Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
47269273
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
47269273
编写于
11月 08, 2017
作者:
P
peterzhang2029
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
refine memory transform
上级
f5cb52ca
变更
3
显示空白变更内容
内联
并排
Showing
3 changed file
with
58 addition
and
138 deletion
+58
-138
paddle/operators/bilinear_tensor_product_op.cc
paddle/operators/bilinear_tensor_product_op.cc
+33
-31
paddle/operators/bilinear_tensor_product_op.cu
paddle/operators/bilinear_tensor_product_op.cu
+10
-85
paddle/operators/bilinear_tensor_product_op.h
paddle/operators/bilinear_tensor_product_op.h
+15
-22
未找到文件。
paddle/operators/bilinear_tensor_product_op.cc
浏览文件 @
47269273
...
...
@@ -34,34 +34,34 @@ class BilinearTensorProductOp : public framework::OperatorWithKernel {
auto
y_dims
=
ctx
->
GetInputDim
(
"Y"
);
auto
weight_dims
=
ctx
->
GetInputDim
(
"Weight"
);
PADDLE_ENFORCE_EQ
(
x_dims
.
size
(),
2
,
"The input X must be a 2D Tensor."
);
PADDLE_ENFORCE_EQ
(
y_dims
.
size
(),
2
,
"The input Y must be a 2D Tensor."
);
PADDLE_ENFORCE_EQ
(
weight_dims
.
size
(),
3
,
PADDLE_ENFORCE_EQ
(
x_dims
.
size
(),
2
UL
,
"The input X must be a 2D Tensor."
);
PADDLE_ENFORCE_EQ
(
y_dims
.
size
(),
2
UL
,
"The input Y must be a 2D Tensor."
);
PADDLE_ENFORCE_EQ
(
weight_dims
.
size
(),
3
UL
,
"The input Weight must be a 3D tensor."
);
PADDLE_ENFORCE
_GT
(
weight_dims
[
0
],
0
,
PADDLE_ENFORCE
(
weight_dims
[
0
]
,
"The first dimension of Weight must be larger than 0."
);
PADDLE_ENFORCE
_GT
(
weight_dims
[
1
],
0
,
PADDLE_ENFORCE
(
weight_dims
[
1
]
,
"The second dimension of Weight must be larger than 0."
);
PADDLE_ENFORCE
_GT
(
weight_dims
[
2
],
0
,
PADDLE_ENFORCE
(
weight_dims
[
2
]
,
"The third dimension of Weight must be larger than 0."
);
PADDLE_ENFORCE_EQ
(
x_dims
[
0
],
y_dims
[
0
],
"The first dimension(batch_size) of X must be "
"equal
with
the first dimension of the Y."
);
"equal
to
the first dimension of the Y."
);
PADDLE_ENFORCE_EQ
(
x_dims
[
1
],
weight_dims
[
1
],
"The second dimension of X must be equal
with
the second "
"The second dimension of X must be equal
to
the second "
"dimension of the Weight."
);
PADDLE_ENFORCE_EQ
(
y_dims
[
1
],
weight_dims
[
2
],
"The second dimension of Y must be equal
with
the third "
"The second dimension of Y must be equal
to
the third "
"dimension of the Weight."
);
if
(
ctx
->
HasInput
(
"Bias"
))
{
auto
bias_dims
=
ctx
->
GetInputDim
(
"Bias"
);
PADDLE_ENFORCE_EQ
(
bias_dims
.
size
(),
2
,
PADDLE_ENFORCE_EQ
(
bias_dims
.
size
(),
2
UL
,
"The input Bias must have 2 dimensions."
);
PADDLE_ENFORCE_EQ
(
bias_dims
[
0
],
1
,
PADDLE_ENFORCE_EQ
(
bias_dims
[
0
],
1
UL
,
"The first dimention of input Bias must be 1."
);
PADDLE_ENFORCE_EQ
(
bias_dims
[
1
],
weight_dims
[
0
],
"The second dimension of Bias must be equal
with
the "
"The second dimension of Bias must be equal
to
the "
"first dimension of the Weight."
);
}
...
...
@@ -75,12 +75,12 @@ class BilinearTensorProductOpMaker : public framework::OpProtoAndCheckerMaker {
BilinearTensorProductOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"The first input of BilinearTensorProduct op"
);
AddInput
(
"Y"
,
"The second input of BilinearTensorProduct op"
);
AddInput
(
"Weight"
,
"The input weight of BilinearTensorProduct op"
);
AddInput
(
"Bias"
,
"The input bias of BilinearTensorProduct op"
)
AddInput
(
"X"
,
"The first input of BilinearTensorProduct op
.
"
);
AddInput
(
"Y"
,
"The second input of BilinearTensorProduct op
.
"
);
AddInput
(
"Weight"
,
"The input weight of BilinearTensorProduct op
.
"
);
AddInput
(
"Bias"
,
"The input bias of BilinearTensorProduct op
.
"
)
.
AsDispensable
();
AddOutput
(
"Out"
,
"The output of BilinearTensorProduct op"
);
AddOutput
(
"Out"
,
"The output of BilinearTensorProduct op
.
"
);
AddComment
(
R"DOC(
Bilinear Tensor Product operator.
Given input X and Y, a 3D tensor weight, and bias. Each column of the
...
...
@@ -99,30 +99,32 @@ class BilinearTensorProductOpGrad : public framework::OperatorWithKernel {
protected:
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) should not be null"
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Y"
),
"Input(Y) should not be null"
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Weight"
),
"Input(Weight) should not be null"
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Y"
),
"Input(Y) should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Weight"
),
"Input(Weight) should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
framework
::
GradVarName
(
"Out"
)),
"Input (Out@GRAD) should not be null"
);
"Input (Out@GRAD) should not be null
.
"
);
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
auto
y_dims
=
ctx
->
GetInputDim
(
"Y"
);
auto
weight_dims
=
ctx
->
GetInputDim
(
"Weight"
);
auto
out_dims
=
ctx
->
GetInputDim
(
framework
::
GradVarName
(
"Out"
));
PADDLE_ENFORCE_EQ
(
out_dims
.
size
(),
2
,
"The Out@GRAD must be a 2D Tensor."
);
PADDLE_ENFORCE_EQ
(
out_dims
.
size
(),
2UL
,
"The Out@GRAD must be a 2D Tensor."
);
PADDLE_ENFORCE_EQ
(
x_dims
[
0
],
out_dims
[
0
],
"The first dimension(batch_size) of Out@GRAD must be equal
with
"
"the first dimension of the
X
."
);
"The first dimension(batch_size) of Out@GRAD must be equal
to
"
"the first dimension of the
Input(X)
."
);
PADDLE_ENFORCE_EQ
(
weight_dims
[
0
],
out_dims
[
1
],
"The second dimension of Out@GRAD must be equal
with
"
"the third dimension of the
Weight
."
);
"The second dimension of Out@GRAD must be equal
to
"
"the third dimension of the
Input(Weight)
."
);
if
(
ctx
->
HasInput
(
"Bias"
))
{
auto
bias_dims
=
ctx
->
GetInputDim
(
"Bias"
);
PADDLE_ENFORCE_EQ
(
bias_dims
[
1
],
out_dims
[
1
],
"The second dimension of
Bias must be equal with
"
"the second dimension of the
Out@GRAD
."
);
"The second dimension of
Out@GRAD must be equal to
"
"the second dimension of the
Input(Bias)
."
);
auto
bias_grad_name
=
framework
::
GradVarName
(
"Bias"
);
if
(
ctx
->
HasOutput
(
bias_grad_name
))
ctx
->
SetOutputDim
(
bias_grad_name
,
bias_dims
);
...
...
paddle/operators/bilinear_tensor_product_op.cu
浏览文件 @
47269273
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#define EIGEN_USE_GPU
#include "paddle/operators/bilinear_tensor_product_op.h"
namespace
paddle
{
namespace
operators
{
template
<
typename
Place
,
typename
T
>
class
BilinearTensorProductCUDAKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
y
=
ctx
.
Input
<
Tensor
>
(
"Y"
);
auto
*
weight
=
ctx
.
Input
<
Tensor
>
(
"Weight"
);
auto
*
bias
=
ctx
.
Input
<
Tensor
>
(
"Bias"
);
auto
*
out
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
y_mat
=
EigenMatrix
<
T
>::
From
(
*
y
);
auto
batch_size
=
x
->
dims
()[
0
];
auto
weight_dims
=
weight
->
dims
();
auto
place
=
ctx
.
GetEigenDevice
<
Place
>
();
auto
cpu_place
=
ctx
.
GetEigenDevice
<
platform
::
CPUPlace
>
();
// Copy the output to cpu.
Tensor
output_cpu
;
output_cpu
.
CopyFrom
(
*
out
,
platform
::
CPUPlace
(),
ctx
.
device_context
());
auto
*
output_cpu_ptr
=
output_cpu
.
data
<
T
>
();
auto
output_cpu_mat
=
EigenMatrix
<
T
>::
From
(
output_cpu
);
// Create the temporary variables.
Tensor
left_mul
;
left_mul
.
mutable_data
<
T
>
(
framework
::
make_ddim
({
batch_size
,
weight_dims
[
2
]}),
ctx
.
GetPlace
());
auto
left_mul_mat
=
EigenMatrix
<
T
>::
From
(
left_mul
);
Tensor
output_col
;
output_col
.
mutable_data
<
T
>
(
framework
::
make_ddim
({
batch_size
}),
ctx
.
GetPlace
());
auto
output_col_vec
=
EigenVector
<
T
>::
From
(
output_col
);
for
(
size_t
i
=
0
;
i
<
weight_dims
[
0
];
++
i
)
{
Tensor
weight_mat
=
weight
->
Slice
(
i
,
i
+
1
).
Resize
(
framework
::
make_ddim
({
weight_dims
[
1
],
weight_dims
[
2
]}));
math
::
gemm
<
Place
,
T
>
(
ctx
.
device_context
(),
CblasNoTrans
,
CblasNoTrans
,
batch_size
,
weight_dims
[
2
],
weight_dims
[
1
],
1
,
x
->
data
<
T
>
(),
weight_mat
.
data
<
T
>
(),
0
,
left_mul
.
data
<
T
>
());
output_col_vec
.
device
(
place
)
=
(
left_mul_mat
*
y_mat
).
sum
(
Eigen
::
DSizes
<
int
,
1
>
(
1
));
// Copy the output_col to cpu.
Tensor
output_col_cpu
;
output_col_cpu
.
CopyFrom
(
output_col
,
platform
::
CPUPlace
(),
ctx
.
device_context
());
auto
*
output_col_ptr
=
output_col_cpu
.
data
<
T
>
();
for
(
size_t
j
=
0
;
j
<
batch_size
;
++
j
)
{
output_cpu_ptr
[
i
+
j
*
weight_dims
[
0
]]
=
output_col_ptr
[
j
];
}
}
if
(
bias
)
{
// Copy the bias to cpu.
Tensor
bias_cpu
;
bias_cpu
.
CopyFrom
(
*
bias
,
platform
::
CPUPlace
(),
ctx
.
device_context
());
auto
bias_vec
=
EigenMatrix
<
T
>::
From
(
bias_cpu
);
Eigen
::
DSizes
<
int
,
2
>
bcast
(
batch_size
,
1
);
output_cpu_mat
.
device
(
cpu_place
)
=
bias_vec
.
broadcast
(
bcast
)
+
output_cpu_mat
;
}
// Copy the output to gpu.
out
->
CopyFrom
(
output_cpu
,
platform
::
GPUPlace
(),
ctx
.
device_context
());
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_GPU_KERNEL
(
bilinear_tensor_product
,
ops
::
BilinearTensorProduct
CUDA
Kernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
ops
::
BilinearTensorProductKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
REGISTER_OP_GPU_KERNEL
(
bilinear_tensor_product_grad
,
ops
::
BilinearTensorProductGradKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
paddle/operators/bilinear_tensor_product_op.h
浏览文件 @
47269273
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
Y
ou may not use this file except in compliance with the License.
You may obtain a copy of the License at
Licensed under the Apache License, Version 2.0 (the "License");
y
ou may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
...
...
@@ -21,7 +21,7 @@
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
using
framework
::
Tensor
;
template
<
typename
T
,
int
MajorType
=
Eigen
::
RowMajor
,
typename
IndexType
=
Eigen
::
DenseIndex
>
...
...
@@ -49,34 +49,27 @@ class BilinearTensorProductKernel : public framework::OpKernel<T> {
auto
weight_dims
=
weight
->
dims
();
auto
place
=
ctx
.
GetEigenDevice
<
Place
>
();
// Create the
temporary
variables.
// Create the
intermediate
variables.
Tensor
left_mul
;
left_mul
.
mutable_data
<
T
>
(
framework
::
make_ddim
({
batch_size
,
weight_dims
[
2
]}),
ctx
.
GetPlace
());
auto
left_mul_mat
=
EigenMatrix
<
T
>::
From
(
left_mul
);
Tensor
output_col
;
output_col
.
mutable_data
<
T
>
(
framework
::
make_ddim
({
weight_dims
[
0
]}),
ctx
.
GetPlace
());
auto
output_col_vec
=
EigenVector
<
T
>::
From
(
output_col
);
for
(
size_t
i
=
0
;
i
<
weight_dims
[
0
];
++
i
)
{
auto
output_col_vec
=
output_mat
.
chip
(
i
,
1
);
Tensor
weight_mat
=
weight
->
Slice
(
i
,
i
+
1
).
Resize
(
framework
::
make_ddim
({
weight_dims
[
1
],
weight_dims
[
2
]}));
math
::
gemm
<
Place
,
T
>
(
ctx
.
device_context
(),
CblasNoTrans
,
CblasNoTrans
,
batch_size
,
weight_dims
[
2
],
weight_dims
[
1
],
1
,
x
->
data
<
T
>
(),
weight_mat
.
data
<
T
>
(),
0
,
left_mul
.
data
<
T
>
());
output_col_vec
=
(
left_mul_mat
*
y_mat
).
sum
(
Eigen
::
DSizes
<
int
,
1
>
(
1
));
for
(
size_t
j
=
0
;
j
<
batch_size
;
++
j
)
{
output_mat
(
j
,
i
)
=
output_col_vec
(
j
);
}
output_col_vec
.
device
(
place
)
=
(
left_mul_mat
*
y_mat
).
sum
(
Eigen
::
DSizes
<
int
,
1
>
(
1
));
}
if
(
bias
)
{
auto
bias_vec
=
EigenMatrix
<
T
>::
From
(
*
bias
);
Eigen
::
DSizes
<
int
,
2
>
bcast
(
batch_size
,
1
);
output_mat
.
device
(
place
)
=
bias_vec
.
broadcast
(
bcast
)
+
output_mat
;
}
else
{
output_mat
.
device
(
place
)
=
output_mat
;
}
}
};
...
...
@@ -102,7 +95,7 @@ class BilinearTensorProductGradKernel : public framework::OpKernel<T> {
auto
d_out_mat
=
EigenMatrix
<
T
>::
From
(
*
d_out
);
auto
place
=
ctx
.
GetEigenDevice
<
Place
>
();
// Create the
temporary
variables for gradient.
// Create the
intermediate
variables for gradient.
Tensor
x_scale
;
x_scale
.
mutable_data
<
T
>
(
framework
::
make_ddim
({
batch_size
,
weight_dims
[
1
]}),
ctx
.
GetPlace
());
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录