)
{
if
(
out_dims
[
i
]
!=
0
)
{
new_out_shape
.
push_back
(
out_dims
[
i
]);
// when start == -1 && end == start+1
if
(
starts
[
i
]
==
-
1
&&
ends
[
i
]
==
0
&&
infer_flags
[
i
]
==
-
1
)
{
auto
ret
=
std
::
find
(
decrease_axis
.
begin
(),
decrease_axis
.
end
(),
axes
[
i
]);
if
(
ret
!=
decrease_axis
.
end
())
{
ends
[
i
]
=
in_dims
[
axes
[
i
]];
}
}
if
(
new_out_shape
.
size
()
==
0
)
{
new_out_shape
.
push_back
(
1
);
}
out_dims
=
framework
::
make_ddim
(
new_out_shape
);
}
}
// resize out_dims
if
(
decrease_axis
.
size
()
>
0
)
{
if
(
decrease_axis
.
size
()
==
(
size_t
)
in_dims
.
size
())
{
std
::
vector
<
int
>
vec_origin_out_shape
(
decrease_axis
.
size
(),
1
);
out
->
Resize
(
framework
::
make_ddim
(
vec_origin_out_shape
));
}
else
{
std
::
vector
<
int
>
vec_origin_out_shape
(
out_dims
.
size
()
+
decrease_axis
.
size
(),
-
1
);
CheckAndUpdateSliceAttrs
(
in_dims
,
axes
,
&
starts
,
&
ends
);
slice_dims
=
GetSliceDims
<
int64_t
>
(
in_dims
,
axes
,
starts
,
ends
,
nullptr
,
nullptr
);
out_dims
=
GetDecreasedDims
(
slice_dims
,
decrease_axis
);
for
(
size_t
i
=
0
;
i
<
decrease_axis
.
size
();
++
i
)
{
vec_origin_out_shape
[
decrease_axis
[
i
]]
=
1
;
}
// 2.2 Get output
auto
offsets
=
Eigen
::
DSizes
<
Eigen
::
DenseIndex
,
D
>
()
;
auto
extents
=
Eigen
::
DSizes
<
Eigen
::
DenseIndex
,
D
>
();
int
index
=
0
;
for
(
size_t
i
=
0
;
i
<
vec_origin_out_shape
.
size
();
++
i
)
{
if
(
vec_origin_out_shape
[
i
]
==
-
1
)
{
vec_origin_out_shape
[
i
]
=
out_dims
[
index
];
++
index
;
}
}
out
->
Resize
(
framework
::
make_ddim
(
vec_origin_out_shape
));
for
(
size_t
i
=
0
;
i
<
D
;
++
i
)
{
offsets
[
i
]
=
0
;
extents
[
i
]
=
slice_dims
[
i
];
}
}
out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
new_out_dims
=
out
->
dims
();
auto
offsets
=
Eigen
::
DSizes
<
Eigen
::
DenseIndex
,
D
>
();
auto
extents
=
Eigen
::
DSizes
<
Eigen
::
DenseIndex
,
D
>
();
for
(
size_t
i
=
0
;
i
<
D
;
++
i
)
{
offsets
[
i
]
=
0
;
extents
[
i
]
=
new_out_dims
[
i
];
}
int64_t
start
;
for
(
size_t
i
=
0
;
i
<
axes
.
size
();
++
i
)
{
start
=
starts
[
i
];
if
(
start
<
0
)
{
start
=
(
start
+
in_dims
[
axes
[
i
]]);
for
(
size_t
i
=
0
;
i
<
axes
.
size
();
++
i
)
{
offsets
[
axes
[
i
]]
=
starts
[
i
];
}
start
=
std
::
max
(
start
,
static_cast
<
int64_t
>
(
0
));
offsets
[
axes
[
i
]]
=
start
;
}
auto
in_t
=
framework
::
EigenTensor
<
T
,
D
,
Eigen
::
RowMajor
,
Eigen
::
DenseIndex
>::
From
(
*
in
);
auto
out_t
=
framework
::
EigenTensor
<
T
,
D
,
Eigen
::
RowMajor
,
Eigen
::
DenseIndex
>::
From
(
*
out
,
new_out_dims
);
if
(
in
->
numel
()
<=
Eigen
::
NumTraits
<
int
>::
highest
())
{
// similar to tf.slice:
// if element number less than INT_MAX, change the type of index to int
Eigen
::
DSizes
<
int
,
D
>
offsets_32bit
,
extents_32bit
;
for
(
size_t
i
=
0
;
i
<
D
;
i
++
)
{
offsets_32bit
[
i
]
=
offsets
[
i
];
extents_32bit
[
i
]
=
extents
[
i
];
out
->
Resize
(
slice_dims
);
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
in_t
=
framework
::
EigenTensor
<
T
,
D
>::
From
(
*
in
,
in_dims
);
auto
out_t
=
framework
::
EigenTensor
<
T
,
D
>::
From
(
*
out
,
slice_dims
);
auto
&
eigen_place
=
*
ctx
.
template
device_context
<
DeviceContext
>().
eigen_device
();
if
(
in
->
numel
()
<=
Eigen
::
NumTraits
<
int
>::
highest
())
{
// similar to tf.slice:
// if element number less than INT_MAX, change the type of index to int
Eigen
::
DSizes
<
int
,
D
>
offsets_32bit
,
extents_32bit
;
for
(
size_t
i
=
0
;
i
<
D
;
i
++
)
{
offsets_32bit
[
i
]
=
offsets
[
i
];
extents_32bit
[
i
]
=
extents
[
i
];
}
EigenSlice
<
std
::
decay_t
<
decltype
(
eigen_place
)
>
,
T
,
D
>::
Eval
(
eigen_place
,
framework
::
To32BitIndex
(
out_t
),
framework
::
To32BitIndex
(
in_t
),
offsets_32bit
,
extents_32bit
);
}
else
{
EigenSlice
<
std
::
decay_t
<
decltype
(
eigen_place
)
>
,
T
,
D
>::
Eval
(
eigen_place
,
out_t
,
in_t
,
offsets
,
extents
);
}
EigenSlice
<
std
::
decay_t
<
decltype
(
place
)
>
,
T
,
D
>::
Eval
(
place
,
framework
::
To32BitIndex
(
out_t
),
framework
::
To32BitIndex
(
in_t
),
offsets_32bit
,
extents_32bit
);
}
else
{
EigenSlice
<
std
::
decay_t
<
decltype
(
place
)
>
,
T
,
D
>::
Eval
(
place
,
out_t
,
in_t
,
offsets
,
extents
);
}
out
->
Resize
(
out_dims
);
out
->
Resize
(
out_dims
);
}
}
};
...
...
@@ -285,11 +222,9 @@ template <typename DeviceContext, typename T>
class
SliceGradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
framework
::
Variable
*
input_var
=
ctx
.
InputVar
(
"Input"
);
bool
is_tensor_array
=
input_var
->
IsType
<
framework
::
LoDTensorArray
>
();
size_t
rank
=
is_tensor_array
?
1
:
ctx
.
Input
<
framework
::
Tensor
>
(
"Input"
)
->
dims
().
size
();
const
Variable
*
input_var
=
ctx
.
InputVar
(
"Input"
);
bool
is_array
=
input_var
->
IsType
<
LoDTensorArray
>
();
size_t
rank
=
is_array
?
1
:
ctx
.
Input
<
Tensor
>
(
"Input"
)
->
dims
().
size
();
switch
(
rank
)
{
case
1
:
...
...
@@ -310,53 +245,48 @@ class SliceGradKernel : public framework::OpKernel<T> {
case
6
:
SliceCompute
<
6
>
(
ctx
);
break
;
default:
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"The rank of input should be less than 7, but received %d."
,
rank
));
}
}
private:
template
<
size_t
D
>
void
SliceCompute
(
const
framework
::
ExecutionContext
&
c
ontext
)
const
{
auto
axes
=
c
ontext
.
Attr
<
std
::
vector
<
int
>>
(
"axes"
);
auto
starts_int
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"start
s"
);
void
SliceCompute
(
const
framework
::
ExecutionContext
&
c
tx
)
const
{
auto
axes
=
c
tx
.
Attr
<
std
::
vector
<
int
>>
(
"axes"
);
auto
starts_int
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"starts"
);
auto
ends_int
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"end
s"
);
std
::
vector
<
int64_t
>
starts
(
starts_int
.
begin
(),
starts_int
.
end
());
auto
ends_int
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"ends"
);
std
::
vector
<
int64_t
>
ends
(
ends_int
.
begin
(),
ends_int
.
end
());
auto
list_new_ends_tensor
=
context
.
MultiInput
<
framework
::
Tensor
>
(
"EndsTensorList"
);
auto
list_new_starts_tensor
=
context
.
MultiInput
<
framework
::
Tensor
>
(
"StartsTensorList"
);
if
(
list_new_starts_tensor
.
size
()
>
0
)
{
starts
=
GetDataFromTensorList
<
int64_t
>
(
list_new_starts_tensor
);
}
else
if
(
context
.
HasInput
(
"StartsTensor"
))
{
auto
*
starts_tensor
=
context
.
Input
<
framework
::
Tensor
>
(
"StartsTensor"
);
starts
=
GetDataFromTensor
<
int64_t
>
(
starts_tensor
);
// Get the accurate attribute value of starts and ends
auto
starts_tensor_list
=
ctx
.
MultiInput
<
Tensor
>
(
"StartsTensorList"
);
if
(
ctx
.
HasInput
(
"StartsTensor"
))
{
starts
=
GetDataFromTensor
<
int64_t
>
(
ctx
.
Input
<
Tensor
>
(
"StartsTensor"
));
}
else
if
(
starts_tensor_list
.
size
()
>
0
)
{
starts
=
GetDataFromTensorList
<
int64_t
>
(
starts_tensor_list
);
}
if
(
list_new_ends_tensor
.
size
()
>
0
)
{
ends
=
GetDataFromTensorList
<
int64_t
>
(
list_new_ends_tensor
);
}
else
if
(
context
.
HasInput
(
"EndsTensor"
))
{
auto
*
ends_tensor
=
context
.
Input
<
framework
::
Tensor
>
(
"EndsTensor"
);
ends
=
GetDataFromTensor
<
int64_t
>
(
ends_tensor
);
auto
ends_tensor_list
=
ctx
.
MultiInput
<
Tensor
>
(
"EndsTensorList"
);
if
(
ctx
.
HasInput
(
"EndsTensor"
))
{
ends
=
GetDataFromTensor
<
int64_t
>
(
ctx
.
Input
<
Tensor
>
(
"EndsTensor"
));
}
else
if
(
ends_tensor_list
.
size
()
>
0
)
{
ends
=
GetDataFromTensor
List
<
int64_t
>
(
ends_tensor_list
);
}
framework
::
Variable
*
d_input_var
=
context
.
OutputVar
(
framework
::
GradVarName
(
"Input"
));
const
framework
::
Variable
*
d_out_var
=
context
.
InputVar
(
framework
::
GradVarName
(
"Out"
));
bool
d_input_is_tensor_array
=
d_input_var
->
IsType
<
framework
::
LoDTensorArray
>
();
bool
d_out_is_tensor_array
=
d_out_var
->
IsType
<
framework
::
LoDTensorArray
>
();
if
(
d_input_is_tensor_array
)
{
auto
*
input_array
=
context
.
Input
<
framework
::
LoDTensorArray
>
(
"Input"
);
auto
*
d_input_array
=
context
.
Output
<
framework
::
LoDTensorArray
>
(
framework
::
GradVarName
(
"Input"
));
Variable
*
d_input_var
=
ctx
.
OutputVar
(
framework
::
GradVarName
(
"Input"
));
const
Variable
*
d_out_var
=
ctx
.
InputVar
(
framework
::
GradVarName
(
"Out"
));
bool
d_input_is_array
=
d_input_var
->
IsType
<
LoDTensorArray
>
();
bool
d_out_is_array
=
d_out_var
->
IsType
<
LoDTensorArray
>
();
if
(
d_input_is_array
)
{
auto
*
input_array
=
ctx
.
Input
<
LoDTensorArray
>
(
"Input"
);
auto
*
d_in_arr
=
ctx
.
Output
<
LoDTensorArray
>
(
framework
::
GradVarName
(
"Input"
));
int64_t
d_in_size
=
input_array
->
size
();
d_in
put_array
->
resize
(
d_in_size
);
d_in
_arr
->
resize
(
d_in_size
);
// If the input is LoDTensorArray, the rank of input is 1.
// So only use the 0th element of starts.
int64_t
start
=
starts
[
0
]
<
0
?
(
starts
[
0
]
+
d_in_size
)
:
starts
[
0
];
...
...
@@ -364,68 +294,60 @@ class SliceGradKernel : public framework::OpKernel<T> {
// set zero
platform
::
DeviceContextPool
&
pool
=
platform
::
DeviceContextPool
::
Instance
();
auto
&
dev_ctx
=
*
pool
.
Get
(
context
.
GetPlace
());
T
value
=
T
(
0
);
auto
&
dev_ctx
=
*
pool
.
Get
(
ctx
.
GetPlace
());
math
::
SetConstant
<
DeviceContext
,
T
>
functor
;
for
(
int
i
=
0
;
i
<
d_in_size
;
++
i
)
{
auto
dim
=
input_array
->
at
(
i
).
dims
();
d_in
put_array
->
at
(
i
).
Resize
(
dim
);
d_in
put_array
->
at
(
i
).
mutable_data
<
T
>
(
context
.
GetPlace
());
d_in
_arr
->
at
(
i
).
Resize
(
dim
);
d_in
_arr
->
at
(
i
).
mutable_data
<
T
>
(
ctx
.
GetPlace
());
functor
(
reinterpret_cast
<
const
DeviceContext
&>
(
dev_ctx
),
&
d_in
put_array
->
at
(
i
),
static_cast
<
T
>
(
value
));
&
d_in
_arr
->
at
(
i
),
static_cast
<
T
>
(
0
));
}
if
(
d_out_is_
tensor_
array
)
{
auto
*
d_out_arr
ay
=
context
.
Input
<
framework
::
LoDTensorArray
>
(
framework
::
GradVarName
(
"Out"
));
int
d_out_size
=
d_out_arr
ay
->
size
();
if
(
d_out_is_array
)
{
auto
*
d_out_arr
=
ctx
.
Input
<
LoDTensorArray
>
(
framework
::
GradVarName
(
"Out"
));
int
d_out_size
=
d_out_arr
->
size
();
for
(
int
i
=
0
;
i
<
d_out_size
;
++
i
)
{
TensorCopy
(
d_out_arr
ay
->
at
(
i
),
context
.
GetPlace
(),
&
(
d_in
put_array
->
at
(
start
+
i
)));
TensorCopy
(
d_out_arr
->
at
(
i
),
ctx
.
GetPlace
(),
&
(
d_in
_arr
->
at
(
start
+
i
)));
}
}
else
{
auto
*
d_out
=
context
.
Input
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
TensorCopy
(
*
d_out
,
context
.
GetPlace
(),
&
(
d_input_array
->
at
(
start
)));
auto
*
d_out
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
TensorCopy
(
*
d_out
,
ctx
.
GetPlace
(),
&
(
d_in_arr
->
at
(
start
)));
}
return
;
}
auto
*
d_out
=
context
.
Input
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
d_input
=
context
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Input"
));
d_input
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
*
d_out
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
d_input
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Input"
));
d_input
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
out_dims
=
d_out
->
dims
();
auto
in_dims
=
d_input
->
dims
();
auto
decrease_axis
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"decrease_axis"
);
if
(
decrease_axis
.
size
()
>
0
)
{
if
(
decrease_axis
.
size
()
==
(
size_t
)
in_dims
.
size
())
{
auto
decrease_axis
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"decrease_axis"
);
auto
decrease_size
=
decrease_axis
.
size
();
if
(
decrease_size
>
0
)
{
if
(
decrease_size
==
(
size_t
)
in_dims
.
size
())
{
// all dims decrease
std
::
vector
<
int
>
vec_origin_out_shape
(
decrease_axis
.
size
()
,
1
);
out_dims
=
framework
::
make_ddim
(
vec_origin_out_shape
);
std
::
vector
<
int
>
origin_out_shape
(
decrease_size
,
1
);
out_dims
=
framework
::
make_ddim
(
std
::
vector
<
int
>
(
decrease_size
,
1
)
);
}
else
{
std
::
vector
<
int
>
vec_origin_out_shape
(
out_dims
.
size
()
+
decrease_axis
.
size
(),
-
1
);
for
(
size_t
i
=
0
;
i
<
decrease_axis
.
size
();
++
i
)
{
vec_origin_out_shape
[
decrease_axis
[
i
]]
=
1
;
std
::
vector
<
int
>
origin_out_shape
(
out_dims
.
size
()
+
decrease_size
,
-
1
);
for
(
size_t
i
=
0
;
i
<
decrease_size
;
++
i
)
{
origin_out_shape
[
decrease_axis
[
i
]]
=
1
;
}
int
index
=
0
;
for
(
size_t
i
=
0
;
i
<
vec_
origin_out_shape
.
size
();
++
i
)
{
if
(
vec_
origin_out_shape
[
i
]
==
-
1
)
{
vec_
origin_out_shape
[
i
]
=
out_dims
[
index
];
for
(
size_t
i
=
0
;
i
<
origin_out_shape
.
size
();
++
i
)
{
if
(
origin_out_shape
[
i
]
==
-
1
)
{
origin_out_shape
[
i
]
=
out_dims
[
index
];
++
index
;
}
}
out_dims
=
framework
::
make_ddim
(
vec_
origin_out_shape
);
out_dims
=
framework
::
make_ddim
(
origin_out_shape
);
}
}
...
...
@@ -435,28 +357,26 @@ class SliceGradKernel : public framework::OpKernel<T> {
offsets
[
i
]
=
0
;
extents
[
i
]
=
out_dims
[
i
];
}
int64_t
start
;
for
(
size_t
i
=
0
;
i
<
axes
.
size
();
++
i
)
{
start
=
starts
[
i
];
if
(
start
<
0
)
{
start
=
(
start
+
in_dims
[
axes
[
i
]]);
}
int
axis
=
axes
[
i
];
int64_t
start
=
starts
[
i
]
<
0
?
(
starts
[
i
]
+
in_dims
[
axis
])
:
starts
[
i
];
start
=
std
::
max
(
start
,
static_cast
<
int64_t
>
(
0
));
offsets
[
ax
es
[
i
]
]
=
start
;
offsets
[
ax
is
]
=
start
;
}
Eigen
::
array
<
std
::
pair
<
int64_t
,
int64_t
>
,
D
>
paddings
;
for
(
size_t
i
=
0
;
i
<
paddings
.
size
();
++
i
)
{
paddings
[
i
].
first
=
offsets
[
i
];
paddings
[
i
].
second
=
(
in_dims
[
i
]
-
out_dims
[
i
])
-
offsets
[
i
];
}
EigenPaddingCompute
(
c
ontext
,
d_input
,
in_dims
,
d_out
,
out_dims
,
paddings
);
EigenPaddingCompute
(
c
tx
,
d_input
,
in_dims
,
d_out
,
out_dims
,
paddings
);
}
template
<
size_t
D
>
void
EigenPaddingCompute
(
const
framework
::
ExecutionContext
&
context
,
framework
::
Tensor
*
d_input
,
const
framework
::
DDim
&
in_dims
,
const
framework
::
Tensor
*
d_out
,
const
framework
::
DDim
&
out_dims
,
const
framework
::
ExecutionContext
&
context
,
Tensor
*
d_input
,
const
DDim
&
in_dims
,
const
Tensor
*
d_out
,
const
DDim
&
out_dims
,
const
Eigen
::
array
<
std
::
pair
<
int64_t
,
int64_t
>
,
D
>&
paddings
)
const
{
if
(
D
<=
3
)
{
// if dimension less than 3, cannot reduce dimension
...
...
@@ -512,10 +432,8 @@ class SliceGradKernel : public framework::OpKernel<T> {
out_tore_shape
[
1
]
=
out_dims
[
pad_dim
];
// convert array from std::vector to DDim
framework
::
DDim
reshaped_in_dims
=
framework
::
make_ddim
(
in_tore_shape
);
framework
::
DDim
reshaped_out_dims
=
framework
::
make_ddim
(
out_tore_shape
);
DDim
reshaped_in_dims
=
framework
::
make_ddim
(
in_tore_shape
);
DDim
reshaped_out_dims
=
framework
::
make_ddim
(
out_tore_shape
);
// after reshape: the first dimension do not need padding,
// set padding[0] zero
...
...
@@ -543,10 +461,8 @@ class SliceGradKernel : public framework::OpKernel<T> {
}
// convert array from std::vector to DDim
framework
::
DDim
reshaped_in_dims
=
framework
::
make_ddim
(
in_tore_shape
);
framework
::
DDim
reshaped_out_dims
=
framework
::
make_ddim
(
out_tore_shape
);
DDim
reshaped_in_dims
=
framework
::
make_ddim
(
in_tore_shape
);
DDim
reshaped_out_dims
=
framework
::
make_ddim
(
out_tore_shape
);
// after reshape:
// the first dimension is the previous padding dimension
...
...
@@ -579,10 +495,8 @@ class SliceGradKernel : public framework::OpKernel<T> {
}
// convert array from std::vector to DDim
framework
::
DDim
reshaped_in_dims
=
framework
::
make_ddim
(
in_tore_shape
);
framework
::
DDim
reshaped_out_dims
=
framework
::
make_ddim
(
out_tore_shape
);
DDim
reshaped_in_dims
=
framework
::
make_ddim
(
in_tore_shape
);
DDim
reshaped_out_dims
=
framework
::
make_ddim
(
out_tore_shape
);
// after reshape:
// the first dimension do not need padding, set padding[0] zero
...
...
@@ -606,9 +520,8 @@ class SliceGradKernel : public framework::OpKernel<T> {
template
<
size_t
D
>
void
LaunchEigenPadding
(
const
framework
::
ExecutionContext
&
context
,
framework
::
Tensor
*
d_input
,
const
framework
::
DDim
&
in_dims
,
const
framework
::
Tensor
*
d_out
,
const
framework
::
DDim
&
out_dims
,
const
framework
::
ExecutionContext
&
context
,
Tensor
*
d_input
,
const
DDim
&
in_dims
,
const
Tensor
*
d_out
,
const
DDim
&
out_dims
,
const
Eigen
::
array
<
std
::
pair
<
int64_t
,
int64_t
>
,
D
>&
paddings
)
const
{
auto
&
place
=
*
context
.
template
device_context
<
DeviceContext
>().
eigen_device
();
...
...
paddle/fluid/operators/slice_utils.h
0 → 100644
浏览文件 @
4cf01462
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <paddle/fluid/framework/operator.h>
#include <string>
#include <vector>
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
template
<
typename
T
=
int64_t
>
inline
void
CheckAndUpdateSliceAttrs
(
const
framework
::
DDim
in_dims
,
const
std
::
vector
<
T
>&
axes
,
std
::
vector
<
T
>*
starts
,
std
::
vector
<
T
>*
ends
,
std
::
vector
<
int64_t
>*
steps
=
nullptr
,
std
::
vector
<
T
>*
infer_flags
=
nullptr
)
{
for
(
size_t
i
=
0
;
i
<
axes
.
size
();
++
i
)
{
T
axis
=
axes
[
i
];
T
dim_value
=
in_dims
[
axis
];
if
(
dim_value
>
0
)
{
if
(
infer_flags
!=
nullptr
&&
(
*
infer_flags
)[
i
]
==
-
1
)
{
continue
;
}
T
start
=
(
*
starts
)[
i
]
<
0
?
((
*
starts
)[
i
]
+
dim_value
)
:
(
*
starts
)[
i
];
start
=
std
::
max
(
start
,
static_cast
<
T
>
(
0
));
T
end
=
(
*
ends
)[
i
]
<
0
?
((
*
ends
)[
i
]
+
dim_value
)
:
(
*
ends
)[
i
];
end
=
std
::
min
(
end
,
dim_value
);
T
step
=
steps
==
nullptr
?
1
:
(
*
steps
)[
i
];
PADDLE_ENFORCE_NE
(
step
,
0
,
platform
::
errors
::
InvalidArgument
(
"Step should not be 0, but received step = %d."
,
step
));
if
(
step
>
0
)
{
start
=
std
::
min
(
start
,
dim_value
);
end
=
std
::
max
(
end
,
static_cast
<
T
>
(
0
));
PADDLE_ENFORCE_GT
(
end
,
start
,
platform
::
errors
::
InvalidArgument
(
"When step > 0, end should be greater than start, but "
"received end = %d, start = %d."
,
end
,
start
));
}
else
{
// NOTE(liym27): When step < 0, start should less and equal to
// dim_value-1
// "end is -1" means contain the 0-th element of this axis.
start
=
std
::
min
(
start
,
dim_value
-
1
);
end
=
std
::
max
(
end
,
static_cast
<
T
>
(
-
1
));
PADDLE_ENFORCE_GT
(
start
,
end
,
platform
::
errors
::
InvalidArgument
(
"When step < 0, start should be greater than end, but "
"received start = %d, end = %d."
,
start
,
end
));
}
(
*
starts
)[
i
]
=
start
;
(
*
ends
)[
i
]
=
end
;
}
}
}
template
<
typename
T
=
int64_t
>
inline
framework
::
DDim
GetSliceDims
(
const
framework
::
DDim
in_dims
,
const
std
::
vector
<
T
>&
axes
,
const
std
::
vector
<
T
>&
starts
,
const
std
::
vector
<
T
>&
ends
,
std
::
vector
<
T
>*
steps
=
nullptr
,
std
::
vector
<
T
>*
infer_flags
=
nullptr
)
{
framework
::
DDim
slice_dims
(
in_dims
);
for
(
size_t
i
=
0
;
i
<
axes
.
size
();
++
i
)
{
T
axis
=
axes
[
i
];
if
(
infer_flags
!=
nullptr
&&
(
*
infer_flags
)[
i
]
==
-
1
)
{
slice_dims
[
axis
]
=
-
1
;
continue
;
}
T
start
=
starts
[
i
];
T
end
=
ends
[
i
];
T
step
=
steps
==
nullptr
?
1
:
(
*
steps
)[
i
];
if
(
step
>
0
)
{
slice_dims
[
axis
]
=
(
end
-
start
+
step
-
1
)
/
step
;
}
else
{
slice_dims
[
axis
]
=
(
end
-
start
+
step
+
1
)
/
step
;
}
}
return
slice_dims
;
}
template
<
typename
T
=
int64_t
>
inline
framework
::
DDim
GetDecreasedDims
(
const
framework
::
DDim
slice_dims
,
const
std
::
vector
<
T
>&
decrease_axes
,
std
::
vector
<
T
>*
infer_flags
=
nullptr
)
{
framework
::
DDim
decreased_dims
(
slice_dims
);
if
(
decrease_axes
.
size
()
>
0
)
{
for
(
size_t
i
=
0
;
i
<
decrease_axes
.
size
();
++
i
)
{
T
axis
=
decrease_axes
[
i
];
if
(
infer_flags
&&
(
*
infer_flags
)[
i
]
!=
-
1
)
{
PADDLE_ENFORCE_EQ
(
decreased_dims
[
axis
],
1
,
platform
::
errors
::
InvalidArgument
(
"decrease dim should be 1"
));
}
decreased_dims
[
axis
]
=
0
;
}
std
::
vector
<
T
>
new_shape
;
for
(
int
i
=
0
;
i
<
decreased_dims
.
size
();
++
i
)
{
if
(
decreased_dims
[
i
]
!=
0
)
{
new_shape
.
push_back
(
decreased_dims
[
i
]);
}
}
// NOTE(liym27): Paddle does not support that the rank of Tensor is 0, and
// uses [1] instead.
if
(
new_shape
.
size
()
==
0
)
{
new_shape
.
push_back
(
1
);
}
decreased_dims
=
framework
::
make_ddim
(
new_shape
);
}
return
decreased_dims
;
}
}
// namespace operators
}
// namespace paddle
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录