Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
4284b857
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
4284b857
编写于
2月 02, 2018
作者:
W
wanghaox
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update mine_hard_examples op
上级
62dc593e
变更
1
显示空白变更内容
内联
并排
Showing
1 changed file
with
31 addition
and
21 deletion
+31
-21
paddle/operators/mine_hard_examples_op.cc
paddle/operators/mine_hard_examples_op.cc
+31
-21
未找到文件。
paddle/operators/mine_hard_examples_op.cc
浏览文件 @
4284b857
/* Copyright (c) 201
6
PaddlePaddle Authors. All Rights Reserve.
/* Copyright (c) 201
8
PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
...
...
@@ -38,7 +38,7 @@ inline bool IsEligibleMining(const MiningType mining_type, const int match_idx,
}
}
MiningType
GetMiningType
(
std
::
string
str
)
{
inline
MiningType
GetMiningType
(
std
::
string
str
)
{
if
(
str
==
"max_negative"
)
{
return
MiningType
::
kMaxNegative
;
}
else
if
(
str
==
"hard_example"
)
{
...
...
@@ -112,7 +112,7 @@ class MineHardExamplesKernel : public framework::OpKernel<T> {
neg_sel
=
std
::
min
(
sample_size
,
neg_sel
);
}
std
::
sort
(
loss_idx
.
begin
(),
loss_idx
.
end
(),
SortScoreDescend
<
in
t
>
);
std
::
sort
(
loss_idx
.
begin
(),
loss_idx
.
end
(),
SortScoreDescend
<
size_
t
>
);
std
::
set
<
int
>
sel_indices
;
std
::
vector
<
int
>
neg_indices
;
std
::
transform
(
loss_idx
.
begin
(),
loss_idx
.
begin
()
+
neg_sel
,
...
...
@@ -121,10 +121,10 @@ class MineHardExamplesKernel : public framework::OpKernel<T> {
return
static_cast
<
int
>
(
l
.
second
);
});
if
(
mining_type
==
MiningType
::
kHardExample
)
{
for
(
int
m
=
0
;
m
<
prior_num
;
++
m
)
{
if
(
match_indices
(
n
,
m
)
>
-
1
)
{
if
(
mining_type
==
MiningType
::
kHardExample
&&
sel_indices
.
find
(
m
)
==
sel_indices
.
end
())
{
if
(
sel_indices
.
find
(
m
)
==
sel_indices
.
end
())
{
match_indices_et
(
n
,
m
)
=
-
1
;
}
}
else
{
...
...
@@ -133,6 +133,15 @@ class MineHardExamplesKernel : public framework::OpKernel<T> {
}
}
}
}
else
{
for
(
int
m
=
0
;
m
<
prior_num
;
++
m
)
{
if
(
match_indices
(
n
,
m
)
==
-
1
&&
sel_indices
.
find
(
m
)
!=
sel_indices
.
end
())
{
neg_indices
.
push_back
(
m
);
}
}
}
all_neg_indices
.
push_back
(
neg_indices
);
batch_starts
.
push_back
(
batch_starts
.
back
()
+
neg_indices
.
size
());
}
...
...
@@ -253,7 +262,7 @@ class MineHardExamplesOpMaker : public framework::OpProtoAndCheckerMaker {
"[N, Np], N is the batch size and Np is the number of prior box."
);
AddInput
(
"LocLoss"
,
"(Tensor, optional, default Tensor<float>), The localization loss "
"wit shape [N, Np], N is the batch size and Np is the number of "
"wit
h
shape [N, Np], N is the batch size and Np is the number of "
"prior box."
)
.
AsDispensable
();
AddInput
(
"MatchIndices"
,
...
...
@@ -267,15 +276,15 @@ class MineHardExamplesOpMaker : public framework::OpProtoAndCheckerMaker {
"Np], N is the batch size and Np is the number of prior box."
);
AddAttr
<
float
>
(
"neg_pos_ratio"
,
"(float) The ratio of the negative box to the positive "
"box. Use only when mining_type is
equal to
max_negative."
)
"box. Use only when mining_type is max_negative."
)
.
SetDefault
(
1.0
);
AddAttr
<
float
>
(
"neg_dist_threshold"
,
"(float) The negative
box dis value threshold.
"
"
Use only when mining_type is equal to
max_negative."
)
"(float) The negative
overlap upper bound for the unmatched
"
"
predictions. Use only when mining_type is
max_negative."
)
.
SetDefault
(
0.5
);
AddAttr
<
int
>
(
"sample_size"
,
"(float) The max sample size of negative box. Use only when "
"mining_type is
equal to
hard_example."
)
"mining_type is hard_example."
)
.
SetDefault
(
0
);
AddAttr
<
std
::
string
>
(
"mining_type"
,
"(float) The mining algorithm name, the value is "
...
...
@@ -295,7 +304,7 @@ class MineHardExamplesOpMaker : public framework::OpProtoAndCheckerMaker {
AddOutput
(
"UpdatedMatchIndices"
,
"(Tensor<int>) The output of updated MatchIndices, a tensor with "
"shape [N, Np]. Only update when mining_type is
equal to
"
"shape [N, Np]. Only update when mining_type is "
"hard_example. The input MatchIndices elements will be update to "
"-1 when it is not in the candidate high loss list of negative "
"examples."
);
...
...
@@ -303,11 +312,12 @@ class MineHardExamplesOpMaker : public framework::OpProtoAndCheckerMaker {
AddComment
(
R"DOC(
Mine hard examples Operator.
This operator implements hard example mining to select a subset of negative box indices.
For each image, selects the box with highest losses. subject to the condition that the box cannot have
an Matcht > neg_dist_threshold when mining_type is equals max_negative. The selected number is
min(sample_size, max_negative_box_number) when mining_type is equals hard_example,
or min(neg_pos_ratio * positive_box_number, max_negative_box_number) when mining_type is
equals max_negative, where the max_negative_box_number is the count of MatchIndices elements with value -1.
For each image, selects the box with highest losses. subject to the condition that the
box cannot have an Matcht > neg_dist_threshold when mining_type is max_negative.
The selected number is min(sample_size, max_negative_box_number) when mining_type is
hard_example, or min(neg_pos_ratio * positive_box_number, max_negative_box_number)
when mining_type is max_negative, where the max_negative_box_number is the count of
MatchIndices elements with value -1.
)DOC"
);
}
};
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录