Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
41d1765d
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
41d1765d
编写于
1月 04, 2017
作者:
Z
Zhizhong Su
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
a missing character in line 32
上级
0e7d77f3
变更
1
显示空白变更内容
内联
并排
Showing
1 changed file
with
1 addition
and
1 deletion
+1
-1
doc/howto/dev/new_layer_cn.rst
doc/howto/dev/new_layer_cn.rst
+1
-1
未找到文件。
doc/howto/dev/new_layer_cn.rst
浏览文件 @
41d1765d
...
...
@@ -29,7 +29,7 @@
其中 :math:`f(.)` 是一个非线性的*激活方程*,例如sigmoid, tanh,以及Relu。
变换矩阵 :math:`W` 和偏置向量 :math:`b` 是该网络层的*参数*。一个网络层的参数是在*反向传播*时被训练的。反向传根据输出的梯度,分别计算每个参数的梯度,以及输入的梯度。优化器则用链式法则来对每个参数计算损失函数的梯度。
变换矩阵 :math:`W` 和偏置向量 :math:`b` 是该网络层的*参数*。一个网络层的参数是在*反向传播*时被训练的。反向传
播
根据输出的梯度,分别计算每个参数的梯度,以及输入的梯度。优化器则用链式法则来对每个参数计算损失函数的梯度。
假设损失函数是 :math:`c(y)` ,那么
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录