Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
46b0b790
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
46b0b790
编写于
10月 16, 2018
作者:
Y
Yibing Liu
提交者:
GitHub
10月 16, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #13856 from kuke/seq_unpad_op
Add sequence unpad op
上级
dcfb6875
699825a9
变更
7
显示空白变更内容
内联
并排
Showing
7 changed file
with
437 addition
and
3 deletion
+437
-3
paddle/fluid/API.spec
paddle/fluid/API.spec
+2
-1
paddle/fluid/operators/sequence_unpad_op.cc
paddle/fluid/operators/sequence_unpad_op.cc
+153
-0
paddle/fluid/operators/sequence_unpad_op.cu
paddle/fluid/operators/sequence_unpad_op.cu
+30
-0
paddle/fluid/operators/sequence_unpad_op.h
paddle/fluid/operators/sequence_unpad_op.h
+104
-0
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+65
-2
python/paddle/fluid/tests/unittests/test_layers.py
python/paddle/fluid/tests/unittests/test_layers.py
+8
-0
python/paddle/fluid/tests/unittests/test_sequence_unpad_op.py
...on/paddle/fluid/tests/unittests/test_sequence_unpad_op.py
+75
-0
未找到文件。
paddle/fluid/API.spec
浏览文件 @
46b0b790
...
@@ -75,7 +75,8 @@ paddle.fluid.layers.conv2d_transpose ArgSpec(args=['input', 'num_filters', 'outp
...
@@ -75,7 +75,8 @@ paddle.fluid.layers.conv2d_transpose ArgSpec(args=['input', 'num_filters', 'outp
paddle.fluid.layers.conv3d_transpose ArgSpec(args=['input', 'num_filters', 'output_size', 'filter_size', 'padding', 'stride', 'dilation', 'groups', 'param_attr', 'bias_attr', 'use_cudnn', 'act', 'name'], varargs=None, keywords=None, defaults=(None, None, 0, 1, 1, None, None, None, True, None, None))
paddle.fluid.layers.conv3d_transpose ArgSpec(args=['input', 'num_filters', 'output_size', 'filter_size', 'padding', 'stride', 'dilation', 'groups', 'param_attr', 'bias_attr', 'use_cudnn', 'act', 'name'], varargs=None, keywords=None, defaults=(None, None, 0, 1, 1, None, None, None, True, None, None))
paddle.fluid.layers.sequence_expand ArgSpec(args=['x', 'y', 'ref_level', 'name'], varargs=None, keywords=None, defaults=(-1, None))
paddle.fluid.layers.sequence_expand ArgSpec(args=['x', 'y', 'ref_level', 'name'], varargs=None, keywords=None, defaults=(-1, None))
paddle.fluid.layers.sequence_expand_as ArgSpec(args=['x', 'y', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.sequence_expand_as ArgSpec(args=['x', 'y', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.sequence_pad ArgSpec(args=['x', 'pad_value', 'maxlen'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.sequence_pad ArgSpec(args=['x', 'pad_value', 'maxlen', 'name'], varargs=None, keywords=None, defaults=(None, None))
paddle.fluid.layers.sequence_unpad ArgSpec(args=['x', 'length', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.lstm_unit ArgSpec(args=['x_t', 'hidden_t_prev', 'cell_t_prev', 'forget_bias', 'param_attr', 'bias_attr', 'name'], varargs=None, keywords=None, defaults=(0.0, None, None, None))
paddle.fluid.layers.lstm_unit ArgSpec(args=['x_t', 'hidden_t_prev', 'cell_t_prev', 'forget_bias', 'param_attr', 'bias_attr', 'name'], varargs=None, keywords=None, defaults=(0.0, None, None, None))
paddle.fluid.layers.reduce_sum ArgSpec(args=['input', 'dim', 'keep_dim', 'name'], varargs=None, keywords=None, defaults=(None, False, None))
paddle.fluid.layers.reduce_sum ArgSpec(args=['input', 'dim', 'keep_dim', 'name'], varargs=None, keywords=None, defaults=(None, False, None))
paddle.fluid.layers.reduce_mean ArgSpec(args=['input', 'dim', 'keep_dim', 'name'], varargs=None, keywords=None, defaults=(None, False, None))
paddle.fluid.layers.reduce_mean ArgSpec(args=['input', 'dim', 'keep_dim', 'name'], varargs=None, keywords=None, defaults=(None, False, None))
...
...
paddle/fluid/operators/sequence_unpad_op.cc
0 → 100644
浏览文件 @
46b0b790
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/sequence_unpad_op.h"
namespace
paddle
{
namespace
operators
{
class
SequenceUnpadOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
protected:
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) of SequenceUnpadOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Length"
),
"Input(Length) of SequenceUnpadOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Out"
),
"Output(Out) of SequenceUnpadOp should not be null."
);
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
PADDLE_ENFORCE_GE
(
x_dims
.
size
(),
2
,
"The rank of Input(X) can't be less than 2."
);
auto
len_dims
=
ctx
->
GetInputDim
(
"Length"
);
PADDLE_ENFORCE
(
len_dims
.
size
()
==
2
&&
len_dims
[
1
]
==
1
,
"The shape of Input(Length) should be [batch_size, 1]."
);
PADDLE_ENFORCE
(
len_dims
[
0
]
==
x_dims
[
0
],
"Input(X) and Input(Length) should have the same first dimension."
);
int64_t
out_dim_0
=
-
1
;
if
(
ctx
->
IsRuntime
())
{
out_dim_0
=
x_dims
[
0
]
*
x_dims
[
1
];
}
std
::
vector
<
int64_t
>
out_dims_vec
{
out_dim_0
};
if
(
x_dims
.
size
()
==
2
)
{
out_dims_vec
.
push_back
(
1
);
}
else
{
for
(
size_t
i
=
2
;
i
<
x_dims
.
size
();
++
i
)
{
out_dims_vec
.
push_back
(
x_dims
[
i
]);
}
}
ctx
->
SetOutputDim
(
"Out"
,
framework
::
make_ddim
(
out_dims_vec
));
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
data_type
=
framework
::
GetDataTypeOfVar
(
ctx
.
InputVar
(
"X"
));
return
framework
::
OpKernelType
(
data_type
,
ctx
.
device_context
());
}
};
class
SequenceUnpadOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
{
AddInput
(
"X"
,
"(LoDTensor, default LoDTensor<float>) Input tensor which "
"contains the padded sequences with equal length."
);
AddInput
(
"Length"
,
"(LoDTensor) The input tensor which specifies the actual ength of "
"sequences after unpadding."
);
AddOutput
(
"Out"
,
"(LoDTensor) The output tensor which contains unpadded sequences."
);
AddComment
(
R"DOC(
Sequence Unpad Operator
This operator removes the padding data in the input sequences and convert
them into sequences with actual length as output, identitied by lod
information.
Example:
Given input tensor Input(X):
X.data = [[ 1.0, 2.0, 3.0, 4.0, 5.0],
[ 6.0, 7.0, 8.0, 9.0, 10.0],
[11.0, 12.0, 13.0, 14.0, 15.0]],
`
in which there are 3 sequences padded to length 5, and the acutal length
specified by Input(Length):
Length.data = [[2], [3], [4]],
after unpadding, Output(Out) will be:
Out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
Out.lod = [[0, 2, 5, 9]]
)DOC"
);
}
};
class
SequenceUnpadGradOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) of SequenceUnpadGradOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
framework
::
GradVarName
(
"Out"
)),
"Input(Out@GRAD) of SequenceUnpadGradOp should not be null."
);
if
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"X"
)))
{
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"X"
),
ctx
->
GetInputDim
(
"X"
));
ctx
->
ShareLoD
(
"X"
,
/*->*/
framework
::
GradVarName
(
"X"
));
}
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
data_type
=
framework
::
GetDataTypeOfVar
(
ctx
.
InputVar
(
"X"
));
return
framework
::
OpKernelType
(
data_type
,
ctx
.
device_context
());
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
sequence_unpad
,
ops
::
SequenceUnpadOp
,
ops
::
SequenceUnpadOpMaker
,
paddle
::
framework
::
DefaultGradOpDescMaker
<
true
>
);
REGISTER_OPERATOR
(
sequence_unpad_grad
,
ops
::
SequenceUnpadGradOp
);
REGISTER_OP_CPU_KERNEL
(
sequence_unpad
,
ops
::
SequenceUnpadOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
SequenceUnpadOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
,
ops
::
SequenceUnpadOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int
>
,
ops
::
SequenceUnpadOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int64_t
>
);
REGISTER_OP_CPU_KERNEL
(
sequence_unpad_grad
,
ops
::
SequenceUnpadGradOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
SequenceUnpadGradOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
,
ops
::
SequenceUnpadGradOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int
>
,
ops
::
SequenceUnpadGradOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int64_t
>
);
paddle/fluid/operators/sequence_unpad_op.cu
0 → 100644
浏览文件 @
46b0b790
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/sequence_unpad_op.h"
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_CUDA_KERNEL
(
sequence_unpad
,
ops
::
SequenceUnpadOpKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
SequenceUnpadOpKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
,
ops
::
SequenceUnpadOpKernel
<
paddle
::
platform
::
CUDADeviceContext
,
int
>
,
ops
::
SequenceUnpadOpKernel
<
paddle
::
platform
::
CUDADeviceContext
,
int64_t
>
);
REGISTER_OP_CUDA_KERNEL
(
sequence_unpad_grad
,
ops
::
SequenceUnpadGradOpKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
SequenceUnpadGradOpKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
,
ops
::
SequenceUnpadGradOpKernel
<
paddle
::
platform
::
CUDADeviceContext
,
int
>
,
ops
::
SequenceUnpadGradOpKernel
<
paddle
::
platform
::
CUDADeviceContext
,
int64_t
>
);
paddle/fluid/operators/sequence_unpad_op.h
0 → 100644
浏览文件 @
46b0b790
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/sequence_padding.h"
namespace
paddle
{
namespace
operators
{
using
LoDTensor
=
framework
::
LoDTensor
;
using
LoD
=
framework
::
LoD
;
template
<
typename
DeviceContext
,
typename
T
>
class
SequenceUnpadOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
x_t
=
ctx
.
Input
<
LoDTensor
>
(
"X"
);
auto
*
len_t
=
ctx
.
Input
<
LoDTensor
>
(
"Length"
);
auto
*
out_t
=
ctx
.
Output
<
LoDTensor
>
(
"Out"
);
out_t
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
const
int64_t
*
seq_len_ptr
=
nullptr
;
if
(
platform
::
is_gpu_place
(
ctx
.
GetPlace
()))
{
LoDTensor
seq_len_cpu
;
seq_len_cpu
.
Resize
(
len_t
->
dims
());
seq_len_ptr
=
seq_len_cpu
.
mutable_data
<
int64_t
>
(
platform
::
CPUPlace
());
framework
::
TensorCopy
(
*
len_t
,
platform
::
CPUPlace
(),
ctx
.
template
device_context
<
DeviceContext
>(),
&
seq_len_cpu
);
}
else
{
seq_len_ptr
=
len_t
->
data
<
int64_t
>
();
}
size_t
batch_size
=
x_t
->
dims
()[
0
];
std
::
vector
<
size_t
>
out_lod0
(
batch_size
+
1
,
0
);
for
(
size_t
i
=
0
;
i
<
batch_size
;
++
i
)
{
out_lod0
[
i
+
1
]
=
out_lod0
[
i
]
+
seq_len_ptr
[
i
];
}
framework
::
LoD
out_lod
;
out_lod
.
push_back
(
out_lod0
);
out_t
->
set_lod
(
out_lod
);
std
::
vector
<
int64_t
>
out_dims_vec
{
static_cast
<
int64_t
>
(
out_lod0
.
back
())};
if
(
x_t
->
dims
().
size
()
==
2
)
{
out_dims_vec
.
push_back
(
1
);
}
else
{
for
(
size_t
i
=
2
;
i
<
x_t
->
dims
().
size
();
++
i
)
{
out_dims_vec
.
push_back
(
x_t
->
dims
()[
i
]);
}
}
out_t
->
Resize
(
framework
::
make_ddim
(
out_dims_vec
));
int64_t
padded_length
=
x_t
->
dims
()[
1
];
math
::
UnpaddingLoDTensorFunctor
<
DeviceContext
,
T
>
()(
ctx
.
template
device_context
<
DeviceContext
>(),
*
x_t
,
out_t
,
padded_length
,
0
,
false
,
math
::
kBatchLengthWidth
);
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
SequenceUnpadGradOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
d_x
=
ctx
.
Output
<
LoDTensor
>
(
framework
::
GradVarName
(
"X"
));
if
(
d_x
)
{
const
auto
*
d_out
=
ctx
.
Input
<
LoDTensor
>
(
framework
::
GradVarName
(
"Out"
));
const
auto
*
x_t
=
ctx
.
Input
<
LoDTensor
>
(
"X"
);
d_x
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
int
padded_length
=
x_t
->
dims
()[
1
];
LoDTensor
zero_pads
;
zero_pads
.
Resize
({
1
,
1
});
zero_pads
.
mutable_data
<
T
>
(
ctx
.
GetPlace
());
math
::
SetConstant
<
DeviceContext
,
T
>
set_zero
;
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
set_zero
(
dev_ctx
,
&
zero_pads
,
static_cast
<
T
>
(
0
));
math
::
PaddingLoDTensorFunctor
<
DeviceContext
,
T
>
()(
ctx
.
template
device_context
<
DeviceContext
>(),
*
d_out
,
d_x
,
zero_pads
,
padded_length
,
0
,
false
,
math
::
kBatchLengthWidth
);
}
}
};
}
// namespace operators
}
// namespace paddle
python/paddle/fluid/layers/nn.py
浏览文件 @
46b0b790
...
@@ -56,6 +56,7 @@ __all__ = [
...
@@ -56,6 +56,7 @@ __all__ = [
'sequence_expand'
,
'sequence_expand'
,
'sequence_expand_as'
,
'sequence_expand_as'
,
'sequence_pad'
,
'sequence_pad'
,
'sequence_unpad'
,
'lstm_unit'
,
'lstm_unit'
,
'reduce_sum'
,
'reduce_sum'
,
'reduce_mean'
,
'reduce_mean'
,
...
@@ -2793,7 +2794,7 @@ def sequence_expand_as(x, y, name=None):
...
@@ -2793,7 +2794,7 @@ def sequence_expand_as(x, y, name=None):
@
templatedoc
()
@
templatedoc
()
def
sequence_pad
(
x
,
pad_value
,
maxlen
=
None
):
def
sequence_pad
(
x
,
pad_value
,
maxlen
=
None
,
name
=
None
):
"""
"""
${comment}
${comment}
...
@@ -2807,7 +2808,9 @@ def sequence_pad(x, pad_value, maxlen=None):
...
@@ -2807,7 +2808,9 @@ def sequence_pad(x, pad_value, maxlen=None):
None or any positive int. When it is None, all sequences will be
None or any positive int. When it is None, all sequences will be
padded up to the length of the longest one among them; when it a
padded up to the length of the longest one among them; when it a
certain positive value, it must be greater than the length of the
certain positive value, it must be greater than the length of the
longest original sequence."
longest original sequence.
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
Returns:
Returns:
Variable: The padded sequence batch and the original lengths before
Variable: The padded sequence batch and the original lengths before
...
@@ -2844,6 +2847,66 @@ def sequence_pad(x, pad_value, maxlen=None):
...
@@ -2844,6 +2847,66 @@ def sequence_pad(x, pad_value, maxlen=None):
return
out
,
length
return
out
,
length
def
sequence_unpad
(
x
,
length
,
name
=
None
):
"""
**Sequence Unpad Layer**
This layer removes the padding data in the input sequences and convert
them into sequences with actual length as output, identitied by lod
information.
.. code-block:: text
Example:
Given input Variable **x**:
x.data = [[ 1.0, 2.0, 3.0, 4.0, 5.0],
[ 6.0, 7.0, 8.0, 9.0, 10.0],
[11.0, 12.0, 13.0, 14.0, 15.0]],
in which there are 3 sequences padded to length 5, and the acutal length
specified by input Variable **length**:
length.data = [[2], [3], [4]],
after unpadding, the output Variable will be:
out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
out.lod = [[2, 3, 4]]
Args:
x(Variable): Input Variable which contains the padded sequences with
equal length.
length(Variable): The Variable that specifies the actual ength of
sequences after unpadding.
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
Returns:
Variable: The Variable contains the unpadded sequences.
Examples:
.. code-block:: python
x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
len = fluid.layers.data(name='length', shape=[1], dtype='int64')
out = fluid.layers.sequence_unpad(x=x, length=len)
"""
helper
=
LayerHelper
(
'sequence_unpad'
,
input
=
x
,
**
locals
())
dtype
=
helper
.
input_dtype
()
out
=
helper
.
create_tmp_variable
(
dtype
)
length
.
stop_gradient
=
True
helper
.
append_op
(
type
=
'sequence_unpad'
,
inputs
=
{
'X'
:
x
,
'Length'
:
length
},
outputs
=
{
'Out'
:
out
})
return
out
def
beam_search
(
pre_ids
,
def
beam_search
(
pre_ids
,
pre_scores
,
pre_scores
,
ids
,
ids
,
...
...
python/paddle/fluid/tests/unittests/test_layers.py
浏览文件 @
46b0b790
...
@@ -194,6 +194,14 @@ class TestBook(unittest.TestCase):
...
@@ -194,6 +194,14 @@ class TestBook(unittest.TestCase):
self
.
assertIsNotNone
(
layers
.
sequence_expand
(
x
=
x
,
y
=
y
,
ref_level
=
1
))
self
.
assertIsNotNone
(
layers
.
sequence_expand
(
x
=
x
,
y
=
y
,
ref_level
=
1
))
print
(
str
(
program
))
print
(
str
(
program
))
def
test_sequence_unpad
(
self
):
program
=
Program
()
with
program_guard
(
program
):
x
=
layers
.
data
(
name
=
'x'
,
shape
=
[
10
,
5
],
dtype
=
'float32'
)
length
=
layers
.
data
(
name
=
'length'
,
shape
=
[
1
],
dtype
=
'int64'
)
self
.
assertIsNotNone
(
layers
.
sequence_unpad
(
x
=
x
,
length
=
length
))
print
(
str
(
program
))
def
test_lstm_unit
(
self
):
def
test_lstm_unit
(
self
):
program
=
Program
()
program
=
Program
()
with
program_guard
(
program
):
with
program_guard
(
program
):
...
...
python/paddle/fluid/tests/unittests/test_sequence_unpad_op.py
0 → 100644
浏览文件 @
46b0b790
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
import
six
import
numpy
as
np
from
op_test
import
OpTest
class
TestSequenceUnpadOp
(
OpTest
):
def
init
(
self
):
self
.
length
=
[
2
,
3
,
4
]
self
.
x_shape
=
(
3
,
5
)
self
.
dtype
=
"float32"
def
compute
(
self
):
assert
len
(
self
.
length
)
==
self
.
x_shape
[
0
]
x
=
np
.
random
.
random
(
self
.
x_shape
).
astype
(
self
.
dtype
)
out_lod
=
[
self
.
length
]
out
=
x
[
0
,
0
:
self
.
length
[
0
]]
for
i
in
six
.
moves
.
xrange
(
1
,
x
.
shape
[
0
]):
out
=
np
.
append
(
out
,
x
[
i
,
0
:
self
.
length
[
i
]],
axis
=
0
)
out_shape
=
(
sum
(
self
.
length
),
)
if
len
(
self
.
x_shape
)
==
2
:
out_shape
=
out_shape
+
(
1
,
)
else
:
out_shape
=
out_shape
+
self
.
x_shape
[
2
:]
self
.
inputs
=
{
'X'
:
x
,
'Length'
:
np
.
array
(
self
.
length
).
astype
(
'int64'
).
reshape
(
-
1
,
1
)
}
self
.
outputs
=
{
'Out'
:
(
out
.
reshape
(
out_shape
),
out_lod
)}
def
setUp
(
self
):
self
.
op_type
=
'sequence_unpad'
self
.
init
()
self
.
compute
()
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
"X"
],
"Out"
)
class
TestSequenceUnpadOp2
(
TestSequenceUnpadOp
):
def
init
(
self
):
self
.
length
=
[
2
,
3
,
4
]
self
.
x_shape
=
(
3
,
5
,
4
,
3
)
self
.
dtype
=
"float32"
class
TestSequenceUnpadOp3
(
TestSequenceUnpadOp
):
def
init
(
self
):
self
.
length
=
[
5
,
2
,
3
,
4
]
self
.
x_shape
=
(
4
,
5
,
3
,
3
,
6
)
self
.
dtype
=
"float64"
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录