From 4a44ffdd24482047c327beee2431da3f08acd735 Mon Sep 17 00:00:00 2001 From: wangchaochaohu Date: Tue, 21 Jul 2020 00:58:06 +0800 Subject: [PATCH] refine the eye Op for API 2.0 test=develop (#25295) --- python/paddle/fluid/layers/tensor.py | 85 ++++++++++++------- .../fluid/tests/unittests/test_eye_op.py | 64 ++++++++++++-- python/paddle/tensor/creation.py | 69 ++++++--------- 3 files changed, 137 insertions(+), 81 deletions(-) diff --git a/python/paddle/fluid/layers/tensor.py b/python/paddle/fluid/layers/tensor.py index eea2d82bf81..a594de64ac2 100644 --- a/python/paddle/fluid/layers/tensor.py +++ b/python/paddle/fluid/layers/tensor.py @@ -1551,7 +1551,11 @@ def diag(diagonal): return out -def eye(num_rows, num_columns=None, batch_shape=None, dtype='float32'): +def eye(num_rows, + num_columns=None, + batch_shape=None, + dtype='float32', + name=None): """ :alias_main: paddle.eye :alias: paddle.eye,paddle.tensor.eye,paddle.tensor.creation.eye @@ -1559,19 +1563,25 @@ def eye(num_rows, num_columns=None, batch_shape=None, dtype='float32'): **eye** - This function constructs an identity tensor, or a batch of tensor. + This function constructs a or a batch of 2-D tensor with ones on the diagonal and zeros elsewhere. Args: num_rows(int): the number of rows in each batch tensor. - num_columns(int): the number of columns in each batch tensor. - If None, default: num_rows. - batch_shape(list(int)): If provided, the returned tensor will have a leading - batch size of this shape. - dtype(string): The data type of the returned tensor. - It should be int32, int64, float16, float32, float64. + num_columns(int, optional): the number of columns in each batch tensor. + If None, default: num_rows. + batch_shape(list(int), optional): If provided, the returned tensor will have a leading + batch size of this shape, default is None. + dtype(np.dtype|core.VarDesc.VarType|str, optional): The data type of the returned tensor. + It should be int32, int64, float16, float32, float64, default is 'float32'. + name(str, optional): The default value is None. Normally there is no + need for user to set this property. For more information, please + refer to :ref:`api_guide_Name`. Returns: Variable: An identity Tensor or LoDTensor of shape batch_shape + [num_rows, num_columns]. + Raises: + TypeError: The `dtype` must be one of float16, float32, float64, int32 and int64. + TypeError: The `num_columns` must be non-negative int. Examples: .. code-block:: python @@ -1592,38 +1602,55 @@ def eye(num_rows, num_columns=None, batch_shape=None, dtype='float32'): """ - helper = LayerHelper("eye", **locals()) - if not isinstance(num_rows, int) or num_rows < 0: - raise TypeError("num_rows should be a non-negative int") + if not isinstance(dtype, core.VarDesc.VarType): + dtype = convert_np_dtype_to_dtype_(dtype) if num_columns is not None: if not isinstance(num_columns, int) or num_columns < 0: raise TypeError("num_columns should be a non-negative int") else: num_columns = num_rows - out = helper.create_variable_for_type_inference(dtype=dtype) - c_dtype = convert_np_dtype_to_dtype_(dtype) - helper.append_op( - type='eye', - inputs={}, - outputs={'Out': [out]}, - attrs={ - 'num_rows': num_rows, - 'num_columns': num_columns, - 'dtype': c_dtype - }, - stop_gradient=True) - out.stop_gradient = True + + if in_dygraph_mode(): + out = core.ops.eye('dtype', dtype, 'num_rows', num_rows, 'num_columns', + num_columns) + + else: + helper = LayerHelper("eye", **locals()) + check_dtype(dtype, 'dtype', + ['float16', 'float32', 'float64', 'int32', 'int64'], 'eye') + if not isinstance(num_rows, int) or num_rows < 0: + raise TypeError("num_rows should be a non-negative int") + out = helper.create_variable_for_type_inference(dtype=dtype) + helper.append_op( + type='eye', + inputs={}, + outputs={'Out': [out]}, + attrs={ + 'num_rows': num_rows, + 'num_columns': num_columns, + 'dtype': dtype + }, + stop_gradient=True) if batch_shape is not None: + re_shape = [1] * len(batch_shape) + re_shape = re_shape + [num_rows, num_columns] + expand_times = batch_shape + [1, 1] + if in_dygraph_mode(): + out = core.ops.reshape(out, 'shape', re_shape) + return core.ops.expand(out, 'expand_times', expand_times) + if not isinstance(batch_shape, list): raise TypeError("batch_shape should be a list") - from .nn import stack - for batch_val in reversed(batch_shape): + for batch_val in (batch_shape): if batch_val <= 0: raise TypeError("batch_shape should be a positive int list") - else: - stack_vars = [out for _ in numpy.arange(batch_val)] - out = stack(stack_vars, axis=0) + + from .nn import reshape, expand + out = reshape(x=out, shape=re_shape) + out = expand(x=out, expand_times=expand_times) + + out.stop_gradient = True return out diff --git a/python/paddle/fluid/tests/unittests/test_eye_op.py b/python/paddle/fluid/tests/unittests/test_eye_op.py index fbbf01abae6..1a0a4ecb74d 100644 --- a/python/paddle/fluid/tests/unittests/test_eye_op.py +++ b/python/paddle/fluid/tests/unittests/test_eye_op.py @@ -74,32 +74,73 @@ class TestEyeOp2(OpTest): class API_TestTensorEye(unittest.TestCase): def test_out(self): - with fluid.program_guard(fluid.Program()): + with paddle.program_guard(paddle.Program()): data = paddle.eye(10) place = fluid.CPUPlace() - exe = fluid.Executor(place) + exe = paddle.Executor(place) result, = exe.run(fetch_list=[data]) expected_result = np.eye(10, dtype="float32") self.assertEqual((result == expected_result).all(), True) - with fluid.program_guard(fluid.Program()): + with paddle.program_guard(paddle.Program()): data = paddle.eye(10, num_columns=7, dtype="float64") - place = fluid.CPUPlace() - exe = fluid.Executor(place) + place = paddle.CPUPlace() + exe = paddle.Executor(place) result, = exe.run(fetch_list=[data]) expected_result = np.eye(10, 7, dtype="float64") self.assertEqual((result == expected_result).all(), True) - with fluid.program_guard(fluid.Program()): + with paddle.program_guard(paddle.Program()): data = paddle.eye(10, dtype="int64") - place = fluid.CPUPlace() - exe = fluid.Executor(place) + place = paddle.CPUPlace() + exe = paddle.Executor(place) result, = exe.run(fetch_list=[data]) expected_result = np.eye(10, dtype="int64") self.assertEqual((result == expected_result).all(), True) + with paddle.imperative.guard(): + out = paddle.eye(10, dtype="int64") + expected_result = np.eye(10, dtype="int64") + self.assertEqual((out.numpy() == expected_result).all(), True) + + with paddle.imperative.guard(): + batch_shape = [2] + out = fluid.layers.eye(10, + 10, + dtype="int64", + batch_shape=batch_shape) + result = np.eye(10, dtype="int64") + expected_result = [] + for index in reversed(batch_shape): + tmp_result = [] + for i in range(index): + tmp_result.append(result) + result = tmp_result + expected_result = np.stack(result, axis=0) + self.assertEqual(out.numpy().shape == np.array(expected_result).shape, + True) + self.assertEqual((out.numpy() == expected_result).all(), True) + + with paddle.imperative.guard(): + batch_shape = [3, 2] + out = fluid.layers.eye(10, + 10, + dtype="int64", + batch_shape=batch_shape) + result = np.eye(10, dtype="int64") + expected_result = [] + for index in reversed(batch_shape): + tmp_result = [] + for i in range(index): + tmp_result.append(result) + result = tmp_result + expected_result = np.stack(result, axis=0) + self.assertEqual(out.numpy().shape == np.array(expected_result).shape, + True) + self.assertEqual((out.numpy() == expected_result).all(), True) + def test_errors(self): - with fluid.program_guard(fluid.Program()): + with paddle.program_guard(paddle.Program()): def test_num_rows_type_check(): paddle.eye(-1, dtype="int64") @@ -111,6 +152,11 @@ class API_TestTensorEye(unittest.TestCase): self.assertRaises(TypeError, test_num_columns_type_check) + def test_num_columns_type_check(): + paddle.eye(10, num_columns=10, dtype="int8") + + self.assertRaises(TypeError, test_num_columns_type_check) + if __name__ == "__main__": unittest.main() diff --git a/python/paddle/tensor/creation.py b/python/paddle/tensor/creation.py index e84fe6b4e0c..c34dc17783e 100644 --- a/python/paddle/tensor/creation.py +++ b/python/paddle/tensor/creation.py @@ -26,10 +26,10 @@ import paddle # TODO: define functions to get create a tensor from ..fluid.layers import crop_tensor #DEFINE_ALIAS from ..fluid.layers import diag #DEFINE_ALIAS -from ..fluid.layers import eye #DEFINE_ALIAS from ..fluid.layers import fill_constant #DEFINE_ALIAS from ..fluid.layers import create_tensor #DEFINE_ALIAS from ..fluid.layers import linspace #DEFINE_ALIAS +import paddle __all__ = [ 'create_tensor', @@ -295,67 +295,50 @@ def zeros_like(x, dtype=None, name=None): return full_like(x=x, fill_value=0, dtype=dtype, name=name) -def eye(num_rows, - num_columns=None, - out=None, - dtype='float32', - stop_gradient=True, - name=None): +def eye(num_rows, num_columns=None, dtype=None, name=None): """ - **eye** - This function constructs an identity tensor. + This function constructs 2-D Tensor with ones on the diagonal and zeros elsewhere. Args: num_rows(int): the number of rows in each batch tensor. num_columns(int, optional): the number of columns in each batch tensor. - If None, default: num_rows. - out(Variable, optional): Optional output which can be any created - Variable that meets the requirements to store the result of operation. - if out is None, a new Varibale will be create to store the result. - dtype(string, optional): The data type of the returned tensor. - It should be int32, int64, float16, float32, float64. - stop_gradient(bool, optional): Whether stop calculating gradients. Default:True. + If None, default: num_rows. + dtype(np.dtype|core.VarDesc.VarType|str, optional): The data type of the returned tensor. + It should be int32, int64, float16, float32, float64. Default: if None, the data type + is float32. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` Returns: Variable: An identity Tensor or LoDTensor of shape [num_rows, num_columns]. + + Raises: + TypeError: The `dtype` must be one of float16, float32, float64, int32 int64 and None. + TypeError: The `num_columns` must be non-negative int. Examples: .. code-block:: python import paddle + + paddle.enable_imperative() # Now we are in imperative mode data = paddle.eye(3, dtype='int32') - # [[1, 0, 0] - # [0, 1, 0] - # [0, 0, 1]] + # [[1 0 0] + # [0 1 0] + # [0 0 1]] data = paddle.eye(2, 3, dtype='int32') - # [[1, 0, 0] - # [0, 1, 0]] + # [[1 0 0] + # [0 1 0]] """ - helper = LayerHelper("eye", **locals()) - if not isinstance(num_rows, int) or num_rows < 0: - raise TypeError("num_rows should be a non-negative int") - if num_columns is not None: - if not isinstance(num_columns, int) or num_columns < 0: - raise TypeError("num_columns should be a non-negative int") - else: + if dtype is None: + dtype = 'float32' + if num_columns is None: num_columns = num_rows - if out is None: - out = helper.create_variable_for_type_inference(dtype=dtype) - c_dtype = convert_np_dtype_to_dtype_(dtype) - helper.append_op( - type='eye', - inputs={}, - outputs={'Out': [out]}, - attrs={ - 'num_rows': num_rows, - 'num_columns': num_columns, - 'dtype': c_dtype - }, - stop_gradient=True) - out.stop_gradient = stop_gradient - return out + return paddle.fluid.layers.eye(num_rows=num_rows, + num_columns=num_columns, + batch_shape=None, + dtype=dtype, + name=name) def full(shape, fill_value, dtype=None, name=None): -- GitLab