Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
4278518f
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
4278518f
编写于
8月 22, 2019
作者:
C
chengduo
提交者:
GitHub
8月 22, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Update CompiledProgram (#18919)
* use PE for compiler test=develop
上级
9240e532
变更
11
显示空白变更内容
内联
并排
Showing
11 changed file
with
129 addition
and
89 deletion
+129
-89
paddle/fluid/API.spec
paddle/fluid/API.spec
+3
-3
python/paddle/fluid/compiler.py
python/paddle/fluid/compiler.py
+81
-35
python/paddle/fluid/executor.py
python/paddle/fluid/executor.py
+8
-23
python/paddle/fluid/io.py
python/paddle/fluid/io.py
+16
-17
python/paddle/fluid/tests/unittests/parallel_executor_test_base.py
...ddle/fluid/tests/unittests/parallel_executor_test_base.py
+1
-1
python/paddle/fluid/tests/unittests/test_eager_deletion_dynamic_rnn_base.py
...d/tests/unittests/test_eager_deletion_dynamic_rnn_base.py
+3
-2
python/paddle/fluid/tests/unittests/test_eager_deletion_recurrent_op.py
...fluid/tests/unittests/test_eager_deletion_recurrent_op.py
+2
-1
python/paddle/fluid/tests/unittests/test_eager_deletion_while_op.py
...dle/fluid/tests/unittests/test_eager_deletion_while_op.py
+3
-2
python/paddle/fluid/tests/unittests/test_inference_model_io.py
...n/paddle/fluid/tests/unittests/test_inference_model_io.py
+1
-2
python/paddle/fluid/tests/unittests/test_py_func_op.py
python/paddle/fluid/tests/unittests/test_py_func_op.py
+8
-1
python/paddle/fluid/tests/unittests/test_py_reader_using_executor.py
...le/fluid/tests/unittests/test_py_reader_using_executor.py
+3
-2
未找到文件。
paddle/fluid/API.spec
浏览文件 @
4278518f
...
...
@@ -47,9 +47,9 @@ paddle.fluid.DataFeedDesc.desc (ArgSpec(args=['self'], varargs=None, keywords=No
paddle.fluid.DataFeedDesc.set_batch_size (ArgSpec(args=['self', 'batch_size'], varargs=None, keywords=None, defaults=None), ('document', 'a34790bff4a2891713ddd644db56418d'))
paddle.fluid.DataFeedDesc.set_dense_slots (ArgSpec(args=['self', 'dense_slots_name'], varargs=None, keywords=None, defaults=None), ('document', 'fdd07ce63e72bed57f2c0db5bec5720f'))
paddle.fluid.DataFeedDesc.set_use_slots (ArgSpec(args=['self', 'use_slots_name'], varargs=None, keywords=None, defaults=None), ('document', 'c23a79dfa04edd014b477bd4b183da06'))
paddle.fluid.CompiledProgram ('paddle.fluid.compiler.CompiledProgram', ('document', '
6c45b5ccc24ae62d10115ce8abdc29a5
'))
paddle.fluid.CompiledProgram.__init__ (ArgSpec(args=['self', 'program_or_graph'
], varargs=None, keywords=None, defaults=None
), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.CompiledProgram.with_data_parallel (ArgSpec(args=['self', 'loss_name', 'build_strategy', 'exec_strategy', 'share_vars_from', 'places'], varargs=None, keywords=None, defaults=(None, None, None, None, None)), ('document', '
0e17773521634ef798fddd7d2ea3ef96
'))
paddle.fluid.CompiledProgram ('paddle.fluid.compiler.CompiledProgram', ('document', '
598d294107d44d7620bce76527a92c37
'))
paddle.fluid.CompiledProgram.__init__ (ArgSpec(args=['self', 'program_or_graph'
, 'build_strategy'], varargs=None, keywords=None, defaults=(None,)
), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.CompiledProgram.with_data_parallel (ArgSpec(args=['self', 'loss_name', 'build_strategy', 'exec_strategy', 'share_vars_from', 'places'], varargs=None, keywords=None, defaults=(None, None, None, None, None)), ('document', '
1c7c6171bbf6d77f2fce0166aa0ec43b
'))
paddle.fluid.CompiledProgram.with_inference_optimize (ArgSpec(args=['self', 'config'], varargs=None, keywords=None, defaults=None), ('document', '9e5b009d850191a010e859189c127fd8'))
paddle.fluid.ExecutionStrategy ('paddle.fluid.core_avx.ExecutionStrategy', ('document', '535ce28c4671176386e3cd283a764084'))
paddle.fluid.ExecutionStrategy.__init__ __init__(self: paddle.fluid.core_avx.ParallelExecutor.ExecutionStrategy) -> None
...
...
python/paddle/fluid/compiler.py
浏览文件 @
4278518f
...
...
@@ -45,6 +45,14 @@ def _is_pserver_mode(main_program):
return
False
def
_has_backward_op
(
graph
):
for
node
in
graph
.
nodes
():
if
node
.
is_op
()
and
node
.
op
()
is
not
None
and
\
node
.
op
().
type
().
endswith
(
"_grad"
):
return
True
return
False
def
_prune_feed_ops
(
program
):
# prune the feed ops in the program.
pop_idx
=
[]
...
...
@@ -101,9 +109,13 @@ class CompiledProgram(object):
(potentially optimized before), it will be directly used for
further optimizations. Note: graph is only supported when compiled
with with_data_parallel option.
build_strategy(BuildStrategy): build_strategy is used to
build the graph with the specified options.
For more information, please refer to fluid.BuildStrategy.
Default None.
"""
def
__init__
(
self
,
program_or_graph
):
def
__init__
(
self
,
program_or_graph
,
build_strategy
=
None
):
if
isinstance
(
program_or_graph
,
core
.
Graph
):
self
.
_graph
=
program_or_graph
# don't not create a new program here.
...
...
@@ -122,6 +134,11 @@ class CompiledProgram(object):
self
.
_compiled
=
False
self
.
_is_data_parallel
=
False
self
.
_is_inference
=
False
self
.
_loss_name
=
None
self
.
_share_vars_from
=
None
self
.
_places
=
None
self
.
_build_strategy
=
build_strategy
self
.
_exec_strategy
=
None
def
with_data_parallel
(
self
,
loss_name
=
None
,
...
...
@@ -172,9 +189,11 @@ class CompiledProgram(object):
Args:
loss_name (str): The loss name must set in training. Default None.
build_strategy(BuildStrategy): build_strategy is used to
build the graph so it can run on multiple devices/cores with
optimized topology.
build the graph with the specified options.
For more information, please refer to fluid.BuildStrategy.
Note that, if you set build_strategy in the argument list when
creating CompiledProgram and calling with_data_parallel,
the build_strategy in CompiledProgram will be overwritten by the latter.
Default None.
exec_strategy(ExecutionStrategy): exec_strategy is used to
to select the a way to execute the graph, for example how many
...
...
@@ -199,21 +218,23 @@ class CompiledProgram(object):
assert
not
self
.
_is_data_parallel
,
"Already compiled with parallel."
assert
not
self
.
_is_inference
,
"Cannot compile both data parallel and inference"
self
.
_is_data_parallel
=
True
self
.
_build_strategy
=
build_strategy
# FIXME(zcd): Currently, the build_strategy can be set during creating
# CompiledProgram or calling with_data_parallel, and it may be confusing,
# but in the long run, we should set up build_strategy only when creating
# CompiledProgram, and exec_strategy should be deprecated.
if
build_strategy
is
not
None
:
self
.
_build_strategy
=
build_strategy
self
.
_exec_strategy
=
exec_strategy
self
.
_loss_name
=
loss_name
self
.
_share_vars_from
=
share_vars_from
if
self
.
_exec_strategy
is
None
:
self
.
_exec_strategy
=
ExecutionStrategy
()
if
self
.
_build_strategy
is
None
:
self
.
_build_strategy
=
BuildStrategy
()
if
places
is
not
None
:
if
not
isinstance
(
places
,
(
list
,
tuple
)):
places
=
[
places
]
self
.
_places
=
places
else
:
self
.
_places
=
None
self
.
_build_strategy
.
is_distribution
=
_is_pserver_mode
(
self
.
_program
)
if
_has_backward_op
(
self
.
_graph
):
assert
self
.
_loss_name
is
not
None
,
"The loss_name should be set here."
if
self
.
_places
is
not
None
:
if
not
isinstance
(
self
.
_places
,
(
list
,
tuple
)):
self
.
_places
=
[
self
.
_places
]
return
self
def
with_inference_optimize
(
self
,
config
):
...
...
@@ -238,10 +259,13 @@ class CompiledProgram(object):
def
_with_distributed
(
self
):
raise
NotImplementedError
()
def
_compile_data_parallel
(
self
,
use_cuda
=
False
,
scope
=
None
):
def
_compile_data_parallel
(
self
,
places
,
use_cuda
=
False
,
scope
=
None
):
if
self
.
_share_vars_from
:
if
scope
:
sys
.
stderr
.
write
(
"share_vars_from is set, scope is ignored.
\n
"
)
if
not
self
.
_is_data_parallel
:
raise
ValueError
(
"Currently, only data parallel mode need share_vars_from."
)
if
not
self
.
_share_vars_from
.
_is_data_parallel
:
raise
ValueError
(
"share_vars_from is not data parallel. Cannot "
"share vars from it."
)
...
...
@@ -254,24 +278,30 @@ class CompiledProgram(object):
assert
scope
is
not
None
,
""
self
.
_local_scopes
=
[]
assert
isinstance
(
places
,
tuple
)
or
isinstance
(
places
,
list
),
\
"Currently , The places type only should be list or tuple,
\n
"
\
"but the input type is {}."
.
format
(
type
(
places
))
if
self
.
_build_strategy
is
None
:
self
.
_build_strategy
=
BuildStrategy
()
self
.
_build_strategy
.
is_distribution
=
_is_pserver_mode
(
self
.
_program
)
if
self
.
_exec_strategy
is
None
:
self
.
_exec_strategy
=
ExecutionStrategy
()
self
.
_exec_strategy
.
use_cuda
=
use_cuda
has_set_place
=
(
self
.
_places
is
not
None
)
if
has_set_place
:
for
p
in
self
.
_places
:
assert
p
.
_type
()
==
self
.
_place
.
_type
(),
\
"Place type not match. You may set the wrong type of places"
else
:
self
.
_places
=
cuda_places
(
)
if
self
.
_exec_strategy
.
use_cuda
else
cpu_places
()
assert
self
.
_places
,
"no place for execution"
if
self
.
_exec_strategy
.
num_threads
==
0
:
if
self
.
_exec_strategy
.
use_cuda
:
# Experiments on se-resnext shows that too many threads hurt
# performance. Worth tunning for other models in the future.
self
.
_exec_strategy
.
num_threads
=
len
(
self
.
_
places
)
*
4
self
.
_exec_strategy
.
num_threads
=
len
(
places
)
*
4
else
:
self
.
_exec_strategy
.
num_threads
=
len
(
self
.
_places
)
*
2
self
.
_exec_strategy
.
num_threads
=
len
(
places
)
*
2
if
self
.
_build_strategy
.
num_trainers
>
1
:
assert
self
.
_is_data_parallel
,
\
"If you use multi-trainer to train the model, you should use "
\
"the data parallel model, i.e. calling with_data_parallel function."
# TODO(wuyi): trainer endpoings should be passed in through
# build_strategy, not program.xxx.
...
...
@@ -298,7 +328,8 @@ class CompiledProgram(object):
node
.
var
().
type
()
!=
core
.
VarDesc
.
VarType
.
RAW
:
self
.
_persistable_vars
.
append
(
cpt
.
to_text
(
node
.
name
()))
places
=
list
(
map
(
_place_obj
,
self
.
_places
))
places
=
list
(
map
(
_place_obj
,
places
))
# ParallelExecutor would broadcast all the parameters during initializing.
# The parameters of each process should be in the same ordered for the data-parallelism
# distributed training to keep the broadcast correct.
...
...
@@ -335,13 +366,28 @@ class CompiledProgram(object):
self
.
_scope
=
scope
self
.
_place
=
place
if
self
.
_is_inference
:
self
.
_executor
=
self
.
_compile_inference
()
else
:
if
self
.
_is_data_parallel
:
self
.
_places
=
self
.
_get_places
(
self
.
_place
,
self
.
_places
)
else
:
self
.
_places
=
[
self
.
_place
]
self
.
_executor
=
self
.
_compile_data_parallel
(
use_cuda
=
isinstance
(
self
.
_place
,
core
.
CUDAPlace
),
scope
=
self
.
_scope
)
elif
self
.
_is_inference
:
self
.
_executor
=
self
.
_compile_inference
()
else
:
p
=
_place_obj
(
self
.
_place
)
self
.
_executor
=
core
.
Executor
(
p
)
scope
=
self
.
_scope
,
places
=
self
.
_places
)
return
self
def
_get_places
(
self
,
place
,
place_list
):
has_set_place
=
(
place_list
is
not
None
)
if
has_set_place
:
for
p
in
place_list
:
assert
p
.
_type
()
==
place
.
_type
(),
\
"Place type not match. You may set the wrong type of places"
else
:
place_list
=
cuda_places
()
if
isinstance
(
place
,
core
.
CUDAPlace
)
else
cpu_places
()
assert
place_list
,
"no place for execution"
return
place_list
python/paddle/fluid/executor.py
浏览文件 @
4278518f
...
...
@@ -643,7 +643,6 @@ class Executor(object):
if
not
compiled
:
return
self
.
_run_program
(
program
,
self
.
_default_executor
,
feed
=
feed
,
fetch_list
=
fetch_list
,
feed_var_name
=
feed_var_name
,
...
...
@@ -653,7 +652,9 @@ class Executor(object):
use_program_cache
=
use_program_cache
)
program
.
_compile
(
scope
,
self
.
place
)
if
program
.
_is_data_parallel
:
if
program
.
_is_inference
:
return
self
.
_run_inference
(
program
.
_executor
,
feed
)
else
:
return
self
.
_run_parallel
(
program
,
scope
=
scope
,
...
...
@@ -661,26 +662,8 @@ class Executor(object):
fetch_list
=
fetch_list
,
fetch_var_name
=
fetch_var_name
,
return_numpy
=
return_numpy
)
elif
program
.
_is_inference
:
return
self
.
_run_inference
(
program
.
_executor
,
feed
)
else
:
# TODO(panyx0718): Can compile program to optimize executor
# performance.
# TODO(panyx0718): executor should be able to run graph.
assert
program
.
_program
,
"CompiledProgram is compiled from graph, can only run with_data_parallel."
# use_program_cache is not valid with CompiledProgram
return
self
.
_run_program
(
program
.
_program
,
self
.
_default_executor
,
feed
=
feed
,
fetch_list
=
fetch_list
,
feed_var_name
=
feed_var_name
,
fetch_var_name
=
fetch_var_name
,
scope
=
scope
,
return_numpy
=
return_numpy
,
use_program_cache
=
False
)
def
_run_program
(
self
,
program
,
exe
,
feed
,
fetch_list
,
feed_var_name
,
def
_run_program
(
self
,
program
,
feed
,
fetch_list
,
feed_var_name
,
fetch_var_name
,
scope
,
return_numpy
,
use_program_cache
):
if
feed
is
None
:
...
...
@@ -742,9 +725,11 @@ class Executor(object):
self
.
_feed_data
(
program
,
feed
,
feed_var_name
,
scope
)
if
not
use_program_cache
:
exe
.
run
(
program
.
desc
,
scope
,
0
,
True
,
True
,
fetch_var_name
)
self
.
_default_executor
.
run
(
program
.
desc
,
scope
,
0
,
True
,
True
,
fetch_var_name
)
else
:
exe
.
run_cached_prepared_ctx
(
ctx
,
scope
,
False
,
False
,
False
)
self
.
_default_executor
.
run_cached_prepared_ctx
(
ctx
,
scope
,
False
,
False
,
False
)
arr
=
scope
.
find_var
(
fetch_var_name
).
get_lod_tensor_array
()
tensors
=
arr
.
_move_to_list
()
if
return_numpy
:
...
...
python/paddle/fluid/io.py
浏览文件 @
4278518f
...
...
@@ -111,6 +111,20 @@ def _clone_var_in_block_(block, var):
persistable
=
True
)
def
_get_valid_program
(
main_program
):
if
main_program
is
None
:
main_program
=
default_main_program
()
elif
isinstance
(
main_program
,
CompiledProgram
):
main_program
=
main_program
.
_program
if
main_program
is
None
:
raise
TypeError
(
"program should be as Program type or None"
)
warnings
.
warn
(
"The input is a CompiledProgram, this is not recommended."
)
if
not
isinstance
(
main_program
,
Program
):
raise
TypeError
(
"program should be as Program type or None"
)
return
main_program
def
save_vars
(
executor
,
dirname
,
main_program
=
None
,
...
...
@@ -193,13 +207,9 @@ def save_vars(executor,
# saved in the same file named 'var_file' in the path "./my_paddle_vars".
"""
save_dirname
=
os
.
path
.
normpath
(
dirname
)
main_program
=
_get_valid_program
(
main_program
)
if
vars
is
None
:
if
main_program
is
None
:
main_program
=
default_main_program
()
if
not
isinstance
(
main_program
,
Program
):
raise
TypeError
(
"program should be as Program type or None"
)
save_vars
(
executor
,
main_program
=
main_program
,
...
...
@@ -210,11 +220,6 @@ def save_vars(executor,
save_program
=
Program
()
save_block
=
save_program
.
global_block
()
if
main_program
is
None
:
main_program
=
default_main_program
()
if
not
isinstance
(
main_program
,
Program
):
raise
TypeError
(
"program should be as Program type or None"
)
save_var_map
=
{}
for
each_var
in
vars
:
# NOTE: don't save the variable which type is RAW
...
...
@@ -516,11 +521,9 @@ def save_persistables(executor, dirname, main_program=None, filename=None):
fluid.io.save_persistables(executor=exe, dirname=param_path,
main_program=prog)
"""
if
main_program
and
main_program
.
_is_distributed
:
_save_distributed_persistables
(
executor
,
dirname
=
dirname
,
main_program
=
main_program
)
else
:
save_vars
(
executor
,
...
...
@@ -1026,11 +1029,7 @@ def save_inference_model(dirname,
all
(
isinstance
(
var
,
Variable
)
for
var
in
target_vars
)):
raise
ValueError
(
"'target_vars' should be a list of Variable."
)
if
main_program
is
None
:
main_program
=
default_main_program
()
elif
not
isinstance
(
main_program
,
Program
):
raise
TypeError
(
"program should be as Program type or None"
)
main_program
=
_get_valid_program
(
main_program
)
# fix the bug that the activation op's output as target will be pruned.
# will affect the inference performance.
...
...
python/paddle/fluid/tests/unittests/parallel_executor_test_base.py
浏览文件 @
4278518f
...
...
@@ -88,7 +88,7 @@ class TestParallelExecutorBase(unittest.TestCase):
build_strategy
=
build_strategy
,
exec_strategy
=
exec_strategy
)
else
:
binary
=
compiler
.
CompiledProgram
(
main
)
binary
=
main
if
batch_size
is
not
None
:
batch_size
*=
fluid
.
core
.
get_cuda_device_count
(
...
...
python/paddle/fluid/tests/unittests/test_eager_deletion_dynamic_rnn_base.py
浏览文件 @
4278518f
...
...
@@ -61,9 +61,10 @@ def train(network, use_cuda, use_parallel_executor, batch_size=32, pass_num=2):
fluid
.
default_main_program
().
random_seed
=
1
exe
.
run
(
fluid
.
default_startup_program
())
train_cp
=
compiler
.
CompiledProgram
(
fluid
.
default_main_program
()
)
train_cp
=
fluid
.
default_main_program
(
)
if
use_parallel_executor
:
train_cp
=
train_cp
.
with_data_parallel
(
loss_name
=
cost
.
name
)
train_cp
=
compiler
.
CompiledProgram
(
fluid
.
default_main_program
(
)).
with_data_parallel
(
loss_name
=
cost
.
name
)
fetch_list
=
[
cost
.
name
]
else
:
fetch_list
=
[
cost
]
...
...
python/paddle/fluid/tests/unittests/test_eager_deletion_recurrent_op.py
浏览文件 @
4278518f
...
...
@@ -192,13 +192,13 @@ class EagerDeletionRecurrentOpTest1(unittest.TestCase):
def
test_backward
(
self
,
rtol
=
0.01
):
self
.
check_forward
()
num_grad
=
self
.
get_numerical_gradient
()
with
fluid
.
program_guard
(
self
.
main_program
,
self
.
startup_program
):
append_backward
(
self
.
output
)
ana_grad
=
[
np
.
array
(
x
)
for
x
in
self
.
backward
()]
num_grad
=
self
.
get_numerical_gradient
()
for
idx
,
name
in
enumerate
(
self
.
data_field
):
self
.
assertEqual
(
num_grad
[
idx
].
shape
,
ana_grad
[
idx
].
shape
)
self
.
assertTrue
(
...
...
@@ -601,6 +601,7 @@ class EagerDeletionRecurrentOpParallelExecutorTest(
exec_strategy
=
fluid
.
ExecutionStrategy
()
parallel_exe
=
fluid
.
ParallelExecutor
(
use_cuda
=
False
,
loss_name
=
self
.
output
.
name
,
main_program
=
self
.
main_program
,
build_strategy
=
build_strategy
,
exec_strategy
=
exec_strategy
)
...
...
python/paddle/fluid/tests/unittests/test_eager_deletion_while_op.py
浏览文件 @
4278518f
...
...
@@ -128,9 +128,10 @@ class TestEagerDeletionWhileOpBase(unittest.TestCase):
exe
=
Executor
(
self
.
place
)
exe
.
run
(
fluid
.
default_startup_program
())
prog
=
compiler
.
CompiledProgram
(
fluid
.
default_main_program
()
)
prog
=
fluid
.
default_main_program
(
)
if
self
.
with_data_parallel
:
prog
=
prog
.
with_data_parallel
()
prog
=
compiler
.
CompiledProgram
(
fluid
.
default_main_program
(
)).
with_data_parallel
(
loss_name
=
loss
.
name
)
for
_
in
range
(
5
):
d
=
[]
...
...
python/paddle/fluid/tests/unittests/test_inference_model_io.py
浏览文件 @
4278518f
...
...
@@ -137,8 +137,7 @@ class TestInstance(unittest.TestCase):
cp_prog
=
CompiledProgram
(
program
).
with_data_parallel
(
loss_name
=
avg_cost
.
name
)
self
.
assertRaises
(
TypeError
,
save_inference_model
,
[
MODEL_DIR
,
[
"x"
,
"y"
],
[
avg_cost
],
exe
,
cp_prog
])
save_inference_model
(
MODEL_DIR
,
[
"x"
,
"y"
],
[
avg_cost
],
exe
,
cp_prog
)
self
.
assertRaises
(
TypeError
,
save_inference_model
,
[
MODEL_DIR
,
[
"x"
,
"y"
],
[
avg_cost
],
[],
cp_prog
])
...
...
python/paddle/fluid/tests/unittests/test_py_func_op.py
浏览文件 @
4278518f
...
...
@@ -142,8 +142,15 @@ def test_main(use_cuda, use_py_func_op, use_parallel_executor):
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
fluid
.
default_startup_program
())
train_cp
=
compiler
.
CompiledProgram
(
fluid
.
default_main_program
())
#FIXME force use old memory optimzie strategy here to pass the unittest
#since open the new strategy will crash the unittest
fluid
.
memory_optimize
(
fluid
.
default_main_program
())
train_cp
=
fluid
.
default_main_program
()
if
use_parallel_executor
:
train_cp
=
compiler
.
CompiledProgram
(
fluid
.
default_main_program
(
))
train_cp
=
train_cp
.
with_data_parallel
(
loss_name
=
loss
.
name
)
fetch_list
=
[
loss
.
name
]
else
:
...
...
python/paddle/fluid/tests/unittests/test_py_reader_using_executor.py
浏览文件 @
4278518f
...
...
@@ -214,9 +214,10 @@ class TestPyReaderUsingExecutor(unittest.TestCase):
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
startup_program
)
train_cp
=
compiler
.
CompiledProgram
(
main_program
)
train_cp
=
main_program
if
use_parallel_executor
:
train_cp
=
train_cp
.
with_data_parallel
(
loss_name
=
loss
.
name
)
train_cp
=
compiler
.
CompiledProgram
(
main_program
).
with_data_parallel
(
loss_name
=
loss
.
name
)
if
use_cuda
:
self
.
batch_size_times
=
core
.
get_cuda_device_count
()
else
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录