Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
45177aa2
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
45177aa2
编写于
12月 05, 2018
作者:
D
dongdaxiang
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'guru4elephnat_for_pslib' into develop
上级
419506f5
06213b79
变更
6
展开全部
显示空白变更内容
内联
并排
Showing
6 changed file
with
177 addition
and
92 deletion
+177
-92
python/paddle/fluid/async_executor.py
python/paddle/fluid/async_executor.py
+7
-2
python/paddle/fluid/distribute_lookup_table.py
python/paddle/fluid/distribute_lookup_table.py
+20
-0
python/paddle/fluid/distributed/downpour.py
python/paddle/fluid/distributed/downpour.py
+42
-10
python/paddle/fluid/distributed/helper.py
python/paddle/fluid/distributed/helper.py
+24
-0
python/paddle/fluid/distributed/node.py
python/paddle/fluid/distributed/node.py
+21
-25
python/paddle/fluid/distributed/ps_pb2.py
python/paddle/fluid/distributed/ps_pb2.py
+63
-55
未找到文件。
python/paddle/fluid/async_executor.py
浏览文件 @
45177aa2
...
@@ -150,8 +150,13 @@ class AsyncExecutor(object):
...
@@ -150,8 +150,13 @@ class AsyncExecutor(object):
data_feed
.
desc
(),
filelist
,
thread_num
,
data_feed
.
desc
(),
filelist
,
thread_num
,
fetch_var_names
,
debug
)
fetch_var_names
,
debug
)
def
config_ps
(
self
,
dist_desc
,
host_sign_list
,
node_num
,
index
):
def
config_distributed_nodes
(
self
,
dist_opt
):
self
.
executor
.
config_pslib
(
dist_desc
,
host_sign_list
,
node_num
,
index
)
# get total rank
# get rank index
# get iplists
# get hadoop info
return
def
start_server
(
self
):
def
start_server
(
self
):
self
.
executor
.
start_server
()
self
.
executor
.
start_server
()
...
...
python/paddle/fluid/distribute_lookup_table.py
浏览文件 @
45177aa2
...
@@ -15,6 +15,26 @@
...
@@ -15,6 +15,26 @@
LOOKUP_TABLE_TYPE
=
"lookup_table"
LOOKUP_TABLE_TYPE
=
"lookup_table"
def
find_distributed_lookup_table_inputs
(
program
,
table_name
):
local_vars
=
program
.
current_block
().
vars
inputs
=
[]
for
op
in
program
.
global_block
().
ops
:
if
op
.
type
==
LOOKUP_TABLE_TYPE
:
if
table_name
==
op
.
input
(
"W"
)[
0
]:
inputs
.
extend
(
[
local_vars
[
name
]
for
name
in
op
.
input
(
"Ids"
)])
return
inputs
def
find_distributed_lookup_table_outputs
(
program
,
table_name
):
local_vars
=
program
.
current_block
().
vars
outputs
=
[]
for
op
in
program
.
global_block
().
ops
:
if
op
.
type
==
LOOKUP_TABLE_TYPE
:
if
table_name
==
op
.
input
(
"W"
)[
0
]:
outputs
.
extend
(
[
local_vars
[
name
]
for
name
in
op
.
output
(
"Out"
)])
return
outputs
def
find_distributed_lookup_table
(
program
):
def
find_distributed_lookup_table
(
program
):
"""
"""
Find distribute lookup table in program.
Find distribute lookup table in program.
...
...
python/paddle/fluid/distributed/downpour.py
浏览文件 @
45177aa2
...
@@ -3,30 +3,62 @@ from .node import DownpourWorker
...
@@ -3,30 +3,62 @@ from .node import DownpourWorker
from
..backward
import
append_backward
from
..backward
import
append_backward
import
ps_pb2
as
pslib
import
ps_pb2
as
pslib
from
paddle.fluid.distribute_lookup_table
import
find_distributed_lookup_table
from
paddle.fluid.distribute_lookup_table
import
find_distributed_lookup_table
from
paddle.fluid.distribute_lookup_table
import
find_distributed_lookup_table_inputs
from
paddle.fluid.distribute_lookup_table
import
find_distributed_lookup_table_outputs
from
google.protobuf
import
text_format
from
google.protobuf
import
text_format
class
DownpourSGD
(
object
):
class
DownpourSGD
(
object
):
"""
Distributed optimizer of downpour stochastic gradient descent
Standard implementation of Google's Downpour SGD
in Large Scale Distributed Deep Networks
Args:
learning_rate (float): the learning rate used to update parameters.
\
Can be a float value
Examples:
.. code-block:: python
downpour_sgd = fluid.distributed.DownpourSGD(learning_rate=0.2)
downpour_sgd.minimize(cost)
"""
def
__init__
(
self
,
learning_rate
=
0.001
,
window
=
1
):
def
__init__
(
self
,
learning_rate
=
0.001
,
window
=
1
):
# todo(guru4elephant): if optimizer is not None, will warning here
# todo(guru4elephant): add more optimizers here as argument
# todo(guru4elephant): make learning_rate as a variable
self
.
learning_rate_
=
learning_rate
self
.
learning_rate_
=
learning_rate
self
.
window_
=
window
self
.
window_
=
window
self
.
type
=
"downpour"
def
minimize
(
self
,
loss
,
startup_program
=
None
,
def
minimize
(
self
,
loss
,
startup_program
=
None
,
parameter_list
=
None
,
no_grad_set
=
None
,
parameter_list
=
None
,
no_grad_set
=
None
):
prefetch_slots
=
None
,
prefetch_slots_emb
=
None
):
params_grads
=
sorted
(
append_backward
(
params_grads
=
sorted
(
append_backward
(
loss
),
key
=
lambda
x
:
x
[
0
].
name
)
loss
,
parameter_list
,
no_grad_set
),
key
=
lambda
x
:
x
[
0
].
name
)
table_name
=
find_distributed_lookup_table
(
loss
.
block
.
program
)
table_name
=
find_distributed_lookup_table
(
loss
.
block
.
program
)
prefetch_slots
=
find_distributed_lookup_table_inputs
(
loss
.
block
.
program
,
table_name
)
prefetch_slots_emb
=
find_distributed_lookup_table_outputs
(
loss
.
block
.
program
,
table_name
)
server
=
DownpourServer
()
server
=
DownpourServer
()
# window is communication strategy
worker
=
DownpourWorker
(
self
.
window_
)
worker
=
DownpourWorker
(
self
.
window_
)
server
.
add_sparse_table
(
0
,
learning_rate
,
# Todo(guru4elephant): support multiple tables definitions
# currently support one big sparse table
sparse_table_index
=
0
# currently merge all dense parameters into one dense table
dense_table_index
=
1
server
.
add_sparse_table
(
sparse_table_index
,
self
.
learning_rate_
,
prefetch_slots
,
prefetch_slots_emb
)
prefetch_slots
,
prefetch_slots_emb
)
server
.
add_dense_table
(
1
,
learning_rate
,
params
,
grads
)
server
.
add_dense_table
(
dense_table_index
,
self
.
learning_rate_
,
worker
.
add_sparse_table
(
0
,
learning_rate
,
params_grads
[
0
],
params_grads
[
1
])
worker
.
add_sparse_table
(
sparse_table_index
,
self
.
learning_rate_
,
prefetch_slots
,
prefetch_slots_emb
)
prefetch_slots
,
prefetch_slots_emb
)
worker
.
add_dense_table
(
1
,
learning_rate
,
params
,
grads
)
worker
.
add_dense_table
(
dense_table_index
,
self
.
learning_rate_
,
params_grads
[
0
],
params_grads
[
1
])
ps_param
=
pslib
.
PSParameter
()
ps_param
=
pslib
.
PSParameter
()
ps_param
.
server_param
.
CopyFrom
(
server
.
get_desc
())
ps_param
.
server_param
.
CopyFrom
(
server
.
get_desc
())
#ps_param.worker_param.CopyFrom(worker.get_desc())
ps_param
.
worker_param
.
CopyFrom
(
worker
.
get_desc
())
# Todo(guru4elephant): figure out how to support more sparse parameters
# currently only support lookup_table
worker_skipped_ops
=
[
"lookup_table"
,
"lookup_table_grad"
]
worker_skipped_ops
=
[
"lookup_table"
,
"lookup_table_grad"
]
ps_param_str
=
text_format
.
MessageToString
(
ps_param
)
ps_param_str
=
text_format
.
MessageToString
(
ps_param
)
return
[
ps_param_str
,
worker_skipped_ops
]
return
[
ps_param_str
,
worker_skipped_ops
]
python/paddle/fluid/distributed/helper.py
浏览文件 @
45177aa2
from
mpi4py
import
MPI
from
mpi4py
import
MPI
class
FileSystem
(
object
):
def
__init__
(
self
,
fs_type
=
"afs"
,
uri
=
"afs://tianqi.afs.baidu.com:9902"
,
user
=
None
,
passwd
=
None
,
hadoop_bin
=
""
,
afs_conf
=
None
):
assert
user
not
None
assert
passwd
not
None
assert
hadoop_bin
not
None
fs_client
=
pslib
.
FsClientParameter
()
if
fs_type
==
"afs"
:
fs_client
.
fs_type
=
pslib
.
FsApiType
.
AFS
else
:
fs_client
.
fs_type
=
pslib
.
FsApiType
.
HDFS
fs_client
.
uri
=
uri
fs_client
.
user
=
user
fs_client
.
passwd
=
passwd
fs_client
.
buffer_size
=
0
fs_client
.
afs_conf
=
afs_conf
if
not
afs_conf
else
""
class
MPIHelper
(
object
):
class
MPIHelper
(
object
):
def
__init__
(
self
):
def
__init__
(
self
):
self
.
comm
=
MPI
.
COMM_WORLD
self
.
comm
=
MPI
.
COMM_WORLD
...
@@ -18,3 +40,5 @@ class MPIHelper(object):
...
@@ -18,3 +40,5 @@ class MPIHelper(object):
def
get_hostname
(
self
):
def
get_hostname
(
self
):
import
socket
import
socket
return
socket
.
gethostname
()
return
socket
.
gethostname
()
python/paddle/fluid/distributed/node.py
浏览文件 @
45177aa2
...
@@ -12,29 +12,29 @@ class Worker(object):
...
@@ -12,29 +12,29 @@ class Worker(object):
class
DownpourServer
(
Server
):
class
DownpourServer
(
Server
):
def
__init__
(
self
):
def
__init__
(
self
):
#self.server_ = pslib.ServerParameter().downpour_server_param
self
.
server_
=
pslib
.
ServerParameter
()
self
.
server_
=
pslib
.
ServerParameter
()
def
add_sparse_table
(
self
,
table_id
,
learning_rate
,
def
add_sparse_table
(
self
,
table_id
,
learning_rate
,
slot_key
,
slot_value_var
,
slot_grad_var
):
slot_key_vars
,
slot_value_var
):
#table = self.server_.downpour_table_param.add()
table
=
self
.
server_
.
downpour_server_param
.
downpour_table_param
.
add
()
table
=
self
.
server_
.
downpour_server_param
.
downpour_table_param
.
add
()
table
.
table_id
=
table_id
table
.
table_id
=
table_id
table
.
type
=
PS_SPARSE_TABLE
table
.
type
=
pslib
.
PS_SPARSE_TABLE
table
.
accessor
.
accessor_class
=
"DownpourFeatureValueAccessor"
table
.
accessor
.
accessor_class
=
"DownpourFeatureValueAccessor"
table
.
accessor
.
dense_sgd_param
.
adam
.
learning_rate
=
learning_rate
table
.
accessor
.
dense_sgd_param
.
adam
.
learning_rate
=
learning_rate
table
.
accessor
.
fea_dim
=
slot_value_var
[
0
].
shape
[
1
]
table
.
accessor
.
fea_dim
=
abs
(
reduce
(
lambda
x
,
y
:
x
*
y
,
slot_value_var
[
0
].
shape
,
1
))
def
add_dense_table
(
self
,
table_id
,
learning_rate
,
def
add_dense_table
(
self
,
table_id
,
learning_rate
,
param_var
,
grad_var
):
param_var
,
grad_var
):
#table = self.server_.downpour_table_param.add()
table
=
self
.
server_
.
downpour_server_param
.
downpour_table_param
.
add
()
table
=
self
.
server_
.
downpour_server_param
.
downpour_table_param
.
add
()
table
.
table_id
=
table_id
table
.
table_id
=
table_id
table
.
type
=
PS_DENSE_TABLE
table
.
type
=
pslib
.
PS_DENSE_TABLE
table
.
accessor
.
accessor_class
=
"DownpourDenseValueAccessor"
table
.
accessor
.
accessor_class
=
"DownpourDenseValueAccessor"
table
.
accessor
.
sparse_sgd_param
.
learning_rate
=
learning_rate
table
.
accessor
.
sparse_sgd_param
.
learning_rate
=
learning_rate
table
.
accessor
.
fea_dim
=
1
fea_dim
=
0
#table.accessor.fea_dim = reduce(lambda x, y: x.shape, 1 for x in param_var)
for
param
in
param_var
:
fea_dim
+=
reduce
(
lambda
x
,
y
:
x
*
y
,
param
.
shape
,
1
)
table
.
accessor
.
fea_dim
=
fea_dim
def
get_desc
(
self
):
def
get_desc
(
self
):
return
self
.
server_
return
self
.
server_
...
@@ -43,28 +43,24 @@ class DownpourServer(Server):
...
@@ -43,28 +43,24 @@ class DownpourServer(Server):
class
DownpourWorker
(
Worker
):
class
DownpourWorker
(
Worker
):
def
__init__
(
self
,
window
):
def
__init__
(
self
,
window
):
self
.
window
=
window
self
.
window
=
window
#self.worker_ = pslib.WorkerParameter().downpour_worker_param
#self.worker_ = pslib.WorkerParameter()
self
.
worker_
=
pslib
.
DownpourTrainerParameter
()
self
.
worker_
=
pslib
.
DownpourTrainerParameter
()
#self.worker_.pull_dense_per_batch = window
#self.worker_.push_dense_per_batch = window
#self.worker_.downpour_worker_param.pull_dense_per_batch = window
#self.worker_.downpour_worker_param.push_dense_per_batch = window
self
.
worker_
.
pull_dense_per_batch
=
window
self
.
worker_
.
pull_dense_per_batch
=
window
self
.
worker_
.
push_dense_per_batch
=
window
self
.
worker_
.
push_dense_per_batch
=
window
print
(
self
.
worker_
)
def
add_sparse_table
(
self
,
table_id
,
def
add_sparse_table
(
self
,
table_id
,
learning_rate
,
slot_keys
,
slot_value_vars
,
slot_grad_vars
):
slot_key_vars
,
slot_value_vars
):
#table = self.worker_.sparse_table.add()
table
=
self
.
worker_
.
sparse_table
.
add
()
table
=
self
.
worker_
.
downpour_worker_param
.
sparse_table
.
add
()
table
.
table_id
=
table_id
table
.
table_id
=
table_id
table
.
slot
.
extend
(
slot_keys
)
table
.
slot_key
.
extend
(
self
.
worker_
.
extend
([
grad
.
name
for
grad
in
slot_grad_vars
])
[
var
.
name
for
var
in
slot_key_vars
])
table
.
slot_value
.
extend
(
[
var
.
name
for
var
in
slot_value_vars
])
table
.
slot_gradient
.
extend
(
[
var
.
name
+
"@GRAD"
for
var
in
slot_value_vars
])
def
add_dense_table
(
self
,
table_id
,
param_vars
,
grad_vars
):
def
add_dense_table
(
self
,
table_id
,
learning_rate
,
#table = self.worker_.dense_table.add()
param_vars
,
grad_vars
):
table
=
self
.
worker_
.
d
ownpour_worker_param
.
d
ense_table
.
add
()
table
=
self
.
worker_
.
dense_table
.
add
()
table
.
table_id
=
table_id
table
.
table_id
=
table_id
table
.
dense_variable_name
.
extend
([
p
.
name
for
p
in
param_vars
])
table
.
dense_variable_name
.
extend
([
p
.
name
for
p
in
param_vars
])
table
.
dense_gradient_variable_name
.
extend
([
g
.
name
for
g
in
grad_vars
])
table
.
dense_gradient_variable_name
.
extend
([
g
.
name
for
g
in
grad_vars
])
...
...
python/paddle/fluid/distributed/ps_pb2.py
浏览文件 @
45177aa2
此差异已折叠。
点击以展开。
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录