Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
47042a97
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
47042a97
编写于
3月 11, 2021
作者:
S
sandyhouse
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update
上级
d1c428da
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
180 addition
and
271 deletion
+180
-271
paddle/fluid/framework/pipeline_trainer.cc
paddle/fluid/framework/pipeline_trainer.cc
+4
-1
python/paddle/distributed/fleet/meta_optimizers/sharding_optimizer.py
...e/distributed/fleet/meta_optimizers/sharding_optimizer.py
+127
-142
python/paddle/fluid/optimizer.py
python/paddle/fluid/optimizer.py
+49
-128
未找到文件。
paddle/fluid/framework/pipeline_trainer.cc
浏览文件 @
47042a97
...
...
@@ -82,7 +82,10 @@ void PipelineTrainer::CopyParameters(int microbatch_id,
for
(
auto
&
var
:
global_block
.
AllVars
())
{
bool
is_param_grad
=
false
;
size_t
pos
=
0
;
if
((
pos
=
var
->
Name
().
find
(
kGradVarSuffix
))
!=
std
::
string
::
npos
)
{
// A magic suffix to indicated the merged gradient.
std
::
string
magicSuffix
=
"MERGED"
;
if
((
pos
=
var
->
Name
().
find
(
kGradVarSuffix
))
!=
std
::
string
::
npos
&&
var
->
Name
().
find
(
magicSuffix
)
!=
std
::
string
::
npos
)
{
auto
prefix_name
=
var
->
Name
().
substr
(
0
,
pos
);
if
(
param_map
.
find
(
prefix_name
)
!=
param_map
.
end
())
{
is_param_grad
=
true
;
...
...
python/paddle/distributed/fleet/meta_optimizers/sharding_optimizer.py
浏览文件 @
47042a97
...
...
@@ -153,6 +153,9 @@ class ShardingOptimizer(MetaOptimizerBase):
if
self
.
use_pipeline
:
pp_optimizer
.
_rename_gradient_var_name
(
main_block
)
pp_optimizer
.
_accumulate_gradients
(
main_block
)
with
open
(
"main_%d"
%
self
.
role_maker
.
_worker_index
(),
'w'
)
as
f
:
f
.
writelines
(
str
(
main_program
))
# step1: set_up
self
.
_set_up
(
params_grads
)
...
...
@@ -210,23 +213,6 @@ class ShardingOptimizer(MetaOptimizerBase):
# if self._shard.has_param(param_name):
# param_list.append(param_name)
#pp_optimizer._clear_gradients(main_block, param_list)
accumulated_grad_names
=
pp_optimizer
.
_accumulate_gradients
(
main_block
,
pp_allreduce_in_optimize
=
self
.
pp_allreduce_in_optimize
)
# accumulated_grad_names = sorted(accumulated_grad_names)
if
self
.
pp_allreduce_in_optimize
:
print
(
"persistable FP32 grad: "
)
print
(
accumulated_grad_names
)
first_optimize_op_index
=
get_first_check_finite_and_unscale_op_idx
(
main_block
)
insert_reduce_ops
(
main_block
,
first_optimize_op_index
,
self
.
sharding_ring_id
,
accumulated_grad_names
,
self
.
_shard
,
core
.
op_proto_and_checker_maker
.
OpRole
.
Optimize
,
use_calc_stream
=
True
)
#if not self._shard.has_param(param_name): continue
##if not main_block.has_var(grad_name): continue
#assert main_block.has_var(grad_name)
...
...
@@ -246,131 +232,130 @@ class ShardingOptimizer(MetaOptimizerBase):
# 'op_role': core.op_proto_and_checker_maker.OpRole.LRSched,
# })
pass
#def _create_var(block, ref_var, name):
# """
# Create a new var for block, which has the same type,
# shape and dtype as ref_var, then rename it with the
# name `name`.
# """
# new_var = block.create_var(
# name=name,
# shape=ref_var.shape,
# dtype=ref_var.dtype,
# type=ref_var.type,
# lod_level=ref_var.lod_level,
# persistable=ref_var.persistable,
# is_data=ref_var.is_data,
# need_check_feed=ref_var.desc.need_check_feed())
# new_var.stop_gradient = ref_var.stop_gradient
# return new_var
#def _rename_arg(op, old_name, new_name):
# op_desc = op.desc
# if isinstance(op_desc, tuple):
# op_desc = op_desc[0]
# op_desc._rename_input(old_name, new_name)
# op_desc._rename_output(old_name, new_name)
#print("params_grads:", params_grads)
#for param_name, grad_name in params_grads:
# if not self._shard.has_param(param_name): continue
# #if not main_block.has_var(grad_name): continue
# assert main_block.has_var(grad_name)
# use_fp16 = False
# fp16_grad_name = param_name + '.cast_fp16@GRAD'
# if main_block.has_var(grad_name):
# fp16_grad_var = main_block.vars[fp16_grad_name]
# use_fp16 = True
# grad_var = main_block.vars[grad_name]
# if use_fp16:
# cast_grad_var_name = paddle.fluid.unique_name.generate(
# grad_name)
# cast_var = _create_var(main_block, fp16_grad_var,
# cast_grad_var_name)
# cast_var.persistable = False
# main_block.append_op(
# #index=offset + 1,
# type='cast',
# inputs={'X': grad_var},
# outputs={'Out': cast_var},
# attrs={
# 'in_dtype': grad_var.dtype,
# 'out_dtype': cast_var.dtype,
# 'op_role':
# core.op_proto_and_checker_maker.OpRole.Backward,
# })
# #offset += 1
# main_block.append_op(
# #index=offset + 1,
# type='sum',
# inputs={'X': [fp16_grad_var, cast_var]},
# outputs={'Out': fp16_grad_var},
# attrs={
# 'op_role':
# core.op_proto_and_checker_maker.OpRole.Backward,
# 'op_role_var': op_role_var
# })
# for index, op in reversed(tuple(enumerate(list(main_block.ops)))):
# offset = index
# if is_backward_op(op) and (
# 'op_role_var' in op.attr_names):
# op_role_var = op.all_attrs()['op_role_var']
# if len(op_role_var) == 0:
# continue
# assert len(op_role_var) % 2 == 0
# offset = index
# for i in range(0, len(op_role_var), 2):
# grad_name = op_role_var[i + 1]
# if not main_block.has_var(grad_name): continue
# grad_var = main_block.vars[grad_name]
# if not 'cast_fp16' in grad_name:
# new_grad_var_name = paddle.fluid.unique_name.generate(grad_name)
# new_var = _create_var(main_block, grad_var,
# new_grad_var_name)
# new_var.persistable = False
# _rename_arg(op, grad_name, new_grad_var_name)
# main_block._insert_op(
# index=offset + 1,
# type='sum',
# inputs={'X': [grad_var, new_var]},
# outputs={'Out': grad_var},
# attrs={
# 'op_role': core.op_proto_and_checker_maker.OpRole.Backward,
# 'op_role_var': op_role_var
# })
# offset += 1
# if 'cast_fp16' in grad_name:
# param_name = op_role_var[i]
# fp32_grad_var_name = param_name + "@GRAD"
# fp32_grad_var = main_block.vars[grad_name]
# cast_grad_var_name = paddle.fluid.unique_name.generate(
# fp32_grad_var_name)
# cast_var = _create_var(main_block, grad_var,
# cast_grad_var_name)
# cast_var.persistable = False
# main_block._insert_op(
# index=offset + 1,
# type='cast',
# inputs={'X': fp32_grad_var},
# outputs={'Out': cast_var},
# attrs={
# 'in_dtype': fp32_grad_var.dtype,
# 'out_dtype': cast_var.dtype,
# 'op_role': core.op_proto_and_checker_maker.OpRole.Backward,
# # self._op_role_var_key: op_role_var
# })
# offset += 1
# main_block._insert_op(
# index=offset + 1,
# type='sum',
# inputs={'X': [grad_var, cast_var]},
# outputs={'Out': grad_var},
# attrs={
# 'op_role': core.op_proto_and_checker_maker.OpRole.Backward,
# 'op_role_var': op_role_var})
#def _create_var(block, ref_var, name):
# """
# Create a new var for block, which has the same type,
# shape and dtype as ref_var, then rename it with the
# name `name`.
# """
# new_var = block.create_var(
# name=name,
# shape=ref_var.shape,
# dtype=ref_var.dtype,
# type=ref_var.type,
# lod_level=ref_var.lod_level,
# persistable=ref_var.persistable,
# is_data=ref_var.is_data,
# need_check_feed=ref_var.desc.need_check_feed())
# new_var.stop_gradient = ref_var.stop_gradient
# return new_var
#def _rename_arg(op, old_name, new_name):
# op_desc = op.desc
# if isinstance(op_desc, tuple):
# op_desc = op_desc[0]
# op_desc._rename_input(old_name, new_name)
# op_desc._rename_output(old_name, new_name)
#print("params_grads:", params_grads)
#for param_name, grad_name in params_grads:
# if not self._shard.has_param(param_name): continue
# #if not main_block.has_var(grad_name): continue
# assert main_block.has_var(grad_name)
# use_fp16 = False
# fp16_grad_name = param_name + '.cast_fp16@GRAD'
# if main_block.has_var(grad_name):
# fp16_grad_var = main_block.vars[fp16_grad_name]
# use_fp16 = True
# grad_var = main_block.vars[grad_name]
# if use_fp16:
# cast_grad_var_name = paddle.fluid.unique_name.generate(
# grad_name)
# cast_var = _create_var(main_block, fp16_grad_var,
# cast_grad_var_name)
# cast_var.persistable = False
# main_block.append_op(
# #index=offset + 1,
# type='cast',
# inputs={'X': grad_var},
# outputs={'Out': cast_var},
# attrs={
# 'in_dtype': grad_var.dtype,
# 'out_dtype': cast_var.dtype,
# 'op_role':
# core.op_proto_and_checker_maker.OpRole.Backward,
# })
# #offset += 1
# main_block.append_op(
# #index=offset + 1,
# type='sum',
# inputs={'X': [fp16_grad_var, cast_var]},
# outputs={'Out': fp16_grad_var},
# attrs={
# 'op_role':
# core.op_proto_and_checker_maker.OpRole.Backward,
# 'op_role_var': op_role_var
# })
# for index, op in reversed(tuple(enumerate(list(main_block.ops)))):
# offset = index
# if is_backward_op(op) and (
# 'op_role_var' in op.attr_names):
# op_role_var = op.all_attrs()['op_role_var']
# if len(op_role_var) == 0:
# continue
# assert len(op_role_var) % 2 == 0
# offset = index
# for i in range(0, len(op_role_var), 2):
# grad_name = op_role_var[i + 1]
# if not main_block.has_var(grad_name): continue
# grad_var = main_block.vars[grad_name]
# if not 'cast_fp16' in grad_name:
# new_grad_var_name = paddle.fluid.unique_name.generate(grad_name)
# new_var = _create_var(main_block, grad_var,
# new_grad_var_name)
# new_var.persistable = False
# _rename_arg(op, grad_name, new_grad_var_name)
# main_block._insert_op(
# index=offset + 1,
# type='sum',
# inputs={'X': [grad_var, new_var]},
# outputs={'Out': grad_var},
# attrs={
# 'op_role': core.op_proto_and_checker_maker.OpRole.Backward,
# 'op_role_var': op_role_var
# })
# offset += 1
# if 'cast_fp16' in grad_name:
# param_name = op_role_var[i]
# fp32_grad_var_name = param_name + "@GRAD"
# fp32_grad_var = main_block.vars[grad_name]
# cast_grad_var_name = paddle.fluid.unique_name.generate(
# fp32_grad_var_name)
# cast_var = _create_var(main_block, grad_var,
# cast_grad_var_name)
# cast_var.persistable = False
# main_block._insert_op(
# index=offset + 1,
# type='cast',
# inputs={'X': fp32_grad_var},
# outputs={'Out': cast_var},
# attrs={
# 'in_dtype': fp32_grad_var.dtype,
# 'out_dtype': cast_var.dtype,
# 'op_role': core.op_proto_and_checker_maker.OpRole.Backward,
# # self._op_role_var_key: op_role_var
# })
# offset += 1
# main_block._insert_op(
# index=offset + 1,
# type='sum',
# inputs={'X': [grad_var, cast_var]},
# outputs={'Out': grad_var},
# attrs={
# 'op_role': core.op_proto_and_checker_maker.OpRole.Backward,
# 'op_role_var': op_role_var})
main_block
.
_sync_with_cpp
()
# TODO(wangxi): add optimize offload
...
...
python/paddle/fluid/optimizer.py
浏览文件 @
47042a97
...
...
@@ -4064,11 +4064,8 @@ class PipelineOptimizer(object):
return
None
def
_rename_arg
(
self
,
op
,
old_name
,
new_name
):
op_desc
=
op
.
desc
if
isinstance
(
op_desc
,
tuple
):
op_desc
=
op_desc
[
0
]
op_desc
.
_rename_input
(
old_name
,
new_name
)
op_desc
.
_rename_output
(
old_name
,
new_name
)
op
.
_rename_input
(
old_name
,
new_name
)
op
.
_rename_output
(
old_name
,
new_name
)
def
_create_var
(
self
,
block
,
ref_var
,
name
):
"""
...
...
@@ -4823,48 +4820,33 @@ class PipelineOptimizer(object):
def
_rename_gradient_var_name
(
self
,
block
):
for
index
,
op
in
enumerate
(
block
.
ops
):
if
self
.
_is_backward_op
(
op
)
and
(
self
.
_op_role_var_key
in
op
.
attr_names
):
op_role_var
=
op
.
attr
(
self
.
_op_role_var_key
)
if
len
(
op_role_var
)
==
0
:
continue
for
i
in
range
(
0
,
len
(
op_role_var
),
2
):
grad_name
=
op_role_var
[
i
+
1
]
grad_var
=
block
.
vars
[
grad_name
]
new_grad_var_name
=
unique_name
.
generate
(
grad_name
)
new_var
=
self
.
_create_var
(
block
,
grad_var
,
new_grad_var_name
)
new_var
.
persistable
=
False
self
.
_rename_arg
(
op
,
grad_name
,
new_grad_var_name
)
if
not
self
.
_is_optimize_op
(
op
):
continue
input_names
=
op
.
input_arg_names
output_names
=
op
.
output_arg_names
in_out_names
=
input_names
+
output_names
# append "MERGED" to the names of parameter gradients,
# and mofify the op_role_var attribute (by rename_arg func).
for
name
in
in_out_names
:
if
not
core
.
grad_var_suffix
()
in
name
:
continue
param_name
=
name
.
strip
(
core
.
grad_var_suffix
())
new_grad_name
=
name
+
"@MERGED"
self
.
_rename_arg
(
op
,
name
,
new_grad_name
)
def
_accumulate_gradients
(
self
,
block
,
pp_allreduce_in_optimize
=
False
):
"""
Accumulate the gradients generated in microbatch to the one in mini-batch.
Create a new merged gradient for each parameter and accumulate the
corresponding gradient to it.
"""
# the name of real grad vars that should be allreduce
# accumulated_gradient_names = []
first_optimize_op_index
=
None
accumulated_grad_names
=
[]
for
index
,
op
in
reversed
(
tuple
(
enumerate
(
list
(
block
.
ops
)))):
# remove the cast op of fp16 grad to fp32 grad
if
self
.
_is_optimize_op
(
op
)
and
op
.
type
==
'cast'
:
in_name
=
op
.
input_arg_names
[
0
]
out_name
=
op
.
output_arg_names
[
0
]
if
out_name
.
strip
(
'@GRAD'
)
in
self
.
_param_device_map
:
if
out_name
.
strip
(
'@GRAD
@MERGED
'
)
in
self
.
_param_device_map
:
assert
in_name
.
replace
(
'.cast_fp16'
,
''
)
==
out_name
block
.
_remove_op
(
index
)
continue
if
not
self
.
_is_optimize_op
(
op
)
and
not
first_optimize_op_index
:
first_optimize_op_index
=
index
+
1
if
block
.
ops
[
first_optimize_op_index
].
type
==
'c_sync_comm_stream'
:
block
.
ops
[
first_optimize_op_index
].
_set_attr
(
self
.
_op_role_key
,
self
.
_op_role
.
Backward
)
first_optimize_op_index
+=
1
if
self
.
_is_backward_op
(
op
)
and
(
self
.
_op_role_var_key
in
op
.
attr_names
):
op_role_var
=
op
.
attr
(
self
.
_op_role_var_key
)
...
...
@@ -4872,143 +4854,80 @@ class PipelineOptimizer(object):
if
len
(
op_role_var
)
==
0
:
continue
assert
len
(
op_role_var
)
%
2
==
0
op
.
_remove_attr
(
self
.
_op_role_var_key
)
for
i
in
range
(
0
,
len
(
op_role_var
),
2
):
offset
=
0
offset
=
1
param_name
=
op_role_var
[
i
]
if
not
pp_allreduce_in_optimize
:
if
not
block
.
has_var
(
param_name
):
continue
if
'@BroadCast'
in
param_name
:
param_name
=
param_name
[
0
:
param_name
.
find
(
'@BroadCast'
)]
assert
block
.
has_var
(
param_name
),
(
"parameter {} not in "
"current block."
.
format
(
param_name
))
# clear gradient
assert
param_name
in
self
.
origin_main_block
.
vars
,
"[{}] not in original main block"
.
format
(
param_name
)
param_grad_name
=
self
.
_append_grad_suffix
(
param_name
)
if
not
block
.
has_var
(
param_grad_name
):
self
.
_create_var
(
block
,
self
.
origin_main_
block
.
vars
[
param_name
],
param_grad_name
)
assert
block
.
has_var
(
param_grad_name
)
merged_param_grad_name
=
param_grad_name
+
'@MERGED'
if
not
block
.
has_var
(
merged_param_grad_name
):
self
.
_create_var
(
block
,
block
.
vars
[
param_name
],
merged_
param_grad_name
)
assert
block
.
has_var
(
merged_
param_grad_name
)
param_grad_var
=
block
.
var
(
param_grad_name
)
param_grad_var
.
persistable
=
True
merged_param_grad_var
=
block
.
var
(
merged_param_grad_name
)
merged_param_grad_var
.
persistable
=
True
block
.
_insert_op
(
index
=
first_optimize_op_
index
+
offset
,
index
=
index
+
offset
,
type
=
'fill_constant'
,
inputs
=
{},
outputs
=
{
'Out'
:
[
param_grad_var
]},
outputs
=
{
'Out'
:
[
merged_
param_grad_var
]},
attrs
=
{
'shape'
:
param_grad_var
.
shape
,
'dtype'
:
param_grad_var
.
dtype
,
'shape'
:
merged_
param_grad_var
.
shape
,
'dtype'
:
merged_
param_grad_var
.
dtype
,
'value'
:
float
(
0
),
# self._op_device_key: device,
# a trick to run this op once per mini-batch
self
.
_op_role_key
:
self
.
_op_role
.
Optimize
.
LRSched
,
})
#
offset += 1
grad_name
=
op_role_var
[
i
+
1
]
# with _0 suffix
offset
+=
1
grad_name
=
op_role_var
[
i
+
1
]
grad_var
=
block
.
vars
[
grad_name
]
#real_grad_name = grad_name[0:grad_name.find(
# '@GRAD')] + '@GRAD' # without _0 suffix
#real_grad_var = block.vars[
# real_grad_name] # without _0 suffix
# new_grad_var_name = unique_name.generate(grad_name)
# new_var = self._create_var(block, grad_var,
# new_grad_var_name)
# new_var.persistable = False
# self._rename_arg(op, grad_name, new_grad_var_name)
if
not
'cast_fp16'
in
grad_name
:
block
.
_insert_op
(
index
=
index
+
1
,
index
=
index
+
offset
,
type
=
'sum'
,
inputs
=
{
'X'
:
[
grad_var
,
param_grad_var
]},
outputs
=
{
'Out'
:
param_grad_var
},
inputs
=
{
'X'
:
[
grad_var
,
merged_
param_grad_var
]},
outputs
=
{
'Out'
:
merged_
param_grad_var
},
attrs
=
{
#self._op_device_key: device,
self
.
_op_role_key
:
self
.
_op_role
.
Backward
,
#self._op_role_var_key: op_role_var
})
#offset += 1
accumulated_grad_names
.
append
(
param_grad_var
.
name
)
offset
+=
1
else
:
grad_name
=
op_role_var
[
i
+
1
]
# with _0 suffix
grad_var
=
block
.
vars
[
grad_name
]
#fp32_grad_var_name = param_name + core.grad_var_suffix(
#) # without _0 suffix
#fp32_grad_var = block.vars[fp32_grad_var_name]
#fp32_grad_var.persistable = True
cast_grad_var_name
=
unique_name
.
generate
(
param_grad_name
)
# cast gradient to fp32 to accumulate to merged gradient
cast_grad_var_name
=
param_grad_name
+
'@TMP'
cast_grad_var
=
self
.
_create_var
(
block
,
param_grad_var
,
cast_grad_var_name
)
cast_grad_var
.
persistable
=
False
block
.
_insert_op
(
index
=
index
+
1
,
index
=
index
+
offset
,
type
=
'cast'
,
inputs
=
{
'X'
:
grad_var
},
outputs
=
{
'Out'
:
cast_grad_var
},
attrs
=
{
'in_dtype'
:
grad_var
.
dtype
,
'out_dtype'
:
cast_grad_var
.
dtype
,
# self._op_device_key: device,
self
.
_op_role_key
:
self
.
_op_role
.
Backward
,
# self._op_role_var_key: op_role_var
})
offset
+=
1
block
.
_insert_op
(
index
=
index
+
2
,
index
=
index
+
offset
,
type
=
'sum'
,
inputs
=
{
'X'
:
[
param_grad_var
,
cast_grad_var
]},
outputs
=
{
'Out'
:
param_grad_var
},
inputs
=
{
'X'
:
[
merged_param_grad_var
,
cast_grad_var
]
},
outputs
=
{
'Out'
:
merged_param_grad_var
},
attrs
=
{
# self._op_device_key: device,
self
.
_op_role_key
:
self
.
_op_role
.
Backward
,
#
self._op_role_var_key: op_role_var
self
.
_op_role_var_key
:
op_role_var
})
offset
+=
1
accumulated_grad_names
.
append
(
param_grad_var
.
name
)
#real_grad_name = grad_name[0:grad_name.find(
# '@GRAD')] + '@GRAD'
#real_grad_var = block.vars[
# real_grad_name] # without _0 suffix
#block._insert_op(
# index=first_optimize_op_index + offset,
# type='cast',
# inputs={'X': fp32_grad_var},
# outputs={'Out': cast_var},
# attrs={
# 'in_dtype': fp32_grad_var.dtype,
# 'out_dtype': cast_var.dtype,
# # self._op_device_key: device,
# self._op_role_key: self._op_role.Backward,
# # self._op_role_var_key: op_role_var
# })
#offset += 1
#block._insert_op(
# index=first_optimize_op_index + offset,
# type='sum',
# inputs={'X': [grad_var, cast_var]},
# outputs={'Out': real_grad_var},
# attrs={
# # self._op_device_key: device,
# self._op_role_key: self._op_role.Backward,
# # self._op_role_var_key: op_role_var
# })
#offset += 1
#block._insert_op(
# index=first_optimize_op_index + offset,
# type='cast',
# inputs={'X': real_grad_var},
# outputs={'Out': fp32_grad_var},
# attrs={
# 'in_dtype': real_grad_var.dtype,
# 'out_dtype': fp32_grad_var.dtype,
# # self._op_device_key: device,
# self._op_role_key: self._op_role.Backward,
# # self._op_role_var_key: op_role_var
# })
return
accumulated_grad_names
def
_add_sub_blocks
(
self
,
main_block
,
program_list
):
main_program
=
main_block
.
program
...
...
@@ -5351,7 +5270,9 @@ class PipelineOptimizer(object):
if
real_block
.
has_var
(
param
):
param_list
.
append
(
param
)
#self._clear_gradients(real_block, param_list)
self
.
_rename_gradient_var_name
(
real_block
)
real_block
.
_sync_with_cpp
()
self
.
_accumulate_gradients
(
real_block
)
real_block
.
_sync_with_cpp
()
place_id
=
int
(
os
.
getenv
(
"FLAGS_selected_gpus"
,
"0"
))
main_program
.
_pipeline_opt
=
{
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录