diff --git a/develop/doc/_sources/api/index_en.rst.txt b/develop/doc/_sources/api/index_en.rst.txt deleted file mode 100644 index e6f632e1a5b9c4b50b7c6aa96a120030bd6ce338..0000000000000000000000000000000000000000 --- a/develop/doc/_sources/api/index_en.rst.txt +++ /dev/null @@ -1,10 +0,0 @@ -API -=== - -.. toctree:: - :maxdepth: 1 - - v2/model_configs.rst - v2/data.rst - v2/run_logic.rst - v2/fluid.rst diff --git a/develop/doc/_sources/api/v2/config/activation.rst.txt b/develop/doc/_sources/api/v2/config/activation.rst.txt deleted file mode 100644 index 5317e66b64bbd85c61f19700a9d2c1d239dee573..0000000000000000000000000000000000000000 --- a/develop/doc/_sources/api/v2/config/activation.rst.txt +++ /dev/null @@ -1,108 +0,0 @@ -=========== -Activation -=========== - -Abs -=== - -.. automodule:: paddle.v2.activation - :members: Abs - :noindex: - -Exp -=== - -.. automodule:: paddle.v2.activation - :members: Exp - :noindex: - -Identity -======== - -.. automodule:: paddle.v2.activation - :members: Identity - :noindex: - -Linear -====== - -.. automodule:: paddle.v2.activation - :members: Linear - :noindex: - -Log -=== - -.. automodule:: paddle.v2.activation - :members: Log - :noindex: - -Square -====== - -.. automodule:: paddle.v2.activation - :members: Square - :noindex: - -Sigmoid -======= - -.. automodule:: paddle.v2.activation - :members: Sigmoid - :noindex: - -Softmax -======= - -.. automodule:: paddle.v2.activation - :members: Softmax - :noindex: - -SequenceSoftmax -=============== - -.. automodule:: paddle.v2.activation - :members: SequenceSoftmax - :noindex: - -Relu -==== - -.. automodule:: paddle.v2.activation - :members: Relu - :noindex: - -BRelu -===== - -.. automodule:: paddle.v2.activation - :members: BRelu - :noindex: - -SoftRelu -======== - -.. automodule:: paddle.v2.activation - :members: SoftRelu - :noindex: - -Tanh -==== - -.. automodule:: paddle.v2.activation - :members: Tanh - :noindex: - -STanh -===== - -.. automodule:: paddle.v2.activation - :members: STanh - :noindex: - -SoftSign -======== - -.. automodule:: paddle.v2.activation - :members: SoftSign - :noindex: diff --git a/develop/doc/_sources/api/v2/config/attr.rst.txt b/develop/doc/_sources/api/v2/config/attr.rst.txt deleted file mode 100644 index a93f41b86779200d8bac651614f4d61f4895875f..0000000000000000000000000000000000000000 --- a/develop/doc/_sources/api/v2/config/attr.rst.txt +++ /dev/null @@ -1,6 +0,0 @@ -Parameter Attribute -=================== - -.. automodule:: paddle.v2.attr - :members: - :noindex: diff --git a/develop/doc/_sources/api/v2/config/evaluators.rst.txt b/develop/doc/_sources/api/v2/config/evaluators.rst.txt deleted file mode 100644 index 9ac972fb193a2fb525edc507f7ba1303d2c8eabe..0000000000000000000000000000000000000000 --- a/develop/doc/_sources/api/v2/config/evaluators.rst.txt +++ /dev/null @@ -1,110 +0,0 @@ -.. _api_v2: - -========== -Evaluators -========== - -Classification -============== - -classification_error --------------------- -.. automodule:: paddle.v2.evaluator - :members: classification_error - :noindex: - -auc ---- -.. automodule:: paddle.v2.evaluator - :members: auc - :noindex: - -ctc_error ---------- -.. automodule:: paddle.v2.evaluator - :members: ctc_error - :noindex: - -chunk ------ -.. automodule:: paddle.v2.evaluator - :members: chunk - :noindex: - -precision_recall ----------------- -.. automodule:: paddle.v2.evaluator - :members: precision_recall - :noindex: - -Rank -==== - -pnpair ------- -.. automodule:: paddle.v2.evaluator - :members: pnpair - :noindex: - -Utils -===== - -sum ---- -.. automodule:: paddle.v2.evaluator - :members: sum - :noindex: - -column_sum ----------- -.. automodule:: paddle.v2.evaluator - :members: column_sum - :noindex: - -Print -===== - -classification_error_printer ----------------------------- -.. automodule:: paddle.v2.evaluator - :members: classification_error_printer - :noindex: - -gradient_printer ----------------- -.. automodule:: paddle.v2.evaluator - :members: gradient_printer - :noindex: - -maxid_printer -------------- -.. automodule:: paddle.v2.evaluator - :members: maxid_printer - :noindex: - -maxframe_printer ----------------- -.. automodule:: paddle.v2.evaluator - :members: maxframe_printer - :noindex: - -seqtext_printer ---------------- -.. automodule:: paddle.v2.evaluator - :members: seqtext_printer - :noindex: - -value_printer -------------- -.. automodule:: paddle.v2.evaluator - :members: value_printer - :noindex: - -Detection -===== - -detection_map -------------- -.. automodule:: paddle.v2.evaluator - :members: detection_map - :noindex: diff --git a/develop/doc/_sources/api/v2/config/layer.rst.txt b/develop/doc/_sources/api/v2/config/layer.rst.txt deleted file mode 100644 index 29388f5005bf779a1bfa63c0d46d35996c0c792d..0000000000000000000000000000000000000000 --- a/develop/doc/_sources/api/v2/config/layer.rst.txt +++ /dev/null @@ -1,552 +0,0 @@ -.. _api_v2.layer: - -====== -Layers -====== - -Data layer -=========== - -.. _api_v2.layer_data: - -data ----- -.. autoclass:: paddle.v2.layer.data - :noindex: - -Fully Connected Layers -====================== - -.. _api_v2.layer_fc: - -fc --- -.. autoclass:: paddle.v2.layer.fc - :noindex: - -selective_fc ------------- -.. autoclass:: paddle.v2.layer.selective_fc - :noindex: - -Conv Layers -=========== - -conv_operator -------------- -.. autoclass:: paddle.v2.layer.conv_operator - :noindex: - -conv_projection ---------------- -.. autoclass:: paddle.v2.layer.conv_projection - :noindex: - -conv_shift ----------- -.. autoclass:: paddle.v2.layer.conv_shift - :noindex: - -img_conv --------- -.. autoclass:: paddle.v2.layer.img_conv - :noindex: - -.. _api_v2.layer_context_projection: - -context_projection ------------------- -.. autoclass:: paddle.v2.layer.context_projection - :noindex: - -row_conv --------- -.. autoclass:: paddle.v2.layer.row_conv - :noindex: - -Image Pooling Layer -=================== - -img_pool --------- -.. autoclass:: paddle.v2.layer.img_pool - :noindex: - -spp ---- -.. autoclass:: paddle.v2.layer.spp - :noindex: - -maxout ------- -.. autoclass:: paddle.v2.layer.maxout - :noindex: - -roi_pool --------- -.. autoclass:: paddle.v2.layer.roi_pool - :noindex: - -pad ----- -.. autoclass:: paddle.v2.layer.pad - :noindex: - -Norm Layer -========== - -img_cmrnorm ------------ -.. autoclass:: paddle.v2.layer.img_cmrnorm - :noindex: - -batch_norm ----------- -.. autoclass:: paddle.v2.layer.batch_norm - :noindex: - -sum_to_one_norm ---------------- -.. autoclass:: paddle.v2.layer.sum_to_one_norm - :noindex: - -cross_channel_norm ------------------- -.. autoclass:: paddle.v2.layer.cross_channel_norm - :noindex: - -row_l2_norm ------------ -.. autoclass:: paddle.v2.layer.row_l2_norm - :noindex: - -Recurrent Layers -================ - -recurrent ---------- -.. autoclass:: paddle.v2.layer.recurrent - :noindex: - -lstmemory ---------- -.. autoclass:: paddle.v2.layer.lstmemory - :noindex: - -grumemory ---------- -.. autoclass:: paddle.v2.layer.grumemory - :noindex: - -gated_unit ------------ -.. autoclass:: paddle.v2.layer.gated_unit - :noindex: - -Recurrent Layer Group -===================== - -memory ------- -.. autoclass:: paddle.v2.layer.memory - :noindex: - -recurrent_group ---------------- -.. autoclass:: paddle.v2.layer.recurrent_group - :noindex: - -lstm_step ---------- -.. autoclass:: paddle.v2.layer.lstm_step - :noindex: - -gru_step --------- -.. autoclass:: paddle.v2.layer.gru_step - :noindex: - -beam_search ------------- -.. autoclass:: paddle.v2.layer.beam_search - :noindex: - -get_output ----------- -.. autoclass:: paddle.v2.layer.get_output - :noindex: - -Mixed Layer -=========== - -.. _api_v2.layer_mixed: - -mixed ------ -.. autoclass:: paddle.v2.layer.mixed - :noindex: - -.. _api_v2.layer_embedding: - -embedding ---------- -.. autoclass:: paddle.v2.layer.embedding - :noindex: - -scaling_projection ------------------- -.. autoclass:: paddle.v2.layer.scaling_projection - :noindex: - -dotmul_projection ------------------ -.. autoclass:: paddle.v2.layer.dotmul_projection - :noindex: - -dotmul_operator ---------------- -.. autoclass:: paddle.v2.layer.dotmul_operator - :noindex: - -full_matrix_projection ----------------------- -.. autoclass:: paddle.v2.layer.full_matrix_projection - :noindex: - -identity_projection -------------------- -.. autoclass:: paddle.v2.layer.identity_projection - :noindex: - -slice_projection -------------------- -.. autoclass:: paddle.v2.layer.slice_projection - :noindex: - -table_projection ----------------- -.. autoclass:: paddle.v2.layer.table_projection - :noindex: - -trans_full_matrix_projection ----------------------------- -.. autoclass:: paddle.v2.layer.trans_full_matrix_projection - :noindex: - -Aggregate Layers -================ - -AggregateLevel --------------- -.. autoclass:: paddle.v2.layer.AggregateLevel - :noindex: - -.. _api_v2.layer_pooling: - -pooling -------- -.. autoclass:: paddle.v2.layer.pooling - :noindex: - -.. _api_v2.layer_last_seq: - -last_seq --------- -.. autoclass:: paddle.v2.layer.last_seq - :noindex: - -.. _api_v2.layer_first_seq: - -first_seq ---------- -.. autoclass:: paddle.v2.layer.first_seq - :noindex: - -sub_seq ---------- -.. autoclass:: paddle.v2.layer.sub_seq - :noindex: - -concat ------- -.. autoclass:: paddle.v2.layer.concat - :noindex: - -seq_concat ----------- -.. autoclass:: paddle.v2.layer.seq_concat - :noindex: - -seq_slice ---------- -.. autoclass:: paddle.v2.layer.seq_slice - :noindex: - -kmax_sequence_score -------------------- -.. autoclass:: paddle.v2.layer.kmax_sequence_score - :noindex: - -sub_nested_seq --------------- -.. autoclass:: paddle.v2.layer.sub_nested_seq - :noindex: - -Reshaping Layers -================ - -block_expand ------------- -.. autoclass:: paddle.v2.layer.block_expand - :noindex: - -.. _api_v2.layer_expand: - -ExpandLevel ------------ -.. autoclass:: paddle.v2.layer.ExpandLevel - :noindex: - -expand ------- -.. autoclass:: paddle.v2.layer.expand - :noindex: - -repeat ------- -.. autoclass:: paddle.v2.layer.repeat - :noindex: - -rotate ------- -.. autoclass:: paddle.v2.layer.rotate - :noindex: - -seq_reshape ------------ -.. autoclass:: paddle.v2.layer.seq_reshape - :noindex: - -Math Layers -=========== - -addto ------ -.. autoclass:: paddle.v2.layer.addto - :noindex: - -linear_comb ------------ -.. autoclass:: paddle.v2.layer.linear_comb - :noindex: - -interpolation -------------- -.. autoclass:: paddle.v2.layer.interpolation - :noindex: - -bilinear_interp ---------------- -.. autoclass:: paddle.v2.layer.bilinear_interp - :noindex: - -dropout --------- -.. autoclass:: paddle.v2.layer.dropout - :noindex: - -dot_prod ---------- -.. autoclass:: paddle.v2.layer.dot_prod - :noindex: - -out_prod --------- -.. autoclass:: paddle.v2.layer.out_prod - :noindex: - -power ------ -.. autoclass:: paddle.v2.layer.power - :noindex: - -scaling -------- -.. autoclass:: paddle.v2.layer.scaling - :noindex: - -clip ----- -.. autoclass:: paddle.v2.layer.clip - :noindex: - -resize ------- -.. autoclass:: paddle.v2.layer.resize - :noindex: - -slope_intercept ---------------- -.. autoclass:: paddle.v2.layer.slope_intercept - :noindex: - -tensor ------- -.. autoclass:: paddle.v2.layer.tensor - :noindex: - -.. _api_v2.layer_cos_sim: - -cos_sim -------- -.. autoclass:: paddle.v2.layer.cos_sim - :noindex: - -l2_distance ------------ -.. autoclass:: paddle.v2.layer.l2_distance - :noindex: - -trans ------ -.. autoclass:: paddle.v2.layer.trans - :noindex: - -scale_shift ------------ -.. autoclass:: paddle.v2.layer.scale_shift - :noindex: - -factorization_machine ---------------------- -.. autoclass:: paddle.v2.layer.factorization_machine - :noindex: - -Sampling Layers -=============== - -maxid ------ -.. autoclass:: paddle.v2.layer.max_id - :noindex: - -sampling_id ------------ -.. autoclass:: paddle.v2.layer.sampling_id - :noindex: - -multiplex ---------- -.. autoclass:: paddle.v2.layer.multiplex - :noindex: - -.. _api_v2.layer_costs: - -Cost Layers -=========== - -cross_entropy_cost ------------------- -.. autoclass:: paddle.v2.layer.cross_entropy_cost - :noindex: - -cross_entropy_with_selfnorm_cost --------------------------------- -.. autoclass:: paddle.v2.layer.cross_entropy_with_selfnorm_cost - :noindex: - -multi_binary_label_cross_entropy_cost -------------------------------------- -.. autoclass:: paddle.v2.layer.multi_binary_label_cross_entropy_cost - :noindex: - -huber_regression_cost -------------------------- -.. autoclass:: paddle.v2.layer.huber_regression_cost - :noindex: - -huber_classification_cost -------------------------- -.. autoclass:: paddle.v2.layer.huber_classification_cost - :noindex: - -lambda_cost ------------ -.. autoclass:: paddle.v2.layer.lambda_cost - :noindex: - -square_error_cost ------------------ -.. autoclass:: paddle.v2.layer.square_error_cost - :noindex: - -rank_cost ---------- -.. autoclass:: paddle.v2.layer.rank_cost - :noindex: - -sum_cost ---------- -.. autoclass:: paddle.v2.layer.sum_cost - :noindex: - -crf ---- -.. autoclass:: paddle.v2.layer.crf - :noindex: - -crf_decoding ------------- -.. autoclass:: paddle.v2.layer.crf_decoding - :noindex: - -ctc ---- -.. autoclass:: paddle.v2.layer.ctc - :noindex: - -warp_ctc --------- -.. autoclass:: paddle.v2.layer.warp_ctc - :noindex: - -nce ---- -.. autoclass:: paddle.v2.layer.nce - :noindex: - -hsigmoid ---------- -.. autoclass:: paddle.v2.layer.hsigmoid - :noindex: - -smooth_l1_cost --------------- -.. autoclass:: paddle.v2.layer.smooth_l1_cost - :noindex: - -multibox_loss --------------- -.. autoclass:: paddle.v2.layer.multibox_loss - :noindex: - -detection_output ----------------- -.. autoclass:: paddle.v2.layer.detection_output - :noindex: - -Check Layer -============ - -eos ---- -.. autoclass:: paddle.v2.layer.eos - :noindex: - -Activation -========== - -prelu --------- -.. autoclass:: paddle.v2.layer.prelu - :noindex: diff --git a/develop/doc/_sources/api/v2/config/networks.rst.txt b/develop/doc/_sources/api/v2/config/networks.rst.txt deleted file mode 100644 index 048379cf01f4aec5e73e2fe3ddfa728f3c17a5d1..0000000000000000000000000000000000000000 --- a/develop/doc/_sources/api/v2/config/networks.rst.txt +++ /dev/null @@ -1,132 +0,0 @@ -======== -Networks -======== - -The v2.networks module contains pieces of neural network that combine multiple layers. - -NLP -=== - -sequence_conv_pool ------------------- -.. automodule:: paddle.v2.networks - :members: sequence_conv_pool - :noindex: - -.. _api_trainer_config_helpers_network_text_conv_pool: - -text_conv_pool --------------- -.. automodule:: paddle.v2.networks - :members: text_conv_pool - :noindex: - -Images -====== - -img_conv_bn_pool ----------------- -.. automodule:: paddle.v2.networks - :members: img_conv_bn_pool - :noindex: - -img_conv_group --------------- -.. automodule:: paddle.v2.networks - :members: img_conv_group - :noindex: - -.. _api_trainer_config_helpers_network_simple_img_conv_pool: - -simple_img_conv_pool --------------------- -.. automodule:: paddle.v2.networks - :members: simple_img_conv_pool - :noindex: - -small_vgg ---------- -.. automodule:: paddle.v2.networks - :members: small_vgg - :noindex: - -vgg_16_network ---------------- -.. automodule:: paddle.v2.networks - :members: vgg_16_network - :noindex: - -Recurrent -========= - -LSTM ----- - -lstmemory_unit -`````````````` -.. automodule:: paddle.v2.networks - :members: lstmemory_unit - :noindex: - -lstmemory_group -``````````````` -.. automodule:: paddle.v2.networks - :members: lstmemory_group - :noindex: - -simple_lstm -``````````` -.. automodule:: paddle.v2.networks - :members: simple_lstm - :noindex: - -bidirectional_lstm -`````````````````` -.. automodule:: paddle.v2.networks - :members: bidirectional_lstm - :noindex: - -GRU ---- - -gru_unit -```````` -.. automodule:: paddle.v2.networks - :members: gru_unit - :noindex: - -gru_group -````````` -.. automodule:: paddle.v2.networks - :members: gru_group - :noindex: - -simple_gru -`````````` -.. automodule:: paddle.v2.networks - :members: simple_gru - :noindex: - -simple_gru2 -``````````` -.. automodule:: paddle.v2.networks - :members: simple_gru2 - :noindex: - -bidirectional_gru -`````````````````` -.. automodule:: paddle.v2.networks - :members: bidirectional_gru - :noindex: - -simple_attention ----------------- -.. automodule:: paddle.v2.networks - :members: simple_attention - :noindex: - -dot_product_attention ---------------------- -.. automodule:: paddle.v2.networks - :members: dot_product_attention - :noindex: diff --git a/develop/doc/_sources/api/v2/config/optimizer.rst.txt b/develop/doc/_sources/api/v2/config/optimizer.rst.txt deleted file mode 100644 index b32373fdef52a7aa9d64b12cda3f76cb2abf351b..0000000000000000000000000000000000000000 --- a/develop/doc/_sources/api/v2/config/optimizer.rst.txt +++ /dev/null @@ -1,45 +0,0 @@ -========== -Optimizer -========== - -Momentum -======== -.. automodule:: paddle.v2.optimizer - :members: Momentum - :noindex: - -Adam -==== -.. automodule:: paddle.v2.optimizer - :members: Adam - :noindex: - -Adamax -====== -.. automodule:: paddle.v2.optimizer - :members: Adamax - :noindex: - -AdaGrad -======= -.. automodule:: paddle.v2.optimizer - :members: AdaGrad - :noindex: - -DecayedAdaGrad -============== -.. automodule:: paddle.v2.optimizer - :members: DecayedAdaGrad - :noindex: - -AdaDelta -======== -.. automodule:: paddle.v2.optimizer - :members: AdaDelta - :noindex: - -RMSProp -======= -.. automodule:: paddle.v2.optimizer - :members: RMSProp - :noindex: diff --git a/develop/doc/_sources/api/v2/config/pooling.rst.txt b/develop/doc/_sources/api/v2/config/pooling.rst.txt deleted file mode 100644 index d26b365c9284632210a1532853e39feedc70758b..0000000000000000000000000000000000000000 --- a/develop/doc/_sources/api/v2/config/pooling.rst.txt +++ /dev/null @@ -1,46 +0,0 @@ -======= -Pooling -======= - -BasePool -======== -.. automodule:: paddle.v2.pooling - :members: BasePool - :noindex: - -Avg -=== -.. automodule:: paddle.v2.pooling - :members: Avg - :noindex: - -Max -=== -.. automodule:: paddle.v2.pooling - :members: Max - :noindex: - -Sum -=== -.. automodule:: paddle.v2.pooling - :members: Sum - :noindex: - -SquareRootN -=========== -.. automodule:: paddle.v2.pooling - :members: SquareRootN - :noindex: - -CudnnAvg -======== -.. automodule:: paddle.v2.pooling - :members: CudnnAvg - :noindex: - -CudnnMax -======== -.. automodule:: paddle.v2.pooling - :members: CudnnMax - :noindex: - diff --git a/develop/doc/_sources/api/v2/data.rst.txt b/develop/doc/_sources/api/v2/data.rst.txt deleted file mode 100644 index b56c7332cc284649c7e04328e51a7faa78593a39..0000000000000000000000000000000000000000 --- a/develop/doc/_sources/api/v2/data.rst.txt +++ /dev/null @@ -1,10 +0,0 @@ -================================== -Data Reader Interface and DataSets -================================== - -.. toctree:: - :maxdepth: 1 - - data/data_reader.rst - data/image.rst - data/dataset.rst diff --git a/develop/doc/_sources/api/v2/data/data_reader.rst.txt b/develop/doc/_sources/api/v2/data/data_reader.rst.txt deleted file mode 100644 index 2ccfec9c284877a7576e9751526b169a4ac78d8e..0000000000000000000000000000000000000000 --- a/develop/doc/_sources/api/v2/data/data_reader.rst.txt +++ /dev/null @@ -1,36 +0,0 @@ -===================== -Data Reader Interface -===================== - - -DataTypes -========= - -.. automodule:: paddle.v2.data_type - :members: - :noindex: - -DataFeeder -========== - -.. automodule:: paddle.v2.data_feeder - :members: - :noindex: - -Reader -====== - -.. automodule:: paddle.v2.reader - :members: - :noindex: - -.. automodule:: paddle.v2.reader.creator - :members: - :noindex: - -minibatch -========= - -.. automodule:: paddle.v2.minibatch - :members: - :noindex: diff --git a/develop/doc/_sources/api/v2/data/dataset.rst.txt b/develop/doc/_sources/api/v2/data/dataset.rst.txt deleted file mode 100644 index 02e41564b1e48c07da6ac071fc4b60089169e05a..0000000000000000000000000000000000000000 --- a/develop/doc/_sources/api/v2/data/dataset.rst.txt +++ /dev/null @@ -1,82 +0,0 @@ -Dataset -======= - -.. automodule:: paddle.v2.dataset - :members: - :noindex: - -mnist -+++++ - -.. automodule:: paddle.v2.dataset.mnist - :members: - :noindex: - -cifar -+++++ - -.. automodule:: paddle.v2.dataset.cifar - :members: - :noindex: - -conll05 -+++++++ - -.. automodule:: paddle.v2.dataset.conll05 - :members: get_dict,get_embedding,test - :noindex: - -imdb -++++ - -.. automodule:: paddle.v2.dataset.imdb - :members: - :noindex: - -imikolov -++++++++ - -.. automodule:: paddle.v2.dataset.imikolov - :members: - :noindex: - -movielens -+++++++++ - -.. automodule:: paddle.v2.dataset.movielens - :members: - :noindex: - -.. autoclass:: paddle.v2.dataset.movielens.MovieInfo - :noindex: - -.. autoclass:: paddle.v2.dataset.movielens.UserInfo - :noindex: - -sentiment -+++++++++ - -.. automodule:: paddle.v2.dataset.sentiment - :members: - :noindex: - -uci_housing -+++++++++++ - -.. automodule:: paddle.v2.dataset.uci_housing - :members: - :noindex: - -wmt14 -+++++ - -.. automodule:: paddle.v2.dataset.wmt14 - :members: - :noindex: - -wmt16 -+++++ - -.. automodule:: paddle.v2.dataset.wmt16 - :members: - :noindex: diff --git a/develop/doc/_sources/api/v2/data/image.rst.txt b/develop/doc/_sources/api/v2/data/image.rst.txt deleted file mode 100644 index 97651ffa6be56cf3ecaca2caca38a353fa5c1f49..0000000000000000000000000000000000000000 --- a/develop/doc/_sources/api/v2/data/image.rst.txt +++ /dev/null @@ -1,5 +0,0 @@ -Image Interface -=============== - -.. automodule:: paddle.v2.image - :members: diff --git a/develop/doc/_sources/api/v2/fluid.rst.txt b/develop/doc/_sources/api/v2/fluid.rst.txt deleted file mode 100644 index 5f15cad2b530dfb3702357b3c26885ac2a7b7beb..0000000000000000000000000000000000000000 --- a/develop/doc/_sources/api/v2/fluid.rst.txt +++ /dev/null @@ -1,18 +0,0 @@ -====================== -Fluid -====================== - -.. toctree:: - :maxdepth: 1 - - fluid/layers.rst - fluid/data_feeder.rst - fluid/executor.rst - fluid/initializer.rst - fluid/evaluator.rst - fluid/nets.rst - fluid/optimizer.rst - fluid/param_attr.rst - fluid/profiler.rst - fluid/regularizer.rst - fluid/io.rst diff --git a/develop/doc/_sources/api/v2/fluid/data_feeder.rst.txt b/develop/doc/_sources/api/v2/fluid/data_feeder.rst.txt deleted file mode 100644 index a591c7334fd31c98a94b50a4344f251560a0f2f9..0000000000000000000000000000000000000000 --- a/develop/doc/_sources/api/v2/fluid/data_feeder.rst.txt +++ /dev/null @@ -1,14 +0,0 @@ -.. THIS FILE IS GENERATED BY `gen_doc.{py|sh}` - !DO NOT EDIT THIS FILE MANUALLY! - -=========== -data_feeder -=========== - -DataFeeder ----------- - -.. autoclass:: paddle.v2.fluid.data_feeder.DataFeeder - :members: - :noindex: - diff --git a/develop/doc/_sources/api/v2/fluid/evaluator.rst.txt b/develop/doc/_sources/api/v2/fluid/evaluator.rst.txt deleted file mode 100644 index 00dcecfd628a35d83d1c596bf0aea819a1705862..0000000000000000000000000000000000000000 --- a/develop/doc/_sources/api/v2/fluid/evaluator.rst.txt +++ /dev/null @@ -1,21 +0,0 @@ -.. THIS FILE IS GENERATED BY `gen_doc.{py|sh}` - !DO NOT EDIT THIS FILE MANUALLY! - -========= -evaluator -========= - -Accuracy --------- - -.. autoclass:: paddle.v2.fluid.evaluator.Accuracy - :members: - :noindex: - -ChunkEvaluator --------------- - -.. autoclass:: paddle.v2.fluid.evaluator.ChunkEvaluator - :members: - :noindex: - diff --git a/develop/doc/_sources/api/v2/fluid/executor.rst.txt b/develop/doc/_sources/api/v2/fluid/executor.rst.txt deleted file mode 100644 index a028f6283f2ca333bdf6c9857a98661c0222b41e..0000000000000000000000000000000000000000 --- a/develop/doc/_sources/api/v2/fluid/executor.rst.txt +++ /dev/null @@ -1,32 +0,0 @@ -.. THIS FILE IS GENERATED BY `gen_doc.{py|sh}` - !DO NOT EDIT THIS FILE MANUALLY! - -======== -executor -======== - -Executor --------- - -.. autoclass:: paddle.v2.fluid.executor.Executor - :members: - :noindex: - -global_scope ------------- - -.. autofunction:: paddle.v2.fluid.executor.global_scope - :noindex: - -scope_guard ------------ - -.. autofunction:: paddle.v2.fluid.executor.scope_guard - :noindex: - -switch_scope ------------- - -.. autofunction:: paddle.v2.fluid.executor.switch_scope - :noindex: - diff --git a/develop/doc/_sources/api/v2/fluid/initializer.rst.txt b/develop/doc/_sources/api/v2/fluid/initializer.rst.txt deleted file mode 100644 index c38be033fff2997930525f51c93995db09daa2b6..0000000000000000000000000000000000000000 --- a/develop/doc/_sources/api/v2/fluid/initializer.rst.txt +++ /dev/null @@ -1,35 +0,0 @@ -.. THIS FILE IS GENERATED BY `gen_doc.{py|sh}` - !DO NOT EDIT THIS FILE MANUALLY! - -=========== -initializer -=========== - -Constant --------- - -.. autoclass:: paddle.v2.fluid.initializer.Constant - :members: - :noindex: - -Uniform -------- - -.. autoclass:: paddle.v2.fluid.initializer.Uniform - :members: - :noindex: - -Normal ------- - -.. autoclass:: paddle.v2.fluid.initializer.Normal - :members: - :noindex: - -Xavier ------- - -.. autoclass:: paddle.v2.fluid.initializer.Xavier - :members: - :noindex: - diff --git a/develop/doc/_sources/api/v2/fluid/io.rst.txt b/develop/doc/_sources/api/v2/fluid/io.rst.txt deleted file mode 100644 index 37c9c273e369532e8ff596e9649cb695a98a2505..0000000000000000000000000000000000000000 --- a/develop/doc/_sources/api/v2/fluid/io.rst.txt +++ /dev/null @@ -1,61 +0,0 @@ -.. THIS FILE IS GENERATED BY `gen_doc.{py|sh}` - !DO NOT EDIT THIS FILE MANUALLY! - -== -io -== - -save_vars ---------- - -.. autofunction:: paddle.v2.fluid.io.save_vars - :noindex: - -save_params ------------ - -.. autofunction:: paddle.v2.fluid.io.save_params - :noindex: - -save_persistables ------------------ - -.. autofunction:: paddle.v2.fluid.io.save_persistables - :noindex: - -load_vars ---------- - -.. autofunction:: paddle.v2.fluid.io.load_vars - :noindex: - -load_params ------------ - -.. autofunction:: paddle.v2.fluid.io.load_params - :noindex: - -load_persistables ------------------ - -.. autofunction:: paddle.v2.fluid.io.load_persistables - :noindex: - -save_inference_model --------------------- - -.. autofunction:: paddle.v2.fluid.io.save_inference_model - :noindex: - -load_inference_model --------------------- - -.. autofunction:: paddle.v2.fluid.io.load_inference_model - :noindex: - -get_inference_program ---------------------- - -.. autofunction:: paddle.v2.fluid.io.get_inference_program - :noindex: - diff --git a/develop/doc/_sources/api/v2/fluid/layers.rst.txt b/develop/doc/_sources/api/v2/fluid/layers.rst.txt deleted file mode 100644 index 58c493fd7412cf9dbe507c9622d67dae33a5fb25..0000000000000000000000000000000000000000 --- a/develop/doc/_sources/api/v2/fluid/layers.rst.txt +++ /dev/null @@ -1,805 +0,0 @@ -.. THIS FILE IS GENERATED BY `gen_doc.{py|sh}` - !DO NOT EDIT THIS FILE MANUALLY! - -====== -layers -====== - -control_flow -============ - -split_lod_tensor ----------------- - -.. autofunction:: paddle.v2.fluid.layers.split_lod_tensor - :noindex: - -merge_lod_tensor ----------------- - -.. autofunction:: paddle.v2.fluid.layers.merge_lod_tensor - :noindex: - -BlockGuard ----------- - -.. autoclass:: paddle.v2.fluid.layers.BlockGuard - :members: - :noindex: - -BlockGuardWithCompletion ------------------------- - -.. autoclass:: paddle.v2.fluid.layers.BlockGuardWithCompletion - :members: - :noindex: - -StaticRNNMemoryLink -------------------- - -.. autoclass:: paddle.v2.fluid.layers.StaticRNNMemoryLink - :members: - :noindex: - -WhileGuard ----------- - -.. autoclass:: paddle.v2.fluid.layers.WhileGuard - :members: - :noindex: - -While ------ - -.. autoclass:: paddle.v2.fluid.layers.While - :members: - :noindex: - -lod_rank_table --------------- - -.. autofunction:: paddle.v2.fluid.layers.lod_rank_table - :noindex: - -max_sequence_len ----------------- - -.. autofunction:: paddle.v2.fluid.layers.max_sequence_len - :noindex: - -topk ----- - -.. autofunction:: paddle.v2.fluid.layers.topk - :noindex: - -lod_tensor_to_array -------------------- - -.. autofunction:: paddle.v2.fluid.layers.lod_tensor_to_array - :noindex: - -array_to_lod_tensor -------------------- - -.. autofunction:: paddle.v2.fluid.layers.array_to_lod_tensor - :noindex: - -increment ---------- - -.. autofunction:: paddle.v2.fluid.layers.increment - :noindex: - -array_write ------------ - -.. autofunction:: paddle.v2.fluid.layers.array_write - :noindex: - -create_array ------------- - -.. autofunction:: paddle.v2.fluid.layers.create_array - :noindex: - -less_than ---------- - -.. autofunction:: paddle.v2.fluid.layers.less_than - :noindex: - -array_read ----------- - -.. autofunction:: paddle.v2.fluid.layers.array_read - :noindex: - -shrink_memory -------------- - -.. autofunction:: paddle.v2.fluid.layers.shrink_memory - :noindex: - -array_length ------------- - -.. autofunction:: paddle.v2.fluid.layers.array_length - :noindex: - -IfElse ------- - -.. autoclass:: paddle.v2.fluid.layers.IfElse - :members: - :noindex: - -DynamicRNN ----------- - -.. autoclass:: paddle.v2.fluid.layers.DynamicRNN - :members: - :noindex: - -ConditionalBlock ----------------- - -.. autoclass:: paddle.v2.fluid.layers.ConditionalBlock - :members: - :noindex: - -StaticRNN ---------- - -.. autoclass:: paddle.v2.fluid.layers.StaticRNN - :members: - :noindex: - -reorder_lod_tensor_by_rank --------------------------- - -.. autofunction:: paddle.v2.fluid.layers.reorder_lod_tensor_by_rank - :noindex: - -ParallelDo ----------- - -.. autoclass:: paddle.v2.fluid.layers.ParallelDo - :members: - :noindex: - -Print ------ - -.. autofunction:: paddle.v2.fluid.layers.Print - :noindex: - -device -====== - -get_places ----------- - -.. autofunction:: paddle.v2.fluid.layers.get_places - :noindex: - -io -== - -data ----- - -.. autofunction:: paddle.v2.fluid.layers.data - :noindex: - -BlockGuardServ --------------- - -.. autoclass:: paddle.v2.fluid.layers.BlockGuardServ - :members: - :noindex: - -ListenAndServ -------------- - -.. autoclass:: paddle.v2.fluid.layers.ListenAndServ - :members: - :noindex: - -Send ----- - -.. autofunction:: paddle.v2.fluid.layers.Send - :noindex: - -nn -== - -fc --- - -.. autofunction:: paddle.v2.fluid.layers.fc - :noindex: - -embedding ---------- - -.. autofunction:: paddle.v2.fluid.layers.embedding - :noindex: - -dynamic_lstm ------------- - -.. autofunction:: paddle.v2.fluid.layers.dynamic_lstm - :noindex: - -dynamic_lstmp -------------- - -.. autofunction:: paddle.v2.fluid.layers.dynamic_lstmp - :noindex: - -dynamic_gru ------------ - -.. autofunction:: paddle.v2.fluid.layers.dynamic_gru - :noindex: - -gru_unit --------- - -.. autofunction:: paddle.v2.fluid.layers.gru_unit - :noindex: - -linear_chain_crf ----------------- - -.. autofunction:: paddle.v2.fluid.layers.linear_chain_crf - :noindex: - -crf_decoding ------------- - -.. autofunction:: paddle.v2.fluid.layers.crf_decoding - :noindex: - -cos_sim -------- - -.. autofunction:: paddle.v2.fluid.layers.cos_sim - :noindex: - -cross_entropy -------------- - -.. autofunction:: paddle.v2.fluid.layers.cross_entropy - :noindex: - -square_error_cost ------------------ - -.. autofunction:: paddle.v2.fluid.layers.square_error_cost - :noindex: - -accuracy --------- - -.. autofunction:: paddle.v2.fluid.layers.accuracy - :noindex: - -chunk_eval ----------- - -.. autofunction:: paddle.v2.fluid.layers.chunk_eval - :noindex: - -sequence_conv -------------- - -.. autofunction:: paddle.v2.fluid.layers.sequence_conv - :noindex: - -conv2d ------- - -.. autofunction:: paddle.v2.fluid.layers.conv2d - :noindex: - -sequence_pool -------------- - -.. autofunction:: paddle.v2.fluid.layers.sequence_pool - :noindex: - -pool2d ------- - -.. autofunction:: paddle.v2.fluid.layers.pool2d - :noindex: - -batch_norm ----------- - -.. autofunction:: paddle.v2.fluid.layers.batch_norm - :noindex: - -layer_norm ----------- - -.. autofunction:: paddle.v2.fluid.layers.layer_norm - :noindex: - -beam_search_decode ------------------- - -.. autofunction:: paddle.v2.fluid.layers.beam_search_decode - :noindex: - -conv2d_transpose ----------------- - -.. autofunction:: paddle.v2.fluid.layers.conv2d_transpose - :noindex: - -sequence_expand ---------------- - -.. autofunction:: paddle.v2.fluid.layers.sequence_expand - :noindex: - -lstm_unit ---------- - -.. autofunction:: paddle.v2.fluid.layers.lstm_unit - :noindex: - -reduce_sum ----------- - -.. autofunction:: paddle.v2.fluid.layers.reduce_sum - :noindex: - -reduce_mean ------------ - -.. autofunction:: paddle.v2.fluid.layers.reduce_mean - :noindex: - -reduce_max ----------- - -.. autofunction:: paddle.v2.fluid.layers.reduce_max - :noindex: - -reduce_min ----------- - -.. autofunction:: paddle.v2.fluid.layers.reduce_min - :noindex: - -sequence_first_step -------------------- - -.. autofunction:: paddle.v2.fluid.layers.sequence_first_step - :noindex: - -sequence_last_step ------------------- - -.. autofunction:: paddle.v2.fluid.layers.sequence_last_step - :noindex: - -dropout -------- - -.. autofunction:: paddle.v2.fluid.layers.dropout - :noindex: - -split ------ - -.. autofunction:: paddle.v2.fluid.layers.split - :noindex: - -ctc_greedy_decoder ------------------- - -.. autofunction:: paddle.v2.fluid.layers.ctc_greedy_decoder - :noindex: - -edit_distance -------------- - -.. autofunction:: paddle.v2.fluid.layers.edit_distance - :noindex: - -l2_normalize ------------- - -.. autofunction:: paddle.v2.fluid.layers.l2_normalize - :noindex: - -matmul ------- - -.. autofunction:: paddle.v2.fluid.layers.matmul - :noindex: - -warpctc -------- - -.. autofunction:: paddle.v2.fluid.layers.warpctc - :noindex: - -sequence_reshape ----------------- - -.. autofunction:: paddle.v2.fluid.layers.sequence_reshape - :noindex: - -transpose ---------- - -.. autofunction:: paddle.v2.fluid.layers.transpose - :noindex: - -im2sequence ------------ - -.. autofunction:: paddle.v2.fluid.layers.im2sequence - :noindex: - -nce ---- - -.. autofunction:: paddle.v2.fluid.layers.nce - :noindex: - -beam_search ------------ - -.. autofunction:: paddle.v2.fluid.layers.beam_search - :noindex: - -row_conv --------- - -.. autofunction:: paddle.v2.fluid.layers.row_conv - :noindex: - -multiplex ---------- - -.. autofunction:: paddle.v2.fluid.layers.multiplex - :noindex: - -ops -=== - -mean ----- - -.. autofunction:: paddle.v2.fluid.layers.mean - :noindex: - -mul ---- - -.. autofunction:: paddle.v2.fluid.layers.mul - :noindex: - -reshape -------- - -.. autofunction:: paddle.v2.fluid.layers.reshape - :noindex: - -scale ------ - -.. autofunction:: paddle.v2.fluid.layers.scale - :noindex: - -sigmoid_cross_entropy_with_logits ---------------------------------- - -.. autofunction:: paddle.v2.fluid.layers.sigmoid_cross_entropy_with_logits - :noindex: - -elementwise_add ---------------- - -.. autofunction:: paddle.v2.fluid.layers.elementwise_add - :noindex: - -elementwise_div ---------------- - -.. autofunction:: paddle.v2.fluid.layers.elementwise_div - :noindex: - -elementwise_sub ---------------- - -.. autofunction:: paddle.v2.fluid.layers.elementwise_sub - :noindex: - -elementwise_mul ---------------- - -.. autofunction:: paddle.v2.fluid.layers.elementwise_mul - :noindex: - -elementwise_max ---------------- - -.. autofunction:: paddle.v2.fluid.layers.elementwise_max - :noindex: - -elementwise_min ---------------- - -.. autofunction:: paddle.v2.fluid.layers.elementwise_min - :noindex: - -elementwise_pow ---------------- - -.. autofunction:: paddle.v2.fluid.layers.elementwise_pow - :noindex: - -clip ----- - -.. autofunction:: paddle.v2.fluid.layers.clip - :noindex: - -clip_by_norm ------------- - -.. autofunction:: paddle.v2.fluid.layers.clip_by_norm - :noindex: - -sequence_softmax ----------------- - -.. autofunction:: paddle.v2.fluid.layers.sequence_softmax - :noindex: - -sigmoid -------- - -.. autofunction:: paddle.v2.fluid.layers.sigmoid - :noindex: - -logsigmoid ----------- - -.. autofunction:: paddle.v2.fluid.layers.logsigmoid - :noindex: - -exp ---- - -.. autofunction:: paddle.v2.fluid.layers.exp - :noindex: - -relu ----- - -.. autofunction:: paddle.v2.fluid.layers.relu - :noindex: - -tanh ----- - -.. autofunction:: paddle.v2.fluid.layers.tanh - :noindex: - -tanh_shrink ------------ - -.. autofunction:: paddle.v2.fluid.layers.tanh_shrink - :noindex: - -softshrink ----------- - -.. autofunction:: paddle.v2.fluid.layers.softshrink - :noindex: - -sqrt ----- - -.. autofunction:: paddle.v2.fluid.layers.sqrt - :noindex: - -abs ---- - -.. autofunction:: paddle.v2.fluid.layers.abs - :noindex: - -ceil ----- - -.. autofunction:: paddle.v2.fluid.layers.ceil - :noindex: - -floor ------ - -.. autofunction:: paddle.v2.fluid.layers.floor - :noindex: - -round ------ - -.. autofunction:: paddle.v2.fluid.layers.round - :noindex: - -reciprocal ----------- - -.. autofunction:: paddle.v2.fluid.layers.reciprocal - :noindex: - -log ---- - -.. autofunction:: paddle.v2.fluid.layers.log - :noindex: - -square ------- - -.. autofunction:: paddle.v2.fluid.layers.square - :noindex: - -softplus --------- - -.. autofunction:: paddle.v2.fluid.layers.softplus - :noindex: - -softsign --------- - -.. autofunction:: paddle.v2.fluid.layers.softsign - :noindex: - -brelu ------ - -.. autofunction:: paddle.v2.fluid.layers.brelu - :noindex: - -leaky_relu ----------- - -.. autofunction:: paddle.v2.fluid.layers.leaky_relu - :noindex: - -soft_relu ---------- - -.. autofunction:: paddle.v2.fluid.layers.soft_relu - :noindex: - -elu ---- - -.. autofunction:: paddle.v2.fluid.layers.elu - :noindex: - -relu6 ------ - -.. autofunction:: paddle.v2.fluid.layers.relu6 - :noindex: - -pow ---- - -.. autofunction:: paddle.v2.fluid.layers.pow - :noindex: - -stanh ------ - -.. autofunction:: paddle.v2.fluid.layers.stanh - :noindex: - -hard_shrink ------------ - -.. autofunction:: paddle.v2.fluid.layers.hard_shrink - :noindex: - -thresholded_relu ----------------- - -.. autofunction:: paddle.v2.fluid.layers.thresholded_relu - :noindex: - -hard_sigmoid ------------- - -.. autofunction:: paddle.v2.fluid.layers.hard_sigmoid - :noindex: - -swish ------ - -.. autofunction:: paddle.v2.fluid.layers.swish - :noindex: - -tensor -====== - -create_tensor -------------- - -.. autofunction:: paddle.v2.fluid.layers.create_tensor - :noindex: - -create_parameter ----------------- - -.. autofunction:: paddle.v2.fluid.layers.create_parameter - :noindex: - -create_global_var ------------------ - -.. autofunction:: paddle.v2.fluid.layers.create_global_var - :noindex: - -cast ----- - -.. autofunction:: paddle.v2.fluid.layers.cast - :noindex: - -concat ------- - -.. autofunction:: paddle.v2.fluid.layers.concat - :noindex: - -sums ----- - -.. autofunction:: paddle.v2.fluid.layers.sums - :noindex: - -assign ------- - -.. autofunction:: paddle.v2.fluid.layers.assign - :noindex: - -fill_constant_batch_size_like ------------------------------ - -.. autofunction:: paddle.v2.fluid.layers.fill_constant_batch_size_like - :noindex: - -fill_constant -------------- - -.. autofunction:: paddle.v2.fluid.layers.fill_constant - :noindex: - -ones ----- - -.. autofunction:: paddle.v2.fluid.layers.ones - :noindex: - -zeros ------ - -.. autofunction:: paddle.v2.fluid.layers.zeros - :noindex: - diff --git a/develop/doc/_sources/api/v2/fluid/nets.rst.txt b/develop/doc/_sources/api/v2/fluid/nets.rst.txt deleted file mode 100644 index 015581b7660848bdb0845fafe2d3fc05405e6ae6..0000000000000000000000000000000000000000 --- a/develop/doc/_sources/api/v2/fluid/nets.rst.txt +++ /dev/null @@ -1,31 +0,0 @@ -.. THIS FILE IS GENERATED BY `gen_doc.{py|sh}` - !DO NOT EDIT THIS FILE MANUALLY! - -==== -nets -==== - -simple_img_conv_pool --------------------- - -.. autofunction:: paddle.v2.fluid.nets.simple_img_conv_pool - :noindex: - -sequence_conv_pool ------------------- - -.. autofunction:: paddle.v2.fluid.nets.sequence_conv_pool - :noindex: - -glu ---- - -.. autofunction:: paddle.v2.fluid.nets.glu - :noindex: - -scaled_dot_product_attention ----------------------------- - -.. autofunction:: paddle.v2.fluid.nets.scaled_dot_product_attention - :noindex: - diff --git a/develop/doc/_sources/api/v2/fluid/optimizer.rst.txt b/develop/doc/_sources/api/v2/fluid/optimizer.rst.txt deleted file mode 100644 index 1691ebb9a7cb16da96e04147d0adea322374f529..0000000000000000000000000000000000000000 --- a/develop/doc/_sources/api/v2/fluid/optimizer.rst.txt +++ /dev/null @@ -1,49 +0,0 @@ -.. THIS FILE IS GENERATED BY `gen_doc.{py|sh}` - !DO NOT EDIT THIS FILE MANUALLY! - -========= -optimizer -========= - -SGD ---- - -.. autoclass:: paddle.v2.fluid.optimizer.SGD - :members: - :noindex: - -Momentum --------- - -.. autoclass:: paddle.v2.fluid.optimizer.Momentum - :members: - :noindex: - -Adagrad -------- - -.. autoclass:: paddle.v2.fluid.optimizer.Adagrad - :members: - :noindex: - -Adam ----- - -.. autoclass:: paddle.v2.fluid.optimizer.Adam - :members: - :noindex: - -Adamax ------- - -.. autoclass:: paddle.v2.fluid.optimizer.Adamax - :members: - :noindex: - -DecayedAdagrad --------------- - -.. autoclass:: paddle.v2.fluid.optimizer.DecayedAdagrad - :members: - :noindex: - diff --git a/develop/doc/_sources/api/v2/fluid/param_attr.rst.txt b/develop/doc/_sources/api/v2/fluid/param_attr.rst.txt deleted file mode 100644 index 8083d0d858dafcd275eaddb9b475875ee42ef724..0000000000000000000000000000000000000000 --- a/develop/doc/_sources/api/v2/fluid/param_attr.rst.txt +++ /dev/null @@ -1,21 +0,0 @@ -.. THIS FILE IS GENERATED BY `gen_doc.{py|sh}` - !DO NOT EDIT THIS FILE MANUALLY! - -========== -param_attr -========== - -ParamAttr ---------- - -.. autoclass:: paddle.v2.fluid.param_attr.ParamAttr - :members: - :noindex: - -WeightNormParamAttr -------------------- - -.. autoclass:: paddle.v2.fluid.param_attr.WeightNormParamAttr - :members: - :noindex: - diff --git a/develop/doc/_sources/api/v2/fluid/profiler.rst.txt b/develop/doc/_sources/api/v2/fluid/profiler.rst.txt deleted file mode 100644 index 4a1ff7cb6976e0054f77428b699ea679aa91394f..0000000000000000000000000000000000000000 --- a/develop/doc/_sources/api/v2/fluid/profiler.rst.txt +++ /dev/null @@ -1,25 +0,0 @@ -.. THIS FILE IS GENERATED BY `gen_doc.{py|sh}` - !DO NOT EDIT THIS FILE MANUALLY! - -======== -profiler -======== - -cuda_profiler -------------- - -.. autofunction:: paddle.v2.fluid.profiler.cuda_profiler - :noindex: - -reset_profiler --------------- - -.. autofunction:: paddle.v2.fluid.profiler.reset_profiler - :noindex: - -profiler --------- - -.. autofunction:: paddle.v2.fluid.profiler.profiler - :noindex: - diff --git a/develop/doc/_sources/api/v2/fluid/regularizer.rst.txt b/develop/doc/_sources/api/v2/fluid/regularizer.rst.txt deleted file mode 100644 index 2c17d15599baa1d02eb87c7b6c40034769ebb3a4..0000000000000000000000000000000000000000 --- a/develop/doc/_sources/api/v2/fluid/regularizer.rst.txt +++ /dev/null @@ -1,27 +0,0 @@ -.. THIS FILE IS GENERATED BY `gen_doc.{py|sh}` - !DO NOT EDIT THIS FILE MANUALLY! - -=========== -regularizer -=========== - -append_regularization_ops -------------------------- - -.. autofunction:: paddle.v2.fluid.regularizer.append_regularization_ops - :noindex: - -L1Decay -------- - -.. autoclass:: paddle.v2.fluid.regularizer.L1Decay - :members: - :noindex: - -L2Decay -------- - -.. autoclass:: paddle.v2.fluid.regularizer.L2Decay - :members: - :noindex: - diff --git a/develop/doc/_sources/api/v2/model_configs.rst.txt b/develop/doc/_sources/api/v2/model_configs.rst.txt deleted file mode 100644 index 992b559cbd87244612521d4c96f84f997d6c4196..0000000000000000000000000000000000000000 --- a/develop/doc/_sources/api/v2/model_configs.rst.txt +++ /dev/null @@ -1,13 +0,0 @@ -Model Configuration -=================== - -.. toctree:: - :maxdepth: 1 - - config/activation.rst - config/layer.rst - config/evaluators.rst - config/optimizer.rst - config/pooling.rst - config/networks.rst - config/attr.rst diff --git a/develop/doc/_sources/api/v2/run_logic.rst.txt b/develop/doc/_sources/api/v2/run_logic.rst.txt deleted file mode 100644 index 5c97651f6536d89d2b5926d4b2907a547aa86b55..0000000000000000000000000000000000000000 --- a/develop/doc/_sources/api/v2/run_logic.rst.txt +++ /dev/null @@ -1,31 +0,0 @@ -====================== -Training and Inference -====================== - -Parameters -========== - -.. automodule:: paddle.v2.parameters - :members: Parameters - :noindex: - -Trainer -======= - -.. automodule:: paddle.v2.trainer - :members: SGD - :noindex: - -Event -===== - -.. automodule:: paddle.v2.event - :members: - :noindex: - -Inference -========= - -.. autofunction:: paddle.v2.infer - :noindex: - \ No newline at end of file diff --git a/develop/doc/api/index_en.html b/develop/doc/api/index_en.html deleted file mode 100644 index e15b2b7b14d79fc190ffce690a62857a9884d8ad..0000000000000000000000000000000000000000 --- a/develop/doc/api/index_en.html +++ /dev/null @@ -1,249 +0,0 @@ - - - - - -
- - - - -paddle.v2.activation.
Abs
Abs Activation.
-Forward: \(f(z) = abs(z)\)
-Derivative:
-paddle.v2.activation.
Exp
Exponential Activation.
-paddle.v2.activation.
Identity
alias of Linear
paddle.v2.activation.
Linear
Identity Activation.
-Just do nothing for output both forward/backward.
-paddle.v2.activation.
Log
Logarithm Activation.
-paddle.v2.activation.
Square
Square Activation.
-paddle.v2.activation.
Sigmoid
Sigmoid activation.
-paddle.v2.activation.
Softmax
Softmax activation for simple input
-paddle.v2.activation.
SequenceSoftmax
Softmax activation for one sequence. The dimension of input feature must be -1 and a sequence.
-result = softmax(for each_feature_vector[0] in input_feature)
-for i, each_time_step_output in enumerate(output):
- each_time_step_output = result[i]
-
paddle.v2.activation.
Relu
Relu activation.
-forward. \(y = max(0, z)\)
-derivative:
-paddle.v2.activation.
BRelu
BRelu Activation.
-forward. \(y = min(24, max(0, z))\)
-derivative:
-paddle.v2.activation.
SoftRelu
SoftRelu Activation.
-paddle.v2.activation.
Tanh
Tanh activation.
-paddle.v2.activation.
STanh
Scaled Tanh Activation.
-paddle.v2.activation.
SoftSign
SoftSign Activation.
-paddle.v2.attr.
Param
alias of ParameterAttribute
paddle.v2.attr.
Extra
alias of ExtraLayerAttribute
paddle.v2.attr.
Hook
alias of HookAttribute
paddle.v2.attr.
HookAttr
alias of HookAttribute
paddle.v2.attr.
ParamAttr
alias of ParameterAttribute
paddle.v2.attr.
ExtraAttr
alias of ExtraLayerAttribute
paddle.v2.attr.
ParameterAttribute
(name=None, is_static=False, initial_std=None, initial_mean=None, initial_max=None, initial_min=None, l1_rate=None, l2_rate=None, learning_rate=None, momentum=None, gradient_clipping_threshold=None, sparse_update=False, update_hooks=None, initializer=None)Parameter Attributes object. To fine-tuning network training process, user -can set attribute to control training details, such as l1,l2 rate / learning -rate / how to init param.
-NOTE: IT IS A HIGH LEVEL USER INTERFACE.
-Parameters: |
|
-
---|
set_default_parameter_name
(name)Set default parameter name. If parameter not set, then will use default -parameter name.
-Parameters: | name (basestring) – default parameter name. | -
---|
paddle.v2.attr.
ExtraLayerAttribute
(error_clipping_threshold=None, drop_rate=None, device=None)Some high level layer attributes config. You can set all attributes here, -but some layer doesn’t support all attributes. If you set an attribute to a -layer that not support this attribute, paddle will print an error and core.
-Parameters: |
|
-
---|
paddle.v2.evaluator.
classification_error
(*args, **xargs)Classification Error Evaluator. It will print error rate for classification.
-The classification error is:
-The simple usage is:
-eval = classification_evaluator.error(input=prob,label=lbl)
-
Parameters: |
|
-
---|---|
Returns: | None. - |
-
paddle.v2.evaluator.
auc
(*args, **xargs)Auc Evaluator which adapts to binary classification.
-The simple usage:
-eval = evaluator.auc(input, label)
-
Parameters: |
|
-
---|
paddle.v2.evaluator.
ctc_error
(*args, **xargs)This evaluator is to calculate sequence-to-sequence edit distance.
-The simple usage is :
-eval = ctc_evaluator.error(input=input, label=lbl)
-
Parameters: |
|
-
---|
paddle.v2.evaluator.
chunk
(*args, **xargs)Chunk evaluator is used to evaluate segment labelling accuracy for a -sequence. It calculates precision, recall and F1 scores for the chunk detection.
-To use chunk evaluator, several concepts need to be clarified firstly.
-We can name a label by combining tag type and chunk type. (ie. B-ORG for begining of an organization name)
-The construction of label dictionary should obey the following rules:
-Scheme Description
-plain Use the same label for the whole chunk.
-IOB Two labels for chunk type X, B-X for chunk begining and I-X for chunk inside.
-IOE Two labels for chunk type X, E-X for chunk ending and I-X for chunk inside.
-IOBES Four labels for chunk type X, B-X for chunk begining, I-X for chunk inside, E-X for chunk end and S-X for single word chunk.
-
To make it clear, let’s illustrate by an NER example. -Assuming that there are three named entity types including ORG, PER and LOC which are called ‘chunk type’ here, -if ‘IOB’ scheme were used, the label set will be extended to a set including B-ORG, I-ORG, B-PER, I-PER, B-LOC, I-LOC and O, -in which B-ORG for begining of ORG and I-ORG for inside of ORG. -Prefixes which are called ‘tag type’ here are added to chunk types and there are two tag types including B and I. -Of course, the training data should be labeled accordingly.
-The following table are equations to extract tag type and chunk type from a label.
-tagType = label % numTagType
-chunkType = label / numTagType
-otherChunkType = numChunkTypes
-
The following table shows the mapping rule between tagType and tag type in each scheme.
-Scheme Begin Inside End Single
-plain 0 - - -
-IOB 0 1 - -
-IOE - 0 1 -
-IOBES 0 1 2 3
-
Continue the NER example, and the label dict should look like this to satify above equations:
-B-ORG 0
-I-ORG 1
-B-PER 2
-I-PER 3
-B-LOC 4
-I-LOC 5
-O 6
-
In this example, chunkType has three values: 0 for ORG, 1 for PER, 2 for LOC, because the scheme is -“IOB” so tagType has two values: 0 for B and 1 for I. -Here we will use I-LOC to explain the above mapping rules in detail. -For I-LOC, the label id is 5, so we can get tagType=1 and chunkType=2, which means I-LOC is a part of NER chunk LOC -and the tag is I.
-The simple usage is:
-eval = evaluator.chunk(input, label, chunk_scheme, num_chunk_types)
-
Parameters: |
|
-
---|
paddle.v2.evaluator.
precision_recall
(*args, **xargs)An Evaluator to calculate precision and recall, F1-score. -It is adapt to the task with multiple labels.
-The simple usage:
-eval = precision_evaluator.recall(input, label)
-
Parameters: |
|
-
---|
paddle.v2.evaluator.
pnpair
(*args, **xargs)Positive-negative pair rate Evaluator which adapts to rank task like -learning to rank. This evaluator must contain at least three layers.
-The simple usage:
-eval = evaluator.pnpair(input, label, query_id)
-
Parameters: |
|
-
---|
paddle.v2.evaluator.
sum
(*args, **xargs)An Evaluator to sum the result of input.
-The simple usage:
-eval = evaluator.sum(input)
-
Parameters: |
|
-
---|
paddle.v2.evaluator.
column_sum
(*args, **xargs)This Evaluator is used to sum the last column of input.
-The simple usage is:
-eval = column_evaluator.sum(input, label)
-
Parameters: |
|
-
---|
paddle.v2.evaluator.
classification_error_printer
(*args, **xargs)This Evaluator is used to print the classification error of each sample.
-The simple usage is:
-eval = classification_error_evaluator.printer(input)
-
Parameters: |
|
-
---|
paddle.v2.evaluator.
gradient_printer
(*args, **xargs)This Evaluator is used to print the gradient of input layers. It contains -one or more input layers.
-The simple usage is:
-eval = gradient_evaluator.printer(input)
-
Parameters: |
|
-
---|
paddle.v2.evaluator.
maxid_printer
(*args, **xargs)This Evaluator is used to print maximum top k values and their indexes -of each row of input layers. It contains one or more input layers. -k is specified by num_results.
-The simple usage is:
-eval = maxid_evaluator.printer(input)
-
Parameters: |
|
-
---|
paddle.v2.evaluator.
maxframe_printer
(*args, **xargs)This Evaluator is used to print the top k frames of each input layers. -The input layers should contain sequences info or sequences type. -k is specified by num_results. -It contains one or more input layers.
-Note
-The width of each frame is 1.
-The simple usage is:
-eval = maxframe_evaluator.printer(input)
-
Parameters: |
|
-
---|
paddle.v2.evaluator.
seqtext_printer
(*args, **xargs)Sequence text printer will print text according to index matrix and a -dictionary. There can be multiple input to this layer:
-1. If there is no id_input, the input must be a matrix containing -the sequence of indices;
-The output format will be:
-id prob space_seperated_tokens_from_dictionary_according_to_seq
-
id space_seperated_tokens_from_dictionary_according_to_seq
-
id space_seperated_tokens_from_dictionary_according_to_sub_seq
- space_seperated_tokens_from_dictionary_according_to_sub_seq
-...
-
Typically SequenceTextPrinter layer takes output of maxid or RecurrentGroup -with maxid (when generating) as an input.
-The simple usage is:
-eval = seqtext_evaluator.printer(input=maxid,
- id_input=sample_id,
- dict_file=dict_file,
- result_file=result_file)
-
Parameters: |
|
-
---|---|
Returns: | The seq_text_printer that prints the generated sequence to a file. - |
-
Return type: | evaluator - |
-
paddle.v2.evaluator.
value_printer
(*args, **xargs)This Evaluator is used to print the values of input layers. It contains -one or more input layers.
-The simple usage is:
-eval = value_evaluator.printer(input)
-
Parameters: |
|
-
---|
paddle.v2.evaluator.
detection_map
(*args, **xargs)Detection mAP Evaluator. It will print mean Average Precision (mAP) for detection.
-The detection mAP Evaluator based on the output of detection_output layer counts -the true positive and the false positive bbox and integral them to get the -mAP.
-The simple usage is:
-eval = detection_evaluator.map(input=det_output,label=lbl)
-
Parameters: |
|
-
---|
paddle.v2.layer.
fc
The fully connected layer.
-The example usage is:
-fc = fc(input=layer,
- size=1024,
- act=paddle.v2.activation.Linear(),
- bias_attr=False)
-
which is equal to:
-with mixed(size=1024) as fc:
- fc += full_matrix_projection(input=layer)
-
Parameters: |
|
-
---|---|
Returns: | paddle.v2.config_base.Layer object. - |
-
Return type: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
selective_fc
Selectived fully connected layer. Different from fc, the output -of this layer can be sparse. It requires an additional input to indicate -several selected columns for output. If the selected columns is not -specified, selective_fc acts exactly like fc.
-The simple usage is:
-sel_fc = selective_fc(input=input, size=128, act=paddle.v2.activation.Tanh())
-
Parameters: |
|
-
---|---|
Returns: | paddle.v2.config_base.Layer object. - |
-
Return type: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
conv_operator
Different from img_conv, conv_op is an Operator, which can be used -in mixed. And conv_op takes two inputs to perform convolution. -The first input is the image and the second is filter kernel. It only -supports GPU mode.
-The example usage is:
-op = conv_operator(img=input1,
- filter=input2,
- filter_size=3,
- num_filters=64,
- num_channels=64)
-
Parameters: |
|
-
---|---|
Returns: | A ConvOperator Object. - |
-
Return type: | ConvOperator - |
-
paddle.v2.layer.
conv_projection
Different from img_conv and conv_op, conv_projection is a Projection, -which can be used in mixed and concat. It uses cudnn to implement -convolution and only supports GPU mode.
-The example usage is:
-proj = conv_projection(input=input1,
- filter_size=3,
- num_filters=64,
- num_channels=64)
-
Parameters: |
|
-
---|---|
Returns: | A Projection Object. - |
-
Return type: | ConvTransProjection | ConvProjection - |
-
paddle.v2.layer.
conv_shift
The example usage is:
-conv_shift = conv_shift(a=layer1, b=layer2)
-
Parameters: |
|
-
---|---|
Returns: | paddle.v2.config_base.Layer object. - |
-
Return type: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
img_conv
Convolution layer for image. Paddle can support both square and non-square -input currently.
-The details of convolution layer, please refer UFLDL’s convolution .
-Convolution Transpose (deconv) layer for image. Paddle can support both square -and non-square input currently.
-The details of convolution transpose layer, -please refer to the following explanation and references therein -<http://datascience.stackexchange.com/questions/6107/ -what-are-deconvolutional-layers/>`_ . -The num_channel means input image’s channel number. It may be 1 or 3 when -input is raw pixels of image(mono or RGB), or it may be the previous layer’s -num_filters.
-There are several groups of filters in PaddlePaddle implementation. -If the groups attribute is greater than 1, for example groups=2, -the input will be splitted into 2 parts along the channel axis, and -the filters will also be splitted into 2 parts. The first half of the filters -is only connected to the first half of the input channels, while the second -half of the filters is only connected to the second half of the input. After -the computation of convolution for each part of input, -the output will be obtained by concatenating the two results.
-The details of grouped convolution, please refer to: -ImageNet Classification with Deep Convolutional Neural Networks
-The example usage is:
-conv = img_conv(input=data, filter_size=1, filter_size_y=1,
- num_channels=8,
- num_filters=16, stride=1,
- bias_attr=False,
- act=paddle.v2.activation.Relu())
-
Parameters: |
|
-
---|---|
Returns: | paddle.v2.config_base.Layer object. - |
-
Return type: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
context_projection
Context Projection.
-It just reorganizes input sequence, combines “context_len” elements of the -sequence to one context from context_start. “context_start” will be set to --(context_len - 1) / 2 by default. When context position is out of sequence -length, padding will be filled as zero if padding_attr = False, otherwise -it is trainable.
-For example, origin sequence is [A B C D E F G], context len is 3, padding_attr -is not set, then after context projection, sequence will -be [ 0AB ABC BCD CDE DEF EFG FG0 ].
-Parameters: |
|
-
---|---|
Returns: | Projection object. - |
-
Return type: | Projection - |
-
paddle.v2.layer.
row_conv
The row convolution is called lookahead convolution. It is firstly -introduced in paper of Deep Speech 2: End-to-End Speech Recognition -in English and Mandarin .
-The bidirectional RNN that learns representation for a sequence by -performing a forward and a backward pass through the entire sequence. -However, unlike unidirectional RNNs, bidirectional RNNs are challenging -to deploy in an online and low-latency setting. The lookahead convolution -incorporates information from future subsequences in a computationally -efficient manner to improve unidirectional RNNs.
-The connection of row convolution is different from the 1D sequence -convolution. Assumed that, the future context-length is k, that is to say, -it can get the output at timestep t by using the the input feature from t-th -timestep to (t+k+1)-th timestep. Assumed that the hidden dim of input -activations are d, the activations r_t for the new layer at time-step t are:
-Note
-The context_len is k + 1. That is to say, the lookahead step -number plus one equals context_len.
-row_conv = row_conv(input=input, context_len=3)
-
Parameters: |
|
-
---|---|
Returns: | paddle.v2.config_base.Layer object. - |
-
Return type: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
img_pool
Image pooling Layer.
-The details of pooling layer, please refer to ufldl’s pooling .
-The example usage is:
-maxpool = img_pool(input=conv,
- pool_size=3,
- pool_size_y=5,
- num_channels=8,
- stride=1,
- stride_y=2,
- padding=1,
- padding_y=2,
- pool_type=MaxPooling())
-
Parameters: |
|
-
---|---|
Returns: | paddle.v2.config_base.Layer object. - |
-
Return type: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
spp
A layer performs spatial pyramid pooling.
- -The example usage is:
-spp = spp(input=data,
- pyramid_height=2,
- num_channels=16,
- pool_type=MaxPooling())
-
Parameters: |
|
-
---|---|
Returns: | paddle.v2.config_base.Layer object. - |
-
Return type: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
maxout
So groups should be larger than 1, and the num of channels should be able -to be devided by groups.
-The simple usage is:
-maxout = maxout(input,
- num_channels=128,
- groups=4)
-
Parameters: |
|
-
---|---|
Returns: | paddle.v2.config_base.Layer object. - |
-
Return type: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
roi_pool
A layer used by Fast R-CNN to extract feature maps of ROIs from the last -feature map.
-Parameters: |
|
-
---|---|
Returns: | paddle.v2.config_base.Layer object. - |
-
Return type: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
pad
This operation pads zeros to the input data according to pad_c,pad_h -and pad_w. pad_c, pad_h, pad_w specify the size in the corresponding -dimension. And the input data shape is NCHW.
-For example, pad_c=[2,3] means padding 2 zeros before the input data -and 3 zeros after the input data in the channel dimension. pad_h means -padding zeros in the height dimension. pad_w means padding zeros in the -width dimension.
-For example,
-input(2,2,2,3) = [
- [ [[1,2,3], [3,4,5]],
- [[2,3,5], [1,6,7]] ],
- [ [[4,3,1], [1,8,7]],
- [[3,8,9], [2,3,5]] ]
- ]
-
-pad_c=[1,1], pad_h=[0,0], pad_w=[0,0]
-
-output(2,4,2,3) = [
- [ [[0,0,0], [0,0,0]],
- [[1,2,3], [3,4,5]],
- [[2,3,5], [1,6,7]],
- [[0,0,0], [0,0,0]] ],
- [ [[0,0,0], [0,0,0]],
- [[4,3,1], [1,8,7]],
- [[3,8,9], [2,3,5]],
- [[0,0,0], [0,0,0]] ]
- ]
-
The simply usage is:
-pad = pad(input=ipt,
- pad_c=[4,4],
- pad_h=[0,0],
- pad_w=[2,2])
-
Parameters: |
|
-
---|---|
Returns: | paddle.v2.config_base.Layer object. - |
-
Return type: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
img_cmrnorm
Response normalization across feature maps.
- -The example usage is:
-norm = img_cmrnorm(input=net, size=5)
-
Parameters: |
|
-
---|---|
Returns: | paddle.v2.config_base.Layer object. - |
-
Return type: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
batch_norm
Batch Normalization Layer. The notation of this layer is as follows.
-\(x\) is the input features over a mini-batch.
-The example usage is:
-norm = batch_norm(input=net, act=paddle.v2.activation.Relu())
-
Parameters: |
|
-
---|---|
Returns: | paddle.v2.config_base.Layer object. - |
-
Return type: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
sum_to_one_norm
A layer for sum-to-one normalization, -which is used in NEURAL TURING MACHINE.
-where \(in\) is a (batchSize x dataDim) input vector, -and \(out\) is a (batchSize x dataDim) output vector.
-The example usage is:
-sum_to_one_norm = sum_to_one_norm(input=layer)
-
Parameters: |
|
-
---|---|
Returns: | paddle.v2.config_base.Layer object. - |
-
Return type: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
cross_channel_norm
Normalize a layer’s output. This layer is necessary for ssd. This -layer applys normalization across the channels of each sample to -a convolutional layer’s output and scales the output by a group of -trainable factors whose dimensions equal to the channel’s number.
-Parameters: |
|
-
---|---|
Returns: | paddle.v2.config_base.Layer object. - |
-
Return type: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
row_l2_norm
A layer for L2-normalization in each row.
-where the size of \(in\) is (batchSize x dataDim) , -and the size of \(out\) is a (batchSize x dataDim) .
-The example usage is:
-row_l2_norm = row_l2_norm(input=layer)
-
Parameters: |
|
-
---|---|
Returns: | paddle.v2.config_base.Layer object. - |
-
Return type: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
recurrent
Simple recurrent unit layer. It is just a fully connect layer through both -time and neural network.
-For each sequence [start, end] it performs the following computation:
-If reversed is true, the order is reversed:
-Parameters: |
|
-
---|---|
Returns: | paddle.v2.config_base.Layer object. - |
-
Return type: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
lstmemory
Long Short-term Memory Cell.
-The memory cell was implemented as follow equations.
-NOTE: In PaddlePaddle’s implementation, the multiplications -\(W_{xi}x_{t}\) , \(W_{xf}x_{t}\), -\(W_{xc}x_t\), \(W_{xo}x_{t}\) are not done in the lstmemory layer, -so an additional mixed with full_matrix_projection or a fc must -be included in the configuration file to complete the input-to-hidden -mappings before lstmemory is called.
-NOTE: This is a low level user interface. You can use network.simple_lstm -to config a simple plain lstm layer.
-Parameters: |
|
-
---|---|
Returns: | paddle.v2.config_base.Layer object. - |
-
Return type: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
grumemory
Gate Recurrent Unit Layer.
-The memory cell was implemented as follow equations.
-1. update gate \(z\): defines how much of the previous memory to -keep around or the unit updates its activations. The update gate -is computed by:
-2. reset gate \(r\): determines how to combine the new input with the -previous memory. The reset gate is computed similarly to the update gate:
-3. The candidate activation \(\tilde{h_t}\) is computed similarly to -that of the traditional recurrent unit:
-4. The hidden activation \(h_t\) of the GRU at time t is a linear -interpolation between the previous activation \(h_{t-1}\) and the -candidate activation \(\tilde{h_t}\):
-NOTE: In PaddlePaddle’s implementation, the multiplication operations -\(W_{r}x_{t}\), \(W_{z}x_{t}\) and \(W x_t\) are not performed -in gate_recurrent layer. Consequently, an additional mixed with -full_matrix_projection or a fc must be included before grumemory -is called.
- -The simple usage is:
-gru = grumemory(input)
-
Parameters: |
|
-
---|---|
Returns: | paddle.v2.config_base.Layer object. - |
-
Return type: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
gated_unit
The gated unit layer implements a simple gating mechanism over the input. -The input \(X\) is first projected into a new space \(X'\), and -it is also used to produce a gate weight \(\sigma\). Element-wise -product between \(X'\) and \(\sigma\) is finally returned.
-The example usage is:
-Parameters: |
|
-
---|---|
Returns: | paddle.v2.config_base.Layer object. - |
-
Return type: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
memory
The memory takes a layer’s output at previous time step as its own output.
-If boot_bias, the activation of the bias is the initial value of the memory.
-If boot_with_const_id is set, then the memory’s output at the first time step
-is a IndexSlot, the Arguments.ids()[0] is this cost_id
.
If boot is specified, the memory’s output at the first time step will -be the boot’s output.
-In other case, the default memory’s output at the first time step is zero.
-mem = memory(size=256, name='state')
-state = fc(input=mem, size=256, name='state')
-
If you do not want to specify the name, you can also use set_input() -to specify the layer to be remembered as the following:
-mem = memory(size=256)
-state = fc(input=mem, size=256)
-mem.set_input(mem)
-
Parameters: |
|
-
---|---|
Returns: | paddle.v2.config_base.Layer object. - |
-
Return type: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
recurrent_group
Recurrent layer group is an extremely flexible recurrent unit in -PaddlePaddle. As long as the user defines the calculation done within a -time step, PaddlePaddle will iterate such a recurrent calculation over -sequence input. This is useful for attention-based models, or Neural -Turning Machine like models.
-The basic usage (time steps) is:
-def step(input):
- output = fc(input=layer,
- size=1024,
- act=paddle.v2.activation.Linear(),
- bias_attr=False)
- return output
-
-group = recurrent_group(input=layer,
- step=step)
-
You can see following configs for further usages:
-Parameters: |
|
-
---|---|
Returns: | paddle.v2.config_base.Layer object. - |
-
Return type: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
lstm_step
LSTM Step Layer. This function is used only in recurrent_group. -The lstm equations are shown as follows.
-The input of lstm step is \(Wx_t + Wh_{t-1}\), and user should use
-mixed
and full_matrix_projection
to calculate these
-input vectors.
The state of lstm step is \(c_{t-1}\). And lstm step layer will do
-This layer has two outputs. The default output is \(h_t\). The other
-output is \(o_t\), whose name is ‘state’ and users can use
-get_output
to extract this output.
Parameters: |
|
-
---|---|
Returns: | paddle.v2.config_base.Layer object. - |
-
Return type: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
gru_step
Parameters: |
|
-
---|---|
Returns: | paddle.v2.config_base.Layer object. - |
-
Return type: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
beam_search
Beam search is a heuristic search algorithm used in sequence generation. -It explores a graph by expanding the most promising nodes in a limited set -to maintain tractability.
-The example usage is:
-def rnn_step(input):
- last_time_step_output = memory(name='rnn', size=512)
- with mixed(size=512, name='rnn') as simple_rnn:
- simple_rnn += full_matrix_projection(input)
- simple_rnn += last_time_step_output
- return simple_rnn
-
-generated_word_embedding = GeneratedInput(
- size=target_dictionary_dim,
- embedding_name="target_language_embedding",
- embedding_size=word_vector_dim)
-
-beam_gen = beam_search(name="decoder",
- step=rnn_step,
- input=[StaticInput(encoder_last),
- generated_word_embedding],
- bos_id=0,
- eos_id=1,
- beam_size=5)
-
Please see the following demo for more details:
-Parameters: |
|
-
---|---|
Returns: | The generated word index. - |
-
Return type: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
get_output
Get layer’s output by name. In PaddlePaddle, a layer might return multiple -values, but returns one layer’s output. If the user wants to use another -output besides the default one, please use get_output first to get -the output from input.
-Parameters: |
|
-
---|---|
Returns: | paddle.v2.config_base.Layer object. - |
-
Return type: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
mixed
Mixed Layer. A mixed layer will add all inputs together, then activate the sum. -Each input is a projection or operator.
-There are two styles of usages.
-with mixed(size=256) as m:
- m += full_matrix_projection(input=layer1)
- m += identity_projection(input=layer2)
-
m = mixed(size=256,
- input=[full_matrix_projection(input=layer1),
- full_matrix_projection(input=layer2)])
-
Parameters: |
|
-
---|---|
Returns: | MixedLayerType object. - |
-
Return type: | MixedLayerType - |
-
paddle.v2.layer.
embedding
Define a embedding Layer.
-Parameters: |
|
-
---|---|
Returns: | paddle.v2.config_base.Layer object. - |
-
Return type: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
scaling_projection
scaling_projection multiplies the input with a scalar parameter.
-The example usage is:
-proj = scaling_projection(input=layer)
-
Parameters: |
|
-
---|---|
Returns: | ScalingProjection object. - |
-
Return type: | ScalingProjection - |
-
paddle.v2.layer.
dotmul_projection
DotMulProjection takes a layer as input and performs -element-wise multiplication with weight.
-where \(.*\) means element-wise multiplication.
-The example usage is:
-proj = dotmul_projection(input=layer)
-
Parameters: |
|
-
---|---|
Returns: | DotMulProjection object. - |
-
Return type: | DotMulProjection - |
-
paddle.v2.layer.
dotmul_operator
DotMulOperator takes two inputs and performs element-wise multiplication:
-where \(.*\) means element-wise multiplication, and -scale is a config scalar, its default value is 1.
-The example usage is:
-op = dotmul_operator(a=layer1, b=layer2, scale=0.5)
-
Parameters: |
|
-
---|---|
Returns: | DotMulOperator object. - |
-
Return type: | DotMulOperator - |
-
paddle.v2.layer.
full_matrix_projection
Full Matrix Projection. It performs full matrix multiplication.
-There are two styles of usage.
-with mixed(size=100) as m:
- m += full_matrix_projection(input=layer)
-
proj = full_matrix_projection(input=layer,
- size=100,
- param_attr=ParamAttr(name='_proj'))
-
Parameters: |
|
-
---|---|
Returns: | FullMatrixProjection Object. - |
-
Return type: | FullMatrixProjection - |
-
paddle.v2.layer.
identity_projection
The example usage is:
-proj = identity_projection(input=layer)
-
The example usage is:
-proj = identity_projection(input=layer,
- offset=10)
-
Note that neither of the projections have trainable parameter.
-Parameters: |
|
-
---|---|
Returns: | IdentityProjection or IdentityOffsetProjection object - |
-
Return type: | IdentityProjection | IdentityOffsetProjection - |
-
paddle.v2.layer.
slice_projection
slice_projection slices the input value into multiple parts, -then selects and merges some of them into a new output.
-The example usage is:
-proj = slice_projection(input=layer, slices=[(0, 10), (20, 30)])
-
Note that slice_projection has no trainable parameter.
-Parameters: |
|
-
---|---|
Returns: | SliceProjection object. - |
-
Return type: | SliceProjection - |
-
paddle.v2.layer.
table_projection
Table Projection. It selects rows from parameter where row_id -is in input_ids.
-where \(out\) is output, \(table\) is parameter, \(ids\) is input_ids, -and \(i\) is row_id.
-There are two styles of usage.
-with mixed(size=100) as m:
- m += table_projection(input=layer)
-
proj = table_projection(input=layer,
- size=100,
- param_attr=ParamAttr(name='_proj'))
-
Parameters: |
|
-
---|---|
Returns: | TableProjection Object. - |
-
Return type: | TableProjection - |
-
paddle.v2.layer.
trans_full_matrix_projection
Different from full_matrix_projection, this projection performs matrix -multiplication, using the transpose of weight.
-\(w^\mathrm{T}\) means the transpose of weight. -The simply usage is:
-proj = trans_full_matrix_projection(input=layer,
- size=100,
- param_attr=ParamAttr(
- name='_proj',
- initial_mean=0.0,
- initial_std=0.01))
-
Parameters: |
|
-
---|---|
Returns: | TransposedFullMatrixProjection Object. - |
-
Return type: | TransposedFullMatrixProjection - |
-
paddle.v2.layer.
AggregateLevel
PaddlePaddle supports three sequence types:
-SequenceType.NO_SEQUENCE
means the sample is not a sequence.SequenceType.SEQUENCE
means the sample is a sequence.SequenceType.SUB_SEQUENCE
means the sample is a nested sequence,
-each timestep of which is also a sequence.Accordingly, AggregateLevel supports two modes:
-AggregateLevel.TO_NO_SEQUENCE
means the aggregation acts on each
-timestep of a sequence, both SUB_SEQUENCE
and SEQUENCE
will
-be aggregated to NO_SEQUENCE
.AggregateLevel.TO_SEQUENCE
means the aggregation acts on each
-sequence of a nested sequence, SUB_SEQUENCE
will be aggregated to
-SEQUENCE
.paddle.v2.layer.
pooling
Pooling layer for sequence inputs, not used for Image.
-If stride > 0, this layer slides a window whose size is determined by stride, -and returns the pooling value of the sequence in the window as the output. Thus, -a long sequence will be shortened. Note that for sequence with sub-sequence, the -default value of stride is -1.
-The example usage is:
-seq_pool = pooling(input=layer,
- pooling_type=AvgPooling(),
- agg_level=AggregateLevel.TO_NO_SEQUENCE)
-
Parameters: |
|
-
---|---|
Returns: | paddle.v2.config_base.Layer object. - |
-
Return type: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
last_seq
Get Last Timestamp Activation of a sequence.
-If stride > 0, this layer will slide a window whose size is determined by stride, -and return the last value of the sequence in the window as the output. Thus, a -long sequence will be shortened. Note that for sequence with sub-sequence, the -default value of stride is -1.
-The simple usage is:
-seq = last_seq(input=layer)
-
Parameters: |
|
-
---|---|
Returns: | paddle.v2.config_base.Layer object. - |
-
Return type: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
first_seq
Get First Timestamp Activation of a sequence.
-If stride > 0, this layer will slide a window whose size is determined by stride, -and return the first value of the sequence in the window as the output. Thus, a -long sequence will be shortened. Note that for sequence with sub-sequence, the -default value of stride is -1.
-The simple usage is:
-seq = first_seq(input=layer)
-
Parameters: |
|
-
---|---|
Returns: | paddle.v2.config_base.Layer object. - |
-
Return type: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
sub_seq
sub_seq will return sub-sequences from the input sequences. For each -sequence in the input sequence layer, sub_seq will slice it by given -offset and size. Please notice that, number of offset value and size value -both are equal to the number of sequence in the input layer.
-sub_seq = sub_seq(input=input_seq, offsets=offsets, sizes=sizes)
-
Parameters: |
|
-
---|---|
Returns: | paddle.v2.config_base.Layer object. - |
-
Return type: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
concat
Concatenate all input vectors to one vector. -Inputs can be a list of paddle.v2.config_base.Layer or a list of projection.
-The example usage is:
-concat = concat(input=[layer1, layer2])
-
Parameters: |
|
-
---|---|
Returns: | paddle.v2.config_base.Layer object. - |
-
Return type: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
seq_concat
Concatenate sequence a and sequence b.
-Output: [a1, ..., am, b1, ..., bn]
-Note that the above computation is for one sample. Multiple samples are -processed in one batch.
-The example usage is:
-concat = seq_concat(a=layer1, b=layer2)
-
Parameters: |
|
-
---|---|
Returns: | paddle.v2.config_base.Layer object. - |
-
Return type: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
seq_slice
seq_slice will return one or several sub-sequences from the -input sequence layer given start and end indices.
----
-- If only start indices are given, and end indices are set to None, -this layer slices the input sequence from the given start indices -to its end.
-- If only end indices are given, and start indices are set to None, -this layer slices the input sequence from its beginning to the -given end indices.
-- If start and end indices are both given, they should have the same -number of elements.
-
If start or end indices contains more than one elements, the input sequence -will be sliced for multiple times.
-seq_silce = seq_slice(input=input_seq,
- starts=start_pos, ends=end_pos)
-
Parameters: |
|
-
---|---|
Returns: | paddle.v2.config_base.Layer object. - |
-
Return type: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
sub_nested_seq
The sub_nested_seq accepts two inputs: the first one is a nested -sequence; the second one is a set of selceted indices in the nested sequence.
-Then sub_nest_seq trims the first nested sequence input according -to the selected indices to form a new output. This layer is useful in -beam training.
-The example usage is:
-sub_nest_seq = sub_nested_seq(input=data, selected_indices=selected_ids)
-
Parameters: |
|
-
---|---|
Returns: | paddle.v2.config_base.Layer object. - |
-
Return type: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
block_expand
The expanding method is the same with ExpandConvLayer, but saved the transposed -value. After expanding, output.sequenceStartPositions will store timeline. -The number of time steps is outputH * outputW and the dimension of each -time step is block_y * block_x * num_channels. This layer can be used after -convolutional neural network, and before recurrent neural network.
-The simple usage is:
-block_expand = block_expand(input=layer,
- num_channels=128,
- stride_x=1,
- stride_y=1,
- block_x=1,
- block_x=3)
-
Parameters: |
|
-
---|---|
Returns: | paddle.v2.config_base.Layer object. - |
-
Return type: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
ExpandLevel
Please refer to AggregateLevel first.
-ExpandLevel supports two modes:
-ExpandLevel.FROM_NO_SEQUENCE
means the expansion acts on
-NO_SEQUENCE
, which will be expanded to
-SEQUENCE
or SUB_SEQUENCE
.ExpandLevel.FROM_SEQUENCE
means the expansion acts on
-SEQUENCE
, which will be expanded to
-SUB_SEQUENCE
.paddle.v2.layer.
expand
A layer for expanding dense data or (sequence data where the length of each -sequence is one) to sequence data.
-The example usage is:
-expand = expand(input=layer1,
- expand_as=layer2,
- expand_level=ExpandLevel.FROM_NO_SEQUENCE)
-
Parameters: |
|
-
---|---|
Returns: | paddle.v2.config_base.Layer object. - |
-
Return type: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
repeat
A layer for repeating the input for num_repeats times.
-If as_row_vector:
-If not as_row_vector:
-The example usage is:
-expand = repeat(input=layer, num_repeats=4)
-
Parameters: |
|
-
---|---|
Returns: | paddle.v2.config_base.Layer object. - |
-
Return type: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
rotate
A layer for rotating 90 degrees (clock-wise) for each feature channel, -usually used when the input sample is some image or feature map.
-where \(x\) is (M x N x C) input, and \(y\) is (N x M x C) output.
-The example usage is:
-rot = rotate(input=layer,
- height=100,
- width=100)
-
Parameters: |
|
-
---|---|
Returns: | paddle.v2.config_base.Layer object. - |
-
Return type: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
seq_reshape
A layer for reshaping the sequence. Assume the input sequence has T instances, -the dimension of each instance is M, and the input reshape_size is N, then the -output sequence has T*M/N instances, the dimension of each instance is N.
-Note that T*M/N must be an integer.
-The example usage is:
-reshape = seq_reshape(input=layer, reshape_size=4)
-
Parameters: |
|
-
---|---|
Returns: | paddle.v2.config_base.Layer object. - |
-
Return type: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
addto
AddtoLayer.
-where \(y\) is output, \(x\) is input, \(b\) is bias, -and \(f\) is activation function.
-The example usage is:
-addto = addto(input=[layer1, layer2],
- act=paddle.v2.activation.Relu(),
- bias_attr=False)
-
This layer just simply adds all input layers together, then activates the -sum. All inputs should share the same dimension, which is also the dimension -of this layer’s output.
-There is no weight matrix for each input, because it just a simple add -operation. If you want a complicated operation before add, please use -mixed.
-Parameters: |
|
-
---|---|
Returns: | paddle.v2.config_base.Layer object. - |
-
Return type: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
linear_comb
where \(0 \le i \le N-1\)
-Or in the matrix notation:
-Note that the above computation is for one sample. Multiple samples are -processed in one batch.
-The simple usage is:
-linear_comb = linear_comb(weights=weight, vectors=vectors,
- size=elem_dim)
-
Parameters: |
|
-
---|---|
Returns: | paddle.v2.config_base.Layer object. - |
-
Return type: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
interpolation
This layer performs linear interpolation on two inputs, -which is used in NEURAL TURING MACHINE.
-where \(x_1\) and \(x_2\) are two (batchSize x dataDim) inputs, -\(w\) is (batchSize x 1) weight vector, and \(y\) is -(batchSize x dataDim) output.
-The example usage is:
-interpolation = interpolation(input=[layer1, layer2], weight=layer3)
-
Parameters: |
|
-
---|---|
Returns: | paddle.v2.config_base.Layer object. - |
-
Return type: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
bilinear_interp
This layer implements bilinear interpolation on convolutional layer’s output.
-Please refer to Wikipedia: https://en.wikipedia.org/wiki/Bilinear_interpolation
-The simple usage is:
-bilinear = bilinear_interp(input=layer1, out_size_x=64, out_size_y=64)
-
Parameters: |
|
-
---|---|
Returns: | paddle.v2.config_base.Layer object. - |
-
Return type: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
dropout
The example usage is:
-dropout = dropout(input=input, dropout_rate=0.5)
-
Parameters: |
|
-
---|---|
Returns: | paddle.v2.config_base.Layer object. - |
-
Return type: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
dot_prod
A layer for computing the dot product of two vectors.
-The example usage is:
-dot_prod = dot_prod(input1=vec1, input2=vec2)
-
Parameters: |
|
-
---|---|
Returns: | paddle.v2.config_base.Layer object. - |
-
Return type: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
out_prod
A layer for computing the outer product of two vectors -The result is a matrix of size(input1) x size(input2)
-The example usage is:
-out_prod = out_prod(input1=vec1, input2=vec2)
-
Parameters: |
|
-
---|---|
Returns: | paddle.v2.config_base.Layer object. - |
-
Return type: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
power
This layer applies a power function to a vector element-wise, -which is used in NEURAL TURING MACHINE.
-where \(x\) is an input vector, \(w\) is a scalar exponent, -and \(y\) is an output vector.
-The example usage is:
-power = power(input=layer1, weight=layer2)
-
Parameters: |
|
-
---|---|
Returns: | paddle.v2.config_base.Layer object. - |
-
Return type: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
scaling
A layer for multiplying input vector by weight scalar.
-where \(x\) is size=dataDim input, \(w\) is size=1 weight, -and \(y\) is size=dataDim output.
-Note that the above computation is for one sample. Multiple samples are -processed in one batch.
-The example usage is:
-scale = scaling(input=layer1, weight=layer2)
-
Parameters: |
|
-
---|---|
Returns: | paddle.v2.config_base.Layer object. - |
-
Return type: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
clip
A layer for clipping the input value by the threshold.
-clip = clip(input=input, min=-10, max=10)
-
Parameters: |
|
-
---|---|
Returns: | paddle.v2.config_base.Layer object. - |
-
Return type: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
resize
The resize layer resizes the input matrix with a shape of [Height, Width] -into the output matrix with a shape of [Height x Width / size, size], -where size is the parameter of this layer indicating the output dimension.
-Parameters: |
|
-
---|---|
Returns: | A paddle.v2.config_base.Layer object. - |
-
Return type: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
slope_intercept
This layer for applying a slope and an intercept to the input.
-The simple usage is:
-scale = slope_intercept(input=input, slope=-1.0, intercept=1.0)
-
Parameters: |
|
-
---|---|
Returns: | paddle.v2.config_base.Layer object. - |
-
Return type: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
tensor
This layer performs tensor operation on two inputs. -For example:
-The simple usage is:
-tensor = tensor(a=layer1, b=layer2, size=1000)
-
Parameters: |
|
-
---|---|
Returns: | paddle.v2.config_base.Layer object. - |
-
Return type: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
cos_sim
Cosine Similarity Layer. The cosine similarity equation is here.
-The size of a is M, size of b is M*N, -Similarity will be calculated N times by step M. The output size is -N. The scale will be multiplied to similarity.
-Note that the above computation is for one sample. Multiple samples are -processed in one batch.
-The example usage is:
-cos = cos_sim(a=layer1, b=layer2, size=3)
-
Parameters: |
|
-
---|---|
Returns: | paddle.v2.config_base.Layer object. - |
-
Return type: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
l2_distance
This layer calculates and returns the Euclidean distance between two input -vectors x and y. The equation is as follows:
-The output size of this layer is fixed to be 1. Note that the above -computation is for one sample. Multiple samples are processed in one batch.
-The example usage is:
-l2_sim = l2_distance(x=layer1, y=layer2)
-
Parameters: |
|
-
---|---|
Returns: | The returned paddle.v2.config_base.Layer object. - |
-
Return type: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
trans
A layer for transposing a minibatch matrix.
-where \(x\) is (M x N) input, and \(y\) is (N x M) output.
-The example usage is:
-trans = trans(input=layer)
-
Parameters: |
|
-
---|---|
Returns: | paddle.v2.config_base.Layer object. - |
-
Return type: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
scale_shift
A layer applies a linear transformation to each element in each row of -the input matrix. For each element, the layer first re-scales it and then -adds a bias to it.
-This layer is very like the SlopeInterceptLayer, except the scale and -bias are trainable.
-scale_shift = scale_shift(input=input, bias_attr=False)
-
Parameters: |
|
-
---|---|
Returns: | paddle.v2.config_base.Layer object. - |
-
Return type: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
factorization_machine
The Factorization Machine models pairwise feature interactions as inner -product of the learned latent vectors corresponding to each input feature. -The Factorization Machine can effectively capture feature interactions -especially when the input is sparse.
-This implementation only consider the 2-order feature interactions using -Factorization Machine with the formula:
-Note
-X is the input vector with size n. V is the factor matrix. Each row of V -is the latent vector corresponding to each input dimesion. The size of -each latent vector is k.
-For details of Factorization Machine, please refer to the paper: -Factorization machines.
-Parameters: |
|
-
---|---|
Returns: | paddle.v2.config_base.Layer object. - |
-
Return type: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
max_id
A layer for finding the id which has the maximal value for each sample. -The result is stored in output.ids.
-The example usage is:
-maxid = maxid(input=layer)
-
Parameters: |
|
-
---|---|
Returns: | paddle.v2.config_base.Layer object. - |
-
Return type: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
sampling_id
A layer for sampling id from a multinomial distribution from the input layer. -Sampling one id for one sample.
-The simple usage is:
-samping_id = sampling_id(input=input)
-
Parameters: |
|
-
---|---|
Returns: | paddle.v2.config_base.Layer object. - |
-
Return type: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
multiplex
This layer multiplex multiple layers according to the indexes, -which are provided by the first input layer. -inputs[0]: the indexes of the layers to form the output of size batchSize. -inputs[1:N]; the candidate output data. -For each index i from 0 to batchSize - 1, the i-th row of the output is the -the same to the i-th row of the (index[i] + 1)-th layer.
-For each i-th row of output: -.. math:
-y[i][j] = x_{x_{0}[i] + 1}[i][j], j = 0,1, ... , (x_{1}.width - 1)
-
where, y is output. \(x_{k}\) is the k-th input layer and -\(k = x_{0}[i] + 1\).
-The example usage is:
-maxid = multiplex(input=layers)
-
Parameters: |
|
-
---|---|
Returns: | paddle.v2.config_base.Layer object. - |
-
Return type: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
cross_entropy_cost
A loss layer for multi class entropy.
-The example usage is:
-cost = cross_entropy(input=input,
- label=label)
-
Parameters: |
|
-
---|---|
Returns: | paddle.v2.config_base.Layer object. - |
-
Return type: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
cross_entropy_with_selfnorm_cost
A loss layer for multi class entropy with selfnorm. -Input should be a vector of positive numbers, without normalization.
-The example usage is:
-cost = cross_entropy_with_selfnorm(input=input,
- label=label)
-
Parameters: |
|
-
---|---|
Returns: | paddle.v2.config_base.Layer object. - |
-
Return type: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
multi_binary_label_cross_entropy_cost
A loss layer for multi binary label cross entropy.
-The example usage is:
-cost = multi_binary_label_cross_entropy(input=input,
- label=label)
-
Parameters: |
|
-
---|---|
Returns: | paddle.v2.config_base.Layer object. - |
-
Return type: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
huber_regression_cost
In statistics, the Huber loss is a loss function used in robust regression, -that is less sensitive to outliers in data than the squared error loss. -Given a prediction f(x), a label y and \(\delta\), the loss function -is defined as:
-The example usage is:
-cost = huber_regression_cost(input=input, label=label)
-
Parameters: |
|
-
---|---|
Returns: | paddle.v2.config_base.Layer object. - |
-
Return type: | paddle.v2.config_base.Layer. - |
-
paddle.v2.layer.
huber_classification_cost
For classification purposes, a variant of the Huber loss called modified Huber -is sometimes used. Given a prediction f(x) (a real-valued classifier score) and -a true binary class label \(y\in \{-1, 1 \}\), the modified Huber -loss is defined as:
-The example usage is:
-cost = huber_classification_cost(input=input, label=label)
-
Parameters: |
|
-
---|---|
Returns: | paddle.v2.config_base.Layer object. - |
-
Return type: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
lambda_cost
lambdaCost for lambdaRank LTR approach.
-The example usage is:
-cost = lambda_cost(input=input,
- score=score,
- NDCG_num=8,
- max_sort_size=-1)
-
Parameters: |
|
-
---|---|
Returns: | paddle.v2.config_base.Layer object. - |
-
Return type: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
square_error_cost
sum of square error cost:
-Parameters: |
|
-
---|---|
Returns: | paddle.v2.config_base.Layer object. - |
-
Return type: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
rank_cost
A cost Layer for learning to rank using gradient descent.
-The example usage is:
-cost = rank_cost(left=out_left,
- right=out_right,
- label=label)
-
Parameters: |
|
-
---|---|
Returns: | paddle.v2.config_base.Layer object. - |
-
Return type: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
sum_cost
A loss layer which calculates the sum of the input as loss.
-The example usage is:
-cost = sum_cost(input=input)
-
Parameters: |
|
-
---|---|
Returns: | paddle.v2.config_base.Layer object. - |
-
Return type: | paddle.v2.config_base.Layer. - |
-
paddle.v2.layer.
crf
A layer for calculating the cost of sequential conditional random -field model.
-The example usage is:
-crf = crf(input=input,
- label=label,
- size=label_dim)
-
Parameters: |
|
-
---|---|
Returns: | paddle.v2.config_base.Layer object. - |
-
Return type: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
crf_decoding
A layer for calculating the decoding sequence of sequential conditional -random field model. The decoding sequence is stored in output.ids. -If the input ‘label’ is provided, it is treated as the ground-truth label, and -this layer will also calculate error. output.value[i] is 1 for an incorrect -decoding and 0 for the correct.
-The example usage is:
-crf_decoding = crf_decoding(input=input,
- size=label_dim)
-
Parameters: |
|
-
---|---|
Returns: | paddle.v2.config_base.Layer object. - |
-
Return type: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
ctc
Connectionist Temporal Classification (CTC) is designed for temporal -classication task. e.g. sequence labeling problems where the -alignment between the inputs and the target labels is unknown.
-Note
-Considering the ‘blank’ label needed by CTC, you need to use (num_classes + 1) -as the size of the input, where num_classes is the category number. -And the ‘blank’ is the last category index. So the size of ‘input’ layer (e.g. -fc with softmax activation) should be (num_classes + 1). The size of -ctc should also be (num_classes + 1).
-The example usage is:
-ctc = ctc(input=input,
- label=label,
- size=9055,
- norm_by_times=True)
-
Parameters: |
|
-
---|---|
Returns: | paddle.v2.config_base.Layer object. - |
-
Return type: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
warp_ctc
A layer intergrating the open-source warp-ctc library, which is used in
-Deep Speech 2: End-toEnd Speech Recognition in English and Mandarin, to compute Connectionist Temporal
-Classification (CTC) loss. Besides, another warp-ctc repository, which is forked from
-the official one, is maintained to enable more compiling options. During the
-building process, PaddlePaddle will clone the source codes, build and
-install it to third_party/install/warpctc
directory.
Note
-The example usage is:
-ctc = warp_ctc(input=input,
- label=label,
- size=1001,
- blank=1000,
- norm_by_times=False)
-
Parameters: |
|
-
---|---|
Returns: | paddle.v2.config_base.Layer object. - |
-
Return type: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
nce
Noise-contrastive estimation.
- -The example usage is:
-cost = nce(input=[layer1, layer2], label=layer2,
- param_attr=[attr1, attr2], weight=layer3,
- num_classes=3, neg_distribution=[0.1,0.3,0.6])
-
Parameters: |
|
-
---|---|
Returns: | paddle.v2.config_base.Layer object. - |
-
Return type: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
hsigmoid
Organize the classes into a binary tree. At each node, a sigmoid function -is used to calculate the probability of belonging to the right branch.
-The example usage is:
-cost = hsigmoid(input=[layer1, layer2],
- label=data)
-
Parameters: |
|
-
---|---|
Returns: | paddle.v2.config_base.Layer object. - |
-
Return type: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
smooth_l1_cost
This is a L1 loss but more smooth. It requires that the -sizes of input and label are equal. The formula is as follows,
-in which
-The example usage is:
-cost = smooth_l1_cost(input=input,
- label=label)
-
Parameters: |
|
-
---|---|
Returns: | paddle.v2.config_base.Layer object. - |
-
Return type: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
multibox_loss
Compute the location loss and the confidence loss for ssd.
-Parameters: |
|
-
---|---|
Returns: | paddle.v2.config_base.Layer object. - |
-
Return type: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
detection_output
Apply the NMS to the output of network and compute the predict bounding -box location. The output’s shape of this layer could be zero if there is -no valid bounding box.
-Parameters: |
|
-
---|---|
Returns: | paddle.v2.config_base.Layer object. - |
-
Return type: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
eos
A layer for checking EOS for each sample: -- output_id = (input_id == conf.eos_id)
-The result is stored in output_.ids. -It is used by recurrent layer group.
-The example usage is:
-eos = eos(input=layer, eos_id=id)
-
Parameters: |
|
-
---|---|
Returns: | paddle.v2.config_base.Layer object. - |
-
Return type: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
prelu
The Parametric Relu activation that actives outputs with a learnable weight.
-The example usage is:
-prelu = prelu(input=layers, partial_sum=1)
-
Parameters: |
|
-
---|---|
Returns: | paddle.v2.config_base.Layer object. - |
-
Return type: | paddle.v2.config_base.Layer - |
-
The v2.networks module contains pieces of neural network that combine multiple layers.
-paddle.v2.networks.
sequence_conv_pool
(*args, **kwargs)Text convolution pooling group.
-Text input => Context Projection => FC Layer => Pooling => Output.
-Parameters: |
|
-
---|---|
Returns: | layer’s output. - |
-
Return type: | LayerOutput - |
-
paddle.v2.networks.
text_conv_pool
(*args, **kwargs)Text convolution pooling group.
-Text input => Context Projection => FC Layer => Pooling => Output.
-Parameters: |
|
-
---|---|
Returns: | layer’s output. - |
-
Return type: | LayerOutput - |
-
paddle.v2.networks.
img_conv_bn_pool
(*args, **kwargs)Convolution, batch normalization, pooling group.
-Img input => Conv => BN => Pooling => Output.
-Parameters: |
|
-
---|---|
Returns: | layer’s output - |
-
Return type: | LayerOutput - |
-
paddle.v2.networks.
img_conv_group
(*args, **kwargs)Image Convolution Group, Used for vgg net.
-Parameters: |
|
-
---|---|
Returns: | layer’s output - |
-
Return type: | LayerOutput - |
-
paddle.v2.networks.
simple_img_conv_pool
(*args, **kwargs)Simple image convolution and pooling group.
-Img input => Conv => Pooling => Output.
-Parameters: |
|
-
---|---|
Returns: | layer’s output - |
-
Return type: | LayerOutput - |
-
paddle.v2.networks.
vgg_16_network
(input_image, num_channels, num_classes=1000)Same model from https://gist.github.com/ksimonyan/211839e770f7b538e2d8
-Parameters: |
|
-
---|---|
Returns: | layer’s output - |
-
Return type: | LayerOutput - |
-
paddle.v2.networks.
lstmemory_unit
(*args, **kwargs)lstmemory_unit defines the caculation process of a LSTM unit during a -single time step. This function is not a recurrent layer, so it can not be -directly used to process sequence input. This function is always used in -recurrent_group (see layers.py for more details) to implement attention -mechanism.
-Please refer to Generating Sequences With Recurrent Neural Networks -for more details about LSTM. The link goes as follows: -.. _Link: https://arxiv.org/abs/1308.0850
-The example usage is:
-lstm_step = lstmemory_unit(input=[layer1],
- size=256,
- act=TanhActivation(),
- gate_act=SigmoidActivation(),
- state_act=TanhActivation())
-
Parameters: |
|
-
---|---|
Returns: | The lstmemory unit name. - |
-
Return type: | LayerOutput - |
-
paddle.v2.networks.
lstmemory_group
(*args, **kwargs)lstm_group is a recurrent_group version of Long Short Term Memory. It -does exactly the same calculation as the lstmemory layer (see lstmemory in -layers.py for the maths) does. A promising benefit is that LSTM memory -cell states(or hidden states) in every time step are accessible to the -user. This is especially useful in attention model. If you do not need to -access the internal states of the lstm and merely use its outputs, -it is recommended to use the lstmemory, which is relatively faster than -lstmemory_group.
-NOTE: In PaddlePaddle’s implementation, the following input-to-hidden -multiplications: -\(W_{x_i}x_{t}\) , \(W_{x_f}x_{t}\), -\(W_{x_c}x_t\), \(W_{x_o}x_{t}\) are not done in lstmemory_unit to -speed up the calculations. Consequently, an additional mixed_layer with -full_matrix_projection must be included before lstmemory_unit is called.
-The example usage is:
-lstm_step = lstmemory_group(input=[layer1],
- size=256,
- act=TanhActivation(),
- gate_act=SigmoidActivation(),
- state_act=TanhActivation())
-
Parameters: |
|
-
---|---|
Returns: | the lstmemory group. - |
-
Return type: | LayerOutput - |
-
paddle.v2.networks.
simple_lstm
(*args, **kwargs)Simple LSTM Cell.
-It just combines a mixed layer with fully_matrix_projection and a lstmemory -layer. The simple lstm cell was implemented with follow equations.
-Please refer to Generating Sequences With Recurrent Neural Networks for more -details about lstm. Link is here.
-Parameters: |
|
-
---|---|
Returns: | layer’s output. - |
-
Return type: | LayerOutput - |
-
paddle.v2.networks.
bidirectional_lstm
(*args, **kwargs)A bidirectional_lstm is a recurrent unit that iterates over the input -sequence both in forward and backward orders, and then concatenate two -outputs to form a final output. However, concatenation of two outputs -is not the only way to form the final output, you can also, for example, -just add them together.
-Please refer to Neural Machine Translation by Jointly Learning to Align -and Translate for more details about the bidirectional lstm. -The link goes as follows: -.. _Link: https://arxiv.org/pdf/1409.0473v3.pdf
-The example usage is:
-bi_lstm = bidirectional_lstm(input=[input1], size=512)
-
Parameters: |
|
-
---|---|
Returns: | LayerOutput object. - |
-
Return type: | LayerOutput - |
-
paddle.v2.networks.
gru_unit
(*args, **kwargs)gru_unit defines the calculation process of a gated recurrent unit during a single -time step. This function is not a recurrent layer, so it can not be -directly used to process sequence input. This function is always used in -the recurrent_group (see layers.py for more details) to implement attention -mechanism.
-Please see grumemory in layers.py for the details about the maths.
-Parameters: |
|
-
---|---|
Returns: | the gru output layer. - |
-
Return type: | LayerOutput - |
-
paddle.v2.networks.
gru_group
(*args, **kwargs)gru_group is a recurrent_group version of Gated Recurrent Unit. It -does exactly the same calculation as the grumemory layer does. A promising -benefit is that gru hidden states are accessible to the user. This is -especially useful in attention model. If you do not need to access -any internal state and merely use the outputs of a GRU, it is recommended -to use the grumemory, which is relatively faster.
-Please see grumemory in layers.py for more detail about the maths.
-The example usage is:
-gru = gru_group(input=[layer1],
- size=256,
- act=TanhActivation(),
- gate_act=SigmoidActivation())
-
Parameters: |
|
-
---|---|
Returns: | the gru group. - |
-
Return type: | LayerOutput - |
-
paddle.v2.networks.
simple_gru
(*args, **kwargs)You may see gru_step_layer, grumemory in layers.py, gru_unit, gru_group, -simple_gru in network.py. The reason why there are so many interfaces is -that we have two ways to implement recurrent neural network. One way is to -use one complete layer to implement rnn (including simple rnn, gru and lstm) -with multiple time steps, such as recurrent_layer, lstmemory, grumemory. But -the multiplication operation \(W x_t\) is not computed in these layers. -See details in their interfaces in layers.py. -The other implementation is to use an recurrent group which can ensemble a -series of layers to compute rnn step by step. This way is flexible for -attenion mechanism or other complex connections.
-The computational speed is that, grumemory is relatively better than -gru_group, and gru_group is relatively better than simple_gru.
-The example usage is:
-gru = simple_gru(input=[layer1], size=256)
-
Parameters: |
|
-
---|---|
Returns: | the gru group. - |
-
Return type: | LayerOutput - |
-
paddle.v2.networks.
simple_gru2
(*args, **kwargs)simple_gru2 is the same with simple_gru, but using grumemory instead. -Please refer to grumemory in layers.py for more detail about the math. -simple_gru2 is faster than simple_gru.
-The example usage is:
-gru = simple_gru2(input=[layer1], size=256)
-
Parameters: |
|
-
---|---|
Returns: | the gru group. - |
-
Return type: | LayerOutput - |
-
paddle.v2.networks.
bidirectional_gru
(*args, **kwargs)A bidirectional_gru is a recurrent unit that iterates over the input -sequence both in forward and backward orders, and then concatenate two -outputs to form a final output. However, concatenation of two outputs -is not the only way to form the final output, you can also, for example, -just add them together.
-The example usage is:
-bi_gru = bidirectional_gru(input=[input1], size=512)
-
Parameters: |
|
-
---|---|
Returns: | LayerOutput object. - |
-
Return type: | LayerOutput - |
-
paddle.v2.networks.
simple_attention
(*args, **kwargs)Calculate and return a context vector with attention mechanism. -Size of the context vector equals to size of the encoded_sequence.
-where \(h_{j}\) is the jth element of encoded_sequence, -\(U_{a}h_{j}\) is the jth element of encoded_proj -\(s_{i-1}\) is decoder_state -\(f\) is weight_act, and is set to tanh by default.
-Please refer to Neural Machine Translation by Jointly Learning to -Align and Translate for more details. The link is as follows: -https://arxiv.org/abs/1409.0473.
-The example usage is:
-context = simple_attention(encoded_sequence=enc_seq,
- encoded_proj=enc_proj,
- decoder_state=decoder_prev,)
-
Parameters: |
|
-
---|---|
Returns: | a context vector - |
-
Return type: | LayerOutput - |
-
paddle.v2.networks.
dot_product_attention
(*args, **kwargs)Calculate and return a context vector with dot-product attention mechanism. -The dimension of the context vector equals to that of the attended_sequence.
-where \(h_{j}\) is the jth element of encoded_sequence, -\(z_{j}\) is the jth element of attended_sequence, -\(s_{i-1}\) is transformed_state.
-The example usage is:
-context = dot_product_attention(encoded_sequence=enc_seq,
- attended_sequence=att_seq,
- transformed_state=state,)
-
Parameters: |
|
-
---|---|
Returns: | The context vector. - |
-
Return type: | LayerOutput - |
-
paddle.v2.optimizer.
Momentum
(momentum=None, sparse=False, **kwargs)Momentum Optimizer.
-When sparse=False, the momentum update formula is as follows:
-where, \(k\) is momentum, \(\lambda\) is decay rate, -\(\gamma_t\) is learning rate at the t’th iteration. -\(w_{t}\) is the weight as the t’th iteration. -And the \(v_{t}\) is the history momentum variable.
-When sparse=True, the update scheme:
-where \(k\) is momentum, \(\lambda\) is decay rate, -\(\gamma_t\) is learning rate at the t’th iteration.
-Parameters: |
|
-
---|
paddle.v2.optimizer.
Adam
(beta1=0.9, beta2=0.999, epsilon=1e-08, **kwargs)Adam optimizer. -The details of please refer Adam: A Method for Stochastic Optimization
-Parameters: |
|
-
---|
paddle.v2.optimizer.
Adamax
(beta1=0.9, beta2=0.999, **kwargs)Adamax optimizer.
-The details of please refer this Adam: A Method for Stochastic Optimization
-Parameters: |
|
-
---|
paddle.v2.optimizer.
AdaGrad
(**kwargs)Adagrad(for ADAptive GRAdient algorithm) optimizer.
-For details please refer this Adaptive Subgradient Methods for -Online Learning and Stochastic Optimization.
-paddle.v2.optimizer.
DecayedAdaGrad
(rho=0.95, epsilon=1e-06, **kwargs)AdaGrad method with decayed sum gradients. The equations of this method -show as follow.
-Parameters: |
|
-
---|
paddle.v2.optimizer.
AdaDelta
(rho=0.95, epsilon=1e-06, **kwargs)AdaDelta method. The details of adadelta please refer to this -ADADELTA: AN ADAPTIVE LEARNING RATE METHOD.
-Parameters: |
|
-
---|
paddle.v2.optimizer.
RMSProp
(rho=0.95, epsilon=1e-06, **kwargs)RMSProp(for Root Mean Square Propagation) optimizer. For details please -refer this slide.
-The equations of this method as follows:
-Parameters: |
|
-
---|
paddle.v2.pooling.
BasePool
(name)Base Pooling Type. -Note these pooling types are used for sequence input, not for images. -Each PoolingType contains one parameter:
-Parameters: | name (basestring) – pooling layer type name used by paddle. | -
---|
paddle.v2.pooling.
Avg
(strategy='average')Average pooling.
-Return the average values for each dimension in sequence or time steps.
-paddle.v2.pooling.
Max
(output_max_index=None)Max pooling.
-Return the very large values for each dimension in sequence or time steps.
-Parameters: | output_max_index (bool|None) – True if output sequence max index instead of max -value. None means use default value in proto. | -
---|
paddle.v2.pooling.
Sum
Sum pooling.
-Return the sum values of each dimension in sequence or time steps.
-paddle.v2.pooling.
SquareRootN
Square Root Pooling.
-Return the square root values of each dimension in sequence or time steps.
-paddle.v2.pooling.
CudnnMax
Cudnn max pooling only support GPU. Return the maxinum value in the -pooling window.
-paddle.v2.data_type.
dense_array
(dim, seq_type=0)Dense Array. It means the input feature is dense array with float type. -For example, if the input is an image with 28*28 pixels, the input of -Paddle neural network could be a dense vector with dimension 784 or a -numpy array with shape (28, 28).
-For the 2-D convolution operation, each sample in one mini-batch must have -the similarly size in PaddlePaddle now. But, it supports variable-dimension -feature across mini-batch. For the variable-dimension, the param dim is not -used. While the data reader must yield numpy array and the data feeder will -set the data shape correctly.
-Parameters: |
|
-
---|---|
Returns: | An input type object. - |
-
Return type: | InputType - |
-
paddle.v2.data_type.
dense_vector
(dim, seq_type=0)Dense Array. It means the input feature is dense array with float type. -For example, if the input is an image with 28*28 pixels, the input of -Paddle neural network could be a dense vector with dimension 784 or a -numpy array with shape (28, 28).
-For the 2-D convolution operation, each sample in one mini-batch must have -the similarly size in PaddlePaddle now. But, it supports variable-dimension -feature across mini-batch. For the variable-dimension, the param dim is not -used. While the data reader must yield numpy array and the data feeder will -set the data shape correctly.
-Parameters: |
|
-
---|---|
Returns: | An input type object. - |
-
Return type: | InputType - |
-
paddle.v2.data_type.
dense_vector_sequence
(dim)Data type of a sequence of dense vector.
-Parameters: | dim (int) – dimension of dense vector. | -
---|---|
Returns: | An input type object | -
Return type: | InputType | -
paddle.v2.data_type.
integer_value
(value_range, seq_type=0)Data type of integer.
-Parameters: |
|
-
---|---|
Returns: | An input type object - |
-
Return type: | InputType - |
-
paddle.v2.data_type.
integer_value_sequence
(value_range)Data type of a sequence of integer.
-Parameters: | value_range (int) – range of each element. | -
---|
paddle.v2.data_type.
sparse_binary_vector
(dim, seq_type=0)Sparse binary vector. It means the input feature is a sparse vector and the -every element in this vector is either zero or one.
-Parameters: |
|
-
---|---|
Returns: | An input type object. - |
-
Return type: | InputType - |
-
paddle.v2.data_type.
sparse_binary_vector_sequence
(dim)Parameters: | dim (int) – dimension of sparse vector. | -
---|---|
Returns: | An input type object | -
Return type: | InputType | -
paddle.v2.data_type.
sparse_float_vector
(dim, seq_type=0)Sparse vector. It means the input feature is a sparse vector. Most of the -elements in this vector are zero, others could be any float value.
-Parameters: |
|
-
---|---|
Returns: | An input type object. - |
-
Return type: | InputType - |
-
paddle.v2.data_type.
sparse_float_vector_sequence
(dim)Data type of a sequence of sparse vector, which most elements are zero, -others could be any float value.
-Parameters: | dim (int) – dimension of sparse vector. | -
---|---|
Returns: | An input type object | -
Return type: | InputType | -
paddle.v2.data_type.
sparse_non_value_slot
(dim, seq_type=0)Sparse binary vector. It means the input feature is a sparse vector and the -every element in this vector is either zero or one.
-Parameters: |
|
-
---|---|
Returns: | An input type object. - |
-
Return type: | InputType - |
-
paddle.v2.data_type.
sparse_value_slot
(dim, seq_type=0)Sparse vector. It means the input feature is a sparse vector. Most of the -elements in this vector are zero, others could be any float value.
-Parameters: |
|
-
---|---|
Returns: | An input type object. - |
-
Return type: | InputType - |
-
paddle.v2.data_type.
InputType
(dim, seq_type, tp)InputType is the base class for paddle input types.
-Note
-this is a base class, and should never be used by user.
-Parameters: |
|
-
---|
At training and testing time, PaddlePaddle programs need to read data. To ease -the users’ work to write data reading code, we define that
-Indeed, data reader doesn’t have to be a function that reads and yields data
-items. It can be any function with no parameter that creates a iterable
-(anything can be used in for x in iterable
):
iterable = data_reader()
-
Element produced from the iterable should be a single entry of data, -not a mini batch. That entry of data could be a single item, or a tuple of -items. -Item should be of supported type (e.g., numpy 1d -array of float32, int, list of int)
-An example implementation for single item data reader creator:
-def reader_creator_random_image(width, height):
- def reader():
- while True:
- yield numpy.random.uniform(-1, 1, size=width*height)
-return reader
-
An example implementation for multiple item data reader creator:
-def reader_creator_random_image_and_label(width, height, label):
- def reader():
- while True:
- yield numpy.random.uniform(-1, 1, size=width*height), label
-return reader
-
TODO(yuyang18): Should we add whole design doc here?
-paddle.v2.reader.
map_readers
(func, *readers)Creates a data reader that outputs return value of function using -output of each data readers as arguments.
-Parameters: |
|
-
---|---|
Type: | callable - |
-
Returns: | the created data reader. - |
-
Return type: | callable - |
-
paddle.v2.reader.
buffered
(reader, size)Creates a buffered data reader.
-The buffered data reader will read and save data entries into a -buffer. Reading from the buffered data reader will proceed as long -as the buffer is not empty.
-Parameters: |
|
-
---|---|
Returns: | the buffered data reader. - |
-
paddle.v2.reader.
compose
(*readers, **kwargs)Creates a data reader whose output is the combination of input readers.
-If input readers output following data entries: -(1, 2) 3 (4, 5) -The composed reader will output: -(1, 2, 3, 4, 5)
-Parameters: |
|
-
---|---|
Returns: | the new data reader. - |
-
Raises: | ComposeNotAligned – outputs of readers are not aligned. -Will not raise when check_alignment is set to False. - |
-
paddle.v2.reader.
chain
(*readers)Creates a data reader whose output is the outputs of input data -readers chained together.
-If input readers output following data entries: -[0, 0, 0] -[1, 1, 1] -[2, 2, 2] -The chained reader will output: -[0, 0, 0, 1, 1, 1, 2, 2, 2]
-Parameters: | readers – input readers. | -
---|---|
Returns: | the new data reader. | -
Return type: | callable | -
paddle.v2.reader.
shuffle
(reader, buf_size)Creates a data reader whose data output is shuffled.
-Output from the iterator that created by original reader will be -buffered into shuffle buffer, and then shuffled. The size of shuffle buffer -is determined by argument buf_size.
-Parameters: |
|
-
---|---|
Returns: | the new reader whose output is shuffled. - |
-
Return type: | callable - |
-
paddle.v2.reader.
firstn
(reader, n)Limit the max number of samples that reader could return.
-Parameters: |
|
-
---|---|
Returns: | the decorated reader. - |
-
Return type: | callable - |
-
paddle.v2.reader.
xmap_readers
(mapper, reader, process_num, buffer_size, order=False)Use multiprocess to map samples from reader by a mapper defined by user. -And this function contains a buffered decorator. -:param mapper: a function to map sample. -:type mapper: callable -:param reader: the data reader to read from -:type reader: callable -:param process_num: process number to handle original sample -:type process_num: int -:param buffer_size: max buffer size -:type buffer_size: int -:param order: keep the order of reader -:type order: bool -:return: the decarated reader -:rtype: callable
-paddle.v2.reader.
PipeReader
(command, bufsize=8192, file_type='plain')PipeReader read data by stream from a command, take it’s -stdout into a pipe buffer and redirect it to the parser to -parse, then yield data as your desired format.
-You can using standard linux command or call another program -to read data, from HDFS, Ceph, URL, AWS S3 etc:
-An example:
-def example_reader():
- for f in myfiles:
- pr = PipeReader("cat %s"%f)
- for l in pr.get_line():
- sample = l.split(" ")
- yield sample
-
get_line
(cut_lines=True, line_break='\n')---
-- - - - param cut_lines: - cut buffer to lines -- type cut_lines: bool -- param line_break: - - line break of the file, like -
type line_break: | |
---|---|
string | -|
return: | one line or a buffer of bytes | -
rtype: | string | -
Creator package contains some simple reader creator, which could -be used in user program.
-paddle.v2.reader.creator.
np_array
(x)Creates a reader that yields elements of x, if it is a -numpy vector. Or rows of x, if it is a numpy matrix. -Or any sub-hyperplane indexed by the highest dimension.
-Parameters: | x – the numpy array to create reader from. | -
---|---|
Returns: | data reader created from x. | -
paddle.v2.reader.creator.
text_file
(path)Creates a data reader that outputs text line by line from given text file. -Trailing new line (‘\n’) of each line will be removed.
-Path: | path of the text file. | -
---|---|
Returns: | data reader of text file | -
paddle.v2.reader.creator.
cloud_reader
(paths, etcd_endpoints, timeout_sec=5, buf_size=64)Paths: | path of recordio files, can be a string or a string list. | -
---|---|
Etcd_endpoints: | the endpoints for etcd cluster | -
Returns: | data reader of recordio files. | -
paddle.v2.minibatch.
batch
(reader, batch_size)Create a batched reader.
-Parameters: |
|
-
---|---|
Returns: | the batched reader. - |
-
Return type: | callable - |
-
Dataset package.
-MNIST dataset.
-This module will download dataset from http://yann.lecun.com/exdb/mnist/ and -parse training set and test set into paddle reader creators.
-paddle.v2.dataset.mnist.
train
()MNIST training set creator.
-It returns a reader creator, each sample in the reader is image pixels in -[0, 1] and label in [0, 9].
-Returns: | Training reader creator | -
---|---|
Return type: | callable | -
paddle.v2.dataset.mnist.
test
()MNIST test set creator.
-It returns a reader creator, each sample in the reader is image pixels in -[0, 1] and label in [0, 9].
-Returns: | Test reader creator. | -
---|---|
Return type: | callable | -
paddle.v2.dataset.mnist.
convert
(path)Converts dataset to recordio format
-CIFAR dataset.
-This module will download dataset from -https://www.cs.toronto.edu/~kriz/cifar.html and parse train/test set into -paddle reader creators.
-The CIFAR-10 dataset consists of 60000 32x32 colour images in 10 classes, -with 6000 images per class. There are 50000 training images and 10000 test -images.
-The CIFAR-100 dataset is just like the CIFAR-10, except it has 100 classes -containing 600 images each. There are 500 training images and 100 testing -images per class.
-paddle.v2.dataset.cifar.
train100
()CIFAR-100 training set creator.
-It returns a reader creator, each sample in the reader is image pixels in -[0, 1] and label in [0, 99].
-Returns: | Training reader creator | -
---|---|
Return type: | callable | -
paddle.v2.dataset.cifar.
test100
()CIFAR-100 test set creator.
-It returns a reader creator, each sample in the reader is image pixels in -[0, 1] and label in [0, 9].
-Returns: | Test reader creator. | -
---|---|
Return type: | callable | -
paddle.v2.dataset.cifar.
train10
()CIFAR-10 training set creator.
-It returns a reader creator, each sample in the reader is image pixels in -[0, 1] and label in [0, 9].
-Returns: | Training reader creator | -
---|---|
Return type: | callable | -
paddle.v2.dataset.cifar.
test10
()CIFAR-10 test set creator.
-It returns a reader creator, each sample in the reader is image pixels in -[0, 1] and label in [0, 9].
-Returns: | Test reader creator. | -
---|---|
Return type: | callable | -
paddle.v2.dataset.cifar.
convert
(path)Converts dataset to recordio format
-Conll05 dataset. -Paddle semantic role labeling Book and demo use this dataset as an example. -Because Conll05 is not free in public, the default downloaded URL is test set -of Conll05 (which is public). Users can change URL and MD5 to their Conll -dataset. And a pre-trained word vector model based on Wikipedia corpus is used -to initialize SRL model.
-paddle.v2.dataset.conll05.
get_dict
()Get the word, verb and label dictionary of Wikipedia corpus.
-paddle.v2.dataset.conll05.
get_embedding
()Get the trained word vector based on Wikipedia corpus.
-paddle.v2.dataset.conll05.
test
()Conll05 test set creator.
-Because the training dataset is not free, the test dataset is used for -training. It returns a reader creator, each sample in the reader is nine -features, including sentence sequence, predicate, predicate context, -predicate context flag and tagged sequence.
-Returns: | Training reader creator | -
---|---|
Return type: | callable | -
IMDB dataset.
-This module downloads IMDB dataset from -http://ai.stanford.edu/%7Eamaas/data/sentiment/. This dataset contains a set -of 25,000 highly polar movie reviews for training, and 25,000 for testing. -Besides, this module also provides API for building dictionary.
-paddle.v2.dataset.imdb.
build_dict
(pattern, cutoff)Build a word dictionary from the corpus. Keys of the dictionary are words, -and values are zero-based IDs of these words.
-paddle.v2.dataset.imdb.
train
(word_idx)IMDB training set creator.
-It returns a reader creator, each sample in the reader is an zero-based ID -sequence and label in [0, 1].
-Parameters: | word_idx (dict) – word dictionary | -
---|---|
Returns: | Training reader creator | -
Return type: | callable | -
paddle.v2.dataset.imdb.
test
(word_idx)IMDB test set creator.
-It returns a reader creator, each sample in the reader is an zero-based ID -sequence and label in [0, 1].
-Parameters: | word_idx (dict) – word dictionary | -
---|---|
Returns: | Test reader creator | -
Return type: | callable | -
paddle.v2.dataset.imdb.
convert
(path)Converts dataset to recordio format
-imikolov’s simple dataset.
-This module will download dataset from -http://www.fit.vutbr.cz/~imikolov/rnnlm/ and parse training set and test set -into paddle reader creators.
-paddle.v2.dataset.imikolov.
build_dict
(min_word_freq=50)Build a word dictionary from the corpus, Keys of the dictionary are words, -and values are zero-based IDs of these words.
-paddle.v2.dataset.imikolov.
train
(word_idx, n, data_type=1)imikolov training set creator.
-It returns a reader creator, each sample in the reader is a word ID -tuple.
-Parameters: |
|
-
---|---|
Returns: | Training reader creator - |
-
Return type: | callable - |
-
paddle.v2.dataset.imikolov.
test
(word_idx, n, data_type=1)imikolov test set creator.
-It returns a reader creator, each sample in the reader is a word ID -tuple.
-Parameters: |
|
-
---|---|
Returns: | Test reader creator - |
-
Return type: | callable - |
-
paddle.v2.dataset.imikolov.
convert
(path)Converts dataset to recordio format
-Movielens 1-M dataset.
-Movielens 1-M dataset contains 1 million ratings from 6000 users on 4000 -movies, which was collected by GroupLens Research. This module will download -Movielens 1-M dataset from -http://files.grouplens.org/datasets/movielens/ml-1m.zip and parse training -set and test set into paddle reader creators.
-paddle.v2.dataset.movielens.
get_movie_title_dict
()Get movie title dictionary.
-paddle.v2.dataset.movielens.
max_movie_id
()Get the maximum value of movie id.
-paddle.v2.dataset.movielens.
max_user_id
()Get the maximum value of user id.
-paddle.v2.dataset.movielens.
max_job_id
()Get the maximum value of job id.
-paddle.v2.dataset.movielens.
movie_categories
()Get movie categoriges dictionary.
-paddle.v2.dataset.movielens.
user_info
()Get user info dictionary.
-paddle.v2.dataset.movielens.
movie_info
()Get movie info dictionary.
-paddle.v2.dataset.movielens.
convert
(path)Converts dataset to recordio format
-paddle.v2.dataset.movielens.
MovieInfo
(index, categories, title)Movie id, title and categories information are stored in MovieInfo.
-paddle.v2.dataset.movielens.
UserInfo
(index, gender, age, job_id)User id, gender, age, and job information are stored in UserInfo.
-The script fetch and preprocess movie_reviews data set that provided by NLTK
-TODO(yuyang18): Complete dataset.
-paddle.v2.dataset.sentiment.
get_word_dict
()Sorted the words by the frequency of words which occur in sample -:return:
---words_freq_sorted
paddle.v2.dataset.sentiment.
train
()Default training set reader creator
-paddle.v2.dataset.sentiment.
test
()Default test set reader creator
-paddle.v2.dataset.sentiment.
convert
(path)Converts dataset to recordio format
-UCI Housing dataset.
-This module will download dataset from -https://archive.ics.uci.edu/ml/machine-learning-databases/housing/ and -parse training set and test set into paddle reader creators.
-paddle.v2.dataset.uci_housing.
train
()UCI_HOUSING training set creator.
-It returns a reader creator, each sample in the reader is features after -normalization and price number.
-Returns: | Training reader creator | -
---|---|
Return type: | callable | -
paddle.v2.dataset.uci_housing.
test
()UCI_HOUSING test set creator.
-It returns a reader creator, each sample in the reader is features after -normalization and price number.
-Returns: | Test reader creator | -
---|---|
Return type: | callable | -
WMT14 dataset. -The original WMT14 dataset is too large and a small set of data for set is -provided. This module will download dataset from -http://paddlepaddle.cdn.bcebos.com/demo/wmt_shrinked_data/wmt14.tgz and -parse training set and test set into paddle reader creators.
-paddle.v2.dataset.wmt14.
train
(dict_size)WMT14 training set creator.
-It returns a reader creator, each sample in the reader is source language -word ID sequence, target language word ID sequence and next word ID -sequence.
-Returns: | Training reader creator | -
---|---|
Return type: | callable | -
paddle.v2.dataset.wmt14.
test
(dict_size)WMT14 test set creator.
-It returns a reader creator, each sample in the reader is source language -word ID sequence, target language word ID sequence and next word ID -sequence.
-Returns: | Test reader creator | -
---|---|
Return type: | callable | -
paddle.v2.dataset.wmt14.
convert
(path)Converts dataset to recordio format
-ACL2016 Multimodal Machine Translation. Please see this website for more -details: http://www.statmt.org/wmt16/multimodal-task.html#task1
-If you use the dataset created for your task, please cite the following paper: -Multi30K: Multilingual English-German Image Descriptions.
-}
-paddle.v2.dataset.wmt16.
train
(src_dict_size, trg_dict_size, src_lang='en')WMT16 train set reader.
-This function returns the reader for train data. Each sample the reader -returns is made up of three fields: the source language word index sequence, -target language word index sequence and next word index sequence.
-NOTE: -The original like for training data is: -http://www.quest.dcs.shef.ac.uk/wmt16_files_mmt/training.tar.gz
-paddle.dataset.wmt16 provides a tokenized version of the original dataset by -using moses’s tokenization script: -https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/tokenizer.perl
-Parameters: |
|
-
---|---|
Returns: | The train reader. - |
-
Return type: | callable - |
-
paddle.v2.dataset.wmt16.
test
(src_dict_size, trg_dict_size, src_lang='en')WMT16 test set reader.
-This function returns the reader for test data. Each sample the reader -returns is made up of three fields: the source language word index sequence, -target language word index sequence and next word index sequence.
-NOTE: -The original like for test data is: -http://www.quest.dcs.shef.ac.uk/wmt16_files_mmt/mmt16_task1_test.tar.gz
-paddle.dataset.wmt16 provides a tokenized version of the original dataset by -using moses’s tokenization script: -https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/tokenizer.perl
-Parameters: |
|
-
---|---|
Returns: | The test reader. - |
-
Return type: | callable - |
-
paddle.v2.dataset.wmt16.
validation
(src_dict_size, trg_dict_size, src_lang='en')WMT16 validation set reader.
-This function returns the reader for validation data. Each sample the reader -returns is made up of three fields: the source language word index sequence, -target language word index sequence and next word index sequence.
-NOTE: -The original like for validation data is: -http://www.quest.dcs.shef.ac.uk/wmt16_files_mmt/validation.tar.gz
-paddle.dataset.wmt16 provides a tokenized version of the original dataset by -using moses’s tokenization script: -https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/tokenizer.perl
-Parameters: |
|
-
---|---|
Returns: | The validation reader. - |
-
Return type: | callable - |
-
paddle.v2.dataset.wmt16.
get_dict
(lang, dict_size, reverse=False)return the word dictionary for the specified language.
-Parameters: |
|
-
---|---|
Returns: | The word dictionary for the specific language. - |
-
Return type: | dict - |
-
paddle.v2.dataset.wmt16.
fetch
()download the entire dataset.
-paddle.v2.dataset.wmt16.
convert
(path, src_dict_size, trg_dict_size, src_lang)Converts dataset to recordio format.
-This file contains some common interfaces for image preprocess. -Many users are confused about the image layout. We introduce -the image layout as follows.
-CHW Layout
-Color format: RGB or BGR
-OpenCV use BGR color format. PIL use RGB color format. Both -formats can be used for training. Noted that, the format should -be keep consistent between the training and inference peroid.
-paddle.v2.image.
batch_images_from_tar
(data_file, dataset_name, img2label, num_per_batch=1024)¶Read images from tar file and batch them into batch file.
-Parameters: |
|
-
---|---|
Returns: | path of list file containing paths of batch file - |
-
Return type: | string - |
-
paddle.v2.image.
load_image_bytes
(bytes, is_color=True)¶Load an color or gray image from bytes array.
-Example usage:
-with open('cat.jpg') as f:
- im = load_image_bytes(f.read())
-
Parameters: |
|
-
---|
paddle.v2.image.
load_image
(file, is_color=True)¶Load an color or gray image from the file path.
-Example usage:
-im = load_image('cat.jpg')
-
Parameters: |
|
-
---|
paddle.v2.image.
resize_short
(im, size)¶Resize an image so that the length of shorter edge is size.
-Example usage:
-im = load_image('cat.jpg')
-im = resize_short(im, 256)
-
Parameters: |
|
-
---|
paddle.v2.image.
to_chw
(im, order=(2, 0, 1))¶Transpose the input image order. The image layout is HWC format -opened by cv2 or PIL. Transpose the input image to CHW layout -according the order (2,0,1).
-Example usage:
-im = load_image('cat.jpg')
-im = resize_short(im, 256)
-im = to_chw(im)
-
Parameters: |
|
-
---|
paddle.v2.image.
center_crop
(im, size, is_color=True)¶Crop the center of image with size.
-Example usage:
-im = center_crop(im, 224)
-
Parameters: |
|
-
---|
paddle.v2.image.
random_crop
(im, size, is_color=True)¶Randomly crop input image with size.
-Example usage:
-im = random_crop(im, 224)
-
Parameters: |
|
-
---|
paddle.v2.image.
left_right_flip
(im, is_color=True)¶Flip an image along the horizontal direction. -Return the flipped image.
-Example usage:
-im = left_right_flip(im)
-
Parameters: |
|
-
---|
paddle.v2.image.
simple_transform
(im, resize_size, crop_size, is_train, is_color=True, mean=None)¶Simply data argumentation for training. These operations include -resizing, croping and flipping.
-Example usage:
-im = simple_transform(im, 256, 224, True)
-
Parameters: |
|
-
---|
paddle.v2.image.
load_and_transform
(filename, resize_size, crop_size, is_train, is_color=True, mean=None)¶Load image from the input file filename and transform image for -data argumentation. Please refer to the simple_transform interface -for the transform operations.
-Example usage:
-im = load_and_transform('cat.jpg', 256, 224, True)
-
Parameters: |
|
-
---|
paddle.v2.fluid.evaluator.
Accuracy
(input, label, k=1, **kwargs)Average Accuracy for multiple mini-batches.
-paddle.v2.fluid.evaluator.
ChunkEvaluator
(input, label, chunk_scheme, num_chunk_types, excluded_chunk_types=None)Accumulate counter numbers output by chunk_eval from mini-batches and -compute the precision recall and F1-score using the accumulated counter -numbers.
-paddle.v2.fluid.executor.
Executor
(places)paddle.v2.fluid.executor.
global_scope
()paddle.v2.fluid.executor.
scope_guard
(*args, **kwds)paddle.v2.fluid.executor.
switch_scope
(scope)paddle.v2.fluid.initializer.
Constant
alias of ConstantInitializer
paddle.v2.fluid.initializer.
Uniform
alias of UniformInitializer
paddle.v2.fluid.initializer.
Normal
alias of NormalInitializer
paddle.v2.fluid.initializer.
Xavier
alias of XavierInitializer
paddle.v2.fluid.io.
save_vars
(executor, dirname, main_program=None, vars=None, predicate=None, save_file_name=None)Save variables to directory by executor.
-Parameters: |
|
-
---|
program which fit predicate. Default default_main_program. -:param predicate: The Predicate describes a callable that returns a variable -as a bool. If it returns true, the corresponding input variable will be saved. -:param vars: variables need to be saved. If vars is specified, program & predicate -will be ignored -:param save_file_name: The name of a single file that all vars are saved to. -If it is None, save variables to separate files.
-Returns: | None | -
---|
paddle.v2.fluid.io.
save_params
(executor, dirname, main_program=None, save_file_name=None)Save all parameters to directory with executor.
-paddle.v2.fluid.io.
save_persistables
(executor, dirname, main_program=None, save_file_name=None)Save all persistables to directory with executor.
-paddle.v2.fluid.io.
load_vars
(executor, dirname, main_program=None, vars=None, predicate=None, load_file_name=None)Load variables from directory by executor.
-Parameters: |
|
-
---|
program which fit predicate. Default default_main_program(). -:param predicate: The Predicate describes a callable that returns a variable -as a bool. If it returns true, the corresponding input variable will be loaded. -:param vars: variables need to be loaded. If vars is specified, program & -predicate will be ignored -:param load_file_name: The name of the single file that all vars are loaded from. -If it is None, load variables from separate files.
-Returns: | None | -
---|
paddle.v2.fluid.io.
load_params
(executor, dirname, main_program=None, load_file_name=None)load all parameters from directory by executor.
-paddle.v2.fluid.io.
load_persistables
(executor, dirname, main_program=None, load_file_name=None)load all persistables from directory by executor.
-paddle.v2.fluid.io.
save_inference_model
(dirname, feeded_var_names, target_vars, executor, main_program=None, save_file_name=None)Build a model especially for inference, -and save it to directory by the executor.
-Parameters: |
|
-
---|
If it is None, save parameters to separate files.
-Returns: | None | -
---|
paddle.v2.fluid.io.
load_inference_model
(dirname, executor, load_file_name=None)Load inference model from a directory
-Parameters: |
|
-
---|
If it is None, load parameters from separate files.
-Returns: | [program, feed_target_names, fetch_targets] -program: program especially for inference. -feed_target_names: Names of variables that need to feed data -fetch_targets: Variables from which we can get inference results. | -
---|
paddle.v2.fluid.io.
get_inference_program
(target_vars, main_program=None)paddle.v2.fluid.layers.
split_lod_tensor
(input, mask, level=0)split_lod_tensor
-This function takes in an input that contains the complete lod information, -and takes in a mask which is used to mask certain parts of the input. -The output is the true branch and the false branch with the mask applied to -the input at a certain level in the tensor.
-Parameters: |
|
-
---|---|
Returns: | The true branch of tensor as per the mask applied to input. -Variable: The false branch of tensor as per the mask applied to input. - |
-
Return type: | Variable - |
-
Examples
-x = layers.data(name='x', shape=[1])
-x.persistable = True
-
-y = layers.data(name='y', shape=[1])
-y.persistable = True
-
-out_true, out_false = layers.split_lod_tensor(
- input=x, mask=y, level=level)
-
paddle.v2.fluid.layers.
merge_lod_tensor
(in_true, in_false, x, mask, level=0)merge_lod_tensor
-This function takes in an input \(x\), the True branch, the False -branch and a binary \(mask\). Using this information, this function -merges the True and False branches of the tensor into a single Output -at a certain lod level indiacted by \(level\).
-Parameters: |
|
-
---|---|
Returns: | The merged output tensor. - |
-
Return type: | Variable - |
-
Examples
-x = layers.data(
- name='x', shape=[1], dtype='float32', stop_gradient=False)
-y = layers.data(
- name='y', shape=[1], dtype='bool', stop_gradient=False)
-
-level = 0
-
-out_true, out_false = layers.split_lod_tensor(
- input=x, mask=y, level=level)
-out = layers.merge_lod_tensor(
- in_true=out_true, in_false=out_false, mask=y, x=x, level=level)
-
paddle.v2.fluid.layers.
BlockGuard
(main_program)BlockGuard class.
-BlockGuard class is used to create a sub-block in a program by -using the Python with keyword.
-paddle.v2.fluid.layers.
BlockGuardWithCompletion
(rnn)BlockGuardWithCompletion class.
-BlockGuardWithCompletion class is used to create an op with a block in a program.
-paddle.v2.fluid.layers.
StaticRNNMemoryLink
(init, pre_mem, mem=None)StaticRNNMemoryLink class.
-Parameters: |
|
-
---|
StaticRNNMemoryLink class is used to create a link between two -memory cells of a StaticRNN.
-paddle.v2.fluid.layers.
WhileGuard
(while_op)paddle.v2.fluid.layers.
While
(cond, name=None)paddle.v2.fluid.layers.
lod_rank_table
(x, level=0)LoD Rank Table Operator. Given an input variable x and a level number -of LoD, this layer creates a LodRankTable object. A LoDRankTable object -contains a list of bi-element tuples. Each tuple consists of an index and -a length, both of which are int type. Refering to specified level of LoD, -the index is the sequence index number and the length representes the -sequence length. Please note that the list is ranked in descending order by -the length. The following is an example:
-----x is a LoDTensor: - x.lod = [[0, 2, 3], - [0, 5, 6, 7]] - x.data = [a, b, c, d, e, f, g] - -1. set level to 0: - Create lod rank table: - lod_rank_table_obj = lod_rank_table(x, level=0) - - Get: - lod_rank_table_obj.items() = [(0, 2), (1, 1)] - -2. set level to 1: - Create lod rank table: - lod_rank_table_obj = lod_rank_table(x, level=1) - - Get: - lod_rank_table_obj.items() = [(0, 5), (1, 1), (2, 1)] -
Parameters: |
|
-
---|---|
Returns: | The created LoDRankTable object. - |
-
Return type: | Variable - |
-
Examples
-x = fluid.layers.data(name='x', shape=[10],
- dtype='float32', lod_level=1)
-out = layers.lod_rank_table(x=x, level=0)
-
paddle.v2.fluid.layers.
max_sequence_len
(rank_table)Max Sequence Len Operator. Given a LoDRankTable object, this layer -returns the max length of a batch of sequences. In fact, a LoDRankTable -object contains a list of tuples(<sequence index, sequence length>) and -the list is already sorted by sequence length in descending order, so the -operator just returns the sequence length of the first tuple element.
-Parameters: | rank_table (Variable) – Input variable which is a LoDRankTable object. | -
---|---|
Returns: | The max length of sequence. | -
Return type: | Variable | -
Examples
-x = fluid.layers.data(name='x', shape=[10],
- dtype='float32', lod_level=1)
-rank_table = layers.lod_rank_table(x=x, level=0)
-max_seq_len = layers.max_sequence_len(rank_table)
-
paddle.v2.fluid.layers.
topk
(input, k)topk
-This function performs the operation that selects the k entries in the input -vector and outputs their values and indices as vectors. Thus topk_out[j] is -the j-th largest entry in input, and its index is topk_indices[j]
-Parameters: |
|
-
---|---|
Returns: |
|
-
Return type: | Variable - |
-
Examples
-x = fluid.layers.data(name='x', shape=[10])
-k = 5
-array = fluid.layers.topk(x, k)
-
paddle.v2.fluid.layers.
lod_tensor_to_array
(x, table)Convert a LOD_TENSOR to an LOD_TENSOR_ARRAY.
-Parameters: |
|
-
---|---|
Returns: |
|
-
Return type: | Variable - |
-
Examples
-x = fluid.layers.data(name='x', shape=[10])
-table = fluid.layers.lod_rank_table(x, level=0)
-array = fluid.layers.lod_tensor_to_array(x, table)
-
paddle.v2.fluid.layers.
array_to_lod_tensor
(x, table)Convert a LoD_Tensor_Aarry to an LoDTensor.
-Parameters: |
|
-
---|---|
Returns: |
|
-
Return type: | Variable - |
-
Examples
-x = fluid.layers.data(name='x', shape=[10])
-table = fluid.layers.lod_rank_table(x, level=0)
-array = fluid.layers.lod_tensor_to_array(x, table)
-lod_tensor = fluid.layers.array_to_lod_tensor(array, table)
-
paddle.v2.fluid.layers.
increment
(x, value=1.0, in_place=True)This function performs an operation that increments each value in the -input \(x\) by an amount: \(value\) as mentioned in the input -parameter. This operation is performed in-place by default.
-Parameters: |
|
-
---|---|
Returns: |
|
-
Return type: | Variable - |
-
Examples
-data = fluid.layers.data(name='data', shape=[32, 32], dtype='float32')
-data = fluid.layers.increment(x=data, value=3.0, in_place=True)
-
paddle.v2.fluid.layers.
array_write
(x, i, array=None)This function writes the given input variable to the specified position -indicating by the arrary index to an output LOD_TENSOR_ARRAY. If the -output LOD_TENSOR_ARRAY is not given(None), a new one will be created and -returned.
-Parameters: |
|
-
---|---|
Returns: | The output LOD_TENSOR_ARRAY where the input tensor is written. - |
-
Return type: | Variable - |
-
Examples
-paddle.v2.fluid.layers.
create_array
(dtype)This function creates an array of type \(LOD_TENSOR_ARRAY\) using the -LayerHelper.
-Parameters: | dtype (int|float) – The data type of the elements in the array. | -
---|---|
Returns: | The tensor variable storing the elements of data type. | -
Return type: | Variable | -
Examples
-data = fluid.layers.create_array(dtype='float32')
-
paddle.v2.fluid.layers.
less_than
(x, y, cond=None, **ignored)Less than
-This layer returns the truth value of \(x < y\) elementwise.
-Parameters: |
|
-
---|---|
Returns: | The tensor variable storing the output of less_than. - |
-
Return type: | Variable - |
-
Examples
-less = fluid.layers.less_than(x=label, y=limit)
-
paddle.v2.fluid.layers.
array_read
(array, i)This function performs the operation to read the data in as an -LOD_TENSOR_ARRAY. -:param array: The input tensor that will be written to an array. -:type array: Variable|list -:param i: The subscript index in tensor array, that points the
---place where data will be written to.
Returns: | The tensor type variable that has the data written to it. | -
---|---|
Return type: | Variable | -
Examples
-paddle.v2.fluid.layers.
shrink_memory
(x, i, table)This function creates an operator to shrink_rnn_memory using the RankTable -as mentioned in the input parameter.
-paddle.v2.fluid.layers.
array_length
(array)This function performs the operation to find the length of the input -LOD_TENSOR_ARRAY.
-Parameters: | array (LOD_TENSOR_ARRAY) – The input array that will be used -to compute the length. | -
---|---|
Returns: | The length of the input LoDTensorArray. | -
Return type: | Variable | -
Examples
-paddle.v2.fluid.layers.
IfElse
(cond, name=None)paddle.v2.fluid.layers.
DynamicRNN
(name=None)paddle.v2.fluid.layers.
ConditionalBlock
(inputs, is_scalar_condition=False, name=None)paddle.v2.fluid.layers.
StaticRNN
(name=None)StaticRNN class.
-StaticRNN class is used to create a StaticRNN. The RNN will have its -own parameters like inputs, outputs, memories, status and length.
-memory
(init=None, shape=None, batch_ref=None, init_value=0.0, init_batch_dim_idx=0, ref_batch_dim_idx=1)Parameters: |
|
-
---|
paddle.v2.fluid.layers.
reorder_lod_tensor_by_rank
(x, rank_table)ReorderLoDTensorByRankTable operator.
-Input(X) is a batch of sequences. Input(RankTable) stores new orders of the -input sequence batch. The reorder_lod_tensor_by_rank operator reorders the -Input(X) according to the information provided by Input(RankTable).
-For example:
-If the indices stored in the Input(RankTable) are [3, 0, 2, 1], the -Input(X) will be reordered that the fourth sequence in Input(X) will become the -first one, and then followed by the original first, third, and the second one.
-This is: -X = [Seq0, Seq1, Seq2, Seq3]. The indices in RankTable are [3, 0, 2, 1]. -Out = [Seq3, Seq0, Seq2, Seq1] with a new LoD information.
-If the LoD information of Input(X) is empty, this means Input(X) is not sequence -data. This is also identical to a batch of sequences where each sequence has a -fixed length 1. In this case, the reorder_lod_tensor_by_rank operator reorders -each slice of Input(X) along the first axis according to Input(RankTable).
-This is: -X = [Slice0, Slice1, Slice2, Slice3] and its LoD information is empty. The -indices in RankTable are [3, 0, 2, 1]. -Out = [Slice3, Slice0, Slice2, Slice1] with no LoD information is appended.
-NOTE: This operator sorts Input(X) according to a given LoDRankTable which does -not need to be calculated according to Input(X). It can be calculated according -to another different sequence, and then this operator sorts Input(X) according -to the given LoDRankTable.
-Parameters: |
|
-
---|---|
Returns: | (LoDTensor), the reordered lod tensor. - |
-
paddle.v2.fluid.layers.
ParallelDo
(places, name=None)ParallelDo class.
-ParallelDo class is used to create a ParallelDo.
-paddle.v2.fluid.layers.
Print
(input, first_n=-1, message=None, summarize=-1, print_tensor_name=True, print_tensor_type=True, print_tensor_shape=True, print_tensor_lod=True, print_phase='both')Print operator
-This creates a print op that will print when a tensor is accessed.
-Wraps the tensor passed in so that whenever that a tensor is accessed, -the message message is printed, along with the current value of the -tensor t.
-Parameters: |
|
-
---|---|
Returns: | Output tensor, same data with input tensor. - |
-
Return type: | Variable - |
-
Examples
-
-
value = some_layer(...) -Print(value, summarize=10,
---message=”The content of some_layer: ”)
paddle.v2.fluid.layers.
get_places
(device_count=None, device_type=None)Returns a list of places based on flags. The list will be used for parallel -execution.
-Parameters: |
|
-
---|---|
Returns: | vector of Place - |
-
paddle.v2.fluid.layers.
data
(name, shape, append_batch_size=True, dtype='float32', lod_level=0, type=VarType.LOD_TENSOR, stop_gradient=True)Data Layer
-This function takes in the input and based on whether data has -to be returned back as a minibatch, it creates the global variable by using -the helper functions. The global variables can be accessed by all the -following operators in the graph.
-All the input variables of this function are passed in as local variables -to the LayerHelper constructor.
-Parameters: |
|
-
---|---|
Returns: | The global variable that gives access to the data. - |
-
Return type: | Variable - |
-
Examples
-data = fluid.layers.data(name='x', shape=[784], dtype='float32')
-
paddle.v2.fluid.layers.
BlockGuardServ
(server)BlockGuardServ class.
-BlockGuardServ class is used to create an op with a block in a program.
-paddle.v2.fluid.layers.
ListenAndServ
(endpoint, fan_in=1, optimizer_mode=True)ListenAndServ class.
-ListenAndServ class is used to wrap listen_and_serv op to create a server -which can receive variables from clients and run a block.
-paddle.v2.fluid.layers.
Send
(endpoints, send_vars, get_vars)Send layer
-Parameters: |
|
-
---|
Send variables to the server side, and get vars from server -side when server have finished running server side program.
-paddle.v2.fluid.layers.
fc
(input, size, num_flatten_dims=1, param_attr=None, bias_attr=None, act=None, name=None)Fully Connected Layer
-The fully connected layer can take multiple tensors as its inputs. It -creates a variable (one for each input tensor) called weights for each -input tensor, which represents a fully connected weight matrix from -each input unit to each output unit. The fully connected layer -multiplies each input tensor with its coresponding weight to produce -an output Tensor. If multiple input tensors are given, the results of -multiple multiplications will be sumed up. If bias_attr is not None, -a biases variable will be created and added to the output. Finally, -if activation is not None, it will be applied to the output as well.
-This process can be formulated as follows:
-In the above equation:
-Parameters: |
|
-
---|---|
Returns: | The output tensor variable. - |
-
Return type: | Variable - |
-
Raises: |
|
-
Examples
-data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
-fc = fluid.layers.fc(input=data, size=1000, act="tanh")
-
paddle.v2.fluid.layers.
embedding
(input, size, is_sparse=False, padding_idx=None, param_attr=None, dtype='float32')Embedding Layer
-This layer is used to lookup embeddings of IDs, provided by input
, in
-a lookup table. The result of this lookup is the embedding of each ID in the
-input
.
All the input variables are passed in as local variables to the LayerHelper -constructor.
-Parameters: |
|
-
---|---|
Returns: | The tensor variable storing the embeddings of the supplied inputs. - |
-
Return type: | Variable - |
-
Examples
-dict_size = len(dataset.ids)
-data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
-fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
-
paddle.v2.fluid.layers.
dynamic_lstm
(input, size, param_attr=None, bias_attr=None, use_peepholes=True, is_reverse=False, gate_activation='sigmoid', cell_activation='tanh', candidate_activation='tanh', dtype='float32', name=None)Dynamic LSTM Layer
-The defalut implementation is diagonal/peephole connection -(https://arxiv.org/pdf/1402.1128.pdf), the formula is as follows:
-where the \(W\) terms denote weight matrices (e.g. \(W_{xi}\) is -the matrix of weights from the input gate to the input), \(W_{ic}, W_{fc}, W_{oc}\) are diagonal weight matrices for peephole connections. In -our implementation, we use vectors to reprenset these diagonal weight -matrices. The \(b\) terms denote bias vectors (\(b_i\) is the input -gate bias vector), \(\sigma\) is the non-linear activations, such as -logistic sigmoid function, and \(i, f, o\) and \(c\) are the input -gate, forget gate, output gate, and cell activation vectors, respectively, -all of which have the same size as the cell output activation vector \(h\).
-The \(\odot\) is the element-wise product of the vectors. \(act_g\) -and \(act_h\) are the cell input and cell output activation functions -and tanh is usually used for them. \(\tilde{c_t}\) is also called -candidate hidden state, which is computed based on the current input and -the previous hidden state.
-Set use_peepholes to False to disable peephole connection. The formula -is omitted here, please refer to the paper -http://www.bioinf.jku.at/publications/older/2604.pdf for details.
-Note that these \(W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}\) -operations on the input \(x_{t}\) are NOT included in this operator. -Users can choose to use fully-connect layer before LSTM layer.
-Parameters: |
|
-
---|---|
Returns: | The hidden state, and cell state of LSTM. The shape of both is (T x D), and lod is the same with the input. - |
-
Return type: | tuple - |
-
Examples
-hidden_dim = 512
-forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
- act=None, bias_attr=None)
-forward, _ = fluid.layers.dynamic_lstm(
- input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
-
paddle.v2.fluid.layers.
dynamic_lstmp
(input, size, proj_size, param_attr=None, bias_attr=None, use_peepholes=True, is_reverse=False, gate_activation='sigmoid', cell_activation='tanh', candidate_activation='tanh', proj_activation='tanh', dtype='float32', name=None)Dynamic LSTMP Layer
-LSTMP (LSTM with recurrent projection) layer has a separate projection -layer after the LSTM layer, projecting the original hidden state to a -lower-dimensional one, which is proposed to reduce the number of total -parameters and furthermore computational complexity for the LSTM, -espeacially for the case that the size of output units is relative -large (https://research.google.com/pubs/archive/43905.pdf).
-The formula is as follows:
-In the above formula:
-Set use_peepholes to False to disable peephole connection. The formula -is omitted here, please refer to the paper -http://www.bioinf.jku.at/publications/older/2604.pdf for details.
-Note that these \(W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}\) -operations on the input \(x_{t}\) are NOT included in this operator. -Users can choose to use fully-connected layer before LSTMP layer.
-Parameters: |
|
-
---|---|
Returns: | The projection of hidden state, and cell state of LSTMP. The shape of projection is (T x P), for the cell state which is (T x D), and both LoD is the same with the input. - |
-
Return type: | tuple - |
-
Examples
-hidden_dim, proj_dim = 512, 256
-fc_out = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
- act=None, bias_attr=None)
-proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
- size=hidden_dim * 4,
- proj_size=proj_dim,
- use_peepholes=False,
- is_reverse=True,
- cell_activation="tanh",
- proj_activation="tanh")
-
paddle.v2.fluid.layers.
dynamic_gru
(input, size, param_attr=None, bias_attr=None, is_reverse=False, gate_activation='sigmoid', candidate_activation='tanh', h_0=None)Dynamic GRU Layer
-Refer to Empirical Evaluation of Gated Recurrent Neural Networks on -Sequence Modeling
-The formula is as follows:
-The \(\odot\) is the element-wise product of the vectors. \(act_g\) -is the update gate and reset gate activation function and \(sigmoid\) -is usually used for it. \(act_c\) is the activation function for -candidate hidden state and \(tanh\) is usually used for it.
-Note that these \(W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}\) operations on -the input \(x_{t}\) are NOT included in this operator. Users can choose -to use fully-connect layer before GRU layer.
-Parameters: |
|
-
---|---|
Returns: | The hidden state of GRU. The shape is \((T \times D)\), and lod is the same with the input. - |
-
Return type: | Variable - |
-
Examples
-hidden_dim = 512
-x = fluid.layers.fc(input=data, size=hidden_dim * 3)
-hidden = fluid.layers.dynamic_gru(input=x, dim=hidden_dim)
-
paddle.v2.fluid.layers.
gru_unit
(input, hidden, size, weight=None, bias=None, activation='tanh', gate_activation='sigmoid')GRU unit layer. The equation of a gru step is:
----\[ \begin{align}\begin{aligned}u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)\\r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)\\m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)\\h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})\end{aligned}\end{align} \]-
The inputs of gru unit includes \(z_t\), \(h_{t-1}\). In terms -of the equation above, the \(z_t\) is split into 3 parts - -\(xu_t\), \(xr_t\) and \(xm_t\). This means that in order to -implement a full GRU unit operator for an input, a fully -connected layer has to be applied, such that \(z_t = W_{fc}x_t\).
-The terms \(u_t\) and \(r_t\) represent the update and reset gates -of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is -an intermediate candidate hidden output, which is denoted by \(m_t\). -This layer has three outputs \(h_t\), \(dot(r_t, h_{t-1})\) -and concatenation of \(u_t\), \(r_t\) and \(m_t\).
-Parameters: |
|
-
---|---|
Returns: | The hidden value, reset-hidden value and gate values. - |
-
Return type: | tuple - |
-
Examples
-# assuming we have x_t_data and prev_hidden of size=10
-x_t = fluid.layers.fc(input=x_t_data, size=30)
-hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
- hidden = prev_hidden)
-
paddle.v2.fluid.layers.
linear_chain_crf
(input, label, param_attr=None)paddle.v2.fluid.layers.
crf_decoding
(input, param_attr, label=None)paddle.v2.fluid.layers.
cos_sim
(X, Y, **kwargs)This function performs the cosine similarity between two tensors -X and Y and returns that as the output.
-paddle.v2.fluid.layers.
cross_entropy
(input, label, **kwargs)Cross Entropy Layer
-This layer computes the cross entropy between input and label. It -supports both standard cross-entropy and soft-label cross-entropy loss -computation.
-soft_label = False, Label[i, 0] indicates the class index for sample i:
-soft_label = True, Label[i, j] indicates the soft label of class j -for sample i:
-Please make sure that in this case the summation of each row of label -equals one.
-As a special case of 2), when each row of ‘label’ has only one -non-zero element which is equal to 1, soft-label cross-entropy degenerates -to a one-hot cross-entropy with one-hot label representation.
-Parameters: |
|
-
---|---|
Returns: | A 2-D tensor with shape [N x 1], the cross entropy loss. - |
-
Raises: | ValueError – 1) the 1st dimension of input and label are not equal. -2) when soft_label == True, and the 2nd dimension of ---
|
-
Examples
-predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
-cost = fluid.layers.cross_entropy(input=predict, label=label)
-
paddle.v2.fluid.layers.
square_error_cost
(input, label, **kwargs)Square error cost layer
-This layer accepts input predictions and target label and returns the -squared error cost.
-For predictions, \(X\), and target labels, \(Y\), the equation is:
-In the above equation:
----
-- \(X\): Input predictions, a tensor.
-- \(Y\): Input labels, a tensor.
-- \(Out\): Output value, same shape with \(X\).
-
Parameters: |
|
-
---|---|
Returns: | The tensor variable storing the element-wise squared error difference of input and label. - |
-
Return type: | Variable - |
-
Examples
-y = layers.data(name='y', shape=[1], dtype='float32')
-y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
-cost = layers.square_error_cost(input=y_predict, label=y)
-
paddle.v2.fluid.layers.
accuracy
(input, label, k=1, correct=None, total=None, **kwargs)This function computes the accuracy using the input and label. -The output is the top_k inputs and their indices.
-paddle.v2.fluid.layers.
chunk_eval
(input, label, chunk_scheme, num_chunk_types, excluded_chunk_types=None, **kwargs)This function computes and outputs the precision, recall and -F1-score of chunk detection.
-paddle.v2.fluid.layers.
sequence_conv
(input, num_filters, filter_size=3, filter_stride=1, padding=None, bias_attr=None, param_attr=None, act=None)This function creates the op for sequence_conv, using the inputs and -other convolutional configurations for the filters and stride as given -in the input parameters to the function.
-paddle.v2.fluid.layers.
conv2d
(input, num_filters, filter_size, stride=None, padding=None, groups=None, param_attr=None, bias_attr=None, use_cudnn=True, act=None)Convlution2D Layer
-The convolution2D layer calculates the output based on the input, filter -and strides, paddings, dilations, groups parameters. Input(Input) and -Output(Output) are in NCHW format. Where N is batch size, C is the number of -channels, H is the height of the feature, and W is the width of the feature. -The details of convolution layer, please refer UFLDL’s convolution, . -If bias attribution and activation type are provided, bias is added to the -output of the convolution, and the corresponding activation function is -applied to the final result.
-For each input \(X\), the equation is:
-In the above equation:
-Example
-Input:
-Input shape: $(N, C_{in}, H_{in}, W_{in})$
-Filter shape: $(C_{out}, C_{in}, H_f, W_f)$
-Output: -Output shape: $(N, C_{out}, H_{out}, W_{out})$
-Where
-H_{out}&= frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \ -W_{out}&= frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
-Parameters: |
|
-
---|---|
Returns: | The tensor variable storing the convolution and non-linearity activation result. - |
-
Return type: | Variable - |
-
Raises: |
|
-
Examples
-data = fluid.layers.data(
- name='data', shape=[3, 32, 32], dtype='float32')
-conv2d = fluid.layers.conv2d(
- input=data, num_filters=2, filter_size=3, act="relu")
-
paddle.v2.fluid.layers.
sequence_pool
(input, pool_type, **kwargs)This function add the operator for sequence pooling. -It pools features of all time-steps of each instance, and is applied -on top of the input using pool_type mentioned in the parameters.
-It supports four pool_type:
-x is a 1-level LoDTensor:
- x.lod = [[0, 2, 5, 7]]
- x.data = [1, 3, 2, 4, 6, 5, 1]
- x.dims = [7, 1]
-
-then output is a Tensor:
- out.dim = [3, 1]
- with condition len(x.lod[-1]) - 1 == out.dims[0]
-
-for different pool_type:
- average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
- sum : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
- sqrt : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
- 6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
- max : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
-
Parameters: |
|
-
---|---|
Returns: | The sequence pooling variable which is a Tensor. - |
-
Examples
-x = fluid.layers.data(name='x', shape=[7, 1],
- dtype='float32', lod_level=1)
-avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
-sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
-sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
-max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
-
paddle.v2.fluid.layers.
pool2d
(input, pool_size, pool_type, pool_stride=None, pool_padding=None, global_pooling=False, use_cudnn=True, name=None)This function adds the operator for pooling in 2 dimensions, using the -pooling configurations mentioned in input parameters.
-paddle.v2.fluid.layers.
batch_norm
(input, act=None, is_test=False, momentum=0.9, epsilon=1e-05, param_attr=None, bias_attr=None, data_layout='NCHW', name=None, moving_mean_name=None, moving_variance_name=None)This function helps create an operator to implement -the BatchNorm layer using the configurations from the input parameters.
-paddle.v2.fluid.layers.
layer_norm
(input, scale=True, shift=True, begin_norm_axis=1, epsilon=1e-05, param_attr=None, bias_attr=None, act=None, name=None)Layer Normalization
-Assume feature vectors exist on dimensions
-begin_norm_axis ... rank(input)
and calculate the moment statistics
-along these dimensions for each feature vector \(a\) with size
-\(H\), then normalize each feature vector using the corresponding
-statistics. After that, apply learnable gain and bias on the normalized
-tensor to scale and shift if scale
and shift
are set.
Refer to Layer Normalization
-The formula is as follows:
-Parameters: |
|
-
---|---|
Returns: | A tensor variable with the same shape as the input. - |
-
Return type: | Variable - |
-
Examples
-data = fluid.layers.data(
- name='data', shape=[3, 32, 32], dtype='float32')
-x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
-
paddle.v2.fluid.layers.
beam_search_decode
(ids, scores, name=None)paddle.v2.fluid.layers.
conv2d_transpose
(input, num_filters, output_size=None, filter_size=None, padding=None, stride=None, dilation=None, param_attr=None, use_cudnn=True, name=None)Convlution2D transpose layer
-The convolution2D transpose layer calculates the output based on the input, -filter, and dilations, strides, paddings. Input(Input) and output(Output) -are in NCHW format. Where N is batch size, C is the number of channels, -H is the height of the feature, and W is the width of the feature. -Parameters(dilations, strides, paddings) are two elements. These two elements -represent height and width, respectively. The details of convolution transpose -layer, please refer to the following explanation and references -therein.
-For each input \(X\), the equation is:
-In the above equation:
-Example
-Input:
-Input shape: $(N, C_{in}, H_{in}, W_{in})$
-Filter shape: $(C_{in}, C_{out}, H_f, W_f)$
-Output:
-Output shape: $(N, C_{out}, H_{out}, W_{out})$
-Where
-Parameters: |
|
-
---|---|
Returns: | The tensor variable storing the convolution transpose result. - |
-
Return type: | Variable - |
-
Raises: |
|
-
Examples
-data = fluid.layers.data(
- name='data', shape=[3, 32, 32], dtype='float32')
-conv2d_transpose = fluid.layers.conv2d_transpose(
- input=data, num_filters=2, filter_size=3)
-
paddle.v2.fluid.layers.
sequence_expand
(x, y, name=None)Sequence Expand Layer. This layer will expand the input variable x -according to LoD information of y. And the following examples will -explain how sequence_expand works:
-* Case 1
- x is a LoDTensor:
- x.lod = [[0, 2, 3],
- [0, 1, 3, 4]]
- x.data = [a, b, c, d]
- x.dims = [4, 1]
-
- y is a LoDTensor:
- y.lod = [[0, 2, 4],
- [0, 3, 6, 7, 8]]
-
- with condition len(y.lod[-1]) - 1 == x.dims[0]
-
- then output is a 2-level LoDTensor:
- out.lod = [[0, 2, 4],
- [0, 3, 6, 7, 8]]
- out.data = [a, a, a, b, b, b, c, d]
- out.dims = [8, 1]
-
-* Case 2
- x is a Tensor:
- x.data = [a, b, c]
- x.dims = [3, 1]
-
- y is a LoDTensor:
- y.lod = [[0, 2, 3, 6]]
-
- with condition len(y.lod[-1]) - 1 == x.dims[0]
-
- then output is a 1-level LoDTensor:
- out.lod = [[0, 2, 3, 6]]
- out.data = [a, a, b, c, c, c]
- out.dims = [6, 1]
-
Parameters: |
|
-
---|---|
Returns: | The expanded variable which is a LoDTensor. - |
-
Return type: | Variable - |
-
Examples
-x = fluid.layers.data(name='x', shape=[10], dtype='float32')
-y = fluid.layers.data(name='y', shape=[10, 20],
- dtype='float32', lod_level=1)
-out = layers.sequence_expand(x=x, y=y)
-
paddle.v2.fluid.layers.
lstm_unit
(x_t, hidden_t_prev, cell_t_prev, forget_bias=0.0, param_attr=None, bias_attr=None, name=None)Lstm unit layer. The equation of a lstm step is:
----\[ \begin{align}\begin{aligned}i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)\\f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)\\c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)\\o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)\\h_t & = o_t tanh(c_t)\end{aligned}\end{align} \]-
The inputs of lstm unit include \(x_t\), \(h_{t-1}\) and -\(c_{t-1}\). The 2nd dimensions of \(h_{t-1}\) and \(c_{t-1}\) -should be same. The implementation separates the linear transformation and -non-linear transformation apart. Here, we take \(i_t\) as an example. -The linear transformation is applied by calling a fc layer and the -equation is:
----\[L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i\]-
The non-linear transformation is applied by calling lstm_unit_op and the -equation is:
----\[i_t = \sigma(L_{i_t})\]-
This layer has two outputs including \(h_t\) and \(o_t\).
-Parameters: |
|
-
---|---|
Returns: | The hidden value and cell value of lstm unit. - |
-
Return type: | tuple - |
-
Raises: |
|
-
Examples
-x_t = fluid.layers.fc(input=x_t_data, size=10)
-prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
-prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
-hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
- hidden_t_prev=prev_hidden,
- cell_t_prev=prev_cell)
-
paddle.v2.fluid.layers.
reduce_sum
(input, dim=None, keep_dim=False, name=None)Computes the sum of tensor elements over the given dimension.
-Parameters: |
|
-
---|---|
Returns: | The reduced Tensor variable. - |
-
Return type: | Variable - |
-
Examples
-# x is a Tensor variable with following elements:
-# [[0.2, 0.3, 0.5, 0.9]
-# [0.1, 0.2, 0.6, 0.7]]
-# Each example is followed by the correspending output tensor.
-fluid.layers.reduce_sum(x) # [3.5]
-fluid.layers.reduce_sum(x, dim=0) # [0.3, 0.5, 1.1, 1.6]
-fluid.layers.reduce_sum(x, dim=-1) # [1.9, 1.6]
-fluid.layers.reduce_sum(x, dim=1, keep_dim=True) # [[1.9], [1.6]]
-
paddle.v2.fluid.layers.
reduce_mean
(input, dim=None, keep_dim=False, name=None)Computes the mean of tensor elements over the given dimension.
-Parameters: |
|
-
---|---|
Returns: | The reduced Tensor variable. - |
-
Return type: | Variable - |
-
Examples
-# x is a Tensor variable with following elements:
-# [[0.2, 0.3, 0.5, 0.9]
-# [0.1, 0.2, 0.6, 0.7]]
-# Each example is followed by the correspending output tensor.
-fluid.layers.reduce_mean(x) # [0.4375]
-fluid.layers.reduce_mean(x, dim=0) # [0.15, 0.25, 0.55, 0.8]
-fluid.layers.reduce_mean(x, dim=-1) # [0.475, 0.4]
-fluid.layers.reduce_mean(x, dim=1, keep_dim=True) # [[0.475], [0.4]]
-
paddle.v2.fluid.layers.
reduce_max
(input, dim=None, keep_dim=False, name=None)Computes the maximum of tensor elements over the given dimension.
-Parameters: |
|
-
---|---|
Returns: | The reduced Tensor variable. - |
-
Return type: | Variable - |
-
Examples
-# x is a Tensor variable with following elements:
-# [[0.2, 0.3, 0.5, 0.9]
-# [0.1, 0.2, 0.6, 0.7]]
-# Each example is followed by the correspending output tensor.
-fluid.layers.reduce_max(x) # [0.9]
-fluid.layers.reduce_max(x, dim=0) # [0.2, 0.3, 0.6, 0.9]
-fluid.layers.reduce_max(x, dim=-1) # [0.9, 0.7]
-fluid.layers.reduce_max(x, dim=1, keep_dim=True) # [[0.9], [0.7]]
-
paddle.v2.fluid.layers.
reduce_min
(input, dim=None, keep_dim=False, name=None)Computes the minimum of tensor elements over the given dimension.
-Parameters: |
|
-
---|---|
Returns: | The reduced Tensor variable. - |
-
Return type: | Variable - |
-
Examples
-# x is a Tensor variable with following elements:
-# [[0.2, 0.3, 0.5, 0.9]
-# [0.1, 0.2, 0.6, 0.7]]
-# Each example is followed by the correspending output tensor.
-fluid.layers.reduce_min(x) # [0.1]
-fluid.layers.reduce_min(x, dim=0) # [0.1, 0.2, 0.5, 0.7]
-fluid.layers.reduce_min(x, dim=-1) # [0.2, 0.1]
-fluid.layers.reduce_min(x, dim=1, keep_dim=True) # [[0.2], [0.1]]
-
paddle.v2.fluid.layers.
sequence_first_step
(input, **kwargs)This funciton get the first step of sequence.
-x is a 1-level LoDTensor:
- x.lod = [[0, 2, 5, 7]]
- x.data = [1, 3, 2, 4, 6, 5, 1]
- x.dims = [7, 1]
-
-then output is a Tensor:
- out.dim = [3, 1]
- with condition len(x.lod[-1]) - 1 == out.dims[0]
- out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
-
Parameters: | input (variable) – The input variable which is a LoDTensor. | -
---|---|
Returns: | The sequence’s first step variable which is a Tensor. | -
Examples
-x = fluid.layers.data(name='x', shape=[7, 1],
- dtype='float32', lod_level=1)
-x_first_step = fluid.layers.sequence_first_step(input=x)
-
paddle.v2.fluid.layers.
sequence_last_step
(input, **kwargs)This funciton get the last step of sequence.
-x is a 1-level LoDTensor:
- x.lod = [[0, 2, 5, 7]]
- x.data = [1, 3, 2, 4, 6, 5, 1]
- x.dims = [7, 1]
-
-then output is a Tensor:
- out.dim = [3, 1]
- with condition len(x.lod[-1]) - 1 == out.dims[0]
- out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
-
Parameters: | input (variable) – The input variable which is a LoDTensor. | -
---|---|
Returns: | The sequence’s last step variable which is a Tensor. | -
Examples
-x = fluid.layers.data(name='x', shape=[7, 1],
- dtype='float32', lod_level=1)
-x_last_step = fluid.layers.sequence_last_step(input=x)
-
paddle.v2.fluid.layers.
dropout
(x, dropout_prob, is_test=False, seed=None, **kwargs)Computes dropout.
-Drop or keep each element of x independently. Dropout is a regularization -technique for reducing overfitting by preventing neuron co-adaption during -training. The dropout operator randomly set (according to the given dropout -probability) the outputs of some units to zero, while others are remain -unchanged.
-Parameters: |
|
-
---|---|
Returns: | A tensor variable. - |
-
Return type: | Variable - |
-
Examples
-x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
-droped = fluid.layers.dropout(input=x, dropout_rate=0.5)
-
paddle.v2.fluid.layers.
split
(input, num_or_sections, dim=-1, name=None)Split the input tensor into multiple sub-tensors.
-Parameters: |
|
-
---|---|
Returns: | The list of segmented tensor variables. - |
-
Return type: | List - |
-
Examples
-# x is a Tensor variable with shape [3, 9, 5]:
-x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
-x0.shape # [3, 3, 5]
-x1.shape # [3, 3, 5]
-x2.shape # [3, 3, 5]
-x0, x1, x2 = fluid.layers.split(x, num_or_sections=[2, 3, 4], dim=1)
-x0.shape # [3, 2, 5]
-x1.shape # [3, 3, 5]
-x2.shape # [3, 4, 5]
-
paddle.v2.fluid.layers.
ctc_greedy_decoder
(input, blank, name=None)This op is used to decode sequences by greedy policy by below steps: -1. Get the indexes of max value for each row in input. a.k.a.
---numpy.argmax(input, axis=0).
A simple example as below:
-Given:
-
-input.data = [[0.6, 0.1, 0.3, 0.1],
- [0.3, 0.2, 0.4, 0.1],
- [0.1, 0.5, 0.1, 0.3],
- [0.5, 0.1, 0.3, 0.1],
-
- [0.5, 0.1, 0.3, 0.1],
- [0.2, 0.2, 0.2, 0.4],
- [0.2, 0.2, 0.1, 0.5],
- [0.5, 0.1, 0.3, 0.1]]
-
-input.lod = [[0, 4, 8]]
-
-Then:
-
-output.data = [[2],
- [1],
- [3]]
-
-output.lod = [[0, 2, 3]]
-
Parameters: |
|
-
---|---|
Returns: | CTC greedy decode result. If all the sequences in result were -empty, the result LoDTensor will be [-1] with LoD [[0]] and dims [1, 1]. - |
-
Return type: | Variable - |
-
Examples
-x = fluid.layers.data(name='x', shape=[8], dtype='float32')
-
-cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
-
paddle.v2.fluid.layers.
edit_distance
(input, label, normalized=False, ignored_tokens=None, name=None)EditDistance operator computes the edit distances between a batch of -hypothesis strings and their references. Edit distance, also called -Levenshtein distance, measures how dissimilar two strings are by counting -the minimum number of operations to transform one string into anthor. -Here the operations include insertion, deletion, and substitution.
-For example, given hypothesis string A = “kitten” and reference -B = “sitting”, the edit distance is 3 for A will be transformed into B -at least after two substitutions and one insertion:
-“kitten” -> “sitten” -> “sittin” -> “sitting”
-Input(Hyps) is a LoDTensor consisting of all the hypothesis strings with -the total number denoted by batch_size, and the separation is specified -by the LoD information. And the batch_size reference strings are arranged -in order in the same way in the LoDTensor Input(Refs).
-Output(Out) contains the batch_size results and each stands for the edit -distance for a pair of strings respectively. If Attr(normalized) is true, -the edit distance will be divided by the length of reference string.
-Parameters: |
|
-
---|---|
Returns: | sequence-to-sequence edit distance in shape [batch_size, 1]. - |
-
Return type: | Variable - |
-
Examples
-x = fluid.layers.data(name='x', shape=[8], dtype='float32')
-y = fluid.layers.data(name='y', shape=[7], dtype='float32')
-
-cost = fluid.layers.edit_distance(input=x,label=y)
-
paddle.v2.fluid.layers.
l2_normalize
(x, axis, epsilon=1e-12, name=None)L2 normalize Layer
-The l2 normalize layer normalizes x along dimension axis using an L2 -norm. For a 1-D tensor (dim is fixed to 0), this layer computes
-output = x / sqrt(max(sum(x**2), epsilon))
-For x with more dimensions, this layer independently normalizes each 1-D -slice along dimension axis.
-Parameters: |
|
-
---|---|
Returns: | The output tensor variable. - |
-
Return type: | Variable - |
-
Examples
-data = fluid.layers.data(name="data",
- shape=(3, 17, 13),
- dtype="float32")
-normed = fluid.layers.l2_normalize(x=data, axis=1)
-
paddle.v2.fluid.layers.
matmul
(x, y, transpose_x=False, transpose_y=False, name=None)Applies matrix multiplication to two tensors.
-Currently, the input tensors’ rank can be any, but when the rank of any -inputs is bigger than 3, this two inputs’ rank should be equal.
-The actual behavior depends on the shapes of \(x\), \(y\) and the
-flag values of transpose_x
, transpose_y
. Specifically:
Also note that if the raw tensor \(x\) or \(y\) is rank-1 and -nontransposed, the prepended or appended dimension \(1\) will be -removed after matrix multiplication.
-Parameters: |
|
-
---|---|
Returns: | The product Tensor variable. - |
-
Return type: | Variable - |
-
Examples
-# Examples to clarify shapes of the inputs and output
-# x: [B, ..., M, K], y: [B, ..., K, N]
-fluid.layers.matmul(x, y) # out: [B, ..., M, N]
-
-# x: [B, M, K], y: [B, K, N]
-fluid.layers.matmul(x, y) # out: [B, M, N]
-
-# x: [B, M, K], y: [K, N]
-fluid.layers.matmul(x, y) # out: [B, M, N]
-
-# x: [M, K], y: [K, N]
-fluid.layers.matmul(x, y) # out: [M, N]
-
-# x: [B, M, K], y: [K]
-fluid.layers.matmul(x, y) # out: [B, M]
-
-# x: [K], y: [K]
-fluid.layers.matmul(x, y) # out: [1]
-
-# x: [M], y: [N]
-fluid.layers.matmul(x, y, True, True) # out: [M, N]
-
paddle.v2.fluid.layers.
warpctc
(input, label, blank=0, norm_by_times=False, **kwargs)An operator integrating the open source Warp-CTC library -(https://github.com/baidu-research/warp-ctc) -to compute Connectionist Temporal Classification (CTC) loss. -It can be aliased as softmax with CTC, since a native softmax activation is -interated to the Warp-CTC library, to to normlize values for each row of the -input tensor.
-Parameters: |
|
-
---|---|
Returns: | The Connectionist Temporal Classification (CTC) loss, -which is a 2-D Tensor of the shape [batch_size, 1]. - |
-
Return type: | Variable - |
-
Examples
-paddle.v2.fluid.layers.
sequence_reshape
(input, new_dim)Sequence Reshape Layer
-This layer will rearrange the input sequences. The new dimension is set by -user. Length of each sequence is computed according to original length, -original dimension and new dimension. The following example will help to -illustrate the function of this layer:
-x is a LoDTensor:
- x.lod = [[0, 2, 6]]
- x.data = [[1, 2], [3, 4],
- [5, 6], [7, 8], [9, 10], [11, 12]]
- x.dims = [6, 2]
-
-set new_dim = 4
-
-then out is a LoDTensor:
- out.lod = [[0, 1, 3]]
- out.data = [[1, 2, 3, 4],
- [5, 6, 7, 8], [9, 10, 11, 12]]
- out.dims = [3, 4]
-
Currently, only 1-level LoDTensor is supported and please make sure -(original length * original dimension) can be divided by new dimension with -no remainder for each sequence.
-Parameters: |
|
-
---|---|
Returns: | Reshaped LoDTensor according to new dimension. - |
-
Return type: | Variable - |
-
Examples
-x = fluid.layers.data(name='x', shape=[5, 20],
- dtype='float32', lod_level=1)
-x_reshaped = layers.sequence_reshape(input=x, new_dim=10)
-
paddle.v2.fluid.layers.
transpose
(x, perm, name=None)transpose Layer
-Permute the dimensions of input according to perm.
-The i-th dimension of the returned tensor will correspond to the -perm[i]-th dimension of input.
-Parameters: |
|
-
---|---|
Returns: | A transposed Tensor. - |
-
Return type: | Variable - |
-
Examples
-x = fluid.layers.data(name='x', shape=[5, 10, 15], dtype='float32')
-x_transposed = layers.transpose(x, perm=[1, 0, 2])
-
paddle.v2.fluid.layers.
im2sequence
(input, filter_size=1, stride=1, padding=0, name=None)Extracts image patches from the input tensor to form a tensor of shape -{input.batch_size * output_height * output_width, filter_size_H * -filter_size_W * input.channels} which is similar with im2col. -This op use filter / kernel to scan images and convert these images to -sequences. After expanding, the number of time step are -output_height * output_width for an image, in which output_height and -output_width are calculated by below equation:
-And the dimension of each time step is block_y * block_x * input.channels.
-Parameters: |
|
-
---|---|
Returns: | The output is a LoDTensor with shape -{input.batch_size * output_height * output_width, -filter_size_H * filter_size_W * input.channels}. -If we regard output as a matrix, each row of this matrix is -a step of a sequence. - |
-
Return type: | output - |
-
Examples:
-As an example:
-----Given: - -x = [[[[ 6. 2. 1.] - [ 8. 3. 5.] - [ 0. 2. 6.]] - - [[ 2. 4. 4.] - [ 6. 3. 0.] - [ 6. 4. 7.]]] - - [[[ 6. 7. 1.] - [ 5. 7. 9.] - [ 2. 4. 8.]] - - [[ 1. 2. 1.] - [ 1. 3. 5.] - [ 9. 0. 8.]]]] - -x.dims = {2, 2, 3, 3} - -And: - -filter = [2, 2] -stride = [1, 1] -padding = [0, 0] - -Then: - -output.data = [[ 6. 2. 8. 3. 2. 4. 6. 3.] - [ 2. 1. 3. 5. 4. 4. 3. 0.] - [ 8. 3. 0. 2. 6. 3. 6. 4.] - [ 3. 5. 2. 6. 3. 0. 4. 7.] - [ 6. 7. 5. 7. 1. 2. 1. 3.] - [ 7. 1. 7. 9. 2. 1. 3. 5.] - [ 5. 7. 2. 4. 1. 3. 9. 0.] - [ 7. 9. 4. 8. 3. 5. 0. 8.]] - -output.dims = {8, 9} - -output.lod = [[0, 4, 8]] -The simple usage is:
---output = fluid.layers.im2sequence( - input=layer, stride=[1, 1], filter_size=[2, 2]) -
paddle.v2.fluid.layers.
nce
(input, label, num_total_classes, sample_weight=None, param_attr=None, bias_attr=None, num_neg_samples=None)Compute and return the noise-contrastive estimation training loss. -See [Noise-contrastive estimation: A new estimation principle for unnormalized statistical models](http://www.jmlr.org/proceedings/papers/v9/gutmann10a/gutmann10a.pdf). -By default this operator uses a uniform distribution for sampling.
-Parameters: |
|
-
---|---|
Returns: | (Tensor) A tensor of shape [batch_size, 1]. Cost of samples. - |
-
paddle.v2.fluid.layers.
beam_search
(pre_ids, ids, scores, beam_size, end_id, level=0)This function implements the beam search algorithm.
-paddle.v2.fluid.layers.
row_conv
(input, future_context_size, param_attr=None, act=None)Row Conv Operator. This layer will apply lookahead convolution to -input. The input variable should be a 2D LoDTensor with shape [T, D]. -Parameters with shape [future_context_size + 1, D] will be created. The math -equation of row convolution is as follows:
-In the above equation:
-More details about row_conv please refer to the paper (http://www.cs.cmu.edu/~dyogatam/papers/wang+etal.iclrworkshop2016.pdf) and -the design document (https://github.com/PaddlePaddle/Paddle/issues/2228#issuecomment-303903645).
-Parameters: |
|
-
---|---|
Returns: | The output tensor with same shape as input tensor. - |
-
Return type: | Variable - |
-
Examples
-x = fluid.layers.data(name='x', shape=[16],
- dtype='float32', lod_level=1)
-out = fluid.layers.row_conv(input=x, future_context_size=2)
-
paddle.v2.fluid.layers.
multiplex
(inputs, index)Multiplex Layer
-Referring to the given index variable, this layer selects rows from the -input variables to construct a multiplex variable. Assuming that there are -\(m\) input variables and \(I_i\) represents the i-th input -variable and \(i\) is in [0, \(m\)). All input variables are -tensors with same shape [\(d_0\), \(d_1\), ..., \(d_R\)]. -Please note that rank of the input tensor should be at least 2. Each input -variable will be treated as a 2-D matrix with shape [\(M\), \(N\)] -where \(M\) for \(d_0\) and \(N\) for \(d_1\) * \(d_2\) -* ... * \(d_R\). Let \(I_i[j]\) be the j-th row of the i-th input -variable. The given index variable should be a 2-D tensor with shape -[\(M\), 1]. Let ID[i] be the i-th index value of the index variable. -Then the output variable will be a tensor with shape [\(d_0\), -\(d_1\), ..., \(d_R\)]. If we treat the output tensor as a 2-D -matrix with shape [\(M\), \(N\)] and let \(O[i]\) be the i-th -row of the matrix, then O[i] is equal to \(I_{ID[i]}[i]\).
-Parameters: |
|
-
---|---|
Returns: | Multiplex variable gathered from input variables. - |
-
Return type: | Variable - |
-
Examples
-x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
-x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
-index = fluid.layers.data(name='index', shape=[1], dtype='int32')
-out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
-
paddle.v2.fluid.layers.
mean
(**kwargs)Mean Operator.
-Out is a scalar which is the mean of all elements in X.
-Parameters: | x – The input of mean op -Duplicable: False Optional: False | -
---|---|
Returns: | The output of mean op | -
paddle.v2.fluid.layers.
mul
(**kwargs)Mul Operator.
-This operator is used to perform matrix multiplication for input $X$ and $Y$.
-The equation is:
-$$Out = X * Y$$
-Both the input $X$ and $Y$ can carry the LoD (Level of Details) information, -or not. But the output only shares the LoD information with input $X$.
-Parameters: |
|
-
---|---|
Returns: | (Tensor), The output tensor of mul op. - |
-
paddle.v2.fluid.layers.
reshape
(**kwargs)Reshape Operator.
-Reshape Input(X) into the shape specified by Attr(shape).
-An example: -Given a 2-D tensor X with 2 rows and 2 columns : [[1, 2], [3, 4]]
-and target shape = [1, 4], the reshape operator will transform -the tensor X into a 2-D tensor: [[1, 2, 3, 4]]
-One dimension in the target shape can be set -1, representing that its -size is unknown. In this case, the real dimension will be infered from -the original shape of Input(X) and other dimensions in the target shape.
-Parameters: |
|
-
---|---|
Returns: | The output tensor of reshape operator. - |
-
paddle.v2.fluid.layers.
scale
(**kwargs)Scale operator
-$$Out = scale*X$$
-Parameters: |
|
-
---|---|
Returns: | (Tensor) Output tensor of scale operator. - |
-
paddle.v2.fluid.layers.
sigmoid_cross_entropy_with_logits
(**kwargs)SigmoidCrossEntropyWithLogits Operator.
-This measures the element-wise probability error in classification tasks -in which each class is independent. This can be thought of as predicting labels -for a data-point, where labels are not mutually exclusive. -For example, a news article can be about politics, technology or sports -at the same time or none of these.
-The logistic loss is given as follows:
---$$loss = -Labels * log(sigma(X)) - (1 - Labels) * log(1 - sigma(X))$$
We know that $$sigma(X) = (1 / (1 + exp(-X)))$$. By substituting this we get:
---$$loss = X - X * Labels + log(1 + exp(-X))$$
For stability and to prevent overflow of $$exp(-X)$$ when X < 0, -we reformulate the loss as follows:
---$$loss = max(X, 0) - X * Labels + log(1 + exp(-|X|))$$
Both the input X and Labels can carry the LoD (Level of Details) information. -However the output only shares the LoD with input X.
-Parameters: |
|
-
---|---|
Returns: | (Tensor, default Tensor<float>), a 2-D tensor with shape N x D of elementwise logistic losses. - |
-
paddle.v2.fluid.layers.
elementwise_add
(**kwargs)Limited Elementwise Add Operator.
-The equation is:
-$$Out = X + Y$$
-$X$ is a tensor of any dimension and the dimensions of tensor $Y$ must be -smaller than or equal to the dimensions of $X$.
-There are two cases for this operator: -1. The shape of $Y$ is same with $X$; -2. The shape of $Y$ is a subset of $X$.
-For case 2: -$Y$ will be broadcasted to match the shape of $X$ and axis should be -set to index of the start dimension to broadcast $Y$ onto $X$.
-shape(X) = (2, 3, 4, 5), shape(Y) = (,)
-shape(X) = (2, 3, 4, 5), shape(Y) = (5,)
-shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5)
-shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
-shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
-
Either of the inputs $X$ and $Y$ or none can carry the LoD (Level of Details) -information. However, the output only shares the LoD information with input $X$.
-Parameters: |
|
-
---|---|
Returns: | The output of elementwise op. - |
-
paddle.v2.fluid.layers.
elementwise_div
(**kwargs)Limited Elementwise Div Operator.
-The equation is:
-$$Out = X / Y$$
-$X$ is a tensor of any dimension and the dimensions of tensor $Y$ must be -smaller than or equal to the dimensions of $X$.
-There are two cases for this operator: -1. The shape of $Y$ is same with $X$; -2. The shape of $Y$ is a subset of $X$.
-For case 2: -$Y$ will be broadcasted to match the shape of $X$ and axis should be -set to index of the start dimension to broadcast $Y$ onto $X$.
-shape(X) = (2, 3, 4, 5), shape(Y) = (,)
-shape(X) = (2, 3, 4, 5), shape(Y) = (5,)
-shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5)
-shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
-shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
-
Either of the inputs $X$ and $Y$ or none can carry the LoD (Level of Details) -information. However, the output only shares the LoD information with input $X$.
-Parameters: |
|
-
---|---|
Returns: | The output of elementwise op. - |
-
paddle.v2.fluid.layers.
elementwise_sub
(**kwargs)Limited Elementwise Sub Operator.
-The equation is:
-$$Out = X - Y$$
-$X$ is a tensor of any dimension and the dimensions of tensor $Y$ must be -smaller than or equal to the dimensions of $X$.
-There are two cases for this operator: -1. The shape of $Y$ is same with $X$; -2. The shape of $Y$ is a subset of $X$.
-For case 2: -$Y$ will be broadcasted to match the shape of $X$ and axis should be -set to index of the start dimension to broadcast $Y$ onto $X$.
-shape(X) = (2, 3, 4, 5), shape(Y) = (,)
-shape(X) = (2, 3, 4, 5), shape(Y) = (5,)
-shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5)
-shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
-shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
-
Either of the inputs $X$ and $Y$ or none can carry the LoD (Level of Details) -information. However, the output only shares the LoD information with input $X$.
-Parameters: |
|
-
---|---|
Returns: | The output of elementwise op. - |
-
paddle.v2.fluid.layers.
elementwise_mul
(**kwargs)Limited Elementwise Mul Operator.
-The equation is:
-$$Out = X odotY$$
-$X$ is a tensor of any dimension and the dimensions of tensor $Y$ must be -smaller than or equal to the dimensions of $X$.
-There are two cases for this operator: -1. The shape of $Y$ is same with $X$; -2. The shape of $Y$ is a subset of $X$.
-For case 2: -$Y$ will be broadcasted to match the shape of $X$ and axis should be -set to index of the start dimension to broadcast $Y$ onto $X$.
-shape(X) = (2, 3, 4, 5), shape(Y) = (,)
-shape(X) = (2, 3, 4, 5), shape(Y) = (5,)
-shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5)
-shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
-shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
-
Either of the inputs $X$ and $Y$ or none can carry the LoD (Level of Details) -information. However, the output only shares the LoD information with input $X$.
-Parameters: |
|
-
---|---|
Returns: | The output of elementwise op. - |
-
paddle.v2.fluid.layers.
elementwise_max
(**kwargs)Limited Elementwise Max Operator.
-The equation is:
-$$Out = max(X, Y)$$
-$X$ is a tensor of any dimension and the dimensions of tensor $Y$ must be -smaller than or equal to the dimensions of $X$.
-There are two cases for this operator: -1. The shape of $Y$ is same with $X$; -2. The shape of $Y$ is a subset of $X$.
-For case 2: -$Y$ will be broadcasted to match the shape of $X$ and axis should be -set to index of the start dimension to broadcast $Y$ onto $X$.
-shape(X) = (2, 3, 4, 5), shape(Y) = (,)
-shape(X) = (2, 3, 4, 5), shape(Y) = (5,)
-shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5)
-shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
-shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
-
Either of the inputs $X$ and $Y$ or none can carry the LoD (Level of Details) -information. However, the output only shares the LoD information with input $X$.
-Parameters: |
|
-
---|---|
Returns: | The output of elementwise op. - |
-
paddle.v2.fluid.layers.
elementwise_min
(**kwargs)Limited Elementwise Max Operator.
-The equation is:
-$$Out = min(X, Y)$$
-$X$ is a tensor of any dimension and the dimensions of tensor $Y$ must be -smaller than or equal to the dimensions of $X$.
-There are two cases for this operator: -1. The shape of $Y$ is same with $X$; -2. The shape of $Y$ is a subset of $X$.
-For case 2: -$Y$ will be broadcasted to match the shape of $X$ and axis should be -set to index of the start dimension to broadcast $Y$ onto $X$.
-shape(X) = (2, 3, 4, 5), shape(Y) = (,)
-shape(X) = (2, 3, 4, 5), shape(Y) = (5,)
-shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5)
-shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
-shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
-
Either of the inputs $X$ and $Y$ or none can carry the LoD (Level of Details) -information. However, the output only shares the LoD information with input $X$.
-Parameters: |
|
-
---|---|
Returns: | The output of elementwise op. - |
-
paddle.v2.fluid.layers.
elementwise_pow
(**kwargs)Limited Elementwise Pow Operator.
-The equation is:
-$$Out = X ^ Y$$
-$X$ is a tensor of any dimension and the dimensions of tensor $Y$ must be -smaller than or equal to the dimensions of $X$.
-There are two cases for this operator: -1. The shape of $Y$ is same with $X$; -2. The shape of $Y$ is a subset of $X$.
-For case 2: -$Y$ will be broadcasted to match the shape of $X$ and axis should be -set to index of the start dimension to broadcast $Y$ onto $X$.
-shape(X) = (2, 3, 4, 5), shape(Y) = (,)
-shape(X) = (2, 3, 4, 5), shape(Y) = (5,)
-shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5)
-shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
-shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
-
Either of the inputs $X$ and $Y$ or none can carry the LoD (Level of Details) -information. However, the output only shares the LoD information with input $X$.
-Parameters: |
|
-
---|---|
Returns: | The output of elementwise op. - |
-
paddle.v2.fluid.layers.
clip
(**kwargs)Clip Operator.
-The clip operator limits the value of given input within an interval. The -interval is specified with arguments ‘min’ and ‘max’:
-$$ -Out = min(max(X, min), max) -$$
-Parameters: |
|
-
---|---|
Returns: | (Tensor)The output of clip op with shape as input(X) - |
-
paddle.v2.fluid.layers.
clip_by_norm
(**kwargs)ClipByNorm Operator.
-This operator limits the L2 norm of the input $X$ within $max_norm$. -If the L2 norm of $X$ is less than or equal to $max_norm$, $Out$ will be -the same as $X$. If the L2 norm of $X$ is greater than $max_norm$, $X$ will -be linearly scaled to make the L2 norm of $Out$ equal to $max_norm$, as -shown in the following formula:
-$$ -Out = frac{max_norm * X}{norm(X)}, -$$
-where $norm(X)$ represents the L2 norm of $X$.
-Parameters: |
|
-
---|---|
Returns: | (Tensor) The output of clip_by_norm op with shape as input(X) - |
-
paddle.v2.fluid.layers.
sequence_softmax
(**kwargs)Sequence Softmax Operator.
-SequenceSoftmaxOp computes the softmax activation among all time-steps for each -sequence. The dimension of each time-step should be 1. Thus, the shape of -input Tensor can be either [N, 1] or [N], where N is the sum of the length -of all sequences.
-The algorithm works as follows:
---for i-th sequence in a mini-batch:
$$ -Out(X[lod[i]:lod[i+1]], :) = frac{exp(X[lod[i]:lod[i+1], :])} {sum(exp(X[lod[i]:lod[i+1], :]))} -$$
-For example, for a mini-batch of 3 sequences with variable-length, -each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7], -then softmax will be computed among X[0:2, :], X[2:5, :], X[5:7, :] -and N turns out to be 7.
-Parameters: | x – (LoDTensor) 1-D or 2-D input LoDTensor with the 2-nd dimension of length 1. -Duplicable: False Optional: False | -
---|---|
Returns: | (LoDTensor) 1-D or 2-D output LoDTensor with the 2-nd dimension of length 1. | -
paddle.v2.fluid.layers.
sigmoid
(**kwargs)Sigmoid Activation Operator
-$$out = frac{1}{1 + e^{-x}}$$
-Parameters: | x – Input of Sigmoid operator -Duplicable: False Optional: False | -
---|---|
Returns: | Output of Sigmoid operator | -
paddle.v2.fluid.layers.
logsigmoid
(**kwargs)Logsigmoid Activation Operator
-$$out = log frac{1}{1 + e^{-x}}$$
-Parameters: | x – Input of LogSigmoid operator -Duplicable: False Optional: False | -
---|---|
Returns: | Output of LogSigmoid operator | -
paddle.v2.fluid.layers.
exp
(**kwargs)Exp Activation Operator.
-$out = e^x$
-Parameters: | x – Input of Exp operator -Duplicable: False Optional: False | -
---|---|
Returns: | Output of Exp operator | -
paddle.v2.fluid.layers.
relu
(**kwargs)Relu Activation Operator.
-$out = max(x, 0)$
-Parameters: | x – Input of Relu operator -Duplicable: False Optional: False | -
---|---|
Returns: | Output of Relu operator | -
paddle.v2.fluid.layers.
tanh
(**kwargs)Tanh Activation Operator.
-$$out = frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$
-Parameters: | x – Input of Tanh operator -Duplicable: False Optional: False | -
---|---|
Returns: | Output of Tanh operator | -
paddle.v2.fluid.layers.
tanh_shrink
(**kwargs)TanhShrink Activation Operator.
-$$out = x - frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$
-Parameters: | x – Input of TanhShrink operator -Duplicable: False Optional: False | -
---|---|
Returns: | Output of TanhShrink operator | -
paddle.v2.fluid.layers.
softshrink
(**kwargs)Softshrink Activation Operator.
-$$ -out = begin{cases}
---x - lambda, text{if } x > lambda \ -x + lambda, text{if } x < -lambda \ -0, text{otherwise} -end{cases}
$$
-Parameters: |
|
-
---|---|
Returns: | Output of Softshrink operator - |
-
paddle.v2.fluid.layers.
sqrt
(**kwargs)Sqrt Activation Operator.
-$out = sqrt{x}$
-Parameters: | x – Input of Sqrt operator -Duplicable: False Optional: False | -
---|---|
Returns: | Output of Sqrt operator | -
paddle.v2.fluid.layers.
abs
(**kwargs)Abs Activation Operator.
-$out = |x|$
-Parameters: | x – Input of Abs operator -Duplicable: False Optional: False | -
---|---|
Returns: | Output of Abs operator | -
paddle.v2.fluid.layers.
ceil
(**kwargs)Ceil Activation Operator.
-$out = ceil(x)$
-Parameters: | x – Input of Ceil operator -Duplicable: False Optional: False | -
---|---|
Returns: | Output of Ceil operator | -
paddle.v2.fluid.layers.
floor
(**kwargs)Floor Activation Operator.
-$out = floor(x)$
-Parameters: | x – Input of Floor operator -Duplicable: False Optional: False | -
---|---|
Returns: | Output of Floor operator | -
paddle.v2.fluid.layers.
round
(**kwargs)Round Activation Operator.
-$out = [x]$
-Parameters: | x – Input of Round operator -Duplicable: False Optional: False | -
---|---|
Returns: | Output of Round operator | -
paddle.v2.fluid.layers.
reciprocal
(**kwargs)Reciprocal Activation Operator.
-$$out = frac{1}{x}$$
-Parameters: | x – Input of Reciprocal operator -Duplicable: False Optional: False | -
---|---|
Returns: | Output of Reciprocal operator | -
paddle.v2.fluid.layers.
log
(**kwargs)Log Activation Operator.
-$out = ln(x)$
-Natural logarithm of x.
-Parameters: | x – Input of Log operator -Duplicable: False Optional: False | -
---|---|
Returns: | Output of Log operator | -
paddle.v2.fluid.layers.
square
(**kwargs)Square Activation Operator.
-$out = x^2$
-Parameters: | x – Input of Square operator -Duplicable: False Optional: False | -
---|---|
Returns: | Output of Square operator | -
paddle.v2.fluid.layers.
softplus
(**kwargs)Softplus Activation Operator.
-$out = ln(1 + e^{x})$
-Parameters: | x – Input of Softplus operator -Duplicable: False Optional: False | -
---|---|
Returns: | Output of Softplus operator | -
paddle.v2.fluid.layers.
softsign
(**kwargs)Softsign Activation Operator.
-$$out = frac{x}{1 + |x|}$$
-Parameters: | x – Input of Softsign operator -Duplicable: False Optional: False | -
---|---|
Returns: | Output of Softsign operator | -
paddle.v2.fluid.layers.
brelu
(**kwargs)BRelu Activation Operator.
-$out = max(min(x, t_{min}), t_{max})$
-Parameters: |
|
-
---|---|
Returns: | Output of BRelu operator - |
-
paddle.v2.fluid.layers.
leaky_relu
(**kwargs)LeakyRelu Activation Operator.
-$out = max(x, alpha * x)$
-Parameters: |
|
-
---|---|
Returns: | Output of LeakyRelu operator - |
-
paddle.v2.fluid.layers.
soft_relu
(**kwargs)SoftRelu Activation Operator.
-$out = ln(1 + exp(max(min(x, threshold), threshold))$
-Parameters: |
|
-
---|---|
Returns: | Output of SoftRelu operator - |
-
paddle.v2.fluid.layers.
elu
(**kwargs)ELU Activation Operator.
-Applies the following element-wise computation on the input according to -https://arxiv.org/abs/1511.07289.
-$out = max(0, x) + min(0, alpha * (e^x - 1))$
-Parameters: |
|
-
---|---|
Returns: | Output of ELU operator - |
-
paddle.v2.fluid.layers.
relu6
(**kwargs)Relu6 Activation Operator.
-$out = min(max(0, x), 6)$
-Parameters: |
|
-
---|---|
Returns: | Output of Relu6 operator - |
-
paddle.v2.fluid.layers.
pow
(**kwargs)Pow Activation Operator.
-$out = x^{factor}$
-Parameters: |
|
-
---|---|
Returns: | Output of Pow operator - |
-
paddle.v2.fluid.layers.
stanh
(**kwargs)STanh Activation Operator.
-$$out = b * frac{e^{a * x} - e^{-a * x}}{e^{a * x} + e^{-a * x}}$$
-Parameters: |
|
-
---|---|
Returns: | Output of STanh operator - |
-
paddle.v2.fluid.layers.
hard_shrink
(**kwargs)HardShrink Activation Operator.
-$$ -out = begin{cases}
---x, text{if } x > lambda \ -x, text{if } x < -lambda \ -0, text{otherwise} -end{cases}
$$
-Parameters: |
|
-
---|---|
Returns: | Output of HardShrink operator - |
-
paddle.v2.fluid.layers.
thresholded_relu
(**kwargs)ThresholdedRelu Activation Operator.
-$$ -out = begin{cases}
---x, text{if } x > threshold \ -0, text{otherwise} -end{cases}
$$
-Parameters: |
|
-
---|---|
Returns: | Output of ThresholdedRelu operator - |
-
paddle.v2.fluid.layers.
hard_sigmoid
(**kwargs)HardSigmoid Activation Operator.
-Segment-wise linear approximation of sigmoid(https://arxiv.org/abs/1603.00391), -which is much faster than sigmoid.
-$out = max(0, min(1, slope * x + shift))$
-The slope should be positive. The offset can be either positive or negative. -The default slope and shift are set according to the above reference. -It is recommended to use the defaults for this activation.
-Parameters: |
|
-
---|---|
Returns: | Output of HardSigmoid operator - |
-
paddle.v2.fluid.layers.
swish
(**kwargs)Swish Activation Operator.
-$$out = frac{x}{1 + e^{- beta x}}$$
-Parameters: |
|
-
---|---|
Returns: | Output of Swish operator - |
-
paddle.v2.fluid.layers.
create_tensor
(dtype, name=None, persistable=False)paddle.v2.fluid.layers.
create_parameter
(shape, dtype, name=None, attr=None, is_bias=False, default_initializer=None)Create a parameter -:param shape: shape of the parameter -:type shape: list[int] -:param dtype: element type of the parameter -:type dtype: string -:param attr: attributes of the parameter -:type attr: ParamAttr -:param is_bias: This can affect which default initializer is chosen
---when default_initializer is None. If is_bias, -initializer.Constant(0.0) will be used. Otherwise, -Xavier() will be used.
Parameters: | default_initializer (Initializer) – initializer for the parameter | -
---|---|
Returns: | the created parameter | -
Return type: | Parameter | -
paddle.v2.fluid.layers.
create_global_var
(shape, value, dtype, persistable=False, force_cpu=False, name=None)Create a global variable. such as global_step -:param shape: shape of the variable -:type shape: list[int] -:param value: the value of the variable -:type value: float -:param dtype: element type of the parameter -:type dtype: string -:param persistable: if this variable is persistable -:type persistable: bool -:param force_cpu: force this variable to be on CPU -:type force_cpu: bool
-Returns: | the created Variable | -
---|---|
Return type: | Variable | -
paddle.v2.fluid.layers.
cast
(x, dtype)This function takes in the input with input_dtype -and casts it to the output_dtype as the output.
-paddle.v2.fluid.layers.
concat
(input, axis=0)Concat
-This function concatenates the input along the axis mentioned -and returns that as the output.
-Parameters: |
|
-
---|---|
Returns: | Output variable of the concatenation - |
-
Return type: | Variable - |
-
Examples
-paddle.v2.fluid.layers.
sums
(input, out=None)This function performs the sum operation on the input and returns the -result as the output.
-Parameters: | input (Variable|list) – The input tensor that has the elements -that need to be summed up. | -
---|---|
Returns: |
|
-
Return type: | Variable | -
Examples
-paddle.v2.fluid.layers.
assign
(input, output)Assign
-This function copies the input Variable to the output Variable.
-Parameters: |
|
-
---|---|
Returns: | The destination variable that was supplied as the output. - |
-
Return type: | Variable - |
-
Examples
-paddle.v2.fluid.layers.
fill_constant_batch_size_like
(input, shape, dtype, value, input_dim_idx=0, output_dim_idx=0)fill_constant_batch_size_like
-This function creates a tensor of specified shape, dtype and batch size, -and initializes this with a constant supplied in value. The batch size is -obtained from the input tensor.
-It also sets stop_gradient to True.
-Parameters: |
|
-
---|---|
Returns: | The tensor variable storing the output - |
-
Return type: | Variable - |
-
Examples
-data = fluid.layers.fill_constant_batch_size_like(
- input=like, shape=[1], value=0, dtype='int64')
-
paddle.v2.fluid.layers.
fill_constant
(shape, dtype, value, force_cpu=False, out=None)fill_constant
-This function creates a tensor with specified shape and dtype, and -initializes it with a constant specifed by value.
-The attribute stop_gradient of the created tensor is set to True.
-Parameters: |
|
-
---|---|
Returns: | The tensor variable storing the output. - |
-
Return type: | Variable - |
-
Examples
-data = fluid.layers.fill_constant(shape=[1], value=0, dtype='int64')
-
paddle.v2.fluid.layers.
ones
(shape, dtype, force_cpu=False)ones
-This function creates a tensor of specified shape and -dtype, and initializes this with 1.
-It also sets stop_gradient to True.
-Parameters: |
|
-
---|---|
Returns: | The tensor variable storing the output - |
-
Return type: | Variable - |
-
Examples
-data = fluid.layers.ones(shape=[1], dtype='int64')
-
paddle.v2.fluid.layers.
zeros
(shape, dtype, force_cpu=False)zeros
-This function creates a tensor of specified shape and -dtype, and initializes this with 0.
-It also sets stop_gradient to True.
-Parameters: |
|
-
---|---|
Returns: | The tensor variable storing the output - |
-
Return type: | Variable - |
-
Examples
-data = fluid.layers.zeros(shape=[1], dtype='int64')
-
paddle.v2.fluid.nets.
simple_img_conv_pool
(input, num_filters, filter_size, pool_size, pool_stride, act, param_attr=None, pool_type='max', use_cudnn=True)paddle.v2.fluid.nets.
sequence_conv_pool
(input, num_filters, filter_size, param_attr=None, act='sigmoid', pool_type='max')paddle.v2.fluid.nets.
glu
(input, dim=-1)The gated linear unit composed by split, sigmoid activation and elementwise -multiplication. Specifically, Split the input into two equal sized parts -\(a\) and \(b\) along the given dimension and then compute as -following:
----\[{GLU}(a, b)= a \otimes \sigma(b)\]-
Refer to Language Modeling with Gated Convolutional Networks.
-Parameters: |
|
-
---|---|
Returns: | The Tensor variable with half the size of input. - |
-
Return type: | Variable - |
-
Examples
-# x is a Tensor variable with shape [3, 6, 9]
-fluid.nets.glu(input=x, dim=1) # shape of output: [3, 3, 9]
-
paddle.v2.fluid.nets.
scaled_dot_product_attention
(queries, keys, values, num_heads=1, dropout_rate=0.0)The dot-product attention.
-Attention mechanism can be seen as mapping a query and a set of key-value -pairs to an output. The output is computed as a weighted sum of the values, -where the weight assigned to each value is computed by a compatibility -function (dot-product here) of the query with the corresponding key.
-The dot-product attention can be implemented through (batch) matrix -multipication as follows:
----\[Attention(Q, K, V)= softmax(QK^\mathrm{T})V\]-
Refer to Attention Is All You Need.
-Parameters: |
|
-
---|---|
Returns: | A 3-D Tensor computed by multi-head scaled dot product attention. - |
-
Return type: | Variable - |
-
Raises: |
|
-
Note
-1. When num_heads > 1, three linear projections are learned respectively -to map input queries, keys and values into queries’, keys’ and values’. -queries’, keys’ and values’ have the same shapes with queries, keys -and values.
-1. When num_heads == 1, scaled_dot_product_attention has no learnable -parameters.
-Examples
-# Suppose q, k, v are Tensors with the following shape:
-# q: [3, 5, 9], k: [3, 6, 9], v: [3, 6, 10]
-
-contexts = fluid.nets.scaled_dot_product_attention(q, k, v)
-contexts.shape # [3, 5, 10]
-
paddle.v2.fluid.optimizer.
SGD
alias of SGDOptimizer
paddle.v2.fluid.optimizer.
Momentum
alias of MomentumOptimizer
paddle.v2.fluid.optimizer.
Adagrad
alias of AdagradOptimizer
paddle.v2.fluid.optimizer.
Adam
alias of AdamOptimizer
paddle.v2.fluid.optimizer.
Adamax
alias of AdamaxOptimizer
paddle.v2.fluid.optimizer.
DecayedAdagrad
alias of DecayedAdagradOptimizer
paddle.v2.fluid.param_attr.
ParamAttr
(name=None, initializer=None, learning_rate=1.0, regularizer=None, trainable=True, gradient_clip=None)paddle.v2.fluid.param_attr.
WeightNormParamAttr
(dim=None, **kwargs)Used for weight normalization. Any field in ParamAttr can also be set here. -Besides, an extra field dim can be set to indicate the dimension except -which to normalize.
-paddle.v2.fluid.profiler.
cuda_profiler
(*args, **kwds)The CUDA profiler. -This fuctions is used to profile CUDA program by CUDA runtime application -programming interface. The profiling result will be written into -output_file with Key-Value pair format or Comma separated values format. -The user can set the output mode by output_mode argument and set the -counters/options for profiling by config argument. The default config -is [‘gpustarttimestamp’, ‘gpustarttimestamp’, ‘gridsize3d’, -‘threadblocksize’, ‘streamid’, ‘enableonstart 0’, ‘conckerneltrace’].
-Parameters: |
|
-
---|
paddle.v2.fluid.profiler.
reset_profiler
()The profiler clear interface. -reset_profiler will clear the previous time record.
-paddle.v2.fluid.profiler.
profiler
(*args, **kwds)The profiler interface. -Different from cuda_profiler, this profiler can be used to profile both CPU -and GPU program. By defalut, it records the CPU and GPU operator kernels, -if you want to profile other program, you can refer the profiling tutorial -to add more records.
-Parameters: |
|
-
---|
paddle.v2.fluid.regularizer.
append_regularization_ops
(parameters_and_grads, regularization=None)Create and add backward regularization Operators
-Creates and adds backward regularization operators in the BlockDesc. -This will add gradients of the regularizer function to the gradients -of the parameters and return these modified gradients. This is the -same as implementing weight decay in optimizers for regularization.
-Parameters: |
|
-
---|---|
Returns: | list of (parameters, gradients) pair with the regularized gradient - |
-
Raises: |
|
-
paddle.v2.fluid.regularizer.
L1Decay
alias of L1DecayRegularizer
paddle.v2.fluid.regularizer.
L2Decay
alias of L2DecayRegularizer
paddle.v2.parameters.
Parameters
Parameters manages all the learnable parameters in a neural network. -It stores parameters’ information in an OrderedDict. The key is -the name of a parameter, and value is a parameter’s configuration(in -protobuf format), such as initialization mean and std, its size, whether it -is a static parameter, and so on.
-Parameters: |
|
-
---|
Basically usage is
-data = paddle.layers.data(...)
-...
-out = paddle.layers.fc(...)
-
-parameters = paddle.parameters.create(out)
-
-parameter_names = parameters.names()
-fc_mat = parameters.get('fc')
-print fc_mat
-
keys
()keys are the names of each parameter.
-Returns: | list of parameter name | -
---|---|
Return type: | list | -
names
()names of each parameter.
-Returns: | list of parameter name | -
---|---|
Return type: | list | -
has_key
(key)has_key return true if there are such parameter name == key
-Parameters: | key (basestring) – Parameter name | -
---|---|
Returns: | True if contains such key | -
get_shape
(key)get shape of the parameter.
-Parameters: | key (basestring) – parameter name | -
---|---|
Returns: | parameter’s shape | -
Return type: | tuple | -
get
(parameter_name)Get parameter by parameter name.
-Note: | It will always copy the parameter from C++ side. | -
---|---|
Parameters: | parameter_name (basestring) – parameter name | -
Returns: | The parameter matrix. | -
Return type: | np.ndarray | -
get_grad
(key)Get grandient by parameter name.
-Note: | It will always copy the parameter from C++ side. | -
---|---|
Parameters: | key (basestring) – parameter name | -
Returns: | The grandient matrix. | -
Return type: | np.ndarray | -
set
(parameter_name, value)Set parameter by parameter name & matrix.
-Parameters: |
|
-
---|---|
Returns: | Nothing. - |
-
append_gradient_machine
(gradient_machine)append gradient machine to parameters. This method is used internally in -Trainer.train.
-Parameters: | gradient_machine (api.GradientMachine) – PaddlePaddle C++ GradientMachine object. | -
---|---|
Returns: | - |
serialize
(name, f)Parameters: |
|
-
---|---|
Returns: | - | -
deserialize
(name, f)Parameters: |
|
-
---|---|
Returns: | - | -
to_tar
(f)Save parameters to a tar file.
-Parameters: | f (file) – | -
---|---|
Returns: | - |
from_tar
(f)Create a Parameters object from the given file. And -the Parameters only contains the parameters in this -file. It is adapted the parameters are same in the -defined network and the given file. For example, it -can be used in the inference.
-Parameters: | f (tar file) – the initialized model file. | -
---|---|
Returns: | A Parameters object. | -
Return type: | Parameters. | -
init_from_tar
(f, exclude_params=[])Different from from_tar, this interface can be used to -init partial network parameters from another saved model.
-Parameters: |
|
-
---|---|
Returns: | Nothing. - |
-
Module Trainer
-paddle.v2.trainer.
SGD
(cost, parameters, update_equation, extra_layers=None, is_local=True, pserver_spec=None, use_etcd=True)Simple SGD Trainer. -SGD Trainer combines data reader, network topolopy and update_equation together -to train/test a neural network.
-Parameters: |
|
-
---|
train
(reader, num_passes=1, event_handler=None, feeding=None)Training method. Will train num_passes of input data.
-Parameters: |
|
-
---|---|
Returns: | - | -
test
(reader, feeding=None)Testing method. Will test input data.
-Parameters: |
|
-
---|---|
Returns: | - | -
Testing and training events.
-There are:
-paddle.v2.event.
TestResult
(evaluator, cost)Result that trainer.test return.
-paddle.v2.event.
BeginPass
(pass_id)Event On One Pass Training Start.
-paddle.v2.event.
EndPass
(pass_id, evaluator, gm)Event On One Pass Training Complete. -To get the output of a specific layer, add “event.gm.getLayerOutputs(‘predict_layer’)” -in your event_handler call back
-paddle.v2.event.
BeginIteration
(pass_id, batch_id)Event On One Batch Training Start.
-paddle.v2.event.
EndForwardBackward
(pass_id, batch_id, gm)Event On One Batch ForwardBackward Complete.
-paddle.v2.event.
EndIteration
(pass_id, batch_id, cost, evaluator, gm)Event On One Batch Training Complete. -To get the output of a specific layer, add “event.gm.getLayerOutputs(‘predict_layer’)” -in your event_handler call back
-paddle.v2.
infer
(output_layer, parameters, input, feeding=None, field='value')Infer a neural network by given neural network output and parameters. The -user should pass either a batch of input data or reader method.
-Example usage for sinlge output_layer:
-result = paddle.infer(output_layer=prediction,
- parameters=parameters,
- input=SomeData)
-print result
-
Example usage for multiple outout_layers and fields:
-result = paddle.infer(output_layer=[prediction1, prediction2],
- parameters=parameters,
- input=SomeData,
- field=[id, value]])
-print result
-
Parameters: |
|
-
---|---|
Returns: | The prediction result. If there are multiple outout_layers and fields, -the return order is outout_layer1.field1, outout_layer2.field1, ..., -outout_layer1.field2, outout_layer2.field2 ... - |
-
Return type: | numpy.ndarray - |
-
- |
- |
- | - |
|
-
- | - |
- |
- |
IfElse
Operator","Design Doc: InferVarType","Problem","Memory Optimization","Intel\u00ae MKL Packed on PaddlePaddle: Design Doc","Intel\u00ae MKL-DNN on PaddlePaddle: Design Doc","Design Doc: Add MKLDNN Kernel in Fluid Operator","Design Doc: Model Format","Paddle\u591a\u8bed\u8a00\u63a5\u53e3\u5b9e\u73b0","C-API \u6a21\u578b\u63a8\u65ad\u5b9e\u73b0\u6587\u6863","Design Doc: The Keys of Operator Kernel Type","RNNOp design","Design: Sequence Decoder Generating LoDTensors","Optimizer Design","Design Doc: NCCL support in Paddle Fluid","Averaging Parameter in PaddlePaddle","Design Doc: The C++ Class Parameters
","Introduction","Design Doc: PaddlePaddle Programs","Prune","Design Doc: Python API","Python Data Reader Design Doc","Design Doc: Refactorization Overview","Design Doc: Gradient Operators Registration","Regularization in PaddlePaddle","PaddlePaddle\u53d1\u884c\u89c4\u8303","Design of Scope in Paddle","Design Doc: Selected Rows","Interaction between C++ and Python","DeepSpeech2 on PaddlePaddle: Design Doc","Design Doc: Supporting new Device/Library","Design Doc: Switch","Background","Design for TensorArray","Background","Contribute Code","Development","Write New Layers","How to write a new operator","Add Kernels for a New Device","How to use Eigen in Paddle","Contribute Documentation","GET STARTED","Quick Start","Command-line arguments","Fluid Distributed Training","Distributed Training","Cluster Training Using Fabric","Use different clusters","Distributed PaddlePaddle Training on AWS with Kubernetes","PaddlePaddle On Kubernetes","Cluster Training Using OpenMPI","<no title>","<no title>","Preparations","Argument Outline","Detail Description","Set Command-line Parameters","Use Case","HOW TO","Profiling the Python Code","Tune GPU Performance","PaddlePaddle Fluid Source Code Overview","RNN Models","RNN Configuration","PaddlePaddle Documentation","Build PaddlePaddle for Android","Build PaddlePaddle for iOS","Build PaddlePaddle for Raspberry Pi","Cluster bootstrapping tool survey"],titleterms:{"\u4e0a\u4f20\u8bad\u7ec3\u6587\u4ef6":38,"\u4e0d\u4f7f\u7528":71,"\u4e0d\u4f7f\u7528swig\u8fd9\u79cd\u4ee3\u7801\u751f\u6210\u5668":71,"\u4e0d\u5bfc\u51fapaddle\u5185\u90e8\u7684\u7ed3\u6784\u4f53":71,"\u4e0d\u5f15\u7528\u5176\u4ed6\u52a8\u6001\u5e93":71,"\u4ec5\u4ec5\u4f7f\u7528void":71,"\u4ece\u5feb\u7167\u6062\u590d":37,"\u4f7f\u7528\u52a8\u6001\u5e93\u6765\u5206\u53d1paddl":71,"\u4f7f\u7528\u8f6c\u6362\u5e93":38,"\u5177\u4f53\u67d0\u79cd\u7c7b\u578b\u7684\u5934\u6587\u4ef6":72,"\u5177\u4f53\u67d0\u79cd\u7c7b\u578b\u7684\u5b9e\u73b0\u6587\u4ef6":72,"\u5206\u5757\u6587\u4ef6\u4f20\u8f93":54,"\u5206\u652f\u89c4\u8303":88,"\u52a0\u901f\u6267\u884c":37,"\u52a8\u6001\u5e93\u4e2d\u4e0d\u5d4c\u5165\u4efb\u4f55\u5176\u4ed6\u8bed\u8a00\u7684\u89e3\u91ca\u5668":71,"\u52a8\u6001\u6269\u5bb9":37,"\u539f\u56e0":71,"\u539f\u56e0\u5217\u8868":71,"\u53c2\u8003\u6587\u6863":54,"\u53d1\u5e03docker\u955c\u50cf":88,"\u53d1\u5e03wheel\u5305\u5230pypi":88,"\u540d\u8bcd\u89e3\u91ca":54,"\u57fa\u672c\u8981\u6c42":71,"\u5b9e\u73b0":71,"\u5b9e\u73b0\u65b9\u5f0f":72,"\u5bfc\u51fac":71,"\u5feb\u7167\u4fdd\u5b58\u7684\u8bbe\u8ba1\u5982\u4e0b":37,"\u6307\u9488\u4f5c\u4e3a\u7c7b\u578b\u7684\u53e5\u67c4":71,"\u63a8\u6d4b\u6267\u884c":37,"\u652f\u6301\u7528\u6237\u81ea\u5b9a\u4e49\u7684\u6570\u636e\u9884\u5904\u7406job":38,"\u6587\u4ef6\u4f20\u8f93\u4f18\u5316":54,"\u6587\u4ef6\u8bbf\u95ee\u65b9\u5f0f":38,"\u6587\u4ef6\u8bbf\u95ee\u7684\u6743\u9650":38,"\u6587\u4ef6\u9884\u5904\u7406":38,"\u66b4\u9732\u63a5\u53e3\u539f\u5219":72,"\u672f\u8bed":37,"\u67b6\u6784\u56fe":54,"\u6846\u67b6\u751f\u6210":54,"\u6982\u5ff5\u89e3\u91ca":38,"\u6a21\u5757":54,"\u6a21\u578b\u53c2\u6570\u68c0\u67e5\u70b9":37,"\u6a21\u578b\u63a8\u65ad\u5b9e\u73b0\u6587\u6863":72,"\u6d41\u7a0b\u4ecb\u7ecd":38,"\u751f\u6210sparse\u6587\u4ef6":54,"\u7528\u6237\u4f7f\u7528\u6d41\u7a0b":54,"\u76ee\u5f55\u7ed3\u6784":72,"\u76ee\u6807":54,"\u793a\u4f8b\u7a0b\u5e8f":38,"\u7b26\u53f7":71,"\u7c7b":71,"\u7f16\u8bd1\u9009\u9879":72,"\u7f29\u5bb9":37,"\u800c\u662f\u624b\u5199\u591a\u8bed\u8a00\u7ed1\u5b9a":71,"\u80cc\u666f":71,"\u8986\u76d6\u4e0d\u4e00\u81f4\u7684\u90e8\u5206":54,"\u8bad\u7ec3\u6570\u636e\u5b58\u50a8":38,"\u8bad\u7ec3\u6570\u636e\u7684\u5b58\u50a8\u548c\u5206\u53d1":38,"\u8f6c\u6362\u5e93":38,"\u8fd9\u4e2a\u52a8\u6001\u5e93\u4f7f\u7528c99\u6807\u51c6\u7684\u5934\u6587\u4ef6\u5bfc\u51fa\u4e00\u4e9b\u51fd\u6570":71,"\u8fdb\u884c\u8bad\u7ec3":38,"abstract":[48,49,50,77,132],"book\u4e2d\u6240\u6709\u7ae0\u8282":88,"case":[33,121],"class":[60,79,83,100],"filemanager\u8bbe\u8ba1\u6587\u6863":54,"final":65,"function":[35,59,60,83],"new":[93,100,101,102],"paddle\u52a8\u6001\u5e93\u4e2d":71,"paddle\u591a\u8bed\u8a00\u63a5\u53e3\u5b9e\u73b0":71,"paddlepaddle\u53d1\u884c\u89c4\u8303":88,"paddlepaddle\u56de\u5f52\u6d4b\u8bd5\u5217\u8868":88,"return":[83,84],"switch":[69,93,94],"tensor\u5230eigentensor\u7684\u8f6c\u6362":103,"while":18,AWS:112,Abs:1,DNS:112,E2E:108,EFS:112,For:[35,113],KMS:112,Not:26,The:[34,41,45,53,57,60,61,63,64,73,76,79,85,86,94,131],Use:[34,81,104,106,111,113,121],Using:[30,35,41,110,114,129],With:44,about:60,abs:18,absolut:75,access:112,account:112,accuraci:[14,18],action:[67,68],activ:[1,4,68],actor:47,adadelta:6,adagrad:[6,20],adam:[6,20],adamax:[6,20],add:[66,69,102,112],address:112,addto:4,advanc:93,aggreg:4,aggregatelevel:4,alalysi:39,algorithm:[32,36,48,74,82],all:[89,96],analog:45,analysi:[48,66],android:129,api:[0,48,67,68,72,76,78,83,87,91],append_regularization_op:23,appendix:132,approach:124,arbitrari:57,architectur:[48,80,127],argument:[55,84,107,118,121,129,131],arrai:32,array_length:18,array_read:18,array_to_lod_tensor:18,array_writ:18,asset:112,assign:18,associ:[89,112],assumpt:132,async:119,attent:127,attribut:[2,66,87],auc:3,auto:32,averag:78,avg:7,aws:112,background:[32,50,67,93,94,95,96,97,101,102],backward:[33,57,61,85,101],base:[44,75],basepool:7,basic:[66,93,132],batch:84,batch_norm:[4,18],batch_siz:84,beam:[75,92],beam_search:[4,18],beam_search_decod:18,benchmark:[67,68],benefit:[50,85],between:[31,47,83,85,91,93],bidirectional_gru:5,bidirectional_lstm:5,bilinear_interp:4,binari:34,bind:101,bla:27,block:[34,58,60,61,81,83,85],block_expand:4,blockdesc:81,blockguard:18,blockguardserv:18,blockguardwithcomplet:18,book:28,bool:27,bootstrap:132,bottleneck:123,brelu:[1,18],bring:132,bucket:112,build:[26,27,29,33,60,85,104,113,129,130,131],built:124,can:89,capi:72,capi_priv:72,cast:18,ceil:18,challeng:[33,50,82],chang:75,channel:47,check:[4,32,100,110],checkpoint:[36,37,43],choic:65,choos:[35,112],chunk:3,chunk_ev:18,chunkevalu:14,cifar:10,classif:3,classification_error:3,classification_error_print:3,client:41,clip:[4,18,51],clip_by_norm:18,close:32,cloudform:112,cluster:[42,108,110,111,112,114,121,132],cmake:[35,67,68,131],code:[44,58,83,98,123,125],column_sum:3,command:[107,120,121],commit:113,common:119,commun:119,compar:132,comparis:83,compat:57,compil:[27,34,56,58,81,85,101,125,129,130,131],complet:57,compos:84,comput:[34,61,69,85,87,103],con:132,concat:[4,18],concept:[83,85,112],concern:68,conclus:[43,62,132],concurr:[45,47],condit:60,conditionalblock:18,config:121,configur:[24,112,127,130],conll05:10,connect:4,constant:16,construct:61,contain:[28,113],content:[67,68,72,92,112,124],context:102,context_project:4,contribut:[98,104],control:[66,85],control_flow:18,contruct:66,conv2d:18,conv2d_transpos:18,conv:4,conv_oper:4,conv_project:4,conv_shift:4,convert:43,convolut:92,core:[32,83,112],corner:33,cos_sim:[4,18],cost:4,cpu:[49,121],creat:[33,47,84,85,89,112,113],create_arrai:18,create_global_var:18,create_paramet:18,create_tensor:18,createreaderop:46,creation:[40,78,87],creator:84,credenti:112,crf:4,crf_decod:[4,18],cross:[129,130,131],cross_channel_norm:4,cross_entropi:18,cross_entropy_cost:4,cross_entropy_with_selfnorm_cost:4,csp:47,ctc:[4,92],ctc_error:3,ctc_greedy_decod:18,cuda:[27,56],cuda_profil:22,cudnn:27,cudnnavg:7,cudnnmax:7,current:[56,86],custom:84,data:[4,8,9,18,36,46,48,84,95,112,113],data_feed:13,datafeed:[9,13],dataflow:66,dataprovid:119,dataset:[8,10,36,40,107],datatyp:[9,73],decayedadagrad:[6,20],decod:75,decor:84,decoratedread:46,deep:[34,57],deepspeech2:92,defin:[101,112],definit:97,delet:112,demo:[60,108,112],dens:43,dep:30,depend:[27,30,60,92],deploi:44,deriv:100,describ:[57,76],descript:[55,85,119],design:[31,32,34,36,40,41,42,43,45,47,48,49,50,52,53,56,57,59,60,61,64,67,68,69,70,73,74,75,76,77,79,81,83,84,85,86,89,90,92,93,94,96],destroi:[89,112],detail:[39,92,119],detect:3,detection_map:3,detection_output:4,develop:[26,85,99],devic:[18,93,102,121],devicecontext:93,dictionari:84,differ:[85,93,111,121],directori:112,discrimin:60,discuss:[50,60],dispatch:[36,40],distribut:[31,36,39,44,48,50,108,109,112,119],dnn:68,doc:[31,34,36,40,41,42,43,45,47,48,49,50,53,56,57,59,61,64,67,68,69,70,73,77,79,81,83,84,85,86,90,92,93,94],docker:[26,28,44,113,129],document:[104,128],doe:84,dot_prod:4,dot_product_attent:5,dotmul_oper:4,dotmul_project:4,down:112,download:[112,113],dropout:[4,18],dure:[75,84],dylib:72,dynam:[36,96],dynamic_gru:18,dynamic_lstm:18,dynamic_lstmp:18,dynamicrnn:18,dynet:62,each:30,ec2:112,edit_dist:18,eigen:103,elast:112,elect:43,elementwise_add:18,elementwise_div:18,elementwise_max:18,elementwise_min:18,elementwise_mul:18,elementwise_pow:18,elementwise_sub:18,els:34,elu:18,embed:[4,18],engin:60,enough:32,entri:84,environ:[44,129],eos:4,equat:100,error:51,evalu:[3,14,52],event:[25,31,80],evolut:57,examin:123,exampl:[31,35,45,47,63,72],execut:[34,49,57,81,85],executor:[15,53],exp:[1,18],expand:4,expandlevel:4,explan:32,extern:112,fabric:110,factorization_machin:4,faq:[29,30],fault:36,feed:46,file:[34,112,113,123],fileread:46,fill_const:18,fill_constant_batch_size_lik:18,find:112,first_seq:4,float16:56,floor:18,flow:66,fluid:[12,45,47,57,58,69,77,108,125],format:[34,36,70],forward:[61,101],frame:34,framework:[32,102,103],from:[27,29,31,43,91],full_matrix_project:4,fulli:4,functor:93,futur:[57,92],gan:60,gate:127,gated_unit:4,gener:[26,58,60,75,123,127,132],get:[105,108,113],get_inference_program:17,get_output:4,get_plac:18,give:84,global:[81,83],global_scop:15,glu:19,gotcha:26,gpu:[28,119,121,124],grad_op:33,gradient:[32,33,41,68,86,100],gradient_print:3,graph:[61,62,66,85,87],group:[4,112],gru:[5,119],gru_group:5,gru_step:4,gru_unit:[5,18],grumemori:4,hand:124,handler:[31,71],happen:43,hard_shrink:18,hard_sigmoid:18,hardwar:56,have:108,helper:83,hierarchi:34,high:[76,78,87,91],how:[27,32,39,78,84,85,93,101,103,104,122,124],hsigmoid:4,huber_classification_cost:4,huber_regression_cost:4,iOS:130,iam:112,ident:1,identifi:123,identity_project:4,ifels:[18,63],ifelseop:34,im2sequ:18,imag:[4,5,11,28,44,113,129],imdb:10,img_cmrnorm:4,img_conv:4,img_conv_bn_pool:5,img_conv_group:5,img_pool:4,imikolov:10,implement:[32,33,35,39,49,51,52,56,70,74,77,78,83,84,85,86,87,100,101,102,103],increment:18,infer:[25,129],infershap:[81,90],infervartyp:64,ingredi:31,ingress:54,initi:[16,41,60,112,121],insid:89,inspect:112,instal:[29,30,106,108,112,129,130,131,132],instanc:112,instead:84,integr:[93,112],intel:[67,68],interact:91,interfac:[8,9,11,32,36,41,42,53,76,84,89],intermedi:85,interpol:4,introduc:[75,96,108],introduct:[80,87,108],isn:84,issu:56,job:[36,44,110,112,113,114],kei:[67,73,112],kernel:[69,73,85,102],kill:110,kmax_sequence_scor:4,kube:112,kubectl:112,kubernet:[44,112,113],l1decai:23,l2_distanc:4,l2_normal:18,l2decai:23,lambda_cost:4,languag:[34,58],larg:39,last_seq:4,launch:[28,110,114],layer:[4,18,31,59,67,68,83,100,121],layer_norm:18,layout:73,leaky_relu:18,learn:[34,57],less_than:18,leval:91,level:[76,78,87,91],libpaddle_capi_shar:72,libpaddle_capi_whol:72,librari:[41,56,73,85,93,129],limit:48,line:[107,120],linear:1,linear_chain_crf:18,linear_comb:4,linux:[110,129],list:[37,84],listenandserv:18,live:66,load:47,load_inference_model:17,load_param:17,load_persist:17,load_var:17,local:[48,89,112,121],lod:75,lod_rank_t:18,lod_tensor_to_arrai:18,lodtensor:[74,75,96],lodtensordesc:97,log:[1,18,98],logic:40,logsigmoid:18,look:123,low:[78,87,91],lstm:[5,119],lstm_step:4,lstm_unit:18,lstmemori:4,lstmemory_group:5,lstmemory_unit:5,machin:75,macro:85,main:60,make:66,manag:35,map:[84,85],master:[36,40,44,45],math:[4,93],mathemat:32,matmul:18,matrix:[68,119],max:7,max_sequence_len:18,maxframe_print:3,maxid:4,maxid_print:3,maxout:4,mean:18,member:60,memori:[4,66,74,93],merge_lod_tensor:18,messag:91,method:75,might:60,migrat:85,mileston:85,mini:84,minibatch:[9,47],mix:[4,121],mkl:[67,68],mkldnn:69,mkldnn_helper:69,mkldnndevicecontext:69,mnist:10,model:[24,31,39,41,43,47,57,60,70,75,110,121,126,127],modifi:113,modul:[85,93,103],momentum:[6,20],more:60,motiv:[33,47,53,70,77,82],movielen:10,mul:18,multi:[49,58],multi_binary_label_cross_entropy_cost:4,multibox_loss:4,multipl:84,multiplex:[4,18],mxnet:62,name:[89,112],nativ:58,nccl:77,nce:[4,18],necess:83,necessari:85,need:[26,84,124],nest:74,net:19,network:[5,85,121,127],neural:127,nlp:[5,119],non:108,norm:[4,87],normal:16,note:32,numer:32,numpi:32,nvprof:124,nvvp:124,object:36,offset:75,ones:18,onli:[84,89],op_mak:85,openmpi:114,oper:[46,59,63,66,69,73,78,81,83,85,86,90,96,101],opinfomap:85,opkernel:[85,93,101,102],opproto:91,ops:[18,87],optim:[6,20,36,41,61,66,76,83],option:[27,55],opwithkernel:85,order:55,org:104,origin:85,orthogon:89,other:68,out_prod:4,outlin:118,output:[110,112],overview:[43,51,53,67,68,85,89,92,125],pack:[67,75],packag:[30,35],pad:4,paddl:[39,77,84,89,103],paddlejob:44,paddlepaddl:[27,28,30,31,34,47,57,58,67,68,78,81,87,88,92,104,108,112,113,125,128,129,130,131],pair:112,paradigm:57,parallel_nn:121,paralleldo:18,param_attr:21,paramattr:21,paramet:[2,25,31,36,41,42,44,47,50,68,78,79,83,87,107,108,112,119,120],parameteraverageoptim:78,parent:89,part:61,partit:41,pass:[27,121],path:[43,55],penalti:87,perform:[78,119,123,124],persist:40,pfsclient:[54,55],pfsserver:54,pip:30,place:[66,73,93,102],placement:48,pnpair:3,point:[67,112],polici:66,pool2d:18,pool:[4,7],pose:[64,86],potenti:65,pow:18,power:4,precision_recal:3,prefetch:84,prelu:4,prepar:[107,108,110,112,114,117,130],principl:69,print:[3,18],privat:112,pro:132,problem:[52,64,65,66,73,76,86,95],procedur:132,process:[26,36,41,44,76,85],profil:[22,123,124],program:[28,34,45,47,49,57,58,81,83,107,108],programdesc:[58,81],project:35,propos:[64,86,87],protobuf:90,protomak:101,provid:84,prune:82,pserver:43,pull:28,python:[32,44,48,67,68,74,76,78,83,84,87,91,97,100,101,123],qualiti:85,queue:[36,40],quick:106,randomnumb:119,rank:3,rank_cost:4,raspberri:131,reader:[8,9,31,46,84],readerbas:46,readerhold:46,readi:108,readop:46,realiz:85,reciproc:18,recoveri:36,recurr:[4,5,127],recurrent_group:4,recv:47,reduce_max:18,reduce_mean:18,reduce_min:18,reduce_sum:18,refactor:85,refer:[32,48,50,66,67,68,92,124],region:112,regist:[64,85,91,101,102],registr:[85,86],registri:85,regular:[23,41,87],rel:75,relat:[46,85,96],relu6:18,relu:[1,18],remark:101,remot:42,remoteexecutor:48,render:112,reorder_lod_tensor_by_rank:18,repeat:4,represent:[34,85],requir:[35,60],reset_profil:22,reshap:[4,18],resiz:4,result:[110,113],retri:40,reus:83,review:98,rmsprop:6,rnn:[74,96,119,126,127],rnnop:[34,74,85],roi_pool:4,rotat:4,round:18,route53:112,row:[90,92],row_conv:[4,18],row_l2_norm:4,rpc:47,run:[27,28,53,101,113,125],runtim:[30,44],sampl:4,sampling_id:4,save:43,save_inference_model:17,save_param:17,save_persist:17,save_var:17,scale:[4,18,36],scale_shift:4,scaled_dot_product_attent:19,scaling_project:4,scope:[34,74,85,89],scope_guard:15,script:[108,113],search:[75,92],secur:112,select:[41,47,90],selectedrow:90,selective_fc:4,semant:94,send:[18,47],sentiment:10,separ:85,seq_concat:4,seq_reshap:4,seq_slic:4,seqtext_print:3,sequenc:[75,127],sequence_conv:18,sequence_conv_pool:[5,19],sequence_expand:18,sequence_first_step:18,sequence_last_step:18,sequence_pool:18,sequence_reshap:18,sequence_softmax:18,sequencesoftmax:1,server:[36,40,41,44,47,50,107,108,112,119],servic:112,set:120,setup:[112,129],sextant:132,sgd:[20,119],shape:75,share:[31,33,66,89],should:89,shrink_memori:18,shuffl:84,sigmoid:[1,18],sigmoid_cross_entropy_with_logit:18,simpl:[75,127],simple_attent:5,simple_gru2:5,simple_gru:5,simple_img_conv_pool:[5,19],simple_lstm:5,singl:84,slice:108,slice_project:4,slope_intercept:4,small_vgg:5,smooth_l1_cost:4,soft_relu:18,softmax:1,softplu:18,softrelu:1,softshrink:18,softsign:[1,18],solut:[64,65,66,67,73,82,86,95],some:26,sourc:[27,29,125],spars:[41,42,43,90,121],specifi:121,split:18,split_lod_tensor:18,spp:4,sqrt:18,squar:[1,18],square_error_cost:[4,18],squarerootn:7,stack:34,standard:98,stanh:[1,18],start:[31,105,106,107,112,113],startup:113,statement:52,staticrnn:18,staticrnnmemorylink:18,step:[29,74],storag:87,store:36,strategi:66,style:98,sub_nested_seq:4,sub_seq:4,subcommond:55,submit:44,suffici:84,suitabl:35,sulut:69,sum:[3,7,18],sum_cost:4,sum_to_one_norm:4,summar:[31,45],summari:70,support:[56,77,93,96],survei:[56,62,87,132],swish:18,switch_scop:15,synopsi:55,syntax:47,system:[57,112],tabl:[72,92],table_project:4,tanh:[1,18],tanh_shrink:18,task:[36,40,92],tear:112,tecton:132,templat:112,tensor:[4,18,85,93,103],tensorarrai:[75,96],tensordesc:97,tensorflow:62,test:[27,67,68,69,98,100,101,119,121],text_conv_pool:5,theori:32,thi:89,think:60,three:96,thresholded_relu:18,time:125,timelin:43,timer:124,tip:124,todo:[37,38,49],togeth:89,toler:36,tool:[35,104,124,132],toolchain:131,topic:93,topk:18,toward:58,train:[25,28,31,36,39,42,44,48,76,84,107,108,109,110,112,113,114,119,121],trainer:[25,36,41,43,44,47,107,112],tran:4,trans_full_matrix_project:4,transform:95,translat:75,transpil:[48,49,50,58,66,77],transpos:18,tune:[119,124],ture:57,two:32,type:[27,47,73,101],uci_h:10,uniform:[16,96],unit:[67,68,69,98,100,101,119],unpack:75,updat:[31,42,43,104,108,112],usag:[33,51,74,75,84,103],use:[39,84,103],user:36,using:26,util:3,valu:83,value_print:3,vardesc:97,variabl:[33,66,83,85,89,97],vector:119,verifi:112,version:[30,45,56],vgg_16_network:5,volum:112,vpc:112,warp_ctc:4,warpctc:18,weightnormparamattr:21,what:[26,39,43,124],when:[43,89],whileguard:18,whl:30,why:[56,57,78,84,85,96,124],wmt14:10,wmt16:10,work:92,worker:45,workflow:98,wrapper:100,write:[98,100,101,102,104],www:104,xavier:16,yaml:113,your:[28,102],zero:18}})
\ No newline at end of file
+Search.setIndex({docnames:["build_and_install/build_en","build_and_install/build_from_source_en","build_and_install/docker_install_en","build_and_install/index_en","build_and_install/pip_install_en","design/api","design/auto_gradient_check","design/backward","design/block","design/build_system/README","design/cluster_train/README","design/cluster_train/checkpointing","design/cluster_train/data_dispatch","design/cluster_train/large_model_dist_train","design/cluster_train/master_server","design/cluster_train/pserver_client","design/cluster_train/remote_parameter_updater","design/cluster_train/save_model","design/cluster_train/submit-job","design/concurrent_programming","design/cpp_data_feeding","design/csp","design/dist_refactor/distributed_architecture","design/dist_refactor/multi_cpu","design/dist_refactor/parameter_server","design/error_clip","design/evaluator","design/executor","design/file_manager/README","design/file_manager/pfs/pfsclient","design/float16","design/fluid","design/fluid_compiler","design/functions_operators_layers","design/gan_api","design/graph","design/graph_survey","design/if_else_op","design/infer_var_type","design/kernel_hint_design","design/memory_optimization","design/mkl/mkl_packed","design/mkl/mkldnn","design/mkl/mkldnn_fluid","design/model_format","design/multi_language_interface/00.why_plain_c","design/multi_language_interface/01.inference_implementation","design/operator_kernel_type","design/ops/rnn","design/ops/sequence_decoder","design/optimizer","design/paddle_nccl","design/parameter_average","design/parameters_in_cpp","design/profiler","design/program","design/prune","design/python_api","design/reader/README","design/refactorization","design/register_grad_op","design/regularization","design/releasing_process","design/scope","design/selected_rows","design/simple_op_design","design/speech/deep_speech_2","design/support_new_device","design/switch","design/switch_kernel","design/tensor_array","design/var_desc","dev/contribute_to_paddle_en","dev/index_en","dev/new_layer_en","dev/new_op_en","dev/new_op_kernel_en","dev/use_eigen_en","dev/write_docs_en","getstarted/index_en","getstarted/quickstart_en","howto/cluster/cmd_argument_en","howto/cluster/fluid_cluster_train_en","howto/cluster/index_en","howto/cluster/multi_cluster/fabric_en","howto/cluster/multi_cluster/index_en","howto/cluster/multi_cluster/k8s_aws_en","howto/cluster/multi_cluster/k8s_en","howto/cluster/multi_cluster/openmpi_en","howto/cluster/multi_cluster/src/k8s_data/README","howto/cluster/multi_cluster/src/k8s_train/README","howto/cluster/preparations_en","howto/cmd_parameter/arguments_en","howto/cmd_parameter/detail_introduction_en","howto/cmd_parameter/index_en","howto/cmd_parameter/use_case_en","howto/index_en","howto/optimization/cpu_profiling_en","howto/optimization/gpu_profiling_en","howto/read_source","howto/rnn/index_en","howto/rnn/rnn_config_en","index_en","mobile/cross_compiling_for_android_en","mobile/cross_compiling_for_ios_en","mobile/cross_compiling_for_raspberry_en","survey/cluster_bootstrapping_tools"],envversion:50,filenames:["build_and_install/build_en.md","build_and_install/build_from_source_en.rst","build_and_install/docker_install_en.rst","build_and_install/index_en.rst","build_and_install/pip_install_en.rst","design/api.md","design/auto_gradient_check.md","design/backward.md","design/block.md","design/build_system/README.md","design/cluster_train/README.md","design/cluster_train/checkpointing.md","design/cluster_train/data_dispatch.md","design/cluster_train/large_model_dist_train.md","design/cluster_train/master_server.md","design/cluster_train/pserver_client.md","design/cluster_train/remote_parameter_updater.md","design/cluster_train/save_model.md","design/cluster_train/submit-job.md","design/concurrent_programming.md","design/cpp_data_feeding.md","design/csp.md","design/dist_refactor/distributed_architecture.md","design/dist_refactor/multi_cpu.md","design/dist_refactor/parameter_server.md","design/error_clip.md","design/evaluator.md","design/executor.md","design/file_manager/README.md","design/file_manager/pfs/pfsclient.md","design/float16.md","design/fluid.md","design/fluid_compiler.md","design/functions_operators_layers.md","design/gan_api.md","design/graph.md","design/graph_survey.md","design/if_else_op.md","design/infer_var_type.md","design/kernel_hint_design.md","design/memory_optimization.md","design/mkl/mkl_packed.md","design/mkl/mkldnn.md","design/mkl/mkldnn_fluid.md","design/model_format.md","design/multi_language_interface/00.why_plain_c.md","design/multi_language_interface/01.inference_implementation.md","design/operator_kernel_type.md","design/ops/rnn.md","design/ops/sequence_decoder.md","design/optimizer.md","design/paddle_nccl.md","design/parameter_average.md","design/parameters_in_cpp.md","design/profiler.md","design/program.md","design/prune.md","design/python_api.md","design/reader/README.md","design/refactorization.md","design/register_grad_op.md","design/regularization.md","design/releasing_process.md","design/scope.md","design/selected_rows.md","design/simple_op_design.md","design/speech/deep_speech_2.md","design/support_new_device.md","design/switch.md","design/switch_kernel.md","design/tensor_array.md","design/var_desc.md","dev/contribute_to_paddle_en.md","dev/index_en.rst","dev/new_layer_en.rst","dev/new_op_en.md","dev/new_op_kernel_en.md","dev/use_eigen_en.md","dev/write_docs_en.rst","getstarted/index_en.rst","getstarted/quickstart_en.rst","howto/cluster/cmd_argument_en.md","howto/cluster/fluid_cluster_train_en.md","howto/cluster/index_en.rst","howto/cluster/multi_cluster/fabric_en.md","howto/cluster/multi_cluster/index_en.rst","howto/cluster/multi_cluster/k8s_aws_en.md","howto/cluster/multi_cluster/k8s_en.md","howto/cluster/multi_cluster/openmpi_en.md","howto/cluster/multi_cluster/src/k8s_data/README.md","howto/cluster/multi_cluster/src/k8s_train/README.md","howto/cluster/preparations_en.md","howto/cmd_parameter/arguments_en.md","howto/cmd_parameter/detail_introduction_en.md","howto/cmd_parameter/index_en.rst","howto/cmd_parameter/use_case_en.md","howto/index_en.rst","howto/optimization/cpu_profiling_en.md","howto/optimization/gpu_profiling_en.rst","howto/read_source.md","howto/rnn/index_en.rst","howto/rnn/rnn_config_en.rst","index_en.rst","mobile/cross_compiling_for_android_en.md","mobile/cross_compiling_for_ios_en.md","mobile/cross_compiling_for_raspberry_en.md","survey/cluster_bootstrapping_tools.md"],objects:{},objnames:{},objtypes:{},terms:{"00m":98,"03m":98,"0424m":98,"055ee37d":86,"0630u":98,"06u":98,"0810u":98,"0957m":98,"0_cudnn5":1,"0_cudnn5_avx_mkl":[2,4],"0_cudnn7_avx_mkl":4,"0rc":91,"0rc1":62,"0rc2":62,"0x10f256d50":36,"0x7ffe4de00110":36,"100gb":98,"100gi":86,"10g":18,"10m":98,"1150u":98,"11\u5b9e\u73b0\u4e86c":46,"11e6":87,"124n":98,"12gb":40,"13m":87,"1490u":98,"1550u":98,"16u":98,"173n":98,"1770u":98,"18ad":86,"18e457ce3d362ff5f3febf8e7f85ffec852f70f3b629add10aed84f930a68750":87,"197u":98,"1gb":98,"210u":98,"215n":98,"228u":98,"2520u":98,"2680u":98,"279n":98,"27m":98,"285m":98,"2863m":98,"28m":98,"2977m":98,"2cbf7385":86,"302n":98,"30u":98,"328n":98,"32u":98,"331n":98,"3320u":98,"365e":86,"36u":98,"3710m":98,"3768m":98,"387u":98,"38u":98,"3920u":98,"39u":98,"3rd":104,"4035m":98,"4090u":98,"4096mb":93,"4279m":98,"43u":98,"448a5b355b84":87,"4560u":98,"4563m":98,"45u":98,"4650u":98,"4726m":98,"473m":87,"4gb":93,"50bd":86,"50gi":86,"514u":98,"525n":98,"526u":98,"536u":98,"5460u":98,"5470u":98,"54u":98,"5690m":98,"573u":98,"578n":98,"5798m":98,"586u":98,"58s":87,"5969m":98,"5_cudnn5_avx_mkl":4,"5_cudnn5_avx_openbla":[4,80],"6080u":98,"6140u":98,"6305m":98,"639u":98,"64m":44,"655u":98,"6780u":98,"6810u":98,"682u":98,"6970u":98,"6ce9":86,"704u":98,"7090u":98,"72u":98,"73u":98,"75u":98,"760u":98,"767u":98,"783n":98,"784u":98,"78m":98,"7kb":87,"8250u":98,"8300u":98,"830n":98,"849m":98,"861u":98,"8661m":98,"892m":98,"901n":98,"90u":98,"918u":98,"9247m":98,"924n":98,"9261m":98,"9330m":98,"94u":98,"9530m":98,"983m":98,"988u":98,"997u":98,"99u":98,"9a235":104,"9f18":87,"\u4e00\u4e2a\u5178\u578b\u7684chunk\u5982\u4e0b\u6240\u793a":28,"\u4e00\u4e2a\u795e\u7ecf\u7f51\u7edc\u7684\u6a21\u578b\u7531\u5927\u91cf\u7684\u53c2\u6570\u7ec4\u6210":11,"\u4e00\u4e2achunk\u7531\u6240\u5728\u7684\u6587\u4ef6\u504f\u79fb":28,"\u4e00\u4e2aposix\u517c\u5bb9\u7684\u6587\u4ef6\u7cfb\u7edf":28,"\u4e00\u822c\u4e0d\u5141\u8bb8\u518d\u4ece":62,"\u4e00\u822c\u7531mkl":42,"\u4e0a\u4f20\u5230cloud\u6216\u8005\u4e0b\u8f7d\u5230\u672c\u5730\u7684\u65f6\u95f4\u53ef\u80fd\u6bd4\u8f83\u957f":28,"\u4e0a\u4f20\u65b9\u6cd5":62,"\u4e0a\u6ce8\u518c\u4e00\u4e0b":28,"\u4e0a\u8ff0paddlepaddl":62,"\u4e0b\u4e00\u4e2awheel\u5305\u9700\u8981\u66f4\u65b0\u7248\u672c\u53f7\u624d\u53ef\u4ee5\u4e0a\u4f20":62,"\u4e0b\u5b58\u653e\u516c\u5171\u6570\u636e\u96c6\u5408":12,"\u4e0b\u62c9\u6846\u4e2d\u627e\u5230\u751f\u6210\u76843\u4e2a\u4e8c\u8fdb\u5236\u6587\u4ef6":62,"\u4e0b\u8f7d":28,"\u4e0b\u8f7d\u5230\u672c\u5730":28,"\u4e0b\u8f7d\u5f97\u5230":62,"\u4e0b\u9762\u5206\u522b\u4ecb\u7ecd\u67d0\u4e00\u7c7b\u6587\u4ef6\u7684\u5b9e\u73b0\u65b9\u5f0f":46,"\u4e0d\u4e00\u81f4\u7684\u7531pfsclient\u4e0b\u8f7d\u6216\u8005\u4f20\u8f93chunk\u5b8c\u6210":28,"\u4e0d\u4f7f\u7528\u9759\u6001\u5e93":45,"\u4e0d\u4f7f\u7528c":45,"\u4e0d\u4f7f\u7528swig":45,"\u4e0d\u53ef\u4ee5\u66f4\u6539":62,"\u4e0d\u540c":42,"\u4e0d\u540c\u7248\u672c\u7684\u7f16\u8bd1\u5668\u4e4b\u95f4":45,"\u4e0d\u540c\u8bed\u8a00\u7684\u63a5\u53e3\u9002\u5e94\u4e0d\u540c\u8bed\u8a00\u7684\u7279\u6027":45,"\u4e0d\u5728":46,"\u4e0d\u5bb9\u6613\u51fa\u9519":28,"\u4e0d\u5d4c\u5165\u5176\u4ed6\u8bed\u8a00\u89e3\u91ca\u5668":45,"\u4e0d\u5d4c\u5165python\u89e3\u91ca\u5668":45,"\u4e0d\u663e\u793a\u7684\u5199\u6bcf\u4e2a\u7c7b\u5177\u4f53\u5305\u542b\u4ec0\u4e48":45,"\u4e0d\u7528mount\u7684\u65b9\u5f0f\u6765\u8bbf\u95ee\u6570\u636e":12,"\u4e0e":42,"\u4e0e\u4e4b\u76f8\u5bf9\u7684\u662flocal":28,"\u4e0e\u5176\u4ed6\u7b2c\u4e09\u65b9\u5e93\u4e00\u6837":42,"\u4e0e\u529f\u80fd\u5206\u652f\u4e0d\u540c\u7684\u662f":62,"\u4e0e\u53ef\u80fd\u6709\u7684":62,"\u4e0ebatch":41,"\u4e14\u589e\u52a0\u4e00\u4e2a\u7b2c\u4e09\u65b9\u8bed\u8a00":45,"\u4e14\u8c03\u7528\u65f6\u4e0d\u80fd\u629b\u51fa\u5f02\u5e38\u6216\u51fa\u73b0\u8fd0\u884c\u65f6\u9519\u8bef":46,"\u4e14c99\u652f\u6301bool\u7c7b\u578b\u548c\u5b9a\u957f\u6574\u6570":45,"\u4e14c99\u76f8\u5bf9\u4e8ec11\u4f7f\u7528\u66f4\u52a0\u5e7f\u6cdb":45,"\u4e25\u683c\u7684\u547d\u540d\u89c4\u8303pep":62,"\u4e2a\u6027\u5316\u63a8\u8350":62,"\u4e2d":[41,42,45,46],"\u4e2d\u4f1a\u63d0\u4f9b\u4e00\u4e9b\u5fc5\u8981\u7684\u63a5\u53e3\u548c\u51fd\u6570":42,"\u4e2d\u5199\u5165json\u5185\u5bb9":11,"\u4e2d\u5b8c\u5168\u4e00\u81f4":45,"\u4e2d\u5b9e\u73b0\u4e86\u4e00\u4e2amerge\u7684\u65b9\u6cd5":42,"\u4e2d\u5b9e\u73b0\u7684\u7ed3\u6784\u4f53":46,"\u4e2d\u5bf9\u5e94\u7684layer\u5904":41,"\u4e2d\u5f15\u5165\u7684":41,"\u4e2d\u63d0\u4f9b\u4e00\u4e2a\u4e0emkl\u6709\u5173\u7684\u603b\u5f00\u5173":42,"\u4e2d\u6839\u636e":41,"\u4e2d\u6dfb\u52a0":41,"\u4e2d\u6dfb\u52a0\u4e00\u4e2a":42,"\u4e2d\u7684\u7248\u672c\u4fe1\u606f":62,"\u4e2d\u8fd0\u884c\u4efb\u52a1\u7684\u89d2\u5ea6":12,"\u4e3a":[41,42],"\u4e3a\u4e86\u5c3d\u53ef\u80fd\u5c11\u7684\u5728\u7236\u7c7blayer\u4e2d\u6dfb\u52a0\u53d8\u91cf\u6216\u8005\u51fd\u6570":42,"\u4e3a\u4e86\u5e94\u5bf9\u4ee5\u4e0a\u7684\u95ee\u9898":28,"\u4e3a\u4e86\u66b4\u9732\u7684\u63a5\u53e3\u5c3d\u91cf\u7b80\u5355":46,"\u4e3a\u4e86\u66f4\u597d\u7684\u7b26\u5408paddlepaddle\u7684\u4ee3\u7801\u98ce\u683c":42,"\u4e3a\u4e86\u6700\u5927\u7a0b\u5ea6\u51cf\u5c11\u591a\u6b21\u8c03\u7528":41,"\u4e3a\u4e86\u8fdb\u4e00\u6b65\u63d0\u5347paddlepaddle\u5728\u57fa\u672c\u6570\u5b66\u8fd0\u7b97\u7684\u8ba1\u7b97\u901f\u5ea6":42,"\u4e3b\u8981\u529f\u80fd\u5305\u62ec":28,"\u4e3b\u8981\u5305\u62ec":42,"\u4e3b\u8981\u5305\u62ec\u4e86\u6df1\u5ea6\u5b66\u4e60\u76f8\u5173\u7684\u6570\u5b66\u539f\u8bed\u4e0e\u64cd\u4f5c":42,"\u4e3b\u8981\u9488\u5bf9paddlepaddle\u5728\u91cd\u6784\u4e4b\u524d\u7684\u4ee3\u7801\u6846\u67b6\u4ee5\u53cav1\u7684api":42,"\u4e4b\u5916\u7684\u6240\u6709\u5934\u6587\u4ef6":46,"\u4e5f\u4e0d\u4f7f\u7528\u5176\u4ed6\u52a8\u6001\u5e93":45,"\u4e5f\u4e0d\u5e94\u8be5\u62a5\u9519":46,"\u4e5f\u4e0d\u751f\u6210":46,"\u4e5f\u53ef\u4ee5\u4f7f\u7528\u8fd9\u4e9b\u955c\u50cf":62,"\u4e5f\u5c31\u662f\u8bf4\u8f93\u51fa\u7684\u7ed3\u679c\u4e0d\u4f1a\u5728\u539f\u6765\u7684\u6570\u636e\u4e0a\u7d2f\u52a0":42,"\u4e66\u5199":45,"\u4eba\u8138\u8bc6\u522b":12,"\u4ec5\u4ec5\u4f7f\u7528":45,"\u4ec5\u4f1a\u5728\u652f\u6301avx2\u6307\u4ee4\u96c6\u53ca\u4ee5\u4e0a\u7684\u673a\u5668\u624d\u4f7f\u7528mkl":42,"\u4ece":62,"\u4ece\u78c1\u76d8\u6587\u4ef6\u4e2d\u52a0\u8f7duuid\u6587\u4ef6\u540d\u7684\u68c0\u67e5\u70b9\u5feb\u7167\u6587\u4ef6":11,"\u4ece\u800c\u907f\u514d\u4e86packing\u5197\u4f59":41,"\u4eceetcd\u4e2d\u8bfb\u53d6\u8282\u70b9":11,"\u4ed6\u4e3b\u8981\u5305\u542b\u4e86\u5b9e\u9645\u66b4\u9732\u7684\u7c7b\u578b\u7ed3\u6784":46,"\u4ed6\u662f\u5c06":46,"\u4ed6\u7684\u76ee\u6807\u662f\u4f7f\u7528c":45,"\u4ee3\u7801\u751f\u6210\u7684\u7b26\u53f7\u53ef\u80fd\u4e0d\u4e00\u81f4":45,"\u4ee3\u8868\u8fd9\u4e2alayer\u662f\u7528\u4e8e\u8dd1\u5728mkl":42,"\u4ee3\u8868\u8fd9\u4e2ashard\u7684\u6700\u5927index":12,"\u4ee3\u8868shard\u7684index":12,"\u4ee5\u4e0a\u4ee3\u7801\u7684reader\u8f93\u51fa\u7684data":12,"\u4ee5\u4e0a\u547d\u4ee4\u4f1a\u5728\u5f53\u524d\u76ee\u5f55\u4e0b\u751f\u6210100\u4e2a\u6587\u4ef6":12,"\u4ee5\u4e0b":12,"\u4ee5\u4e0b\u7b80\u79f0rnn":41,"\u4ee5\u4fbf\u6211\u4eec\u53ef\u4ee5\u628a\u66f4\u591a\u7684\u7cbe\u529b\u653e\u5230\u903b\u8f91\u672c\u8eab\u4e0a":28,"\u4ee5\u53ca":41,"\u4ee5\u53canumpi":12,"\u4ee5\u6b64\u8fbe\u5230\u6700\u597d\u7684\u6027\u80fd":42,"\u4ee5\u793a\u533a\u5206":[41,42],"\u4efb\u610f\u65f6\u523b\u53ea\u53ef\u80fd\u540c\u65f6\u6709\u4e00\u53f0\u670d\u52a1\u5668\u6545\u969c":11,"\u4f18\u5316\u524d":41,"\u4f18\u5316\u540e":41,"\u4f1a\u4ee5":[41,42],"\u4f1a\u4f7f\u7528\u76f8\u540c\u7684\u539f\u6570\u636e":41,"\u4f1a\u5148\u4e34\u65f6\u4fdd\u5b58\u5728":42,"\u4f1a\u5728":42,"\u4f1a\u5728\u7f16\u8bd1paddlepaddle\u7684\u65f6\u5019\u4e0b\u8f7d\u5e76\u7f16\u8bd1mkl":42,"\u4f1a\u5bfc\u81f4\u4e0d\u540c\u7248\u672cpython\u5728\u4e00\u4e2a\u8fdb\u7a0b\u91cc\u7684bug":45,"\u4f1a\u5f15\u5165":42,"\u4f1a\u628acpu\u7684buffer\u5bf9\u9f50\u4e3a4096":42,"\u4f1a\u6dfb\u52a0\u76f8\u5e94\u7684\u811a\u672c\u5728":42,"\u4f1a\u6dfb\u52a0\u76f8\u5e94\u7684\u811a\u672c\u7528\u4e8e\u6d4b\u8bd5\u548c\u5bf9\u6bd4\u5728\u4f7f\u7528mkl":41,"\u4f1a\u76f4\u63a5\u62a5\u9519\u9000\u51fa":45,"\u4f1a\u81ea\u52a8\u4f7f\u7528mklml\u5e93\u4f5c\u4e3apaddlepaddle\u7684cblas\u548clapack\u5e93":42,"\u4f1a\u81ea\u52a8\u6839\u636e\u786c\u4ef6\u914d\u7f6e":42,"\u4f1a\u88abpickle\u5e8f\u5217\u5316\u6210\u5b57\u7b26\u4e32":12,"\u4f20\u5165":12,"\u4f46":46,"\u4f46\u4e0d\u66b4\u9732":46,"\u4f46\u5e76\u6ca1\u6709\u7ecf\u8fc7\u56de\u5f52\u6d4b\u8bd5":62,"\u4f46\u6240\u6709fork\u7684\u7248\u672c\u5e93\u7684\u6240\u6709\u5206\u652f\u90fd\u76f8\u5f53\u4e8e\u7279\u6027\u5206\u652f":62,"\u4f46\u662f\u53c8\u8fc7\u4e8e\u7410\u788e":46,"\u4f46\u662f\u5728mkl":42,"\u4f46\u662f\u5728paddlepaddle\u4e2d":42,"\u4f46\u662f\u6574\u4e2a\u8bad\u7ec3\u8fc7\u7a0b\u4e2d\u4e0d\u9700\u8981\u4efb\u4f55\u8f6c\u6362":42,"\u4f46\u662f\u6ce8\u610f\u7684\u662f":42,"\u4f46\u662f\u89e3\u91ca\u6027\u8bed\u8a00":45,"\u4f5c\u4e3a\u53e6\u4e00\u4e2a\u7b2c\u4e09\u65b9\u5e93\u96c6\u6210\u8fdbpaddlepaddl":42,"\u4f5c\u4e3a\u5b58\u50a8\u7cfb\u7edf":12,"\u4f5c\u4e3a\u7c7b\u53e5\u67c4":45,"\u4f7f\u7528":[42,46,62],"\u4f7f\u7528\u4e0b\u9762\u547d\u4ee4":12,"\u4f7f\u7528\u52a8\u6001\u5e93":45,"\u4f7f\u7528\u540c\u6837\u7684\u8bad\u7ec3\u6570\u636eblock":11,"\u4f7f\u7528\u667a\u80fd\u6307\u9488\u7684\u539f\u56e0\u662f":46,"\u4f7f\u7528\u7684\u53c2\u6570\u4e0epaddlepaddle\u7533\u8bf7\u7684buffer\u5171\u7528\u4e00\u5757\u5185\u5b58":42,"\u4f7f\u7528\u76f8\u5bf9\u8def\u5f84\u7684\u5f15\u7528\u65b9\u5f0f":46,"\u4f7f\u7528\u8fd9\u4e2a\u795e\u7ecf\u7f51\u7edc\u53ef\u4ee5\u5b8c\u6210\u5bf9\u65b0\u6570\u636e\u7684\u9884\u6d4b":11,"\u4f7f\u7528\u9759\u6001\u5e93\u548c\u52a8\u6001\u5e93\u96be\u5ea6\u5dee\u4e0d\u591a":45,"\u4f7f\u7528c":46,"\u4f7f\u7528c99\u505a\u63a5\u53e3":45,"\u4f7f\u7528c99\u800c\u4e0d\u4f7f\u7528c11\u7684\u539f\u56e0\u662f":45,"\u4f7f\u7528c99\u800c\u4e0d\u4f7f\u7528c89":45,"\u4f7f\u7528regress":62,"\u4f7f\u7528swig\u53ea\u652f\u6301cpython\u89e3\u91ca\u5668":45,"\u4f7f\u7528swig\u9700\u8981\u591a\u8bed\u8a00\u7ed1\u5b9a\u7684\u5f00\u53d1\u4eba\u5458\u719f\u7ec3\u638c\u63e1swig\u914d\u7f6e":45,"\u4f7f\u7528void":45,"\u4f8b\u5982":[12,45,46,62],"\u4f8b\u5982\u5728deepspeech2":41,"\u4f8b\u5982\u5bf9\u4e8ejava\u6216\u8005python":45,"\u4f8b\u5982\u5bf9\u4e8ejava\u6765\u8bf4":45,"\u4f8b\u5982\u5bf9\u4e8epython":45,"\u4f8b\u5982c":45,"\u4f8b\u5982java\u4e0epython\u7684\u9519\u8bef\u5904\u7406\u662f\u76f4\u63a5\u6254\u51fa\u6765except":45,"\u4f8b\u5982python\u53ef\u4ee5\u4f7f\u7528":45,"\u4f8b\u5982python\u7684":45,"\u4f8b\u5982rnn":41,"\u4f9d\u6b21\u7c7b\u63a8":62,"\u4fbf\u662f\u5c06\u9759\u6001\u5e93\u52a0\u5165jvm\u4e2d":45,"\u4fee\u590d\u6240\u6709bug\u540e":62,"\u4fee\u590ddocker\u7f16\u8bd1\u955c\u50cf\u95ee\u9898":62,"\u4fee\u6539":[42,62],"\u4fee\u6539\u6210":62,"\u505a\u53ea\u8bfb\u6302\u8f7d":12,"\u505a\u5982\u4e0b\u51e0\u4e2a\u64cd\u4f5c":62,"\u505a\u63a5\u53e3":45,"\u505c\u6b62\u4fdd\u5b58\u68c0\u67e5\u70b9\u7684\u7ebf\u7a0b":11,"\u5145\u5206\u53d1\u6325\u82f1\u7279\u5c14\u5e73\u53f0\u7684\u4f18\u52bf":41,"\u5145\u5206\u5c55\u73b0\u82f1\u7279\u5c14\u5e73\u53f0\u7684\u4f18\u52bf":42,"\u5148\u5b8c\u6210\u5bf9\u6743\u91cd\u7684packing\u64cd\u4f5c":41,"\u5148\u5b9e\u73b0\u6a21\u578b\u63a8\u65ad\u7684api":46,"\u5171\u4eab\u5185\u5b58":42,"\u5171\u4eab\u540c\u4e00\u4e2a\u6743\u91cd":41,"\u5176\u4e2d":[45,62],"\u5176\u4ed6\u51fd\u6570\u5747\u8fd4\u56de":46,"\u5176\u4ed6\u7528\u6237\u7684fork\u7248\u672c\u5e93\u5e76\u4e0d\u9700\u8981\u4e25\u683c\u9075\u5b88":62,"\u5176\u8f6c\u6362\u6b21\u6570\u51cf\u5c11\u81f3":41,"\u5177\u4f53\u4f7f\u7528\u65b9\u6cd5\u4e3a":46,"\u5177\u4f53\u539f\u56e0\u53c2\u8003":46,"\u5177\u4f53\u53ef\u4ee5\u53c2\u8003mkl":42,"\u5177\u4f53\u5b9e\u73b0\u65b9\u5f0f\u6bd4\u5982":[41,42],"\u5177\u4f53\u7684\u5b8c\u6210\u72b6\u6001\u53ef\u4ee5\u53c2\u89c1":42,"\u5177\u4f53\u8bf7\u53c2\u8003":46,"\u5185\u90e8\u5b58\u50a8":42,"\u5185\u90e8\u9a71\u52a8python\u89e3\u91ca\u5668\u8fdb\u884c\u6a21\u578b\u914d\u7f6e\u89e3\u6790\u548c\u6570\u636e\u8bfb\u53d6":45,"\u518d\u5728\u6bcf\u4e00\u4e2aapi\u4e2d\u81ea\u5df1\u68c0\u67e5\u7c7b\u578b":45,"\u518d\u57fa\u4e8e":62,"\u518d\u628a\u5df2\u8f6c\u6362\u4e3apacked\u683c\u5f0f\u7684\u6570\u636e\u4f20\u9012\u7ed9\u90a3\u4e9b\u590d\u7528\u540c\u4e00\u6570\u636e\u7684gemm":41,"\u5199\u4ee3\u7801":45,"\u5199\u5165\u5feb\u7167\u6570\u636e":11,"\u51fd\u6570":[41,42],"\u51fd\u6570\u5373\u53ef\u5b8c\u6210\u8f6c\u6362":12,"\u51fd\u6570\u540d\u4e3a":46,"\u51fd\u6570\u547d\u540d":45,"\u5206\u522b\u4ee3\u8868\u8f93\u5165\u6570\u636e":42,"\u5206\u522b\u5bf9\u5e94capi":62,"\u5206\u5e03\u5f0f\u5b58\u50a8\u670d\u52a1":11,"\u5206\u652f":62,"\u5206\u652f\u4e00\u65e6\u5efa\u7acb":62,"\u5206\u652f\u4e2d":62,"\u5206\u652f\u4e3a\u5f00\u53d1":62,"\u5206\u652f\u4e3a\u6bcf\u4e00\u6b21release\u65f6\u5efa\u7acb\u7684\u4e34\u65f6\u5206\u652f":62,"\u5206\u652f\u4e3a\u7a33\u5b9a":62,"\u5206\u652f\u529f\u80fd\u7684\u5c01\u95ed":62,"\u5206\u652f\u5408\u5165":62,"\u5206\u652f\u5408\u5165master\u5206\u652f":62,"\u5206\u652f\u540c\u6b65\u4e3b\u7248\u672c\u5e93\u7684":62,"\u5206\u652f\u540d\u4e3a":62,"\u5206\u652f\u5b58\u5728\u7684\u65f6\u5019":62,"\u5206\u652f\u6d3e\u751f\u51fa\u65b0\u7684\u5206\u652f":62,"\u5206\u652f\u7684\u7248\u672c\u90fd\u662f\u7ecf\u8fc7\u5355\u5143\u6d4b\u8bd5\u548c\u56de\u5f52\u6d4b\u8bd5\u7684\u7248\u672c":62,"\u5206\u652f\u7684\u7248\u672c\u90fd\u7ecf\u8fc7\u5355\u5143\u6d4b\u8bd5":62,"\u5206\u7247":11,"\u5219\u4f7f\u7528\u542f\u52a8\u53c2\u6570\u5b9a\u4e49\u7684\u521d\u59cb\u5316\u65b9\u6cd5\u521d\u59cb\u5316\u53c2\u6570":11,"\u5219\u5ffd\u7565":11,"\u5219\u628a\u53e6\u4e00\u4e2a\u6162\u901f\u7684kill\u6389":11,"\u5219\u76f4\u63a5\u5f15\u5165\u53e6\u4e00\u79cd\u7c7b\u578b\u7684\u5934\u6587\u4ef6":46,"\u5219\u9700\u8981\u56de\u6eda\u5230\u4e0a\u4e00\u4e2a\u68c0\u67e5\u70b9":11,"\u521b\u5efa":42,"\u5220\u9664\u78c1\u76d8\u76ee\u5f55\u4e2d\u4e0d\u662f\u5f53\u524duuid\u7684\u5feb\u7167\u6587\u4ef6":11,"\u5230":11,"\u5230\u7b2c\u4e8c\u6b65":62,"\u524d\u540e\u7684\u7f51\u7edc\u6027\u80fd":41,"\u529f\u80fd":28,"\u529f\u80fd\u7684\u6b63\u786e\u6027\u5305\u62ec\u9a8c\u8bc1paddlepaddle\u76ee\u524d\u7684":62,"\u52a8\u6001\u5e93":45,"\u5305\u542b\u4e86\u67d0\u79cd\u7c7b\u578b\u7684\u7c7b\u578b\u5b9a\u4e49\u548c\u66b4\u9732\u7684\u5168\u90e8\u51fd\u6570":46,"\u5305\u62ec":[12,41,42],"\u5305\u62ec\u6743\u91cdw\u548c\u504f\u7f6eb":11,"\u5305\u62ecmkl":42,"\u534f\u540c\u5b8c\u6210releas":62,"\u5355\u4e2a\u503c":12,"\u5355\u70b9\u6545\u969c":11,"\u5373":46,"\u5373\u4f7f\u7528":46,"\u5373\u4f7f\u7528\u6237\u76f4\u63a5\u5f15\u7528\u67d0\u79cd\u7c7b\u578b\u7684\u5934\u6587\u4ef6":46,"\u5373\u4f7fc":46,"\u5373\u4f8b\u5982":46,"\u5373\u4fbfpaddl":46,"\u5373\u5b8c\u6210\u67d0\u4e00\u4e2a\u4efb\u52a1\u7684\u6700\u5c11\u51fd\u6570":46,"\u5373\u66b4\u9732":46,"\u5373\u8868\u793a\u4e0d\u9700\u8981\u8f6c\u6362":42,"\u5373\u8fd9\u4e2a\u52a8\u6001\u5e93\u662f\u4e0d\u4f9d\u8d56\u4e8e\u5176\u4ed6\u4efb\u4f55\u6587\u4ef6\u7684":45,"\u539f\u6765\u7684\u65b9\u6848":42,"\u53c2\u6570":45,"\u53c2\u8003":[28,45],"\u53c2\u8003\u4e0b\u56fe":62,"\u53c8\u53ef\u4ee5\u907f\u514d\u4e0d\u5fc5\u8981\u7684\u8f6c\u6362":42,"\u53cc\u5411\u9a8c\u8bc1":28,"\u53d1\u578b\u7248":62,"\u53d1\u5e03\u5230dockerhub":62,"\u53d1\u5e03docker\u955c\u50cf\u53ea\u9700\u8981\u5bf9\u81ea\u52a8push\u7684\u955c\u50cf\u6253\u4e0a":62,"\u53d8\u91cf\u6765\u533a\u5206layer\u7684\u5c5e\u6027":42,"\u53ea\u5bf9\u7279\u6b8a\u5728\u7ebf\u7cfb\u7edf\u8003\u8651\u4e24\u53f0\u4ee5\u4e0a\u540c\u65f6\u6545\u969c\u7684\u5bb9\u707e":11,"\u53ea\u66b4\u9732\u6982\u5ff5\u7684\u63a5\u53e3":46,"\u53ea\u80fd\u8c03\u7528paddle\u7684\u52a8\u6001\u5e93":45,"\u53ea\u9700\u8981\u6062\u590d\u8fd9\u53f0\u8282\u70b9":11,"\u53ef\u4ee5":62,"\u53ef\u4ee5\u51cf\u5c0f\u7cfb\u7edf\u590d\u6742\u6027":11,"\u53ef\u4ee5\u5728\u4efb\u4f55\u673a\u5668\u4e0a\u6267\u884c\u7684":45,"\u53ef\u4ee5\u5728\u6b64\u9875\u9762\u7684":62,"\u53ef\u4ee5\u628a\u672c\u5730\u7684\u6570\u636e\u4e0a\u4f20\u5230\u5b58\u50a8\u96c6\u7fa4\u4e2d":12,"\u53ef\u4ee5\u6709\u6548\u7684\u907f\u514dparamet":11,"\u53ef\u4ee5\u7528":28,"\u53ef\u4ee5\u7528\u4ee5\u4e0b\u6307\u4ee4":12,"\u53ef\u4ee5\u7ee7\u7eed\u5728\u81ea\u5df1\u7684\u529f\u80fd\u5206\u652f\u63d0\u4ea4\u4ee3\u7801":62,"\u53ef\u4ee5\u901a\u8fc7\u9636\u6bb5\u6027\u7684\u4fdd\u5b58\u6bcf\u4e2aparamet":11,"\u53ef\u80fd\u4f1a\u9020\u6210\u7f51\u7edc\u62e5\u585e":11,"\u53f3\u4fa7\u7684":62,"\u5404\u6b21\u524d\u5411\u4e4b\u95f4\u4e5f\u90fd\u4f7f\u7528\u4e86\u76f8\u540c\u7684\u6743\u91cd":41,"\u540c\u4e00\u6b21\u524d\u5411":41,"\u540c\u65f6":[41,42],"\u540c\u65f6\u4f1a\u5f00\u542fintel":42,"\u540c\u65f6\u518d\u5c06":62,"\u540c\u65f6\u53c8\u5c3d\u53ef\u80fd\u5c11\u7684\u727a\u7272mkl":42,"\u540c\u65f6\u63d0\u8d77":62,"\u540c\u65f6\u6570\u636e\u683c\u5f0f\u5c31\u662f":42,"\u540d\u5b57\u4fee\u9970":45,"\u540e\u5411":41,"\u540e\u5411\u65f6\u590d\u7528\u5df2\u7ecf\u8f6c\u6362\u8fc7\u7684\u6743\u91cd":41,"\u5411\u6307\u5b9a\u7684\u76ee\u5f55\u4e2d\u4e00\u4e2a\u65b0\u7684\u6587\u4ef6":11,"\u5411paddlepaddle\u7684\u4e3b\u7248\u672c\u5e93\u63d0\u4ea4":62,"\u5426\u5219\u5f97\u628apaddle\u9759\u6001\u5e93\u94fe\u63a5\u5230\u89e3\u91ca\u5668\u91cc":45,"\u542f\u52a8\u4e00\u4e2a\u65b0\u7684\u7ebf\u7a0b\u5f00\u59cb\u4fdd\u5b58\u68c0\u67e5\u70b9":11,"\u548c":[12,41,42,45,46,62],"\u548c\u672a\u6765\u53ef\u80fd\u8fd8\u4f1a\u7528\u5230":42,"\u548c\u79bb\u7ebf\u6570\u636e\u7684\u65b9\u5f0f":12,"\u54ea\u4e2atrainer\u5148\u5b8c\u6210block\u7684\u8bad\u7ec3":11,"\u56e0\u4e3a\u8fd9\u6837\u505a\u4e5f\u6ca1\u6cd5\u4fdd\u8bc1\u6d88\u9664\u968f\u673a\u6027":11,"\u56e0\u4e3aswig\u5728\u7b2c\u4e09\u65b9\u8bed\u8a00\u4e2d\u66b4\u9732\u7684\u51fd\u6570\u540d":45,"\u56e0\u6b64":41,"\u56fe\u50cf\u5206\u7c7b":62,"\u5728":[41,42,46,62],"\u5728\u4e00\u4e2a\u4e0d\u53ef\u4e2d\u65ad\u5e76\u7f3a\u5c11\u5907\u4efd\u7684\u8bad\u7ec3\u4efb\u52a1\u4e2d":11,"\u5728\u4e0a\u56fe\u4e2d\u663e\u793a\u4e86\u5728\u4e00\u4e2a\u5b9e\u9645\u751f\u4ea7\u73af\u5883\u4e2d\u7684\u5e94\u7528":12,"\u5728\u4f7f\u7528twine\u4e0a\u4f20\u4e4b\u524d":62,"\u5728\u51fa\u73b0\u5355\u70b9\u6545\u969c\u65f6":11,"\u5728\u5b9e\u73b0\u6bcf\u4e2a\u5b50\u7c7b\u7684\u65f6\u5019\u5c31\u4e0d\u9700\u8981\u5173\u5fc3\u5206\u652f\u7684\u4e8b\u60c5\u4e86":42,"\u5728\u5b9e\u73b0\u8fc7\u7a0b\u4e2d":46,"\u5728\u5bf9\u5e94\u7684":41,"\u5728\u5c42\u521d\u59cb\u5316\u7684\u65f6\u5019":41,"\u5728\u5f00\u59cb\u8bad\u7ec3\u4e4b\u524d":12,"\u5728\u5f02\u6784\u96c6\u7fa4\u4e2d":11,"\u5728\u5f15\u5165\u5176\u4ed6\u7c7b\u578b\u7684\u5934\u6587\u4ef6\u65f6":46,"\u5728\u5feb\u7167\u5199\u5165\u5b8c\u6210\u540e":11,"\u5728\u60a8\u7684\u5b9e\u9645\u73af\u5883\u4e2d":11,"\u5728\u6709\u666e\u901a\u7684cpu":42,"\u5728\u672c\u6587\u6863\u4e2d":28,"\u5728\u673a\u7fa4\u4e0a\u8fd0\u884c\u8f6c\u6362\u7a0b\u5e8f":12,"\u5728\u6837\u4f8b\u4e2d":46,"\u5728\u7528\u6237\u4f7f\u7528c":46,"\u5728\u7b2c\u4e8c\u4e2atab":62,"\u5728\u7ebf\u6a21\u578b\u9884\u6d4b\u670d\u52a1":12,"\u5728\u8bad\u7ec3\u7ed3\u675f\u7684\u65f6\u5019\u518d\u4fdd\u5b58\u4e3apaddlepaddle\u7684\u683c\u5f0f":42,"\u5728\u8bc4\u5ba1\u8fc7\u7a0b\u4e2d":62,"\u5728\u8fd9\u4e2a":62,"\u5728\u8fd9\u4e2a\u52a8\u6001\u5e93\u4e2d\u4e0d\u5d4c\u5165\u4efb\u4f55\u5176\u4ed6\u8bed\u8a00\u7684\u89e3\u91ca\u5668":45,"\u5728\u8fd9\u4e2a\u9636\u6bb5\u7684\u4ee3\u7801\u6b63\u5728\u7ecf\u5386\u56de\u5f52\u6d4b\u8bd5":62,"\u5728\u8fd9\u4e9b\u5934\u6587\u4ef6\u4e2d":46,"\u5728\u8fd9\u4e9b\u6587\u4ef6\u4e2d":46,"\u5728\u91cd\u6784\u524d\u7684paddlepaddle\u4e2d":42,"\u5728\u95ee\u9898\u672c\u8eab\u7684\u8ba1\u7b97\u91cf\u6bd4\u8f83\u5c0f\u7684\u65f6\u5019":41,"\u5728batch":41,"\u5728c":45,"\u5728c\u7684\u5934\u6587\u4ef6":45,"\u5728packing\u4e0a\u7684\u8017\u65f6":41,"\u5728paddle\u4e4b\u4e0a\u8fd0\u884c\u7684\u6df1\u5ea6\u5b66\u4e60\u8bad\u7ec3\u8f93\u51fa\u7684\u6a21\u578b\u4f1a\u63d0\u4f9b\u7ed9\u5728\u7ebf\u4eba\u8138\u8bc6\u522b\u7684\u5e94\u7528\u4f7f\u7528":12,"\u5728paramet":11,"\u5728rnn\u7684\u60c5\u51b5\u4e0b":41,"\u5747\u4f1a\u88ab\u5b89\u88c5\u5230includ":46,"\u5747\u662f\u5728":46,"\u57fa\u4e8e\u7c98\u6027\u4f1a\u8bdd\u7684\u8d1f\u8f7d\u5747\u8861\u529f\u80fd":28,"\u5916\u90e8\u5b58\u50a8":42,"\u591a\u4e2a\u503c":12,"\u591a\u4e2aparamet":11,"\u591a\u6b21\u8c03\u7528":41,"\u5927\u591a\u6570\u8bed\u8a00\u90fd\u652f\u6301\u4f7f\u7528c\u8bed\u8a00api":45,"\u5982\u56fe\u4e2dtrainer":11,"\u5982\u679c\u4e0a\u9762\u4e24\u6b65\u51fa\u73b0\u9519\u8bef":11,"\u5982\u679c\u4e0d\u9700\u8981\u5916\u90e8\u5b58\u50a8\u7528\u4e8e\u8f6c\u6362":42,"\u5982\u679c\u4f7f\u7528swig\u6211\u4eec\u9700\u8981\u5c06\u5728interface\u6587\u4ef6\u91cc":45,"\u5982\u679c\u5728\u4f7f\u7528mkl":42,"\u5982\u679c\u5931\u8d25":62,"\u5982\u679c\u5b58\u5728\u6570\u636e\u6392\u5217\u683c\u5f0f\u4e0d\u4e00\u6837\u7684\u60c5\u51b5\u65f6":42,"\u5982\u679c\u5b58\u5728\u67d0\u4e9btrainer\u6267\u884c\u901f\u5ea6\u8fc7\u6162\u4f1a\u5f71\u54cd\u6574\u4f53\u96c6\u7fa4\u7684\u901f\u5ea6":11,"\u5982\u679c\u5df2\u7ecf\u6b63\u5728\u6267\u884c\u4fdd\u5b58\u68c0\u67e5\u70b9\u7684\u7ebf\u7a0b":11,"\u5982\u679c\u662f\u5176\u5b83\u7c7b\u578b":12,"\u5982\u679c\u6709bugfix\u7684\u884c\u4e3a":62,"\u5982\u679c\u67d0\u4e00\u4e2a\u7c7b\u578b\u9700\u8981\u5f15\u7528\u53e6\u4e00\u4e2a\u7c7b\u578b":46,"\u5982\u679c\u67d0\u4e00\u4e2apaddl":46,"\u5982\u679c\u67d0\u4e00\u4e2apaddle\u6982\u5ff5\u5fc5\u987b\u8981\u66b4\u9732":46,"\u5982\u679c\u6ee1\u8db3\u6761\u4ef6":11,"\u5982\u679c\u7528\u6237\u8981\u628apaddle\u7684\u9759\u6001\u5e93":45,"\u5982\u679c\u8981\u4e0a\u4f20gpu\u7248\u672c\u7684\u5305":62,"\u5982\u679c\u8c03\u7528\u9759\u6001\u5e93\u53ea\u80fd\u5c06\u9759\u6001\u5e93\u4e0e\u89e3\u91ca\u5668\u94fe\u63a5":45,"\u5982\u679c\u9700\u8981\u624b\u52a8\u7f16\u8bd1":62,"\u5982\u679cmkl":42,"\u5982\u679cparamet":11,"\u5b50\u7c7b\u53ea\u9700\u8981\u4f7f\u7528\u5b9a\u4e49\u597d\u7684\u63a5\u53e3":42,"\u5b57\u6bb5\u8bbe\u4e3a":62,"\u5b57\u7b26\u4e32":12,"\u5b58\u50a8":12,"\u5b66\u4e60\u6210\u672c\u9ad8":45,"\u5b83\u4eec\u4e3b\u8981\u662f\u7528\u4e8e":42,"\u5b83\u4eec\u7684\u6587\u4ef6\u540d\u662f":12,"\u5b83\u53ea\u4f1a\u5305\u62ec\u751f\u6210\u597d\u7684\u52a8\u6001\u5e93\u548c\u5934\u6587\u4ef6":42,"\u5b83\u8d1f\u8d23\u51b3\u5b9a\u7f16\u8bd1\u65f6\u662f\u5426\u4f7f\u7528mklml\u548cmkl":42,"\u5b89\u88c5\u540e\u7684\u76ee\u5f55\u7ed3\u6784\u4e3a":46,"\u5b8c\u6210\u4e00\u4e2a\u4f20\u8f93\u52a8\u4f5c\u5b8c\u6210\u7684\u65f6\u95f4\u4e5f\u6bd4\u8f83\u77ed":28,"\u5b8c\u6210\u5e38\u7528layer\u7684mkl":42,"\u5b8c\u6210\u5e38\u89c1\u6df1\u5ea6\u795e\u7ecf\u7f51\u7edcvgg":42,"\u5b8c\u6210\u6570\u636e\u7684\u9884\u5904\u7406":12,"\u5b8c\u6210\u81ea\u52a8\u5316\u4e8c\u8fdb\u5236\u7f16\u8bd1":62,"\u5b9a\u4e49":42,"\u5b9a\u4e49\u4e00\u4e9b\u9664\u4e86layer\u548cmemory\u76f8\u5173\u7684\u7c7b\u548c\u51fd\u6570":42,"\u5b9e\u73b0\u5177\u4f53\u7684\u51fd\u6570\u529f\u80fd\u5373\u53ef":42,"\u5b9e\u73b0\u7b80\u5355":45,"\u5bf9\u4e8e\u4e0d\u540c\u8bed\u8a00":45,"\u5bf9\u4e8e\u540c\u4e00\u6bb5c":45,"\u5bf9\u4e8e\u540c\u6837\u8bbe\u7f6e\u7684\u7f51\u7edc\u6a21\u578b":41,"\u5bf9\u4e8e\u591a\u8bed\u8a00\u63a5\u53e3":45,"\u5bf9\u4e8e\u5927\u591a\u6570\u8bed\u8a00":45,"\u5bf9\u4e8e\u5e8f\u5217\u957f\u5ea6":41,"\u5bf9\u4e8e\u6709\u53c2\u6570\u7684\u5c42":42,"\u5bf9\u4e8e\u6bcf\u4e00\u4e2a\u65b0\u52a0\u7684rnn":41,"\u5bf9\u4e8e\u6bcf\u79cd\u7c7b\u578b":46,"\u5bf9\u4e8e\u6bcf\u79cdc":46,"\u5bf9\u65b0\u7684\u6743\u91cd\u8fdb\u884c\u8f6c\u6362\u7528\u4e8e\u4e0b\u6b21\u8fed\u4ee3":41,"\u5bf9\u6bd4":45,"\u5bf9\u6bd4\u4f18\u5316\u540elayer\u4e0e\u76f8\u5bf9\u5e94\u7684paddlepaddle\u539f\u6709lay":41,"\u5bf9\u6bd4\u4f18\u5316\u540elayer\u81ea\u8eab":41,"\u5bf9\u8f93\u5165\u53c2\u6570\u7684\u5b89\u5168\u6027\u8fdb\u884c\u4e86\u5fc5\u8981\u7684\u5224\u65ad":46,"\u5bf9\u8fd9\u4e2a\u7248\u672c\u7684\u63d0\u4ea4":62,"\u5bfb\u627e\u6709\u6ca1\u6709\u5176\u4ed6\u53ef\u4ee5\u4f18\u5316\u7684\u53ef\u80fd":42,"\u5bfc\u51fa\u8fd9\u4e9b\u63a5\u53e3":46,"\u5c06":62,"\u5c06\u4e00\u4e2a\u795e\u7ecf\u7f51\u7edc\u53c2\u6570\u62c6\u5206\u6210\u591a\u4efd":11,"\u5c06\u5927\u91cf\u7684":45,"\u5c06\u65b0\u5206\u652f\u7684\u7248\u672c\u6253\u4e0atag":62,"\u5c06master\u5206\u652f\u7684\u5408\u5165commit\u6253\u4e0atag":62,"\u5c0f\u4e8e\u67d0\u4e2a\u6bd4\u8f83\u5c0f\u7684\u9608\u503c\u8ba4\u4e3a\u901a\u8fc7":42,"\u5c31\u9700\u8981\u5bf9\u8fd9\u4e2a\u7b2c\u4e09\u65b9\u8bed\u8a00\u589e\u52a0\u4e00\u4e9b\u5b9a\u4e49":45,"\u5de5\u5177\u4e0a\u4f20\u5373\u53ef":62,"\u5e73\u5747\u6545\u969c\u4fee\u590d\u65f6\u95f4":11,"\u5e73\u5747\u6545\u969c\u7387":11,"\u5e76\u4e14\u4f1a\u5199\u597d":42,"\u5e76\u4e14\u4f7f\u7528":46,"\u5e76\u4e14\u53ea\u9700\u8981\u5728\u5fc5\u8981\u7684\u65f6\u5019\u8f6c\u6362\u8fd9\u79cd\u683c\u5f0f":42,"\u5e76\u4e14\u5728\u5e38\u89c1\u7684\u5e73\u53f0\u4e0a":45,"\u5e76\u4e14\u5f53\u7f16\u8bd1\u65f6":41,"\u5e76\u4e14\u628a\u7cfb\u7edf\u751f\u6210\u7684ca":28,"\u5e76\u4e14\u628a\u7ed3\u679c\u8fd4\u56depfsclient\u7aef":28,"\u5e76\u4e14\u8ba9\u63a5\u53e3\u8131\u79bb\u5b9e\u73b0\u7ec6\u8282":45,"\u5e76\u4e14\u8f93\u5165\u8f93\u51fa\u90fd\u662f\u5171\u7528\u4e00\u5757\u5185\u5b58":42,"\u5e76\u5220\u9664":62,"\u5e76\u5220\u9664\u66f4\u65e9\u7684\u5feb\u7167":11,"\u5e76\u52a0\u8f7d\u5176\u4e2d\u7684\u53c2\u6570":11,"\u5e76\u53d1\u5e03\u5230pypi":62,"\u5e76\u5728\u6bcf\u6b21\u6743\u91cd\u66f4\u65b0\u540e":41,"\u5e76\u5728\u96c6\u7fa4\u4e2d\u8fd0\u884c\u591a\u4e2a\u5206\u5e03\u5f0f\u6570\u636e\u5904\u7406\u4efb\u52a1":12,"\u5e76\u5c06":62,"\u5e76\u5c06c":46,"\u5e76\u628a\u5feb\u7167\u4fdd\u5b58\u5230\u8fd9\u4e2a\u76ee\u5f55\u4e0b":11,"\u5e76\u628a\u7ed3\u679c\u653e\u5230\u5f53\u524d\u5c42\u7684":42,"\u5e76\u6ca1\u6709paddle\u7279\u522b\u9700\u8981\u7684\u7279\u6027":45,"\u5e76\u6dfb\u52a0\u5934\u6587\u4ef6":41,"\u5e76\u88ab\u5b58\u50a8\u5728\u8bf8\u5982hadoop":12,"\u5e76\u9002\u5e94github\u7684\u7279\u6027\u505a\u4e86\u4e00\u4e9b\u533a\u522b":62,"\u5e76\u91cd\u65b0\u6253\u5305wheel\u5305":62,"\u5efa\u8bae":62,"\u5f00\u53d1\u4e86\u6a21\u578b\u9884\u6d4b\u7684\u6837\u4f8b\u4ee3\u7801":46,"\u5f00\u53d1\u8005\u4fee\u6539\u81ea\u5df1\u7684\u4ee3\u7801":62,"\u5f00\u53d1\u8005fork\u7684\u7248\u672c\u5e93\u4e2d":62,"\u5f00\u53d1\u8005fork\u7684\u7248\u672c\u5e93\u4f7f\u7528":62,"\u5f00\u5934":[41,42],"\u5f00\u59cb\u63d0\u4f9b\u670d\u52a1":11,"\u5f15\u5165\u4e86\u4ee5\u4e0b\u56db\u4e2aapi":41,"\u5f15\u5165\u4e86\u7c7b\u578b\u7684\u5934\u6587\u4ef6":46,"\u5f39\u51fa\u4e0b\u9762\u7684\u9009\u62e9\u6846":62,"\u5f53\u529f\u80fd\u5206\u652f\u5f00\u53d1\u5b8c\u6bd5\u540e":62,"\u5f53\u53ea\u505a\u63a8\u65ad":41,"\u5f53\u5f00\u542f":42,"\u5f53\u6253\u5f00":42,"\u5f53\u6570\u636e\u683c\u5f0f\u4e0epaddlepaddle\u9ed8\u8ba4\u7684":42,"\u5f53\u7136\u8fd9\u4e24\u8005\u4e5f\u53ef\u4ee5\u76f8\u7b49":42,"\u5f53\u7528\u6237\u4f7f\u7528\u5b8c\u8fd9\u4e2a\u53c2\u6570\u540e":46,"\u5f53\u7f51\u7edc\u51fa\u73b0\u5206\u652f\u4e14\u5728":42,"\u5f53destination\u6587\u4ef6\u4e0d\u5b58\u5728\u6216\u8005\u5927\u5c0f\u548csource\u6587\u4ef6\u4e0d\u4e00\u81f4\u65f6":28,"\u5f88\u96be\u4fdd\u8bc1\u591a\u8bed\u8a00\u4ee3\u7801\u98ce\u683c\u7684\u4e00\u81f4\u6027":45,"\u5f97\u4f7f\u7528":45,"\u5fc5\u8981":46,"\u5fc5\u987b\u5206\u522b\u4e0e":42,"\u60c5\u611f\u5206\u6790":62,"\u6211\u4eec\u4e5f\u53ef\u4ee5\u786e\u5b9a\u6bcf\u4e00\u4e2a\u53c2\u6570\u7684\u7c7b\u578b":46,"\u6211\u4eec\u4e5f\u5c06mklml\u5373":42,"\u6211\u4eec\u4f1a\u4fdd\u8bc1":42,"\u6211\u4eec\u4f1a\u5728\u7f51\u7edc\u8bad\u7ec3\u4e4b\u524d\u628a\u683c\u5f0f\u8f6c\u6362\u4e3amkl":42,"\u6211\u4eec\u4f1a\u5bf9\u6bd4\u5982\u4e0b2\u4e2a\u65b9\u9762":41,"\u6211\u4eec\u4f1a\u628amkl":42,"\u6211\u4eec\u4f1a\u6dfb\u52a0":[41,42],"\u6211\u4eec\u4f7f\u7528\u52a8\u6001\u5e93\u6765\u5206\u53d1paddl":45,"\u6211\u4eec\u51b3\u5b9a\u4f7f\u7528\u5df2\u6709\u7684":42,"\u6211\u4eec\u53ef\u4ee5\u5148\u5b8c\u6210\u5bf9\u539f\u6570\u636e\u7684packing\u64cd\u4f5c":41,"\u6211\u4eec\u603b\u7ed3\u51fa\u4e00\u4e9b\u7279\u522b\u9700\u8981\u6ce8\u610f\u7684\u70b9":42,"\u6211\u4eec\u63d0\u4f9b\u4e24\u4e2a\u8f6c\u6362\u65b9\u5f0f":12,"\u6211\u4eec\u63d0\u51fa\u4e86chunk\u7684\u6982\u5ff5":28,"\u6211\u4eec\u6700\u7ec8\u7684\u52a8\u6001\u5e93\u4e2d\u4e0d\u5d4c\u5165python\u6216\u8005\u5176\u4ed6\u4efb\u4f55\u8bed\u8a00\u7684\u89e3\u91ca\u5668":45,"\u6211\u4eec\u8ba1\u5212\u5c06":41,"\u6211\u4eec\u8ba1\u5212\u5c06\u82f1\u7279\u5c14\u6df1\u5ea6\u795e\u7ecf\u7f51\u7edc\u6570\u5b66\u5e93":42,"\u6211\u4eec\u8bbe\u8ba1\u8bf4\u660e\u4e86\u540d\u4e3afilemanager\u7cfb\u7edf":28,"\u6211\u4eec\u9009\u62e9":12,"\u6211\u4eec\u901a\u8fc7\u4f7f\u7528\u65b0\u5f15\u5165\u7684gemm":41,"\u6211\u4eec\u90fd\u63d0\u4f9bpython\u7684\u8f6c\u6362\u5e93":12,"\u6216\u8005":[42,45,46],"\u6216\u8005\u5c06\u8fd9\u53f0\u8282\u70b9\u8fc1\u79fb\u5230\u53e6\u4e00\u4e2a\u8282\u70b9\u5e76\u542f\u52a8\u5373\u53ef\u6062\u590d\u8bad\u7ec3\u4efb\u52a1":11,"\u6216\u8005\u7528tuple\u8868\u793a\u7684\u591a\u4e2a\u503c":12,"\u6216\u8005\u7531\u5b83\u4eec\u7ec4\u6210\u7684list":12,"\u6216activ":42,"\u6240\u4ee5":[42,62],"\u6240\u4ee5\u4e00\u4e2a\u7248\u672c\u53f7\u7684wheel\u5305\u53d1\u5e03\u4e4b\u540e":62,"\u6240\u4ee5\u4e0d\u5b58\u5728\u8fd9\u4e2a\u95ee\u9898":42,"\u6240\u4ee5\u5728":42,"\u6240\u4ee5\u5728\u5199\u5165\u5feb\u7167\u7684\u8fc7\u7a0b\u4e2d":11,"\u6240\u4ee5\u6211\u4eec\u5b9a\u4e49\u4e86\u4e00\u4e2a":42,"\u6240\u4ee5\u6574\u4f53\u4e0a":42,"\u6240\u4ee5\u6dfb\u52a0\u4e86\u5bf9\u5e94\u7684":42,"\u6240\u4ee5\u7528\u6237\u9700\u8981\u9996\u5148\u5728":28,"\u6240\u4ee5\u9700\u8981\u5f15\u5165\u4e00\u4e2a\u8f6c\u6362\u65b9\u6cd5":42,"\u6240\u6709\u4e0e\u7c7b\u578b\u76f8\u5173\u7684\u51fd\u6570":46,"\u6240\u6709\u5916\u90e8\u7684\u8f6c\u6362\u5de5\u4f5c\u90fd\u4f1a\u5728reset\u7cfb\u5217\u51fd\u6570\u4e2d\u90fd\u51c6\u5907\u597d":42,"\u6240\u6709\u7684":41,"\u6240\u6709\u7684\u63a5\u53e3\u5747\u4e3ac\u63a5\u53e3":46,"\u6240\u6709\u76f8\u5173\u7684":41,"\u6240\u6709\u7c7b\u578b\u540d\u4e3a":46,"\u6240\u6709mkl":42,"\u624b\u5199\u591a\u8bed\u8a00\u7ed1\u5b9a":45,"\u624d\u80fd\u66f4\u597d\u7684\u53d1\u6325mkl":42,"\u6253\u5f00\u8fd9\u4e2a\u7f16\u8bd1\u9009\u9879":46,"\u6267\u884c":62,"\u628a":12,"\u628a\u4e4b\u524d\u793a\u4f8b\u4e2d\u8f6c\u6362\u5b8c\u6bd5\u7684random":12,"\u6307\u6df1\u5ea6\u5b66\u4e60\u8bad\u7ec3\u4e4b\u540e\u5f97\u5230\u7684\u6240\u6709\u53c2\u6570":11,"\u6309\u94ae":62,"\u63a5\u53e3":[45,46],"\u63a5\u53e3\u5c42\u505a\u8fc7\u591a\u5c01\u88c5":46,"\u63a5\u53e3\u662f":12,"\u63a5\u6536\u5904\u7406pfsclient\u7aef\u7684\u6587\u4ef6\u7ba1\u7406\u8bf7\u6c42":28,"\u63a7\u5236\u662f\u5426\u4f7f\u7528mkl":42,"\u63a7\u5236\u662f\u5426\u4f7f\u7528mklml\u5e93":42,"\u63a7\u5236\u7528\u6237\u6743\u9650":12,"\u63d0\u4f9b\u4e03\u5c42\u534f\u8bae\u7684\u53cd\u5411\u4ee3\u7406":28,"\u63d0\u4f9b\u5e38\u7528\u7684\u547d\u4ee4\u884c\u7ba1\u7406\u547d\u4ee4\u7ba1\u7406\u6587\u4ef6\u548c\u76ee\u5f55":28,"\u63d0\u4f9b\u7528\u6237\u7ba1\u7406\u6587\u4ef6\u7684\u547d\u4ee4":28,"\u63d0\u4f9b\u7ed9paddle\u4f5c\u4e3a\u8bad\u7ec3\u6570\u636e":12,"\u652f\u6301\u5927\u6587\u4ef6\u7684\u65ad\u70b9\u4e0a\u4f20":28,"\u6570\u636e":28,"\u6570\u636e\u8bfb\u53d6\u5747\u4ea4\u7531\u5176\u4ed6\u8bed\u8a00\u5b8c\u6210":45,"\u6570\u636e\u957f\u5ea6\u53ca\u6821\u9a8c\u503c\u7ec4\u6210":28,"\u6570\u636e\u96c6\u9700\u8981\u9884\u5148\u88ab\u8f6c\u6362\u6210paddlepaddle\u5206\u5e03\u5f0f\u8bad\u7ec3\u4f7f\u7528\u7684\u5b58\u50a8\u683c":12,"\u6570\u636e\u9884\u5904\u7406\u4efb\u52a1":12,"\u6587\u4ef6":45,"\u6587\u4ef6\u4f20\u8f93\u7684\u7684\u5173\u952e\u5728\u4e8e\u9700\u8981pfsclient\u7aef\u5bf9\u6bd4source\u548cdestination\u7684\u6587\u4ef6chunks\u7684checksum\u662f\u5426\u4fdd\u6301\u4e00\u81f4":28,"\u6587\u4ef6\u5185\u5bb9\u4e3a":45,"\u6587\u4ef6\u540d\u4e3a\u6b64uuid":11,"\u6587\u4ef6\u5bf9\u5e94\u7684data":12,"\u6587\u4ef6\u7684\u4e0a\u4f20\u548c\u4e0b\u8f7d\u90fd\u662f\u901a\u8fc7\u5bf9chunk\u7684\u64cd\u4f5c\u6765\u5b9e\u73b0\u7684":28,"\u65b0\u624b\u5165\u95e8\u7ae0\u8282":62,"\u65b0\u7248\u672c":42,"\u65b9\u4fbf\u6d4b\u8bd5\u4eba\u5458\u6d4b\u8bd5paddlepaddle\u7684\u884c\u4e3a":62,"\u65b9\u4fbf\u7528\u6237\u4e0a\u4f20\u81ea\u5df1\u7684\u8bad\u7ec3\u6570\u636e\u4ee5\u8fdb\u884c\u5206\u5e03\u5f0f\u8bad\u7ec3":28,"\u65b9\u4fbf\u7528\u6237\u5728python\u7aef\u9009\u62e9\u662f\u5426\u542f\u7528\u8fd9\u4e2a\u529f\u80fd":41,"\u65b9\u4fbf\u7528\u6237\u9009\u62e9\u4f7f\u7528mkl":42,"\u65b9\u5f0f\u7c7b\u4f3c\u4e8e":42,"\u65e0\u6cd5\u505a\u5230\u5bf9\u4e8e\u5404\u79cd\u8bed\u8a00\u9519\u8bef\u5904\u7406\u65b9\u5f0f\u7684\u9002\u914d":45,"\u65e0\u8bba\u5728\u672c\u5730\u8fd8\u662f\u5728\u4e91\u7aef":12,"\u65e0\u8bba\u662f\u4ece":12,"\u65e0\u8bba\u662f\u5728\u672c\u5730\u6216\u662f\u4e91\u7aef\u8f6c\u6362":12,"\u65e0\u8bba\u662f\u91cd\u6784\u524d\u7684layer\u8fd8\u662f\u91cd\u6784\u540e\u7684op":42,"\u65f6":[11,41,42],"\u65f6\u4e00\u8d77\u66f4\u65b0":42,"\u662f":[28,42],"\u662f\u4e00\u4e2a\u591a\u8bed\u8a00\u63a5\u53e3\u7684\u4ee3\u7801\u751f\u6210\u5668":45,"\u662f\u4e00\u4e2a\u7c7b\u578b\u7684\u6807\u5fd7":46,"\u662f\u4e0d\u5e38\u89c1\u7684\u505a\u6cd5":45,"\u662f\u5404\u4e2a\u5b9e\u73b0\u4e2d\u5171\u4eab\u7684\u5934\u6587\u4ef6":46,"\u662f\u5426\u6253\u5f00":41,"\u662f\u56e0\u4e3ac99\u652f\u6301":45,"\u662f\u5bf9\u7528\u6237\u6587\u4ef6\u5b58\u50a8\u7a7a\u95f4\u7684\u62bd\u8c61":28,"\u662f\u6307":46,"\u662f\u7528\u6237\u4f7f\u7528c":46,"\u662fc":46,"\u663e\u5f97\u76f8\u5bf9\u6765\u8bf4\u8f83\u4e3a\u8017\u65f6":41,"\u6682\u65f6\u4e0d\u8003\u8651\u591a\u4e2aparamet":11,"\u66b4\u9732\u8fd9\u4e2a\u6982\u5ff5\u5fc5\u8981\u51fd\u6570":46,"\u6700\u540e\u5220\u9664":62,"\u6700\u5e38\u89c1\u7684\u9519\u8bef\u5904\u7406\u65b9\u5f0f\u662fexcept":45,"\u6709\u6548\u63d0\u5347paddlepaddle\u5728\u82f1\u7279\u5c14\u67b6\u6784\u4e0a\u7684\u6027\u80fd":[41,42],"\u6709\u6807\u51c6\u7684":45,"\u6709\u7684\u65f6\u5019":45,"\u672c\u5217\u8868\u8bf4\u660epaddlepaddle\u53d1\u7248\u4e4b\u524d\u9700\u8981\u6d4b\u8bd5\u7684\u529f\u80fd\u70b9":62,"\u672c\u6587\u6863\u63cf\u8ff0paddl":46,"\u673a\u5668\u7ffb\u8bd1":62,"\u6765\u4fdd\u8bc1\u8bad\u7ec3\u8fc7\u7a0b\u53ef\u4ee5\u4ece\u4e2d\u95f4\u72b6\u6001\u91cd\u65b0\u542f\u52a8":11,"\u6765\u51b3\u5b9a\u662f\u5426\u5f00\u542fmkl":41,"\u6765\u5b9e\u73b0":42,"\u6765\u786e\u4fdd\u628a":45,"\u6765\u8868\u793apaddle\u5185\u90e8\u7c7b":45,"\u6765\u8bbf\u95ee\u7528\u6237\u81ea\u5df1\u7684\u6570\u636e":12,"\u6765\u8fdb\u884c\u8ba8\u8bba":46,"\u67e5\u770blatest":62,"\u6807\u51c6\u8868\u793apaddlepaddle\u7248\u672c\u53f7":62,"\u683c\u5f0f\u4e0d\u5339\u914d\u65f6":42,"\u68c0\u67e5\u70b9\u4fdd\u5b58\u7a0b\u5e8f\u6d41\u7a0b":11,"\u6a21\u578b\u53c2\u6570\u68c0\u67e5\u70b9\u901a\u8fc7\u5b9a\u671f\u5411\u78c1\u76d8\u4e0a\u4fdd\u5b58\u4e00\u4efd\u5b58\u50a8\u5728paramet":11,"\u6a21\u578b\u6570\u636e\u68c0\u67e5\u70b9\u7684\u5b9e\u73b0":11,"\u6a21\u578b\u914d\u7f6e\u89e3\u6790":45,"\u6b21\u8fed\u4ee3\u6267\u884c\u7684\u8f6c\u6362\u6b21\u6570\u4e3a":41,"\u6b64\u65f6\u6bcf\u4e2a\u5c0f\u5206\u652f\u7684":42,"\u6b64\u65f6master\u5c06\u8d1f\u8d23\u542f\u52a8\u4e00\u4e2a\u65b0\u7684train":11,"\u6bcf\u4e00\u4e2a":62,"\u6bcf\u4e00\u4e2a\u6587\u4ef6\u662f\u6570\u636e\u96c6\u7684\u4e00\u4e2ashard":12,"\u6bcf\u4e2a":42,"\u6bcf\u4e2a\u503c\u7684\u7c7b\u578b\u53ef\u4ee5\u662f\u6574\u5f62":12,"\u6bcf\u4e2a\u6d4b\u8bd5\u4f1a\u5bf9\u6bd4paddlepaddle\u4e2dcpu\u7b97\u51fa\u7684\u7ed3\u679c\u4e0emkl":42,"\u6bcf\u4e2adata":12,"\u6bcf\u4e2amkldnnlayer\u90fd\u5305\u542b\u7528\u4e8e\u5185\u90e8\u5b58\u50a8\u548c\u5916\u90e8\u5b58\u50a8\u7684\u4e00\u7cfb\u5217mkldnnmatrix":42,"\u6bcf\u4e2aparamet":11,"\u6bcf\u4e2ashard\u5206\u522b\u5b58\u50a8\u5728\u5176\u4e2d\u4e00\u53f0paramet":11,"\u6bcf\u6b21\u8c03\u7528\u65f6\u5bf9\u539f\u6570\u636e\u7684\u91cd\u590dpacking\u4fbf\u6210\u4e3a\u4e86\u5197\u4f59":41,"\u6bcf\u6b21\u8f93\u51fa\u4e00\u4e2adata":12,"\u6bcf\u969410\u5206\u949f":11,"\u6bd4\u5982":[12,42],"\u6bd4\u5982\u53ef\u80fd\u4f1a\u7528openmp\u6539\u8fdbsgd\u7684\u66f4\u65b0\u6027\u80fd":42,"\u6bd4\u5982\u5c06":62,"\u6bd4\u5982\u6bcf\u969410\u5206\u949f\u6700\u65b0\u7684\u5feb\u7167":11,"\u6bd4\u5982\u6d41\u5f0f\u6570\u636e\u5904\u7406":12,"\u6bd4\u5982imagenet\u8fd9\u4e2a\u6570\u636e\u96c6\u53ef\u80fd\u88ab\u5206\u62101000\u4e2ashard":12,"\u6ca1\u6709\u5fc5\u8981\u5728\u6bcf\u6b21\u524d\u5411\u4e2d\u6bcf\u4e2a\u65f6\u95f4\u6b65\u7684\u8ba1\u7b97\u65f6\u5bf9\u6743\u91cd\u8fdb\u884c\u91cd\u590d\u7684packing\u64cd\u4f5c":41,"\u6ce8":[11,62],"\u6ce8\u518clayer\u7684\u65f6\u5019\u4fdd\u8bc1":[41,42],"\u6ce8\u610f":42,"\u6d4b\u8bd5\u5206\u4e3a\u6bcf\u4e2alayer":42,"\u6d4b\u8bd5\u672c\u6b21release\u7684\u6b63\u786e\u6027":62,"\u6d4b\u8bd5\u7684\u6027\u80fd\u5bf9\u6bd4\u7ed3\u679c\u4f1a\u5728":42,"\u6d6e\u70b9\u578b\u6570\u636e":12,"\u6df1\u5165paddlepaddl":42,"\u6dfb\u52a0":41,"\u6dfb\u52a0\u7684\u76f8\u5173\u6587\u4ef6\u548c\u76ee\u5f55\u7ed3\u6784\u5982\u4e0b":[41,42],"\u6fc0\u6d3b\u51fd\u6570\u662f\u72ec\u7acb\u4e8e":42,"\u70b9\u51fb":62,"\u7136\u540e\u5728\u524d\u5411":41,"\u7136\u540e\u5728etcd\u7684":11,"\u7136\u540e\u5c31\u53ef\u4ee5\u5e76\u53d1\u5199\u5165\u591a\u4e2achunk":28,"\u7136\u540e\u624d\u80fd\u4f7f\u7528pfsclient":28,"\u7136\u540e\u6309\u7167\u4e0a\u8ff0\u7684\u65b9\u6cd5":62,"\u7136\u540e\u70b9\u51fb":62,"\u7248\u672c\u5206\u652f":62,"\u7248\u672c\u53f7":62,"\u7248\u672c\u53f7\u5bf9\u5e94\u7684tag\u5373\u53ef":62,"\u7248\u672c\u53f7rc":62,"\u7248\u672cfork\u51fa\u81ea\u5df1\u7684\u529f\u80fd\u5206\u652f":62,"\u7279\u6709\u7684\u8bbe\u5907id":42,"\u73b0\u9636\u6bb5\u7684\u4f18\u5316\u4e3b\u8981\u9488\u5bf9":41,"\u73b0\u9636\u6bb5paddle\u6709\u4e00\u4e2a\u95ee\u9898\u662f":45,"\u751f\u4ea7\u73af\u5883\u4e2d\u7684\u8bad\u7ec3\u6570\u636e\u96c6\u901a\u5e38\u4f53\u79ef\u5f88\u5927":12,"\u751f\u4ea7\u73af\u5883\u7684\u65e5\u5fd7\u6570\u636e\u4f1a\u901a\u8fc7\u5b9e\u65f6\u6d41\u7684\u65b9\u5f0f":12,"\u751f\u6210\u5404\u79cd\u8bed\u8a00\u7684\u7ed1\u5b9a\u4ee3\u7801":45,"\u751f\u6210\u6587\u6863":45,"\u751f\u6210\u7684":12,"\u751f\u6210\u7ed9\u5b9a":12,"\u751f\u6210api\u6587\u6863":45,"\u751f\u6210pfsclient\u548cpfsserver\u7684\u6846\u67b6\u90e8\u5206":28,"\u7528":28,"\u7528\u4e8e\u6d4b\u8bd5\u548c\u5bf9\u6bd4\u5728\u4f7f\u7528mkl":42,"\u7528\u4e8e\u7ba1\u7406mkl":42,"\u7528\u4e8e\u9009\u62e9\u662f\u5426\u4f7f\u7528\u76f8\u5173\u529f\u80fd":41,"\u7528\u4e8e\u9009\u62e9\u662f\u5426\u4f7f\u7528mkl":42,"\u7528\u4e8emkl":[41,42],"\u7528\u6237\u4e0a\u4f20\u6570\u636e\u540e":12,"\u7528\u6237\u4e5f\u53ef\u4ee5\u4e0a\u4f20label":12,"\u7528\u6237\u53ef\u4ee5\u5b89\u5168\u7684\u91ca\u653e\u67d0\u4e2ac":46,"\u7528\u6237\u53ef\u4ee5\u628a\u81ea\u5df1\u7684\u6570\u636e\u5206\u4eab\u7ed9\u522b\u4eba":12,"\u7528\u6237\u53ef\u4ee5\u76f4\u63a5\u4f7f\u7528\u8fd9\u4e2a\u52a8\u6001\u5e93\u6765\u5f15\u5165paddl":46,"\u7528\u6237\u5728\u672c\u5730\u8f6c\u6362\u597d\u518d\u4e0a\u4f20":12,"\u7528\u6237\u6587\u4ef6\u53ef\u80fd\u662f\u6bd4\u8f83\u5927\u7684":28,"\u7528\u6237\u901a\u8fc7c":46,"\u7531\u4e8e\u5728\u73b0\u6709\u7684\u67d0\u4e9b\u60c5\u51b5\u4e0b":41,"\u7531\u4e8e\u5bf9parameters\u7684\u66f4\u65b0\u9700\u8981\u83b7\u53d6parameters\u5185\u5b58\u7684":11,"\u7531\u4e8e\u96c6\u7fa4\u4e2d\u540c\u65f6\u5b58\u5728\u4e24\u53f0\u673a\u5668\u6545\u969c\u7684\u6982\u7387\u6781\u4f4e":11,"\u7531\u4e8ec":45,"\u7531\u4e8echunk\u6bd4\u8f83\u5c0f":28,"\u7531\u4e8emkl":42,"\u7531\u4e8epypi":62,"\u7531\u5206\u652f\u5904\u7684layer\u8d1f\u8d23\u6c42\u548c":42,"\u7533\u8bf7\u7528\u6237\u7a7a\u95f4":28,"\u7684\u4e00\u4e2a\u5b50\u96c6":42,"\u7684\u4fe1\u606f":42,"\u7684\u5355\u5143\u6d4b\u8bd5\u548c\u7b80\u5355\u7f51\u7edc\u7684\u6574\u4f53\u6d4b\u8bd5":42,"\u7684\u547d\u540d\u98ce\u683c\u5e76\u4e0d\u80fd\u9002\u5e94\u5176\u4ed6\u7b2c\u4e09\u65b9\u8bed\u8a00":45,"\u7684\u57fa\u672c\u903b\u8f91":42,"\u7684\u5934\u6587\u4ef6":45,"\u7684\u5b50\u7c7b\u53ea\u9700\u8981\u4f7f\u7528\u5185\u90e8\u5b58\u50a8\u5c31\u53ef\u4ee5\u4e86":42,"\u7684\u60c5\u51b5\u4e0b":41,"\u7684\u63a5\u53e3\u6837\u5f0f":45,"\u7684\u6570\u636e\u6d41\u56fe":12,"\u7684\u65f6\u5019":42,"\u7684\u683c\u5f0f\u59cb\u7ec8\u662f":42,"\u7684\u683c\u5f0f\u5b58\u50a8":42,"\u7684\u6982\u5ff5":42,"\u7684\u6e90\u7801\u91cc\u4f7f\u7528\u4e86":45,"\u7684\u7248\u672c":62,"\u7684\u7ed3\u679c":41,"\u7684\u7f29\u5199":28,"\u7684\u7f51\u7edc\u6a21\u578b":41,"\u7684\u89c4\u8303":45,"\u7684\u89d2\u5ea6":12,"\u7684\u914d\u7f6e\u5199\u5230\u914d\u7f6e\u6587\u4ef6\u4e2d":12,"\u7684flag":[41,42],"\u7684vanilla":41,"\u76ee\u524d\u53ea\u8003\u8651":42,"\u76ee\u524d\u53ea\u8003\u8651\u52a8\u6001\u6269\u5bb9trainer\u6570\u91cf":11,"\u76ee\u524d\u5728paddlepaddle\u4e2d":42,"\u76ee\u524d\u5728paddlepaddle\u4e2d\u6570\u636e\u90fd\u662f\u4ee5":42,"\u76ee\u524d\u5d4c\u5165python\u89e3\u91ca\u5668":45,"\u76ee\u524d\u6211\u4eec\u7528cephfs\u6765\u642d\u5efa":28,"\u76ee\u524d\u7684\u4f18\u5316":42,"\u76ee\u524dpaddle\u7684\u8fdb\u7a0b\u6a21\u578b\u662fc":45,"\u76ee\u524dpaddlepaddle\u91c7\u7528\u4e86":41,"\u76ee\u5f55\u4e0b":46,"\u76ee\u5f55\u4e0b\u5bf9\u5e94\u7684\u5730\u65b9":42,"\u76f4\u63a5\u4f7f\u7528c\u8bed\u8a00\u7684":45,"\u76f4\u63a5\u5220\u9664\u8fd9\u4e2a\u53c2\u6570\u5373\u53ef":46,"\u76f4\u63a5\u5bfc\u51fa\u5230c\u7684\u63a5\u53e3\u6bd4\u8f83\u56f0\u96be":45,"\u76f8\u5173\u5c42":41,"\u77e9\u9635\u5927\u5c0f\u662f":41,"\u793e\u533a\u53c2\u4e0e\u56f0\u96be":45,"\u793e\u533a\u8d21\u732e\u4ee3\u7801\u5b66\u4e60\u6210\u672c\u9ad8":45,"\u795e\u7ecf\u7f51\u7edc\u4e2d\u7684\u53c2\u6570":11,"\u79bb\u7ebf\u6279\u5904\u7406":12,"\u7b2c\u4e00\u4e2atag\u4e3a":62,"\u7b2c\u4e09\u6b65\u5b8c\u6210\u540e":62,"\u7b2c\u4e8c\u4e2a\u4e3a":62,"\u7b49":[42,46],"\u7b49\u5168\u90e8\u9759\u6001\u5e93\u4e2d\u7684\u76ee\u6807\u6587\u4ef6\u5168\u90e8\u6253\u5305\u540e\u4ea7\u751f\u7684\u6587\u4ef6":46,"\u7b49\u5f85\u7f16\u8bd1\u5b8c\u6210\u540e":62,"\u7b49\u6587\u4ef6":46,"\u7c7b\u4f3c":46,"\u7c7b\u540d\u548cc":45,"\u7c7b\u578b":45,"\u7ed3\u8bba":45,"\u7edf\u4e00\u7528":12,"\u7f16\u8bd1\u5668\u6ca1\u6709":45,"\u7f16\u8bd1\u578b\u8bed\u8a00":45,"\u7f16\u8bd1\u65f6\u4f1a\u628a\u5bf9\u5e94\u7684\u5934\u6587\u4ef6\u548c\u5e93\u653e\u5728":42,"\u7f16\u8bd1\u8fd9\u4e2a\u7248\u672c\u7684docker\u53d1\u884c\u955c\u50cf":62,"\u7f16\u8bd1\u8fd9\u4e2a\u7248\u672c\u7684python":62,"\u7f16\u8bd1c":46,"\u800c\u4e0d\u5fc5\u5728\u610fpaddl":46,"\u800c\u4e0d\u652f\u6301pypy\u89e3\u91ca\u5668":45,"\u800c\u4e0d\u66b4\u9732\u6982\u5ff5\u7684\u5b9e\u73b0":46,"\u800c\u4e14\u5728\u4f20\u8f93\u7684\u8fc7\u7a0b\u4e2d\u4e5f\u53ef\u80fd\u51fa\u73b0\u7f51\u7edc\u4e0d\u7a33\u5b9a\u7684\u60c5\u51b5":28,"\u800c\u51fa\u73b0\u9636\u6bb5\u6027\u7684\u8fd0\u884c\u505c\u6ede":11,"\u800c\u5728cpp\u91cc\u9762\u5b9e\u73b0\u8fd9\u4e2ac\u7684\u63a5\u53e3":45,"\u800c\u591a\u8bed\u8a00\u63a5\u53e3\u9700\u8981\u76f4\u63a5\u8bfb\u53d6\u751f\u6210\u7684\u4e8c\u8fdb\u5236":45,"\u800c\u5bf9\u4e8egolang":45,"\u800c\u5bf9\u4e8egolang\u9519\u8bef\u5904\u7406\u5e94\u8be5\u4f7f\u7528\u8fd4\u56de\u503c":45,"\u800c\u662f\u76f4\u63a5\u4fee\u6539paddl":46,"\u800c\u662f\u76f4\u63a5\u7528api\u7684\u63a5\u53e3\u8fdc\u7a0b\u8bbf\u95ee":12,"\u800cswig\u53ea\u80fd\u7b80\u5355\u7684\u66b4\u9732c":45,"\u81ea\u52a8\u6302\u8f7d\u5206\u5e03\u5f0f\u5b58\u50a8\u76ee\u5f55":11,"\u81f3\u4e8e\u4e3a\u4ec0\u4e48\u9700\u8981c":46,"\u826f\u597d\u7684\u6587\u6863":45,"\u8282\u7701\u4e86\u4e0d\u5fc5\u8981\u7684\u64cd\u4f5c":42,"\u83b7\u53d6\u6700\u65b0\u7684\u68c0\u67e5\u70b9\u7684\u6587\u4ef6uuid":11,"\u867d\u7136\u4e0d\u9f13\u52b1\u8fd9\u6837":46,"\u8868\u793a\u5bf9\u8f93\u5165\u6570\u636e":42,"\u89e3\u91ca\u578b\u8bed\u8a00\u53ea\u80fd\u8c03\u7528\u52a8\u6001\u5e93":45,"\u89e3\u91ca\u6027\u8bed\u8a00\u5b9e\u9645\u8fd0\u884c\u7684\u4e8c\u8fdb\u5236\u662f\u89e3\u91ca\u5668\u672c\u8eab":45,"\u8ba1\u5212\u5728":[41,42],"\u8ba1\u7b97\u8fd9\u4e2a\u6587\u4ef6\u7684md5":11,"\u8ba9paddle\u6838\u5fc3\u4e2d":46,"\u8bad\u7ec3\u4efb\u52a1\u7684\u8fd0\u884c\u53ef\u80fd\u4f1a\u5360\u6ee1trainer\u548cparamet":11,"\u8bad\u7ec3\u548c\u7eaf\u4f7f\u7528":62,"\u8bad\u7ec3\u6a21\u578b\u6b63\u786e\u6027":62,"\u8bb0\u5f55\u4e0b\u6240\u6709\u5931\u8d25\u7684\u4f8b\u5b50":62,"\u8bbe\u7f6e":46,"\u8bc6\u522b\u6570\u5b57":62,"\u8bcd\u5411\u91cf":62,"\u8be5\u6587\u4ef6\u5bf9\u76f8\u5173gemm":41,"\u8be5\u7c7b\u7ee7\u627f\u4e8epaddlepaddle\u7684\u57fa\u7c7b":42,"\u8be6\u7ec6\u8bbe\u8ba1":28,"\u8bed\u610f\u89d2\u8272\u6807\u6ce8":62,"\u8bf4\u660e":11,"\u8bf7\u53c2\u8003":46,"\u8f6c\u6362\u5185\u5b58\u7684\u5de5\u4f5c":42,"\u8f6c\u6362\u5197\u4f59":41,"\u8f6c\u6362\u51fd\u6570":42,"\u8f6c\u6362\u751f\u6210\u7684\u6587\u4ef6\u540d\u4f1a\u662f\u4ee5\u4e0b\u683c\u5f0f":12,"\u8f6c\u6362\u8017\u65f6":41,"\u8f93\u5165\u68af\u5ea6":42,"\u8f93\u51fa\u6570\u636e\u548c\u8f93\u51fa\u68af\u5ea6":42,"\u8f93\u51fa\u6570\u636e\u548c\u8f93\u51fa\u68af\u5ea6\u7684\u8f6c\u6362":42,"\u8fbe\u5230\u5bb9\u707e\u7684\u76ee\u7684":11,"\u8fc7\u7a0b\u4e2d\u6240\u6709\u65f6\u95f4\u6b65":41,"\u8fd1\u671f\u76ee\u6807":42,"\u8fd4\u56de\u7b2c\u4e8c\u6b65":62,"\u8fd8\u662f\u4ece":12,"\u8fd9\u4e00\u5c42\u8fdb\u884c\u5c01\u88c5":46,"\u8fd9\u4e00\u6570\u636e\u683c\u5f0f\u7684\u8f6c\u6362\u64cd\u4f5c":41,"\u8fd9\u4e00\u6982\u5ff5\u4e0d\u518d\u7410\u788e":46,"\u8fd9\u4e09\u4e2a\u5206\u652f":62,"\u8fd9\u4e2a\u51fd\u6570\u672c\u8eab\u4f1a\u5728\u8ba1\u7b97\u524d\u5c06\u539f\u6570\u636e\u8f6c\u6362\u4e3a\u66f4\u9002\u5408\u82f1\u7279\u5c14\u5e73\u53f0\u7684\u5185\u90e8\u683c\u5f0f":41,"\u8fd9\u4e2a\u52a8\u6001\u5e93\u7684\u8fde\u63a5\u53c2\u6570\u4e0epaddle\u7684\u5176\u4ed6\u4e8c\u8fdb\u5236":46,"\u8fd9\u4e2a\u53c2\u6570\u4e5f\u4e0d\u4f1a\u4e00\u5e76\u5220\u9664":46,"\u8fd9\u4e2a\u5934\u6587\u4ef6\u4e0d\u5047\u8bbe\u5176\u4ed6\u6587\u4ef6\u7684\u5f15\u7528\u987a\u5e8f":46,"\u8fd9\u4e2a\u63a5\u53e3\u9700\u8981\u505a\u5230":45,"\u8fd9\u4e2a\u6587\u4ef6\u5177\u6709\u72ec\u7279\u7684\u8bed\u6cd5":45,"\u8fd9\u4e2a\u76ee\u5f55\u4e2d\u9664\u4e86":46,"\u8fd9\u4e2a\u7ed3\u6784\u4f53\u4e2d\u7684\u53e6\u4e00\u4e2a\u9879\u76ee\u662f":46,"\u8fd9\u4e2a\u7ed3\u6784\u4f53\u5305\u542b\u4e24\u4e2a\u9879\u76ee":46,"\u8fd9\u4e2a\u9009\u62e9":[41,42],"\u8fd9\u4e2a\u9759\u6001\u5e93\u5305\u542b\u4e86paddle\u7684\u5168\u90e8\u7b26\u53f7":46,"\u8fd9\u4e2ainstance\u53ef\u4ee5\u662f\u5355\u4e2a\u503c":12,"\u8fd9\u4e9b\u4f1a\u5728":[41,42],"\u8fd9\u4e9b\u51fd\u6570\u4f1a\u6839\u636e\u8f93\u5165\u53c2\u6570\u91cd\u65b0\u8bbe\u7f6e\u5185\u90e8\u548c\u5916\u90e8\u5b58\u50a8":42,"\u8fd9\u4e9b\u5206\u5e03\u5f0f\u5b58\u50a8\u670d\u52a1\u901a\u5e38\u4f1a\u628a\u6570\u636e\u5207\u5272\u6210\u591a\u4e2a\u5206\u7247\u5206\u5e03\u5f0f\u7684\u5b58\u50a8\u5728\u591a\u4e2a\u8282\u70b9\u4e4b\u4e0a":12,"\u8fd9\u4e9b\u955c\u50cf\u4e5f\u53ef\u4ee5\u4ece":62,"\u8fd9\u5bf9\u4e8e\u901a\u5e38\u7684java\u7684\u5f00\u53d1\u8005\u6765\u8bf4":45,"\u8fd9\u662f\u56e0\u4e3a":45,"\u8fd9\u6837":46,"\u8fd9\u6837\u4e0b\u4e00\u4e2acpu":42,"\u8fd9\u6837\u4fdd\u8bc1":62,"\u8fd9\u6837\u5c31\u53ef\u4ee5\u5728\u4e91\u7aef\u6267\u884c\u591a\u79cd\u6570\u636e\u7c7b\u8ba1\u7b97\u4efb\u52a1":12,"\u8fd9\u6837\u5df2\u7ecf\u4f20\u8f93\u6210\u529f\u7684\u90e8\u5206\u5c31\u4e0d\u7528\u91cd\u65b0\u4f20\u8f93\u4e86":28,"\u8fd9\u6837\u5e26\u6765\u7684\u597d\u5904\u5c31\u662f\u4e0d\u9700\u8981\u4e00\u76f4\u6e05\u7a7amemori":42,"\u8fd9\u6837\u65e2\u4f7f\u5f97\u6700\u7ec8\u4fdd\u5b58\u7684\u53c2\u6570\u683c\u5f0f\u4e0epaddlepaddle\u4e00\u81f4":42,"\u8fd9\u90fd\u9700\u8981\u8fd9\u4e2a\u63a5\u53e3\u6309\u7167\u7ea6\u5b9a\u4fd7\u6210\u7684\u89c4\u5219\u6765\u6ce8\u91ca\u5b8c\u5907":45,"\u8fd9\u91cc":42,"\u8fd9\u91cc\u7684dockerimage\u4f5c\u4e3a\u7f16\u8bd1\u73af\u5883\u4ee5\u652f\u6301\u66f4\u591a\u7684linux":62,"\u8fd9\u91cc\u9009\u62e90":62,"\u8fd9\u91cc\u9700\u8981\u7528\u6237\u989d\u5916\u6ce8\u610f":11,"\u8fdb\u4e00\u6b65\u4f18\u5316":42,"\u8fdb\u5165":62,"\u8fdb\u800c\u8fdb\u884c\u4ee3\u7801\u8bc4\u5ba1":62,"\u9009\u62e9\u662f\u5426\u7f16\u8bd1mkl":42,"\u9009\u62e9\u9700\u8981\u53d1\u5e03\u7684\u7248\u672c":62,"\u900f\u4f20\u7528\u6237\u8eab\u4efd\u7684\u529e\u6cd5":28,"\u901a\u5e38":46,"\u901a\u5e38\u5305\u542b\u4e00\u4e2acpu\u7248\u672c\u548c\u4e00\u4e2agpu\u7248\u672c":62,"\u901a\u5e38\u6307\u5c06\u4e00\u4e2a\u6574\u4f53\u62c6\u5206\u6210\u591a\u4efd\u7684\u5176\u4e2d\u7684\u4e00\u4efd":11,"\u901a\u8fc7\u4f7f\u7528\u8fd9\u4e9bapi":41,"\u901a\u8fc7\u6a21\u578b\u63a8\u65adapi\u7684\u5b9e\u73b0\u4f5c\u4e3a\u4e00\u4e2a\u6837\u4f8b":46,"\u903b\u8f91\u5212\u4e0a\u6587\u4ef6\u5206\u5757\u7684\u5355\u4f4d":28,"\u9075\u5faa\u4ee5\u4e0b\u6d41\u7a0b":62,"\u90a3\u4e48":46,"\u90a3\u4e48\u5bf9\u5e94\u7684\u5185\u90e8\u5b58\u50a8\u4e5f\u4f1a\u4e0e\u5b83\u4eec\u5171\u4eab\u5185\u5b58":42,"\u90a3\u4e48\u5c31\u4f1a\u4f7f":42,"\u90fd\u4e0d\u4f1a\u60f3\u8981\u77e5\u9053next":42,"\u90fd\u662f\u4e94\u4f4d\u7684\u6570\u5b57":12,"\u90fd\u662f\u4ee5ext\u5f00\u5934":42,"\u90fd\u662fabi\u8c03\u7528\u6807\u51c6\u7684":45,"\u90fd\u7ee7\u627f\u4e8epaddlepaddle\u7684\u57fa\u7c7b":41,"\u914d\u7f6e\u7684\u65b9\u6cd5\u53c2\u8003":28,"\u91ca\u653e\u5bf9paramters\u5185\u5b58\u7684\u9501\u5b9a":11,"\u91cc\u6240\u6709\u7684\u7b26\u53f7\u90fd\u5199\u5165\u81ea\u5df1\u7684\u7a0b\u5e8f\u7684\u4e8c\u8fdb\u5236\u6587\u4ef6\u91cc":45,"\u91cc\u9009\u62e9\u9700\u8981\u53d1\u5e03\u7684\u5206\u652f":62,"\u91cc\u9762\u6dfb\u52a0":42,"\u91cd\u5199\u7236\u7c7blayer\u7684":42,"\u91cd\u547d\u540d\u6210":45,"\u94fe\u63a5\u5230\u81ea\u5df1\u7684\u7a0b\u5e8f\u91cc":45,"\u9519\u8bef\u5904\u7406":45,"\u9519\u8bef\u5904\u7406\u65b9\u5f0f\u662f\u8fd4\u56de\u503c":45,"\u9519\u8bef\u5904\u7406\u7684\u65b9\u5f0f\u4e5f\u4e0d\u5c3d\u76f8\u540c":45,"\u9664\u6784\u9020\u67d0\u79cd\u7c7b\u578b\u7684\u51fd\u6570":46,"\u96c6\u6210\u5230":41,"\u96c6\u6210\u5230paddlepaddl":42,"\u9700\u8981":12,"\u9700\u8981\u4fee\u6539build":62,"\u9700\u8981\u53ef\u4ee5\u8de8\u5e73\u53f0\u6267\u884c":28,"\u9700\u8981\u5728cmake\u7684\u65f6\u5019":46,"\u9700\u8981\u5c06bugfix\u7684\u5206\u652f\u540c\u65f6merge\u5230":62,"\u9700\u8981\u5f15\u7528":46,"\u9700\u8981\u6709\u7a33\u5b9a\u7684\u5bfc\u51fa\u7b26\u53f7":45,"\u9700\u8981\u6ce8\u610f\u7684\u662f":[42,62],"\u9700\u8981\u7d2f\u52a0\u4e0d\u540clayer\u4f20\u8fc7\u6765\u7684\u68af\u5ea6":42,"\u9700\u8981\u88ab\u66b4\u9732\u5230\u5176\u4ed6\u8bed\u8a00":46,"\u9700\u8981\u91cd\u547d\u540dwheel\u5305\u4e2dplatform\u76f8\u5173\u7684\u540e\u7f00":62,"\u9ed8\u8ba4256k":28,"\u9ed8\u8ba4\u8bbe\u7f6e\u4e3a":41,"abstract":[19,20,27,31,52,61,63,74,93],"api\u4e2d\u4f7f\u7528":45,"api\u5bfc\u51fa\u7684\u52a8\u6001\u5e93":46,"api\u5bfc\u51fa\u7684\u9759\u6001\u5e93":46,"api\u63a5\u53d7\u7684\u7c7b\u578b\u5168\u662f":46,"api\u63a5\u53e3":28,"api\u63a5\u53e3\u7684\u53c2\u6570\u8f6c\u53d1\u7ed9":46,"api\u65f6":46,"api\u65f6\u6240\u552f\u4e00\u9700\u8981\u5f15\u5165\u7684\u5934\u6587\u4ef6":46,"api\u662f\u591a\u8bed\u8a00api\u7684\u57fa\u7840\u90e8\u5206":46,"api\u66b4\u9732\u7684\u7c7b\u578b":46,"api\u751f\u6210\u7684\u4e8c\u8fdb\u5236\u6587\u4ef6\u4f1a\u88ab\u5b89\u88c5\u5230":46,"api\u7684\u5b9e\u4f8b":46,"api\u7684\u5b9e\u73b0\u7ec6\u8282":46,"api\u7684\u63a5\u53e3":46,"api\u7684\u65f6\u5019\u63a8\u8350paddle\u4e0d\u5d4c\u5165python\u89e3\u91ca\u5668":46,"api\u7684\u7f16\u8bd1\u9009\u9879\u9ed8\u8ba4\u5173\u95ed":46,"api\u76ee\u5f55\u7ed3\u6784\u5982\u4e0a\u56fe\u8868\u6240\u793a":46,"api\u83b7\u5f97\u4e86\u795e\u7ecf\u7f51\u7edc\u7684\u53c2\u6570\u5b9e\u4f8b":46,"apis\u505a\u4e86\u5c01\u88c5":41,"block\u6784\u6210\u4e00\u4e2amodel":11,"book\u4e2d\u6240\u6709\u7ae0\u8282\u529f\u80fd\u7684\u6b63\u786e\u6027":62,"boolean":[27,29,37,45,68],"break":[9,66,68,70,71],"bugfix\u5206\u652f\u4e5f\u662f\u5728\u5f00\u53d1\u8005\u81ea\u5df1\u7684fork\u7248\u672c\u5e93\u7ef4\u62a4":62,"bugfix\u5206\u652f\u9700\u8981\u5206\u522b\u7ed9\u4e3b\u7248\u672c\u5e93\u7684":62,"byte":[28,44],"c99\u662f\u76ee\u524dc\u6700\u5e7f\u6cdb\u7684\u4f7f\u7528\u6807\u51c6":45,"c\u6709\u6807\u51c6\u7684abi":45,"c\u8bed\u8a00\u662f\u6709\u5bfc\u51fa\u7b26\u53f7\u7684\u6807\u51c6\u7684":45,"case":[13,19,21,22,27,31,40,46,52,56,58,59,68,74,75,82,86,94,98,101,106],"char":15,"ci\u73af\u5883\u4f7f\u7528":62,"ci\u7f16\u8bd1wheel\u5b8c\u6210\u540e\u4f1a\u81ea\u52a8\u5c06docker\u955c\u50cfpush\u5230dockerhub":62,"class":[5,8,19,20,21,22,25,26,30,31,32,33,35,36,38,40,45,49,50,54,55,59,60,61,63,64,65,67,70,75,76,77,92,99],"compute\u51fd\u6570":41,"const":[8,13,15,20,30,32,38,39,53,54,56,60,63,65,67,69,70,74,75,76,77],"core\u4e2d\u7684\u6a21\u578b\u8fd8\u5728\u4f7f\u7528\u8fd9\u4e2a\u53c2\u6570":46,"core\u4e2d\u8fd9\u4e00\u7c7b\u578b\u63a5\u53e3\u7684\u667a\u80fd\u6307\u9488":46,"core\u662f\u5426\u8fd8\u5728\u4f7f\u7528\u8fd9\u4e2a\u5b9e\u4f8b":46,"core\u6982\u5ff5":46,"data\u5230\u5206\u5e03\u5f0f\u5b58\u50a8\u8865\u5145\u8bad\u7ec3\u6570\u636e":12,"default":[0,1,2,4,5,8,9,19,21,25,34,38,44,47,48,56,57,63,64,65,68,71,72,75,76,81,84,86,87,93,95,97,103,104,105,106],"device\u5c31\u80fd\u62ff\u5230\u6b63\u786e\u7684\u6570\u636e":42,"dnn\u4e09\u8005\u5173\u7cfb\u5982\u4e0b\u8868":42,"dnn\u4e2d\u7684":42,"dnn\u4e2d\u7684\u6392\u5217\u65b9\u5f0f\u4e0d\u6b62\u8fd9\u4e00\u79cd":42,"dnn\u4f1a\u4f5c\u4e3a\u7b2c\u4e09\u65b9\u5e93\u96c6\u6210\u8fdbpaddlepaddl":42,"dnn\u4f1a\u7528\u5230":42,"dnn\u5171\u540c\u4f7f\u7528":42,"dnn\u524d\u540e\u7684cnn\u7f51\u7edc\u6027\u80fd":42,"dnn\u5728\u53d1\u5e03":42,"dnn\u5b9e\u73b0":42,"dnn\u5e0c\u671b\u7684\u683c\u5f0f":42,"dnn\u6570\u636e\u7684\u4e0d\u540c\u683c\u5f0f\u4ee5\u53ca\u76f8\u4e92\u4e4b\u95f4\u7684\u8f6c\u6362":42,"dnn\u7684":42,"dnn\u7684\u5e93\u76ee\u524d\u53ea\u6709\u52a8\u6001\u5e93":42,"dnn\u7684\u6027\u80fd":42,"dnn\u7684\u60c5\u51b5\u4e0b":42,"dnn\u7684\u64cd\u4f5c\u90fd\u662f\u76f4\u63a5\u8986\u76d6\u7684\u5f62\u5f0f":42,"dnn\u7684\u6d4b\u8bd5":42,"dnn\u7684\u73af\u5883\u4e0b":42,"dnn\u7684\u76f8\u5173\u529f\u80fd":42,"dnn\u7684\u7ed3\u679c":42,"dnn\u7684\u9ad8\u6027\u80fd\u683c\u5f0f\u4e0epaddlepaddle\u539f\u6709\u7684":42,"dnn\u7684layer":42,"dnn\u7684layers\u90fd\u4f1a\u7ee7\u627f\u4e8e":42,"enum":[13,15,21,47,54,55,64,65,71,76],"export":[2,31,36,78,81],"final":[6,7,22,36,48,49,66,70,74,75],"float":[25,30,38,65,67,69,74,75,76,77,95,98],"function":[5,7,8,10,14,15,16,18,19,20,21,22,25,26,30,32,35,38,43,48,49,52,53,54,55,56,58,59,60,61,63,65,70,74,75,76,77,81,82,93,97,98,101,106],"golang\u53ef\u4ee5\u4f7f\u7528":45,"golang\u7684":45,"gpu\u7b49":62,"h\u5e76\u4e0d\u56f0\u96be":45,"images\u6570\u636e\u96c6\u4e0a\u4f20\u5230\u4e91\u7aef\u7684":12,"import":[4,5,8,9,19,21,24,32,34,36,37,43,48,49,55,63,66,75,80,81,82,86,98,101,105],"ingress\u9700\u8981\u628apfsclient\u7684\u8eab\u4efd\u4fe1\u606f\u4f20\u7ed9pfsserv":28,"instance\u4e0e\u751f\u6210\u6570\u636e\u96c6\u65f6":12,"instance\u5305\u6db5\u4e24\u4e2a\u503c":12,"instance\u662f\u4e00\u6a21\u4e00\u6837\u7684":12,"int":[7,8,13,14,15,18,19,21,23,37,38,41,42,43,45,46,54,55,57,58,64,65,67,70,71,74,76,77,81,95],"interface\u6587\u4ef6\u7684\u5199\u6cd5\u975e\u5e38":45,"layer\u65f6":42,"layer\u7684\u540e\u9762\u63a5\u6709cpu":42,"list\u4f5c\u4e3a\u68c0\u67e5\u5217\u8868":62,"long":[21,98],"mkl\u5e93\u7684":41,"mklml\u4ee5\u53camkl":42,"mklml\u53ef\u4ee5\u4e0emkl":42,"mklml\u7684\u5e93\u76ee\u524d\u90fd\u662f\u52a8\u6001\u5e93":42,"mode\u4e0b\u7684\u7ed3\u679c":41,"model\u505a\u5206\u652f\u7ba1\u7406":62,"ndarray\u7c7b\u578b\u7684\u503c\u548c\u6574\u578b\u7684\u503c":12,"new":[0,6,7,8,9,10,13,14,15,16,17,20,21,22,25,30,31,40,41,43,47,49,52,57,58,59,61,65,66,70,72,73,80,86,87,106],"note\u7684\u4e66\u5199":62,"null":[36,74,93],"op\u7684\u4fe1\u606f":42,"openmp\u7528\u4e8e\u63d0\u9ad8mklml\u7684\u6027\u80fd":42,"org\u76ee\u524d\u9075\u5faa":62,"packed\u4f18\u5316\u540elayer\u7684\u6d4b\u8bd5":41,"packed\u76f8\u5173\u529f\u80fd":41,"paddle\u4e00\u4e2a\u52a8\u6001\u5e93\u53ef\u4ee5\u5728\u4efb\u4f55linux\u7cfb\u7edf\u4e0a\u8fd0\u884c":45,"paddle\u5185\u5d4c\u7684python\u89e3\u91ca\u5668\u548c\u5916\u90e8\u4f7f\u7528\u7684python\u5982\u679c\u7248\u672c\u4e0d\u540c":45,"paddle\u5185\u90e8\u7684\u7c7b\u4e3ac":45,"paddle\u7684\u591a\u8bed\u8a00\u63a5\u53e3\u5b9e\u73b0\u5305\u62ec\u4e00\u4e0b\u51e0\u4e2a\u65b9\u9762":45,"paddle\u7684\u7c7b\u578b\u5168\u90e8\u9000\u5316\u6210":46,"paddle\u7684\u94fe\u63a5\u65b9\u5f0f\u6bd4\u8f83\u590d\u6742":45,"paddle\u7684c":46,"paddle\u8bad\u7ec3\u4efb\u52a1":12,"paddle\u8def\u5f84\u4e0b":46,"paddle\u9700\u8981\u4e00\u4e2a\u591a\u8bed\u8a00\u63a5\u53e3":45,"paddle\u9700\u8981\u66b4\u9732\u7684api\u5f88\u591a":46,"paddle\u9759\u6001\u5e93\u94fe\u63a5\u590d\u6742":45,"paddle_\u7c7b\u578b\u540d":46,"paddle_\u7c7b\u578b\u540d_\u51fd\u6570\u540d":46,"paddlepaddle\u4e2d\u7684cudnn\u90e8\u5206\u4f7f\u7528\u7684\u4e5f\u662f":42,"paddlepaddle\u4f7f\u7528git":62,"paddlepaddle\u5f00\u53d1\u8fc7\u7a0b\u4f7f\u7528":62,"paddlepaddle\u63d0\u4f9b\u4e13\u7528\u7684":12,"paddlepaddle\u6bcf\u6b21\u53d1\u65b0\u7684\u7248\u672c":62,"paddlepaddle\u6bcf\u6b21\u53d1\u7248\u672c\u9996\u5148\u8981\u4fdd\u8bc1paddlepaddl":62,"paddlepaddle\u7684\u4e3b\u7248\u672c\u5e93\u9075\u5faa":62,"paddlepaddle\u7684activation\u4f1a\u76f4\u63a5\u4f7f\u7528":42,"patch\u53f7":62,"patch\u53f7\u52a0\u4e00":62,"pfsclient\u9700\u8981\u548cingress\u4e4b\u95f4\u505a\u53cc\u5411\u9a8c\u8bc1":28,"pfsclient\u9700\u8981\u5728\u4f20\u8f93\u5b8c\u6bd5\u6700\u540e\u4e00\u4e2achunk\u7684\u65f6\u5019\u68c0\u67e5destination\u6587\u4ef6\u7684md5\u503c\u662f\u5426\u548csource\u6587\u4ef6\u4e00\u81f4":28,"pfsserver\u63d0\u4f9brest":28,"public":[8,20,30,33,38,54,60,63,65,66,67,70,74,75,76,77,81,86,87],"py\u4e2d":62,"pypi\u4e0a\u7684package\u540d\u79f0\u4e3apaddlepaddle\u548cpaddlepaddl":62,"pypi\u4e0d\u652f\u6301\u8986\u76d6\u4e0a\u4f20":62,"reader\u7684\u4f7f\u7528\u65b9\u5f0f\u90fd\u662f\u4e00\u81f4\u7684":12,"reader\u8f93\u51fa\u7684data":12,"resnet\u7684mkl":42,"return":[5,6,7,8,12,13,15,18,19,20,21,26,30,32,33,34,36,38,39,40,43,48,49,50,54,55,56,60,63,65,67,70,74,75,76,77,82,86,101],"rnn\u90e8\u5206\u4e2d":41,"s3\u4e4b\u7c7b\u7684\u5206\u5e03\u5f0f\u5b58\u50a8\u4e4b\u4e0a":12,"server\u4e4b\u4e0a":11,"server\u4e4b\u95f4\u7684\u7f51\u7edc\u5e26\u5bbd":11,"server\u4f1a\u6682\u505c\u53c2\u6570\u66f4\u65b0\u5e76\u7b49\u5f85":11,"server\u4f1a\u83b7\u53d6parameters\u5185\u5b58\u7684":11,"server\u5185\u5b58\u4e2d\u7684\u6a21\u578b\u6570\u636e\u7684\u5b8c\u6574\u955c\u50cf":11,"server\u540c\u6b65\u7684\u4fdd\u5b58\u4e00\u4e2a\u7279\u5b9a\u65f6\u95f4\u70b9\u7684\u5168\u5c40\u68c0\u67e5\u70b9":11,"server\u5728\u96c6\u7fa4\u4e2d\u542f\u52a8\u540e":11,"server\u6545\u969c\u540e\u88abkubernetes\u91cd\u65b0\u542f\u52a8":11,"server\u6b64\u65f6\u8fd8\u9700\u8981\u901a\u8fc7\u7f51\u7edc\u8bbf\u95ee\u5206\u5e03\u5f0f\u5b58\u50a8\u4ee5\u4fdd\u5b58\u5feb\u7167":11,"server\u751f\u6210\u4e00\u4e2auuid":11,"server\u7684\u5355\u70b9\u6216\u591a\u70b9\u540c\u65f6\u6545\u969c":11,"server\u7684\u6570\u636e\u5feb\u7167":11,"server\u7684\u68c0\u67e5\u70b9\u5404\u81ea\u72ec\u7acb\u4fdd\u5b58":11,"server\u7b2c\u4e00\u6b21\u542f\u52a8\u6216\u4efb\u610f\u65f6\u95f4paramet":11,"short":[30,34,57,63,66,70,75],"static":[15,46,63,65,86,104,106],"super":[57,74],"swig\u652f\u6301\u7684\u8bed\u8a00\u6216\u8005\u89e3\u91ca\u5668\u6709\u5c40\u9650":45,"swig\u66b4\u9732\u7684\u63a5\u53e3\u4fdd\u7559\u4e86c":45,"swig\u751f\u6210\u7684\u4ee3\u7801\u4e0d\u80fd\u4fdd\u8bc1\u591a\u8bed\u8a00\u4ee3\u7801\u98ce\u683c\u7684\u4e00\u81f4\u6027":45,"swig\u76f4\u63a5\u8bfb\u53d6c":45,"swig\u9700\u8981\u5199\u4e00\u4e2ainterface\u6587\u4ef6":45,"switch":[8,46,86],"tag\u4e3a":62,"tag\u53ef\u4ee5\u662flatest\u6216latest":62,"tag\u7684\u66f4\u65b0\u65f6\u95f4\u662f\u5426\u5728\u4e0a\u8ff0\u7f16\u8bd1wheel\u5305\u5b8c\u6210\u540e\u662f\u5426\u6700\u65b0":62,"throw":86,"true":[5,7,8,13,31,37,41,50,55,56,57,58,62,65,70,74,81,86,93,95,101],"try":[0,2,4,9,10,13,14,15,31,36,40,43,58,63,66,82,98,104],"type\u5b57\u6bb5\u5747\u4e0d\u5c3d\u76f8\u540c":46,"var":[7,8,19,20,21,25,32,33,35,37,50,55,56,57,59,63,68,69,70,78],"void":[8,13,15,20,27,30,32,33,38,43,44,45,46,55,56,64,65,67,69,74,75,76,77],"wheel\u5305":62,"while":[8,17,20,21,31,36,39,40,49,52,53,58,61,63,67,75,77,93,101],AGE:[86,87],AWS:[12,85,89,90],Added:66,And:[13,17,18,27,34,36,47,51,54,58,63,67,86,95,101],But:[4,6,33,39,47,54,63,72,83,106],For:[1,2,5,7,8,14,15,16,18,19,20,22,25,26,31,32,33,35,38,40,44,47,48,49,52,53,54,55,56,57,58,59,60,61,64,65,66,67,69,71,72,74,75,76,77,80,82,92,93,95,97,98,101,103,105,106],IDE:[0,104],IDs:[17,21,49],IPs:81,IRs:22,Into:86,Its:[32,64,75,86,101],K8s:106,NOT:[57,75],Not:[4,5,10,40,66,106],OPs:[22,24,82],One:[6,17,44,47,63,66,69,74,93,101],Ops:[59,61,65,75],PFS:28,PRs:78,QoS:87,Such:[38,57,66,70],TLS:[5,28,86],That:[2,20,51,93,95],The:[0,2,4,5,6,7,9,10,14,16,17,18,20,21,22,24,25,26,29,30,32,36,39,40,43,44,46,48,49,51,52,54,55,56,57,58,61,63,64,65,66,67,69,70,71,72,74,75,76,77,78,82,83,84,85,86,87,91,93,95,97,98,99,101,103],Their:10,Then:[1,2,4,19,22,33,38,40,51,54,56,74,82,83,86,87,88,97,98,101],There:[5,8,9,10,15,17,18,21,22,29,30,31,36,40,47,48,49,52,53,54,57,61,63,64,67,75,86,98,103,104],These:[1,7,8,20,25,30,35,50,61,64,65,66,85,95],Use:[1,5,23,29,58,59,66,74,81,83,86,93,94,97,98,105],Used:[59,67],Uses:[40,104],Using:[0,3,10,31,52,58,59,61,63,77,85,87],VMs:0,VPS:86,WITH:105,With:[19,20,25,31,51,55,66,70],YES:18,Yes:[0,2,42],___fc_layer_0__:86,__align__:30,__cuda_align__:30,__device__:30,__doc__:65,__file__:18,__forceinline__:30,__fp16:30,__global__:30,__hadd:30,__half:30,__half_raw:30,__impl__:65,__init__:[25,26,34,40,50,57,70,74,97],__main__:34,__metaclass__:75,__name__:34,__rnn_step__:101,__va_args__:60,__x:30,_addup_repetitive_outputs_:7,_append_backward_ops_:[7,25],_append_backward_vars_:7,_binari:9,_create_global_var:57,_def:40,_dtype:36,_filer:43,_filter:43,_fwd:43,_fwd_pd:43,_input:43,_librari:9,_live_in:40,_live_out:40,_loss:34,_op:[36,75],_output:43,_presucessor:40,_program:40,_remove_no_grad_branch_:7,_reorder_input:43,_source_language_embed:101,_src_input:43,_sucessor:40,_target_language_embed:101,_test:9,_update_op:26,_use:40,_value_index:36,a75:30,a_op:75,a_prev:66,aaaaa:12,aaaaaaaaaaaaa:86,abi:103,abil:34,abl:[5,7,20,21,22,38,50,54,57,106],about:[2,4,6,8,9,18,24,29,32,40,48,58,63,65,66,67,75,80,86,92,93,97,98,103,105],abov:[0,2,3,5,6,7,8,9,10,14,19,21,22,30,31,32,33,35,43,48,49,50,51,52,54,55,57,65,66,68,69,70,72,75,76,77,80,82,86,87,97,98,103,106],abs:[6,34],abs_numerical_grad:6,absolut:[2,6,103,105],acc:22,acceler:[2,11,42,51,52,95],accept:[5,59,103],access:[4,5,9,14,17,18,19,21,22,57,81,101],accessmod:86,accessor:57,accord:[6,7,15,22,24,35,49,59,70,75,81,92,93,95],accordingli:74,account:[59,72,106],accoust:66,accrodingli:13,accumul:[10,15,26,51,52,66],accur:[6,17,54],accuraci:[26,66,74],achiev:[20,24,51,52,66,67,98],ack:93,acquir:31,across:[7,22,48,66],act1:36,act2:36,act:[8,20,22,36,49,57,70,80,82,99,101],act_output:65,act_typ:36,action:[21,86],activ:[9,36,40,49,54,57,61,65,74,77,78,80,93,101],actual:[13,25,31,34,36,43,47,52,65,67,69,77],actual_layout:43,adagrad:[52,64],adagradoptim:50,adam:[5,15,22,34],adapt:[54,69],add:[0,1,6,7,8,9,13,17,20,21,22,24,26,30,33,37,39,50,52,56,57,59,61,63,67,68,72,74,75,77,95,98,99,105],add_activ:57,add_bia:57,add_depend:9,add_execut:9,add_input:[48,74],add_memori:48,add_output:48,add_scalar:[8,49,55],add_sum:57,add_test:[9,74],add_two:[8,48],add_unittest_without_exec:74,addattr:[65,75],addbia:74,addcom:[65,75],added:[8,24,25,30,47,51,52,61,72,74,75,76],adding:[61,72],addinput:[65,75],addit:[7,21,51,54,59,61,70,75,77,82],addition:48,addmemori:43,addop:[33,77],addoutput:75,addprimit:43,addprimitivedesc:43,addr:10,address:[2,10,15,19,22,82,84,88,91,93,98,106],addrow:74,addtyp:65,adjust:[7,25],admin:106,administr:[0,17,106],adopt:[30,34],advanc:[6,93,98,101],advantag:[6,30,31,52,58,91],adversari:[34,58],advic:98,affect:8,affili:49,afford:14,aforement:9,after:[1,2,7,8,9,14,15,17,22,23,24,25,27,29,30,40,43,51,53,54,57,66,72,74,75,76,77,84,86,87,91,93,95,97,101,103,104],aftern:54,again:[5,6,10,52,98],against:86,aggreg:[26,51,86],ago:9,agre:72,agreement:72,ahead:66,aid:98,alexnet_pass1:95,alexnet_pass2:95,algo:43,algorithm:[7,14,25,40,43,49,52,61,66,69,101],all:[0,2,5,7,8,9,10,13,15,17,18,19,20,21,22,23,25,27,29,31,34,35,36,39,40,43,44,46,47,48,49,50,51,52,54,55,57,59,65,66,67,74,77,81,82,83,84,86,87,92,93,95,98,99,101,103,104,105,106],all_output_nam:7,alloc:[15,18,40,43,67,74,77,95,99],allow:[5,15,19,20,22,25,31,52,61,72,74,86,93,98],allow_only_one_model_on_one_gpu:[92,93,95],allreduc:51,almost:[0,84],alpha:[9,61],alreadi:[2,9,10,31,43,57,63,84,86,93,98,105],alreali:92,also:[0,1,2,4,5,7,8,9,13,16,20,21,22,30,31,33,34,35,36,39,40,47,48,49,52,53,54,55,56,57,58,61,63,65,66,67,70,71,74,75,78,82,83,87,91,98,101,103,106],altern:[75,97],although:[7,51],altogeth:106,alwai:[9,21,44,64,86,93],amazon:[86,87],amazonaw:86,amazonec2fullaccess:86,amazonelasticfilesystemfullaccess:86,amazonroute53domainsfullaccess:86,amazonroute53fullaccess:86,amazons3fullaccess:86,amazonvpcfullaccess:86,ambigu:[58,66],amd64:86,amd:47,amend:72,amodei:66,among:86,amort:51,amount:98,analys:54,analysi:[54,97,98],analyz:40,ancestor:[55,57],andd:86,andrew:40,android:105,android_abi:103,android_api:103,android_arm_neon:103,android_native_api_level:103,android_standalone_toolchain:103,android_toolchain:103,ani:[0,1,5,9,10,15,17,18,19,21,22,27,30,31,38,40,44,49,51,52,57,58,60,61,66,69,75,77,82,86,88,98,105],annoi:84,announc:30,anoth:[0,5,7,8,18,20,21,31,32,43,49,57,63,65,67,69,86,93],anroid_arm_mod:103,ans:86,answer:[19,31,72,86],anymor:51,anyth:[49,58,86],anytim:34,anywai:[97,103],apach:42,api:[1,4,5,7,9,15,16,18,19,20,26,28,33,34,36,48,53,54,59,62,70,71,74,75,81,82,85,86,97,98,103,104,105,106],api_shar:9,api_test:9,api_trainer_config_helpers_lay:101,apiserv:86,apivers:[86,87],app:104,appar:7,appear:[19,31,35,67],appel:40,append:[7,25,26,49,57,58,66,72,74,81,101],append_backward:[7,50,97],append_clip_op:25,append_op:[25,39,57],append_oper:57,appl:104,appleyard:98,appli:[34,35,51,54,63,74,101],applic:[19,21,30,31,32,35,57,59,72,75,85,86,87,97,98,106],applyl1:13,appoint:75,appreci:[66,72],approach:[22,23,24,51,52,53,61,66,103,105,106],approxim:52,apt:[2,97],arbitrari:[22,44,77],arch:103,archetectur:66,architectur:[1,30,66,83,103,104],archiv:[45,46],area:34,arg:[7,36,50,65,75,92],argu:56,argument:[1,7,8,13,14,22,50,53,56,57,72,74,83,93,94,101],arithmet:30,arm64:[103,104],arm64_standalone_toolchain:103,arm:[30,103,104,105],arm_standalone_toolchain:103,armeabi:103,armv7:[30,104],armv8:30,arn:86,around:[17,40,57,86,106],arrai:[15,19,21,35,49,55,57,58,59,70,75],arrang:70,array_to_lod_tensor:40,arrow:34,articl:[0,32,35,82,87,105],artifact:[4,62,86],artifici:40,arxiv:[34,66],as_step_input:8,asap:76,asgd:52,ask:[0,7,10,17],asr:66,assgin:40,assign:[7,14,19,23,25,30,32,51,66,77,81,82,86,91,93,106],assigne:66,assignmemt:40,associ:[53,60,77],assum:[2,8,22,43,82,95,101],assumpt:22,ast:19,astyp:[58,75],asyc:10,async:[10,24,92],async_count:93,async_lagged_grad_discard_ratio:93,async_lagged_ratio_default:[92,93],async_lagged_ratio_min:[92,93],asynchron:[10,21,51,54,83,93],atom:23,attr:[8,19,36,39,43,55,56,57,65,75,101],attr_map:65,attrdesc:55,attribu:43,attribut:[7,8,24,25,39,55,57,59,63,65,70,74,75],attributemap:75,attrproto:65,attrtyp:[55,65,75],attrvalu:65,auc:[26,92],aucvalidationlay:93,audio:66,augment:66,authent:86,author:[28,66,86],auto:[1,8,13,23,32,43,45,56,59,63,69,70,72,74,75,77,98],autom:[85,86],automat:[1,5,7,15,22,24,25,33,50,59,65,66,72,74,75,82,84,86,92,93,97,101,104],avail:[4,10,15,24,30,31,40,86,106],averag:[14,93],average_test_period:[92,93],avg:[82,98],avg_cost:[22,82,99],avg_loss_valu:82,avoid:[1,6,8,10,21,22,39,43,51,52,53,98],avx2:1,avx:[1,2],awai:31,await:87,awar:[0,5,19,21,26,32,48,57,86,97],awk:88,awni:66,aws:28,aws_account_id:86,awsaccountid:86,awskeymanagementservicepowerus:86,axiom:21,b363:87,b8561f5c79193550d64fa47418a9e67ebdd71546186e840f88de5026b8097465:87,ba5f:86,back:[2,7,10,22,30,34,52,75],background:[61,66,81],backpropag:[6,7],backward:[6,8,13,15,25,34,41,42,50,52,53,56,60,61,68,74,93,95,99,101],backward_first:101,backward_op:6,backwardactiv:74,bacth:20,baidu:[31,66,87],bake:22,balanc:[24,51,86,93],bandwidth:[30,51],bare:[82,87,106],barrier:[83,93],barrierstatset:98,basci:36,base:[0,5,14,20,25,26,30,31,38,43,47,50,51,52,54,59,60,61,67,70,74,75,86,93,97,98,99,101,103,104],baseerrorclipattr:25,baselin:66,basematrix:74,bash:[0,1,2,86,87,91],basic:[22,36,43,54,55,59,60,66,70,74],batch:[5,8,10,12,13,20,21,22,26,27,31,34,37,47,48,49,51,52,66,70,72,74,82,86,87,93],batch_id:34,batch_im:34,batch_label:34,batch_norm:[34,66],batch_read:[12,20,58],batch_siz:[22,34,41,49,82],batch_szi:34,batch_z:34,batchnorm:[34,66],batchread:20,batchsiz:74,bazel:9,bbbbb:12,bcm2708:105,bdist_wheel:62,beacus:36,beam:[93,101],beam_gen:101,beam_search:[49,101],beam_siz:[49,92,93,95,101],becaus:[0,5,6,8,9,10,15,30,49,53,57,58,61,63,64,68,69,70,71,74,77,82,86,95,97,101,103],becom:[23,24,63,67,98],been:[0,7,9,14,21,31,72],befor:[1,2,7,10,17,21,25,29,32,35,47,52,53,54,58,61,72,75,76,86,97,103,104,106],begin:[7,13,15,20,26,29,35,49,51,74,81],beginiter:5,beginn:101,beginpass:5,begintrain:5,behavior:[21,98],behind:[31,70,82],being:[7,17,25,31,56,58,77,97],belong:[20,22,63],below:[1,4,8,10,15,22,24,30,31,44,53,58,61,70,71,74,81,83,86,91,98,101,103,104],benchmark:[44,66],benefit:[17,18,49],besid:[4,22,40,47,51],best:[0,2,9,43,93],besteffort:87,beta:34,better:[9,31,40,43,49,69,86,104,106],between:[2,7,9,10,15,22,24,30,31,43,46,51,53,60,63,75,77,86],bia:[49,57,74,101],bias:74,bias_attr:[57,101],biases_:74,biasparameter_:74,biassiz:74,bidi:87,bidirect:[66,101],big:[19,24,40,98,106],bigger:10,bilinearfwdbwd:98,bin:[2,81,86,87,91],binari:[0,1,3,4,9,18,22,30,32,34,44,86,97,98],bind:[19,21,30,33,63,67],bit:30,bitcod:104,bla:[2,104],black:[34,104],blank:[86,104],block0:40,block1:40,block2:40,block:[7,11,13,15,19,21,22,23,24,25,26,27,31,38,40,47,48,50,67,71,74,75,77,93,98],block_expand:66,block_id:[19,27],blockdesc:[8,35,57,59],blockdescbind:38,blockingcount:23,blueprint:49,book:[59,66,78,99,101],book_distribut:82,bool:[8,20,30,37,39,41,42,43,56,57,64,65,70,71,74,76,93,95],boost:[47,66,67,76],boot:[101,106],boot_lay:101,boot_stat:70,bootstrapp:106,borrow:[34,70],bos_id:101,both:[5,8,9,10,17,20,21,22,24,30,31,34,38,40,47,49,51,54,56,64,66,67,74,75,77,78,82,83,86,98,101,104],bottl:51,bottleneck:[54,98],bottom:66,bound:40,boundari:22,box:[34,98],brace:[8,35],brain:17,branch:[4,5,8,9,22,31,37,55,62,68,72,75,78],breadth:93,break_if:70,brief:[9,15,30,67,77],briefli:98,bring:[31,40,77],broadcast:[10,51,59,106],broken:72,browser:[2,78,86,97],bsd:[0,21,51],bsp:21,bucket_nam:86,buddy_alloc:72,buf:13,buf_siz:[22,82],buffer:[13,21,43,44,52,58,63,93,99],buffer_s:21,buffered_read:58,bug:[72,86],build:[2,4,9,18,22,35,36,40,42,52,61,62,65,66,72,75,80,82,86,89,90,91,93,97,102],build_android:103,build_model:34,builder:72,buildtool:62,built:[0,1,4,9,19,22,30,32,40,47,51,65,66,70,97,103,105,106],bulk:21,bunch:[44,91,98],button:[72,78,86],c11:45,c703c041:72,c99:46,c99e:86,cach:[1,30],cacul:[26,81],caff:[8,31],caffe2:[8,19,21,31],calcul:[2,6,7,10,15,23,26,30,40,74,83,93,95,98,101],calcut:40,calendar:54,call:[0,5,6,7,8,13,14,15,16,18,19,21,22,25,32,34,35,40,48,49,50,54,57,59,60,63,65,67,70,74,75,76,77,80,82,86,91,93,97,98,101],callback:[25,74],caller:[6,86,97],can:[0,1,2,3,4,5,6,7,8,9,10,13,14,17,18,19,20,21,22,24,25,27,30,31,32,33,34,35,36,38,39,40,43,47,48,49,50,51,52,54,55,56,57,58,59,60,61,65,67,69,70,71,72,74,75,76,77,78,80,81,82,83,84,85,86,87,88,91,92,93,95,97,98,101,103,104,105,106],cancel:17,candid:[49,66],cannot:[20,59,63,69,70,74,75],cantain:36,capabl:[30,53,59],capac:[61,86],capi:[1,45],capi_prvi:46,caption:49,captur:84,card:[51,82,91],care:[2,18,40,58,66,67,92,93,106],carefulli:[66,93],carpedm20:34,cast:[30,69],cast_to_op_attr:65,cat:[2,88],categor:75,categori:10,categoryfil:87,caus:[4,10,29,75],caution:[86,87],cbla:41,cc_:9,cc_binari:9,cc_test:9,cclient:16,cduadevicecontext:[47,67],cento:[1,4,80,106],central:[61,82],ceph:[12,87],cephf:[12,18,28],cer:66,certain:[20,39,47,50,54,63,67,76,92],certif:[5,28,86],cffi:45,cfg:[40,87],cgo:45,ch1:21,ch2:21,chain:[7,35,74],challeng:[6,10,31,37,67],chan:21,chanc:[5,30,74],chang:[1,9,14,18,22,31,43,53,55,58,60,62,63,66,72,74,75,77,81,82,86,93,98,101,103],changes:43,channel:[19,98],chapter:[48,49,66,82],chapter_data:48,chapter_out:48,charact:[21,66],characterist:95,check:[1,4,7,8,9,25,43,56,59,68,72,75,78,86,91,93,95],check_attr:65,check_eq:74,check_grad:[6,75],check_l:74,check_output:75,check_sparse_distribution_batch:[92,93],check_sparse_distribution_in_pserv:[92,93],check_sparse_distribution_ratio:[92,93],check_sparse_distribution_unbalance_degre:[92,93],check_styl:72,checker:[6,59],checkgrad:93,checkgrad_ep:93,checkmark:106,checkout:72,checkpoint:[24,56],checksum:28,child:8,china:2,chines:78,chip:31,chmod:86,choic:[2,9,31],choos:[0,1,2,3,21,39,76,93,103],chosen:[34,47],chunk:[14,28],circl:35,circular:21,circumst:67,claim:86,claimnam:86,clang:[30,45,72,103],clariti:49,classic:[40,66],classif:[35,95],classifi:34,claster:86,clean:[0,1,8,9,27,53,59,72],clear:[9,49,53,63,69,105],clearer:[53,57],clearli:63,cli:86,click:[4,72,78,86,97,98],client:[13,16,59],clip:93,clip_op:25,clip_op_desc:25,clone:[0,1,72,78,97,103,105],close:[21,58,72],close_channel:21,cloud:[9,10,18,28,29,59,106],cludform:86,cluster:[5,8,10,15,22,66,81,83,87,91,92,93],cluster_test_fil:81,cluster_train:84,cluster_train_fil:81,cluster_train_v2:[84,85,88],cm469:86,cmake:[0,1,46,72,74,75,78,82,97,98,103,104],cmake_build_typ:[97,103,104,105],cmake_c:104,cmake_install_prefix:103,cmake_system_nam:[103,104,105],cmakelist:[9,41,42,74],cmatrix:[45,46],cmd:87,cname:86,cnn:87,coars:33,code:[0,1,2,4,5,7,9,17,20,21,22,24,27,30,33,34,35,39,44,47,50,52,53,54,56,58,59,60,61,65,70,73,74,75,76,77,78,80,81,82,86,87,98,101],codebas:[59,72],collabor:10,collect:54,collectbia:74,column:[35,58,74,97],com:[0,1,2,9,34,62,72,78,86,87,97,99,103,105,106],combin:[40,50,59,63],come:[22,26,40,55,66,70],comma:[15,82,93],command:[0,1,2,4,9,13,18,29,72,74,75,78,80,82,83,84,86,87,88,89,90,91,96,97,98,103,104,105],commandlin:98,comment:[9,36,65,66,72,75],commit:[9,72],common:[12,61,67,74,92,101],commonli:[29,61,95,97,98,101,105],commun:[10,15,16,21,22,24,51,72,74,81,82,86],compani:31,compar:[0,6,9,19,59,74,75],comparison:[9,31,76],compat:[30,33,51],compil:[0,9,22,31,36,38,40,47,51,60,64,65,71,74,78,91],complaint:9,complet:[3,7,8,10,14,15,25,28,35,44,47,59,74,75,77,82,86,87,97,106],complex:[17,21,40,49,59,98,101],complic:[22,33,58,69,70],compon:[21,22,36,66,70,71,74,76],compos:[5,21,33,36,48,57,59],composit:33,compress:14,compris:7,compromis:0,comput:[0,2,5,6,10,21,22,24,27,30,31,32,36,40,44,47,50,51,52,54,60,63,66,67,69,71,72,74,75,76,82,85,86,91,95,97,98,99,101,103,104,105],computation:101,computationgraph:36,con:51,concat:[34,101],concaten:[34,48,70],concentr:59,concept:[5,19,20,21,31,33,34,36,43,48,49,52,53,55,63,70,71,101],conceptu:[21,27,31,34,36],concern:[5,21,26,104],concis:[34,70],conclud:75,concret:[59,67,75],concurr:[10,17,24,54,83],concurrentremoteparameterupdat:93,cond:[8,31,37,55],condit:[14,22,31,37,43,66,68,87,101],condtion:34,conduct:98,conf:84,conf_paddle_gradient_num:86,conf_paddle_n:86,conf_paddle_port:86,conf_paddle_ports_num:86,conf_paddle_ports_num_spars:86,config:[12,29,49,74,86,87,92,93,106],config_:[13,93],config_arg:[92,93,95],config_lay:74,config_len:15,config_pars:[41,42,74],config_proto:15,configmap:22,configur:[0,7,13,15,17,18,22,24,31,36,39,57,66,67,69,72,74,75,77,80,81,82,93,98,100,103,105,106],confirm:29,conflict:[63,72],confus:[34,39],congest:93,connect:[18,19,22,24,66,74,81,82,86,87,91,106],consid:[0,7,56,67,95,98,106],consider:[47,66],consist:[14,20,21,32,44,55,58,59,60,65,66,71,75],consol:[86,98],consolid:[8,78],constant:[36,38,39,47,74,75],constraint:63,construct:[5,27,36,40,48,57,59,63,65,76,101],constructbackwardgraph:35,constructoptimizationgraph:35,constructor:[25,30,54,57,59,63,65,74,75],consum:[10,97],consumpt:40,contact:17,contain:[0,3,4,5,7,8,14,27,34,36,43,44,47,53,54,57,59,60,63,64,65,66,70,71,75,81,82,86,88,91,101,104],container:85,containerport:86,content:[15,29,44,49,78,87],content_dir:78,content_len:15,context:[25,43,63,64,67,75,77,99,101],contin:86,continu:[7,10,44,66,83,93,103],contrib:61,contribut:[0,61,66,73],contributor:[59,72],control:[8,19,21,68,86,87,93,106],controlflowgraph:40,conv2d:[34,76],conv:[34,43,69],conv_fwd:43,conv_pool_2:22,conveni:[5,7,36,50,65,66],convent:[7,15,72,75],converg:84,convers:[30,31],convert:[12,22,23,24,30,31,32,43,58,60,66,82],convlut:66,convolut:[34,47,57,67],convolution_algorithm_opt:43,cool:72,cooper:66,coordin:[10,15],copi:[1,5,14,17,29,35,48,49,51,52,70,72,81,86,88],copy_from:25,copyvariablewithtensor:69,core:[0,7,36,39,46,52,53,70,93,99],coreo:[86,106],corner:59,corpu:66,correct:[6,7,30,51,74,75,76,86],correctli:[7,30,34,74],corresond:30,correspoind:5,correspond:[5,7,8,9,25,30,36,37,43,47,48,49,57,59,60,61,65,67,68,74,75,76,77,97,104],correspondingli:104,corss_entropi:5,cortex:30,cos:65,cosin:65,cosineop:65,cosineopproto:65,cosineopprotomak:65,cost:[5,7,22,35,50,51,55,56,69,82,93,99],cost_np:56,could:[0,5,6,14,19,21,22,23,24,30,31,32,48,50,52,53,55,57,58,60,68,76,84,86,97,98,103],count:[10,18,26,56,58,66,81,82,87,93,95,98],counter:[10,14,23,35],cours:[0,18,47],cover:[31,66,77],cp27:4,cp27m:[4,62],cp27mu:[4,62],cpp:[6,13,33,41,42,45,46,53,59,71,74,76,98],cprofil:97,cprofilev:97,cpu:[0,1,2,6,18,30,39,47,52,53,54,59,61,62,67,69,75,76,77,87,93,97,98,99],cpu_avx_mkl:[2,4],cpu_avx_openbla:[4,80],cpu_kernel:39,cpu_noavx_openbla:4,cpu_ns_:54,cpu_per_pserv:22,cpu_per_train:22,cpudevicecontext:[47,67,75,76],cpuelapsedu:54,cpuengin:42,cpuinfo:2,cpuplac:[22,39,43,47,67,69,75,76,77,82,99],cpusparsematrix:46,crash:[10,84,93,98],creat:[0,2,5,6,8,10,15,19,20,23,25,26,27,28,29,30,31,33,34,35,43,47,48,50,51,52,53,57,60,61,66,72,74,75,78,80,81,82,88,93,103,106],create_backward_pass:50,create_bias_paramet:74,create_block:57,create_doc_str:65,create_input_paramet:74,create_local_scop:27,create_oper:33,create_optimization_pass:50,create_paramet:57,create_python_ops_creatation_funct:65,create_rnn:8,create_rnn_op:48,create_tmp_var:57,create_tmp_vari:57,create_var:57,create_whileloop:70,creategradientoper:60,creatememori:43,createop:65,createoper:8,createprimitivedesc:43,createstack:86,createvari:8,creation:[33,86],creationd:86,creator:[12,59,60],creator_:60,credenti:29,crf:[67,69],critic:[34,97],crlf:72,crop:67,crop_grad:67,cropgradkernel:67,cropkernel:67,cross:[57,75],cross_compil:105,cross_entropi:[5,22,34,40,69],crt:28,csc:74,csr:74,ctc_error_evalu:66,ctest:[0,1,75],ctor:57,ctrl:[0,84],ctx:[43,69,75,77],cubla:[47,76],cublas_handle_:67,cublashandle_t:67,cuda7:[4,80],cuda8:[1,2,4],cuda:[0,2,4,9,32,47,54,59,67,75,76,82,91,93,98],cuda_context:32,cuda_dir:[92,93],cuda_fp16:30,cuda_so:2,cudaconfigurecal:98,cudadevicecontext:[32,47,67,75],cudadevicegetattribut:98,cudaelapsedu:54,cudaevent_t:54,cudaeventcr:98,cudaeventcreatewithflag:98,cudafre:98,cudagetdevic:98,cudagetdevicecount:98,cudagetdeviceproperti:98,cudagetlasterror:98,cudahostalloc:98,cudalaunch:98,cudamalloc:98,cudamemcpi:98,cudaplac:[47,67,69,76],cudaprofilerstart:98,cudaprofilerstop:98,cudaruntimegetvers:98,cudasetdevic:98,cudasetupargu:98,cudastream_t:67,cudastreamcr:98,cudastreamcreatewithflag:98,cudastreamsynchron:98,cudeviceget:98,cudevicegetattribut:98,cudevicegetcount:98,cudevicegetnam:98,cudevicetotalmem:98,cudnn:[9,39,43,47,67,69,76,93],cudnn_conv_workspace_limit_in_mb:[92,93],cudnn_dir:[92,93],cudnn_kernel:39,cudnnconvopkernel:76,cudnnv5:1,cudrivergetvers:98,cuinit:98,cumtim:97,cur_mem:49,curl:86,curli:[8,35],current:[0,2,4,7,8,9,10,13,15,19,24,26,31,39,47,48,49,52,53,54,57,63,69,70,74,78,81,82,84,86,93,101,104],current_block:[55,57],current_endpoint:82,current_oper:55,current_word:101,curv:5,custom:[5,18,30,34,49,52,59,66,74,86],custom_batch_read:58,cut:70,cxx:104,cxx_compil:[103,104,105],cxx_flag:104,cxxabi_1:4,cycl:10,cython:45,d3e0:86,d_b0:34,d_b1:34,d_b2:34,d_block:34,d_f:34,d_g:34,d_h0:34,d_h0_bn:34,d_h0_relu:34,d_h1:34,d_h1_bn:34,d_h1_relu:34,d_h2:34,d_loss:34,d_loss_fak:34,d_loss_real:34,d_optim:34,d_step:34,d_t:34,d_w0:34,d_w1:34,d_w2:34,daili:72,dandroid_abi:103,dandroid_arm_mod:103,dandroid_arm_neon:103,dandroid_standalone_toolchain:103,dangl:0,dario:66,darwin:86,dash:34,dat:12,data:[5,6,8,12,13,14,21,24,26,28,30,31,34,35,36,38,39,40,43,44,47,48,49,50,51,52,53,55,57,59,61,63,64,65,66,67,70,71,74,75,77,80,81,82,83,88,89,92,93,95,98,99,101],data_i:34,data_lay:13,data_layout_:69,data_read:58,data_reader_creator_random_imag:58,data_shar:70,data_typ:[44,64,66,69,71,76,80,101],data_type_:[39,47,69],data_x:34,datacent:[12,29],datacenter1:12,datacenter2:12,datacenter_1:12,datacenter_2:12,datacenter_nam:12,datafeed:[82,99],dataflow:36,dataflow_analysi:40,datalayout:69,dataparallel:22,dataprovider_convert:66,dataset:[12,18,22,52,58,66,80,82,83,93,97,101],datatransform:69,datatyp:[39,43,64,66,69,71],date:81,dcgan:34,dcmake_install_prefix:[103,104,105],dcmake_system_nam:[103,104,105],dcuda_arch_nam:1,dcudnn_root:1,ddim:[20,47,67,77],dead:10,deal:[7,106],debug:[2,6,7,22,29,31,57,72,97],debug_str:36,decayr:13,decent:14,decid:[5,17,34,44,52,60,61,64],declar:[8,34,48],decod:[66,101],decoder_boot:101,decoder_dim:49,decoder_group_nam:101,decoder_input:[49,101],decoder_mem:[49,101],decoder_s:101,decoder_st:101,deconv:34,decor:[20,74],decrement:23,decrementcount:23,decrypt:86,deduc:59,deep:[2,7,17,21,27,34,35,40,42,54,59,61,66,67,82,98,104],deeper:[2,32],deepspeech2:41,def:[5,6,7,12,18,25,26,33,34,36,39,40,48,49,50,57,58,65,70,74,75,101],def_block:34,defalut:[93,95],default_block:34,default_devic:95,default_main_program:[82,99],default_param_attr:57,default_st:70,default_startup_program:[82,99],default_valu:95,defaultdict:40,defaultinfervartyp:38,defect:53,defer:17,defin:[5,7,8,9,10,17,19,20,23,24,25,30,31,32,33,34,36,39,40,47,48,51,55,57,58,59,63,65,67,70,74,77,81,82,84,93,97,99,101],definit:[2,7,8,10,14,22,27,32,39,55,60,65,70,75,97,99],definiton:33,deivc:76,delai:[52,67,77,93],delet:[18,28,72],deletestack:86,deliv:106,delta:6,demand:[10,67],demo:[59,84,87,89],demolish:87,demonstr:[77,101],denot:[75,95],dens:[15,16,64,66,74,86],dense_vector:80,densescann:66,dep:9,depart:66,depend:[0,2,8,9,10,18,20,21,22,24,36,51,56,64,75,81,83,95,103,104,105,106],dependent_var:56,deploi:[84,95,106],deploy:[36,44,59,84,85,86,104,106],deprec:66,depth:[8,31,66],dequeu:24,deriv:[5,20,22,25,37,50,103],desc:[8,25,43,44,57,65,70],desc_:8,descend:70,descent:[10,52,83],descproto:44,describ:[5,7,8,9,14,19,22,27,32,39,43,44,48,49,53,55,57,59,64,65,69,71,74,75,76,77,86,87],describestack:86,describestackev:86,describestackresourc:86,descripotor:43,descript:[1,4,8,9,38,42,44,47,60,64,66,69,71,72,75,81,86,94],descriptor:[21,43,69],deseri:[44,53],deserializ:59,desgin:35,design:[7,13,20,39,40,45,52,54,61,75,106],desir:[10,22,52,86,87],destin:[15,29],destroi:[8,27],destruct:63,destructor:[54,74],detail:[0,1,6,7,14,18,22,24,29,31,34,36,40,43,44,47,48,54,57,61,63,67,69,70,71,74,75,76,77,78,80,82,84,86,87,94,95,97,98,101,105,106],detect:[1,38,72,103],determin:[8,22,40,47,59,74],dev:[0,2,59,97,103,106],dev_ctx:[8,43,54],devel:62,develop:[2,4,7,9,31,38,53,54,57,60,62,66,72,77,78,81,92,93,97,99,102,104,105],deverlop:93,devic:[2,6,19,22,26,30,36,42,43,47,51,53,54,59,69,75,77,93,99,104],device_:54,device_context:[43,75],devicecontext:[8,47,54,75,76],deviceid:[42,95],deviceid_:42,deviceplac:67,devid:93,devot:66,devtools2:1,dhcp:106,diagnos:84,diagram:[48,83],diamond:34,dict:[7,57,81,88],dict_siz:[13,49],dictionari:[5,6,57,95],did:[2,53],diff_mat:6,differ:[2,6,7,8,9,10,15,17,20,22,23,24,25,26,27,30,31,34,36,37,40,43,47,49,51,52,54,56,60,63,66,68,69,70,71,74,75,76,77,81,83,84,86,87,93,97,101,104],differenti:33,difficult:[0,6,31],dig:[2,86,98],digit:81,digraph:36,dilat:43,dim0:75,dim1:75,dim:[13,43,44,48,59,64,67,71,74,75,77],dim_:[67,77],dimens:[34,59,64,66,67,70,74,75,77,95],dimension:[74,77,101],dios_arch:104,dios_enable_bitcod:104,dios_platform:104,dios_use_veclib_for_bla:104,dir:103,direcit:66,direct:[31,40,52,66,97],directli:[1,3,9,16,18,20,22,30,39,53,65,69,70,84,87,103],director:75,directori:[0,1,2,9,12,17,28,29,67,77,78,81,84,87,88,93,98,103,104,105],disabl:54,disadvantag:[52,57],discard:[10,14,49,93],discov:10,discoveri:86,discrep:98,discrim:34,discuss:[5,8,14,15,16,22,43,66],disk:[0,44,87],dispatch:[22,53,84,85,93],displai:[18,29,72],dist:[1,62],dist_train:[5,18],distinguish:[9,84],distribut:[4,8,14,15,16,17,19,21,26,32,51,59,66,71,81,84,85,87,89,90,96,106],distribute_test:[92,93],distributedli:[22,74],distributetranspil:82,disucss:5,divid:[7,26,65,71,92,97],diy_beam_search_prob_so:[92,93],django:78,dnn:[1,43,66],dns:86,do_forward_backward:58,doc:[36,48,70,75,77,78,81],doc_cn:78,dockefil:0,docker:[1,3,62,72,78,86,89,90,91,106],docker_build:5,docker_clust:[84,88],docker_push:5,dockerfil:[0,103,105],dockerhub:2,document:[0,1,6,20,22,28,35,48,49,54,59,66,72,73,75,76,77,82,91,95,104],doe:[0,4,10,14,15,17,18,19,20,22,24,27,30,36,40,48,53,57,59,60,61,74,75,77,98,99],doesn:[0,2,5,8,19,21,58,72,87,97,98,103,104],doing:[13,17,22,35,98],domain:86,don:[0,1,2,5,9,33,35,40,58,66,72,75,78,86],done:[7,9,10,14,15,22,23,38,40,44,52,60,61,66,72,86,97,98],dot:[75,93],dot_period:[93,95],doubl:[1,22,30,35,54,69,75,76,93],down:[66,98],download:[1,2,4,9,10,13,17,28,81,83,104,106],dozen:9,draw:49,drive:63,driver:[2,82,91],drop:[20,49],dropout:74,drpi_arm_neon:105,drpi_toolchain:105,drwxr:87,ds2:66,dst:[15,43],dst_primitive_desc:43,dtoh:98,dtype:[21,22,36,57,82,99],due:[14,17,34,40,49,57,97],dummi:14,dump:44,duplic:24,durat:[14,98],dure:[7,8,10,14,17,18,26,31,40,51,52,54,57,59,66,71,74,75,86,92,93,106],duse_eigen_for_bla:103,dwith_c_api:[46,103,104,105],dwith_distribut:82,dwith_doc:82,dwith_gpu:[1,82,105],dwith_profil:98,dwith_python:[46,82,105],dwith_swig_pi:[46,82,103,104,105],dwith_test:[1,75,104],dwith_tim:98,dynam:[1,15,46,48,57,58,93,98],dynamic_cast:74,dynamic_recurrent_op:70,e2e:106,each:[6,7,9,10,13,14,15,17,18,19,20,21,22,25,26,27,32,35,38,40,43,47,48,49,51,53,54,56,57,58,59,60,63,64,65,66,67,68,69,70,71,74,76,81,82,83,84,86,91,93,95,97,101,106],eager:31,earli:[30,32,72,75],eas:[38,75],easi:[6,7,49,52,58,59,61,72,74,84],easier:[0,5,24,30,31,58,68,70,72,74],easili:[5,34,51,54,58,60,63,67],echo:2,edg:40,edit:[0,2,21,86],editor:[0,57],edu:[86,87],eeoi3ezpr86c:86,effect:[1,86,93,104],effici:[0,22,44,58,66,67,74,101],effort:[22,66],efs:86,efs_dns_nam:86,efsvol:86,egd:40,eigen:[30,47,52,59,61,67,75,103,104],eigen_device_:67,eigen_test:77,eigen_use_gpu:75,eigenmatrix:77,eigenscalar:77,eigentensor:77,eigenvector:77,either:[3,5,22,34,37,38,48,52,61,98,104],elabor:66,elb:86,elbapis:86,electr:40,electron:87,element:[6,14,21,24,36,49,59,75,77],element_typ:[15,76],elementari:59,elif:[5,65,68],els:[0,1,2,5,13,18,21,22,24,25,31,34,37,38,39,40,63,65,68,74,75],elsewher:54,emac:0,email:72,emailweixu:9,emb1:13,emb2:13,emb:87,embed:[5,8,13,24,38,49,64,70,81,101],embedding_lay:13,embedding_nam:101,embedding_s:101,emphas:98,emplace_back:74,emploi:[7,25,65,101],empti:[7,10,20,21,49,75],emul:30,enabl:[0,8,9,14,19,24,25,36,54,72,81,86,93,98,104],enable_grad_shar:[92,93],enable_parallel_vector:93,enc_proj:101,enc_vec:101,encapsul:15,encod:[14,49,101],encoded_proj:101,encoded_sequ:101,encoded_vector:101,encoder_ctx:49,encoder_ctx_expand:49,encoder_ctx_proj:49,encoder_dim:49,encoder_out_seq:49,encoder_s:101,encount:13,encourag:[22,27],encrypt:86,encrypt_decrypt:86,end2end:106,end:[0,4,7,8,22,25,32,36,40,49,53,54,58,63,66,68,72,93,101],end_pass:5,endian:44,endif:[47,54],enditer:5,endpass:5,endpoint:[12,86],endtrain:5,enforc:104,engin:[18,42,43,66,98],english:[66,78],enjoi:2,enough:[0,7,8,39,40,47],enqueu:24,ensur:[0,2,4,10,43,51,63,74,104],enter:[8,27],enterpris:59,entir:[15,17,75],entiti:[8,63],entranc:27,entri:[0,14,18,38,72,74,86,103],entropi:57,entry_point:18,enumer:47,env:[78,86,97],environ:[0,1,4,5,20,22,72,81,85,86,87,92,93,97,98,104],environmenterror:81,eos_id:101,epoch:34,epol:21,equal:[10,70,75,76,93],equat:[40,75],equip:101,equival:[5,8,19,21,25,31,37,65,106],eras:20,erlang:21,error:[5,6,14,29,30,31,43,63,66,74,75,84,86,93],error_clip:25,error_clip_callback:25,errorclipbyvalu:25,especi:[0,42],essenc:[5,7],essenti:[5,27,30,77],establish:19,estim:[5,24,52],eta:87,etc:[1,8,21,22,26,43,51,52,58,63,66,76,85,86,92,95,106],etcd:[10,14,15,17],etcd_addr:15,eth0:86,etyp:21,eval:[8,26,34,59],eval_program:26,eval_result:26,evalu:[17,36,56,66,98,99],even:[0,5,30,51,57,58,72,93,98,104],evenli:[15,86],event:87,event_:54,event_block:54,event_handl:5,eventkind:54,eventlist:54,eventu:[22,70],everi:[5,10,14,15,17,25,26,35,36,38,40,43,47,48,51,57,63,65,69,72,74,75,77,81,83,88,91,93,99,101],everyon:72,everyth:[22,24,34,103],everywher:0,evid:53,evolv:31,exactli:[20,86],exampl:[0,8,18,20,22,24,26,29,31,32,33,34,35,36,38,40,43,47,48,49,53,54,55,57,58,59,60,61,64,67,68,69,70,72,74,75,76,77,81,82,85,86,87,92,93,95,97,98,99,101,105],except:[17,19,31,35,54,66,70,95],excess:40,exchang:53,exe:[22,82,99],exec:93,execut:[0,9,10,14,18,19,20,21,22,26,27,32,34,36,40,43,51,54,60,71,74,86,97,98],executioncontext:[43,69,75,76,77],executor:[19,22,26,30,31,32,34,50,55,57,69,71,82,97,99],exist:[0,4,5,8,10,20,29,31,49,57,58,60,65,67,70,74,77,86,93,104],exit:[15,29,82,87,93],expand:[2,49,74],expect:[69,98],expected_desc:43,expected_kernel_kei:69,experi:[44,66,95],experienc:72,expert:9,expir:10,explain:[10,19,31,33,35,72,76,82,83,97],explan:[18,19,22,63,69],explicit:[20,54,70,74,76],explicitli:[5,22,27,75,77,104],explod:25,explor:[49,61],expos:[7,16,21,43,44,67,70,86],express:[5,24,26,36,40,75,86],extend:[52,70],extens:[17,24,49,75,103],extent:46,extern:[9,42,45,46,59,66],external_librari:9,extingrad_:42,extinval_:42,extoutgrad_:42,extoutval_:42,extra:[22,61,67,106],extraattr:95,extract:[31,53,66,75,86],extrem:[19,31,98],f120da72:87,f7e3:86,fa0wx:87,fabric:85,face:[9,61],fact:[19,31,51,55,57],factori:45,fail:[10,14,49,75,87,93,95],failur:[10,15,75],fake:34,fake_imag:58,faked_imag:34,fall:[30,56],falloc:28,fals:[6,7,8,31,37,39,41,48,55,56,58,64,71,74,75,80,81,87,93,95,101],false_block:[8,37,55],false_label:58,false_neg:26,false_posit:26,false_read:58,familiar:21,far:[25,70],fashion:22,fast:[14,31,98],faster:[2,10,31,98,101],fastest:31,fastli:72,fat:104,father:7,fault:[1,14,59],favorit:0,fbd1f2bb71f4:87,fc1:[36,74,95],fc1_bia:36,fc1_weight:36,fc2:[36,95],fc3:[36,95],fc4:95,fc8a365:86,fc8a:86,fc_layer:[57,65,74,95],fc_op:65,fc_out:8,fc_output:65,fc_without_b:8,fclayer:74,fcop:33,feasibl:52,featur:[7,22,30,36,51,54,66,72,93],feed:[5,22,35,48,61,82,99],feed_dict:34,feed_list:[82,99],feeder:[22,82,99],feel:72,fetch:[10,13,20,22,56,74,99,101],fetch_list:[22,57,82,99],fetch_op:56,few:[0,9,10,21,22,40,52,58,64,66],fewer:[21,57],fft:66,field:[8,36,38,44,56,57,60,64,65,86,98],fifth:35,figur:[5,9,22,24,34,42,48,54,57,66,74,98,101],file:[0,2,4,5,7,9,10,12,14,15,17,18,20,21,28,29,31,32,36,44,46,58,59,66,67,71,72,74,75,76,77,80,81,82,84,88,93,99,101,103,104,105,106],filelist:66,filenam:[12,57,97],fileoffset:28,filesystem:[17,18,22,28,86],fill:[10,14,47,57,86],fill_zero_grad:59,fill_zeros_like_op:7,filter:[25,43],find:[1,4,8,10,17,21,30,36,43,49,63,69,82,88,98,103,104],find_var:6,findmemori:43,findop:8,findprimit:43,findprimitivedesc:43,findvar:[8,63],fine:[14,33],fingerprint:86,finish:[1,10,14,17,18,27,40,51,65,81,83,84,86,87],finit:74,finnal:2,first:[0,1,5,7,8,10,14,17,18,19,22,27,29,31,34,35,36,43,48,49,55,56,57,59,64,65,66,67,68,70,72,74,75,77,82,86,93,95,98,101,106],first_seq:101,firstli:76,firstseen:87,fit:[30,39,40,44,49,59,82],fit_a_lin:82,five:[55,98],fix:[22,40,45,57,66,72,97],flag:[41,42,54,72,75,78,93],flatten0:36,flatten:[36,55,57,77],flexibl:[5,15,22,31,35,39,48,49,52,58,67,70,101],flist:81,fliud:19,float16:21,float16_t:30,float32:[22,30,33,34,57,58,75,82,99],float_to_half_rn:30,flow:[8,19,21,48,54,62,68],fluid:[7,20,22,24,27,47,54,57,67,68,69,76,97],fluid_cuda_create_tensor:32,fluid_cuda_mult:32,fluid_cuda_read:32,fly:7,fmt:21,fnt03:86,focu:[21,36,97,98],focus:75,folder:[9,12,18,29,82,86],follow:[0,1,2,4,5,6,7,8,9,10,14,18,19,20,21,22,24,27,30,31,32,33,34,35,36,37,38,40,43,47,48,49,51,52,54,55,56,57,58,59,60,61,63,64,65,66,67,68,69,70,72,74,75,77,78,80,82,86,87,88,89,90,95,97,98,99,101,103,104,105,106],footprint:32,forbid:5,forc:[51,57,69],force_cpu:39,force_cudnn:39,force_load:45,forest:8,forev:21,forget:5,fork:72,form:[4,20,21,26,98],formal:69,format:[6,14,20,22,30,31,47,49,66,70,72,74,75,77,80,81,86,93],former:[5,9,31,40,52],formula:[6,40],forth:34,forward:[6,7,8,13,15,25,31,34,41,42,43,44,50,53,55,58,59,60,61,64,74,95,101],forward_infer:43,forward_list:54,forward_op:6,forward_train:43,forwardactiv:74,found:[30,55,61,63,76,82,85,101,105],four:[21,26,31,35,43,47],foward:56,fp16:[30,59,71],fp32:[47,59,69,71],fp64:[47,71],fpga:[47,99],fpgadevicecontext:67,fpgaengin:42,fpgaplac:[47,67],frame:[27,59,66,70],framework:[5,7,8,21,25,26,30,31,36,47,51,52,54,55,59,61,63,65,67,72,74,75,85,97,99,104],free:[32,67,72,106],freememoryop:32,frequenc:[66,98],frequent:[14,58,59,61,67,84,103,104],fresh:17,friend:63,friendli:34,from:[0,2,4,6,7,8,9,10,12,13,14,15,19,20,21,22,24,25,26,29,30,31,33,34,35,36,37,39,40,43,48,49,50,51,53,55,57,58,59,60,63,66,67,68,69,70,72,74,75,76,77,81,82,83,85,86,87,93,95,97,98,101,103,104,106],fromfil:58,front:[36,40],fulfil:98,full:[10,17,21,48,51,52,74,76,101,106],full_matrix_project:101,fulli:[22,24,66,74,82,98,106],fullsiz:13,fullyconnect:[36,57],fullyconnectedlay:74,func:[14,19,32,60],functor:[33,36],fundament:[20,21,24,30,59],further:[20,65,106],futur:[17,22,30,40,48,59,103],fvs:65,fwd_desc:43,fwd_op:60,fwd_primit:43,fwd_primitive_desc:43,fwd_var:25,g_b0:34,g_b1:34,g_b2:34,g_block:34,g_command_config_arg:[41,42],g_h0:34,g_h0_bn:34,g_h0_relu:34,g_h1:34,g_h1_bn:34,g_h1_relu:34,g_h2:34,g_im:34,g_loss:34,g_optim:34,g_program:57,g_state:54,g_step:34,g_w0:34,g_w1:34,g_w2:34,gan:5,gangliao:9,gap:93,gatedrecurrentlay:41,gather:[7,40,51,53,74,75],gaussian_normal_random:34,gcc:[0,1,30,32,45,59,97,103,105],gcc_3:4,gcreators_:65,gemm:41,gemmconvkernel:76,gendrated_id:49,gener:[5,6,7,8,9,10,12,14,15,17,19,22,31,33,38,40,43,47,51,52,55,56,57,58,59,60,64,65,66,67,68,70,72,75,86,88,93,95,98,103,105],generated_id:49,generated_scor:49,generatedinput:101,get:[1,2,4,6,7,8,9,10,14,15,17,18,20,28,31,34,36,39,40,41,42,43,47,48,49,54,57,59,60,63,65,69,70,72,74,75,76,81,84,86,88,97,98,101,102],get_all_op_proto:65,get_block:57,get_config_arg:95,get_data:87,get_dim:6,get_float_el:6,get_grad_op_desc:7,get_input_lay:74,get_numeric_gradi:6,get_numerical_gradi:6,get_output:6,get_program:40,get_pserver_program:82,get_startup_program:82,get_support:4,get_symbol:36,get_tensor:6,get_trainer_program:82,get_vari:8,get_worker_addr:19,getactualkerneltyp:39,getattr:25,getbatchs:74,getdeviceid:76,geteigendevic:77,getengin:43,getenv:[5,18,81],getexpectedkerneltyp:[39,43,69],getinfervartyp:38,getinput:74,getinputgrad:74,getinputvalu:74,getkerneltyp:30,getkerneltypeforvar:69,getlibrari:43,getmat:13,getoptconfig:13,getoutputgrad:74,getoutputvalu:74,getparam:13,getparameterconfig:13,getparameterptr:74,getparameterspars:13,getparametersremot:13,getplac:[43,67,75,76,77],getsiz:74,gettask:14,gettempl:86,gettensor:69,gettranspos:74,getw:74,getweight:74,getwgrad:74,git:[0,1,62,72,78,103,105],github:[0,1,9,34,47,62,72,78,97,99,103,105],give:[0,10,48,57,59,69,72,74,86,98],given:[7,15,17,21,24,25,31,33,34,49,58,61,70,74,93],glibc:[4,103,105],glibc_2:4,glibcxx_3:4,glide:9,global:[0,5,8,9,10,32,36,39,53,54,59,63,65,67,69,86,93,98],global_block:57,globalstat:98,globalstatinfo:98,glog:72,glog_v:72,glog_vmodul:72,gnueabihf:105,go_librari:9,go_test:9,goal:[20,21,24,30,35,51,59,66,98],gob:14,godep:9,godoc:45,goe:[10,31,37,63,99],going:[7,33,52,91,97,106],golang:9,good:[21,34,52,57,58,61,82,97,98,106],googl:[5,54,59,72,85,97,103],googleapi:86,googlenet:42,goroutin:[19,21],got:[39,63],gpg2:86,gpg:86,gprotos_:65,gpu:[0,1,4,6,18,21,26,30,40,47,51,52,53,54,59,61,62,67,69,76,77,80,81,82,91,96,99,106],gpu_id:[93,95],gpu_per_train:22,gpudevic:67,gpugpu_id:92,gpukernel:59,grab:10,grad:[6,7,15,25,42,57,64,93],grad_info_map:7,grad_n:25,grad_nam:25,grad_op:25,grad_op_class:59,grad_op_desc:25,grad_op_maker_:60,grad_op_typ:[59,60],grad_op_type_:60,grad_s_block:7,grad_share_block_num:[92,93],grad_to_var:[7,25],grad_var_nam:6,gradient:[10,14,21,23,25,35,38,50,51,52,53,57,59,64,75,81,82,83,93,97],gradient_flat:6,gradient_machin:46,gradientmachin:[46,53],gradientmachine_:13,gradopdescmak:[38,60],gradopdescmakerbas:60,gradopmak:60,gradual:98,grain:33,gram:66,grant:86,graph:[7,8,9,10,19,21,22,23,24,26,31,34,48,51,52,55,77],great:[24,66,106],greater:[25,52,81],greaterthan:65,greedi:66,green:[19,34],grep:[2,88],groudtruth:101,group:[14,36,43,67,75,106],group_input1:101,group_input2:101,group_input:101,grow:72,grpc:106,gru:[49,66,101],gru_decod:101,gru_decoder_with_attent:101,gru_out:49,gru_step:[49,101],grumemori:101,gserver:[41,42,74],gsizex:98,gtx:40,guarante:[43,57,74],guard:13,guest:[0,4],gui:[97,98],guid:[28,40,59,72,74,82,86,87,98,101,104],gzip:[14,87],h0_bn:34,h_prev:8,had:0,hadoop:5,half:[30,86],half_to_float:30,hand:[40,59,66,67,77,82,83],handi:9,handl:[5,7,18,19,22,36,40,43,47,53,58,63,67,70,76,99],handler:8,hannun:66,happen:[14,65],hard:[0,22,31,49,66,70,86],hardwar:[0,31,32,67,76,98],has:[0,1,5,6,7,8,9,10,14,15,17,20,21,22,24,25,26,30,31,34,36,40,44,47,49,51,54,55,59,64,65,67,69,72,74,86,87,98,99,101,104,106],has_kei:[7,25],has_var_recurs:7,hasdependentvar:56,hash:[47,51],hasn:31,hasnext:20,have:[0,1,2,5,6,7,8,9,10,14,15,17,18,20,21,22,24,25,27,30,31,32,33,34,35,39,40,43,44,47,48,49,51,52,53,54,55,57,58,59,60,63,64,66,67,69,71,72,74,75,76,81,86,93,95,98,101,104,105,106],haven:[0,31],hdf:12,head:[72,75,81,88],header:[15,44,46,59,67,74,76,103,104,105],headip:88,heard:0,heavi:84,height:[8,45,58,74,75],height_:64,held:10,hello:5,help:[0,8,29,31,36,43,49,58,59,70,72,84,97],helper:[22,43,60,70,74],henc:[22,52,57,60,61,63],here:[1,2,4,5,9,10,16,21,24,25,27,29,31,35,36,43,47,48,58,61,65,72,75,76,78,81,82,84,86,87,92,95,101,104,105,106],heterogen:[22,24,54],heurist:[24,49,93],hidden:[50,57,86,101],hidden_out:8,hierarch:[55,57,59,101],hierarchi:59,high:[30,51,66,67,74,85,106],higher:[33,48,70,72],highest:8,highli:[66,70,95,101],him:5,hint:[39,97],histor:[33,76],hl_get_sync_flag:74,hold:[5,7,10,14,16,20,21,30,34,36,38,40,63,65,67,69,77,82,86],holder_:[67,77],home:[2,12,29,86,87,88,97],honor:14,host:[9,18,54,86,87,103,104,105],host_c:[103,104,105],hostfil:88,hostnam:86,hostpath:87,hostport:86,hour:0,hourli:72,hous:80,how:[0,5,8,10,14,19,20,21,22,27,29,31,33,36,39,43,48,49,53,54,61,65,69,76,82,83,86,87,93,97,101,102,105],howev:[6,7,17,21,22,27,31,40,47,52,53,57,58,60,61,64,65,66,67,69,86,92,93,101],howto:81,hpp:[30,45],htod:98,http:[0,1,2,9,18,34,62,72,78,86,87,97,99,103,105,106],hub:62,huge:52,human:[54,66],hundr:76,hyper:[34,74],hyperparamet:61,i1117:98,i386:104,iOS:105,iamfullaccess:86,iamusersshkei:86,icc:32,icml:66,id_rsa:88,idea:[9,21,31,32,52,58,61,82,97],ideal:[22,69],ident:[60,75,86],identifi:[37,47,74],ids:[49,74],idx:[14,20,34,40,74],ies:29,if_els:68,if_else_op:7,ifdef:[47,54],ifels:[8,55],ifelseop:55,ignor:93,iii:66,illustr:[10,15,21,22,33,48,74,98,101],im_siz:34,imag:[0,1,5,22,31,34,35,49,50,55,58,66,72,86,89,90,95,106],image_a:58,image_b:58,image_conv_lay:66,image_fil:58,image_lay:58,image_nam:5,image_path:58,image_reader_cr:58,imagenet:12,imagepullpolici:86,images_reader_cr:58,imagin:35,imgsiz:98,imgsizei:98,imgsizex:98,imikolov:81,immedi:[1,40,43,52,61,86],immutable_paramet:5,imper:19,imperfect:59,implement:[8,14,15,16,17,18,19,21,22,24,31,33,36,37,38,40,43,45,46,47,49,53,56,63,65,66,67,68,69,70,101],implemet:13,impli:9,implicitli:19,imposs:[20,49,106],impractic:69,improv:[23,24,40,59,66,86,97,98],inarg:13,inbound:86,includ:[0,1,4,5,8,9,15,18,20,21,30,31,34,36,40,45,46,48,49,54,55,57,59,65,74,75,85,86,87,93,97,98,101,103,104,105],inclus:49,incom:[19,39],increas:[10,14,30,83,93],increment:[21,26,35,40,93],incupd:74,inde:21,independ:[6,7,15,23,63,67,106],index:[6,7,8,10,14,19,55,57,70,76,86],indic:[7,8,15,27,34,48,55,60,64,67,70,84,86,103],indice_map:70,indices_map:70,individu:[10,51,86],industri:[10,44,106],ineffici:[53,69],infer:[5,7,8,10,26,31,37,38,39,40,41,45,47,56,57,59,64,66,69,80,104,105],infer_shap:57,infer_var_type_:38,inferenc:104,inferer:66,inferfac:38,inferior:17,infernec:105,infershap:[8,57,59,75,77],infershapecontext:[75,77],infervartypefn:38,info:[30,48,74,84,106],inform:[8,18,29,36,39,40,43,44,47,48,51,57,61,63,64,72,74,75,77,86,93,97,98,103],infrastructur:[31,86],ingor:93,ingrad_:42,ingredi:[21,66],inherit:[8,20,50,59,67,75],ininst:5,init:[8,23,34,42,48,49,74,80,81,86,95],init_attr:57,init_model_path:[92,93,95],initi:[7,9,14,19,22,23,24,26,35,48,51,52,57,61,65,70,74,75,80,93,99,101],initialize_op_attr:57,initrd:106,inlin:[67,76,77,86],inner:74,input0:77,input1:77,input:[6,7,8,13,17,19,20,22,23,24,25,26,30,31,32,33,34,35,36,38,39,40,42,43,47,48,49,52,53,56,57,58,59,60,63,65,66,67,69,70,72,74,75,76,77,80,82,88,95,99,101],input_data:74,input_data_target:74,input_hassub_sequence_data:74,input_index:74,input_label:74,input_lay:74,input_nam:5,input_seg:70,input_sequence_data:74,input_sequence_label:74,input_sparse_float_value_data:74,input_sparse_non_value_data:74,input_t:74,input_to_check:6,input_valu:6,input_var:[6,57],inputbuff:13,inputdef:74,inputgradi:60,inputlayers_:74,inputs_to_check:6,inputsizechang:43,insert:[7,25,32,51,56,59,60,72],insid:[2,7,10,22,24,25,26,39,43,53,54,58,59,60,86],inspir:54,instal:[0,1,2,18,42,62,72,78,87,91,97,102],install_android:103,instanc:[6,8,10,12,16,19,20,22,23,25,27,32,37,43,48,49,52,57,59,60,74,77,82,93,98,101],instance_ip:86,instanti:[10,27,99],instead:[0,6,7,9,13,18,19,21,22,30,31,35,36,66,72],instrins:30,instruct:[0,2,8,35,98,103],int16:71,int32:[47,55,70,71,93],int64:[22,28,47,64,69,71],int64_t:54,int8:47,integ:[14,18,19,21,30,45,49,74],integer_value_sequ:[49,66,101],integr:[1,106],intel:[31,47,67,76],intellig:40,inteloptimizedpaddl:42,intend:1,intens:66,inter:22,interact:[2,22,86],interchang:[35,59],interconnect:51,interest:[19,30,51,98],interfac:[1,8,14,18,20,29,36,51,53,59,60,66,67,75,77,86,104,106],intermedi:[0,22,29,32,34,40,50,66,103,105],intern:[30,66,83,84,86,97],internel:42,internet:[9,10,106],interpret:[1,27,31,32,71,98],inth:77,intrins:[19,27,30,105],introduc:[8,10,20,34,41,44,61,63,65,75,81,83,85,87,97],introductori:0,intuit:[17,59],inval_:42,invalid:[58,63],invent:31,invoc:[9,33,59],invok:[0,7,20,22,25,53,57,59,60,65,69,72,86,98],involv:[49,75],ios:104,ios_arch:104,ios_deployment_target:104,ios_development_root:104,ios_enable_bitcod:104,ios_platform:104,ios_sdk_root:104,ios_use_veclib_for_bla:104,ipad:104,iphon:104,ips:86,ipt:[57,65,101],ipx:106,ipython:5,is_cpu_plac:43,is_mkldnn_librari:43,is_seq:101,is_target:56,is_tensor:65,is_test:43,is_traget:56,isinst:25,ismkldnnkernel:43,isn:98,isspars:74,issu:[0,2,4,9,34,66,72,98],istag:62,item:[17,30,58,80,106],iter:[5,10,22,31,32,40,43,52,54,58,66,70],iter_multiple_input_and_param:57,its:[4,5,7,8,10,14,19,20,21,24,25,26,31,32,34,35,36,38,40,44,48,49,51,52,53,56,57,59,60,63,64,65,67,69,74,75,76,77,83,86,93,98],itself:[7,10,17,20,32,43,52,63],ivs:65,java:[8,45,55,59],jeremi:98,job:[2,7,17,19,22,25,59,81,82,83,85,92,93,95],job_desc:22,job_dispatch_packag:84,job_nam:[18,86],job_namespac:86,job_path:86,job_workspac:84,jobdesc:22,jobnam:22,jobpath:86,jobport0:86,jobport1:86,jobport2:86,jobport3:86,jobserv:18,join:10,journei:2,jpg:20,json:[36,66,86,87],juditski:52,jupyt:[2,18],just:[0,1,4,9,14,15,19,22,31,32,34,38,43,52,53,57,58,59,60,61,63,64,72,84,86,95,103],jx4xr:86,jypyt:5,k8s:[19,106],k8s_data:86,k8s_job:5,k8s_token:5,k8s_train:86,k8s_user:5,kafka:12,kcpu:54,kcuda:54,kcudnn:76,kdisabl:54,kebilinearinterpbw:98,kebilinearinterpfw:98,keep:[1,10,21,31,32,35,49,52,57,63,65,72,106],kei:[0,6,7,8,10,12,14,28,30,39,43,59,60,65,66,70,72,75,98],kenlm:66,kept:[40,57],kera:61,kernel0:76,kernel1:76,kernel:[6,21,30,32,39,42,52,54,61,64,66,67,69,75,77,98],kernel_hint:39,kernel_type_for_var:69,kerneltyp:[39,43],key1:93,key2:93,key_pair_nam:86,keyid:86,keymetadata:86,keypair:86,keyserv:86,keystat:86,keyusag:86,keyword:[57,68],kforcecpu:39,kill:[10,86],kind:[2,5,6,10,16,20,22,25,32,35,39,43,50,51,54,67,69,71,76,86,87],kind_:54,kmark:54,kmkldnn:76,kms:86,knchw8c:47,knchw:47,knhwc:47,know:[5,14,19,20,40,44,72,74,81,86,97,98,103],knowledg:66,known:[7,8,21,31,33,48],kplain:76,kpoprang:54,kpushrang:54,kqueue:21,kselectedrow:64,kstate:54,kube_cluster_tl:5,kube_ctrl_start_job:5,kube_get_workers_addr:19,kube_list_containers_in_job_and_return_current_containers_rank:5,kubeconfig:86,kubectl:[84,87,88],kuberent:[10,86],kubernet:[5,10,19,22,59,85,89,90,106],kubernetes_service_host:5,kusecudnn:39,kusemkldnn:39,kwarg:[26,36,57,65],l1_regularization_op:61,l2_regularization_op:61,l93:13,label:[22,26,31,34,35,36,50,55,58,66,69,82,87,99],label_fil:58,label_lay:58,label_path:58,lag:93,lambda:[19,25],lan:91,languag:[19,21,31,35,40,54,59,63,66,68,95],larg:[22,24,25,40,44,52,66,72],larger:[40,68],larger_than:[8,37,55],last:[7,25,40,48,54,55,93,101],last_seq:49,lastseen:87,latenc:[30,66,84,86],later:[1,4,9,59,61,66,67,75,77,86],latest:[1,2,4,8,9,10,17,62,78,87,103,104],latter:[52,70,97],launch:[43,86,93],launcher:5,layer:[7,8,13,19,21,22,24,31,34,35,37,50,52,55,58,59,61,65,66,67,70,73,80,82,92,93,99,101],layer_0:74,layer_attr:[95,101],layer_help:39,layer_num:95,layer_typ:[41,42],layerbas:74,layerconfig:74,layergradutil:74,layerhelp:[39,57],layermap:74,layout:[43,69],layout_:[39,47],layouttyp:39,lazi:[52,61],lead:[20,40,47,98],leaki:34,learing_r:50,learn:[0,2,5,7,15,17,21,22,24,27,34,35,40,42,49,51,52,54,58,59,61,67,74,75,78,82,98,101,104],learning_r:[15,22,82,99],leas:10,least:[4,10,103],leav:[8,86],lectur:40,left:[8,77,104],legaci:2,legal:65,len:[15,19,28,31,57,74,80],length:[15,30,41,44,48,49,59,66,70,87,93,101],leran:40,less:[5,25,82,106],less_equ:68,less_than:[5,40],let02:87,let:[5,8,17,19,21,32,33,35,39,43,47,48,49,50,60,67,69,75,82,86,97],level:[30,33,36,44,48,49,54,67,70,71,72,84,93,103],lgtest:9,lgtest_main:9,lib64:[2,93],lib:[1,2,46,81,97,103,104,105],libapi:9,libari:46,libc:4,libcuda:2,libgcc_:4,libgoogl:97,libiomp5:42,libmkldnn:42,libmklml_intel:42,libnvidia:2,libpaddl:[45,46,59,97],libpaddle_capi:46,libpaddle_gserv:46,libpaddle_math:46,libpython2:1,librari:[1,4,9,16,21,22,42,43,46,51,66,69,75,76,81,82,91,93,104,105],library_:47,library_typ:76,library_type_:69,librarydevicecontext:47,librarytyp:[69,76],libstdc:4,licens:[42,51,72],life:10,lifecycl:[54,106],lifetim:[4,63],lightweight:33,like:[0,1,4,7,8,9,10,13,18,19,21,27,31,32,33,34,35,36,38,43,47,51,52,57,58,59,60,61,63,64,66,68,69,70,72,81,85,86,92,95,97,98,99,101,103,104,105,106],limit:[31,40,44,49,59,61,93,98],linaro:105,line:[0,9,13,18,21,29,35,52,55,57,59,61,72,82,83,84,86,95,96,97,98],linear:[49,80],lineno:97,link1:30,link2:30,link:[4,9,28,29,63,75,86,106],linux:[0,2,4,21,28,72,86,91,105],linux_x86_64:[4,62],lipo:104,list:[0,5,7,8,9,14,18,19,27,29,31,34,47,50,53,54,57,60,63,70,74,75,80,81,82,86,93,95,97,101,105],listdir:81,listen:[10,19,22,81,82,93],listen_and_do:19,listenanddo:19,littl:[15,39,44,93],live:[75,99],live_in:40,live_out:40,load:[1,5,10,22,34,51,57,75,86,93],load_missing_parameter_strategi:[92,93,95],load_mnist:34,load_persist:82,loadsave_parameters_in_pserv:[13,92,93],local:[0,1,2,6,8,10,16,17,21,35,40,48,55,57,59,72,84,87,92,93,97],local_scop:6,localhost:[2,78],localpath:29,locat:[9,31,47,54,67,70,74,81,101,105],lock:[9,10,14,15],lod:[21,44,48,64,70,71],lod_desc:[64,71],lod_expand:49,lod_level:[57,64,71],lod_tensor:[48,64,71],lodtenosr:20,lodtensor:[20,21,38,44,59,71],lodtensordesc:[44,64],log:[4,14,22,29,34,74,81,84,86,87,88,93,105],log_barrier_abstract:93,log_barrier_lowest_nod:[92,93],log_barrier_show_log:[92,93],log_clip:[92,93],log_error_clip:[92,93],log_period:[87,93,95],log_period_serv:[92,93],logic:[17,22,24,25,34,38,50,51,53,63,70,75],login:[4,88],logit:[34,69],longer:[10,22,40],look:[8,18,19,21,31,32,35,52,57,60,61,66,81,82,86,87,92,99],lookahead:66,lookup:[38,49,99],lookup_t:40,loop:[6,8,20,31,40,54,58,63],loop_var:70,loss:[7,22,34,36,50,52,61,66,74],lot:[22,47,49,52,57,61,67,81,92,106],low:[50,51,66,67,70],low_rnn:48,lower:[30,48,49,72,84],lower_level_rnn:48,lowest:93,lpaddle_capi_shar:46,lpaddle_capi_whol:46,lrelu:34,lstm:[87,101],lstmemori:101,lstmlayer:41,luckili:40,mac:[0,46,72,103],machin:[0,1,4,22,24,31,34,40,42,51,52,61,74,86,87,88,92,93,95,105,106],machine_transl:101,maco:[0,4,80,104],macro:[33,47,60,75],made:[10,15,31,101],mai:[1,2,6,8,22,26,30,32,39,40,43,51,54,58,59,63,66,69,77,78,81,86,98,105],main:[4,19,21,25,31,32,36,51,55,59,83,86,97],main_program:[7,26],mainli:[1,16,40,47,67,75,93],mainlin:4,maintain:[8,14,52,57,59,86],majel:9,major:[22,30,69,103],make:[0,1,5,7,8,9,10,14,15,17,21,22,23,30,31,35,48,49,52,53,57,58,59,61,66,70,72,74,75,76,82,83,86,97,98,103,104,105,106],make_chan:21,make_channel:21,make_ddim:77,make_function_oper:33,make_vari:65,maker:[59,60],malloc:[67,74],man:28,manag:[4,10,15,16,19,21,22,29,54,63,67,78,85],mandarin:66,mandatori:104,mani:[0,7,9,14,19,21,31,34,39,40,49,53,54,57,59,60,63,64,65,68,69,70,93],manili:36,manipul:[31,57,60,84,104],manner:[52,61,66,67],mantain:40,manual:[22,50,52,60,84,103,104,106],manufactur:31,manylinux1:4,manylinux1_x86_64:[4,62],manylinux:62,map:[0,5,8,14,25,43,47,57,60,63,65,67,70,93,106],map_fn:70,mapreduc:[5,81],mark:[7,24,34,35,48,49,54,63,97,101,106],marker:54,market:30,master:[5,17,59,62,93,105],mastermind:9,mat:[45,46],mat_cache_row:13,mat_norm:13,mat_normal_shar:13,mat_sparse_row:13,mat_sparse_row_auto_grow:13,mat_sparse_row_id:13,mat_sparse_row_prefetch:13,mat_sparse_row_prefetch_full_s:13,mat_value_shar:13,match:[4,9,30,68,98],matchbox:106,math:[42,45,59,72,74,75,98],mathemat:61,matmul:[8,36,48,70,75],matric:[74,101],matrix:[13,45,46,74,75,92,95,104],matrixptr:74,matrixtyp:46,mattyp:13,matur:85,max:[6,23,25,40,57,93,95,98],max_diff:6,max_length:[49,101],max_relative_error:[6,75],maxim:25,maximum:[8,15,75,93,98,101],maxoutfunctor:67,mayb:[8,43,75],md5:11,mean:[0,2,7,9,22,23,25,36,49,56,58,63,66,69,75,82,86,93,95,97,98,99,101,106],meant:70,measur:[26,98],mechan:[7,16,20,26,43,57,60,76,86,101],mem:[8,18,49],mem_per_pserv:22,mem_per_train:22,member:[5,25,35,36,47,53,57,63,75],memcpi:[53,98],memori:[0,7,8,13,14,18,30,32,42,43,44,47,49,52,54,59,69,72,74,77,87,93,95,98,99,101],memory_optim:40,memory_test:0,memory_threshold_on_load_data:93,memoryalloc:67,memorydesc:43,mention:[0,7,9,14,22,24,31,48,51,52,54],merg:[15,17,23,26,42,48,51,53,72,78,93,104],messag:[8,19,21,27,31,32,35,44,54,55,56,57,59,60,64,71,72,87,93],metaclass:75,metadata:[28,86,87],metal:[82,106],metaphor:35,metaplotlib:5,method:[1,2,4,6,8,17,19,20,22,23,25,30,34,35,36,39,50,51,57,58,59,63,64,69,70,74,75,77,78,93,95,97,98],methodolog:52,metric:[26,54],microarchitectur:30,might:[0,8,9,19,21,31,40,55,66,72,74,86,97,103],mileag:98,million:95,min:[23,25,57,86,95,98],min_block:8,min_count:24,min_desc:8,mind:97,mini:[8,10,21,26,27,31,37,48],mini_batch:58,minibatch:[8,26,35,37,55],minim:[8,22,24,25,31,34,50,59,82,93,99,103,104,105],minimum:[66,82,104],minimun:93,minsizerel:[103,104,105],minu:60,minus_grad:60,minusgradop:60,minusop:60,minusopgradmak:60,minusopprotoandcheckermak:60,minut:[0,2,10,17,86],mirror:[2,9],mislead:15,miss:[34,93],mistak:31,misus:76,mit:86,mix:[54,70,101],mixtur:97,mkdir:[1,29,78,86,88],mkl:[1,2,43,59,67,69,76],mkl_packed_:41,mkldnn:[42,47,69],mkldnn_:42,mkldnnactiv:42,mkldnnbase:42,mkldnnlayer:42,mkldnnmatrix:42,mkldnnstream:42,mkldnntester:42,mklml:42,mklpack:41,mklpackedgatedrecurrentlay:41,mklpackedgemm:41,mklpackedlstmlay:41,mklpackedrecurrentlay:41,mlp:36,mnist:[12,22,34,35,55,58,59,97],mnist_random_image_batch_read:58,mnist_train:58,mnist_train_batch_read:58,mobil:[30,31,40,59,78],mod:81,mode:[30,41,51,72,93],model:[7,8,10,11,19,22,24,25,26,35,40,41,50,51,52,59,61,66,69,70,72,74,78,80,82,83,86,93,96],model_list:[93,95],model_path:95,modelparallel:22,modern:40,modif:[3,66],modifi:[22,30,36,61,74,75,81,84,86,101],modul:[22,33,34,49,66,70,75,97],modular:49,moment:97,momentum:[63,76],momentumop:97,mon:87,monitor:[21,54],month:9,more:[0,1,2,5,6,7,9,10,14,17,18,20,21,22,24,29,30,31,32,33,35,39,40,43,47,48,49,50,54,57,58,59,61,66,67,68,70,74,75,76,77,78,80,81,82,83,87,95,97,98,99,101,105,106],most:[4,5,7,9,17,21,22,32,35,36,47,49,52,54,58,61,66,67,68,74,92,97,98,99,101,106],mostli:[30,106],motiv:59,mount:[2,18,81,86,87],mountpath:[86,87],move:[2,10,14,20,29,31,52,86,98,106],movement:98,movidiu:31,mpi:[21,51,88],mpirun:88,mse:[31,35,50,55],much:[10,31,43,50,58,61,70,98],mul:[33,40,57,74,75],mul_grad:75,mul_op:75,mul_result:57,mulgradkernel:75,mulkernel:75,mulop:[33,75],mulopgrad:75,mulopmak:75,mult:[19,32],multi:[26,51,53,69,74,82,84,92,93,97,106],multigradientmachin:53,multipl:[5,6,14,15,17,19,21,22,24,26,31,32,33,39,51,54,59,66,69,71,74,75,81,83,86,93,95,97,101],multiple_input:57,multiple_param_attr:57,multipli:[19,74],must:[7,15,20,25,40,43,44,47,54,56,57,58,59,65,71,74,75,77,81,82,86,93,95,101,103,105],mutabl:[67,77],mutable_data:[43,67,75,77],mutex:21,mutuable_data:[67,77],mxnet:[8,19,21,31],my_cluster_nam:86,my_external_dns_nam:86,my_lib:81,myerrorclip:25,mypaddl:87,naiv:19,name:[0,2,4,5,6,7,8,10,12,13,15,18,19,20,22,26,30,33,36,39,42,43,44,46,47,49,54,55,57,59,62,64,65,70,71,74,75,76,80,81,82,87,89,90,93,95,98,99,101,104,106],name_:54,name_prefix:12,namespac:[8,37,45,57,74,75,87],nativ:[30,72],natur:[14,17,24,49,70,95],navig:78,ncall:97,nccl1:51,nccl2:51,ncclinit:51,nchw8:69,nchw8c:69,nchw:[42,47],ndarrai:12,ndk:103,nearest:30,nearli:[6,20],necess:70,necessari:[7,8,15,17,25,26,40,44,49,53,57,65,70,74,88],necessarili:[19,74],neck:51,need:[1,2,3,4,5,6,7,9,13,14,15,17,18,20,21,22,24,25,26,29,31,32,33,34,39,40,43,47,49,50,51,52,53,54,56,57,59,60,61,63,64,65,66,67,70,74,75,76,77,78,80,81,82,86,87,91,92,93,95,101,103,104,105,106],neighberhood:51,neon:[30,103,105],nervana:31,nessesari:66,nest:[7,8,54,55,71],net:[8,34,48,63],netop:[8,59],network:[5,6,7,8,10,13,22,24,26,34,36,40,41,42,48,50,52,54,57,58,61,63,65,66,67,69,71,74,75,77,80,81,82,83,93,98,106],network_config:95,networkadministr:86,neural:[5,7,8,10,22,36,40,41,42,48,52,61,63,67,69,71,77,80,82,83,93,98],neuralnetwork:53,neuron:74,never:[40,58,63,86,87],new_block_idx:57,new_op_and_kernel:76,new_op_desc:25,new_scop:69,new_stat:48,newblock:57,newbuff:43,newer:103,newest:15,newli:[30,104,106],newop:8,newopdesc:57,newprogram:57,newscop:69,newvardesc:57,next:[7,10,16,20,21,25,49,51,70,74,75,86,87,93,97,98,101],nextlay:42,nfs4:86,nfs:86,nfsver:86,nic:[92,93],nil:[14,21],nnz:74,no_grad_dict:7,no_grad_set:[6,7,75],no_gradi:7,node1ip:88,node2ip:88,node3ip:88,node:[0,9,17,19,22,24,36,40,49,51,59,74,81,82,84,85,86,87,88,91,93,106],node_0:86,node_1:86,node_2:86,node_id:81,nodeattr:36,nodeentri:36,nodefil:84,nodesep:36,nohup:81,nois:[10,34,83],noisi:34,non:[10,21,30,31,64,74,75,86,93],none:[5,6,7,8,21,25,26,34,36,37,48,49,50,55,57,65,70,82,99,101],noneedtran:43,nonlinear:74,nor:[0,19],norm:[34,47],normal:[52,66,74,87,91,93,101],notat:40,note:[1,2,5,7,8,13,14,18,40,44,47,51,58,59,67,69,75,77,78,81,82,86,93,95,98,104],notebook:[2,18],notest_dist_fit_a_lin:82,noteworthi:31,noth:[0,39,57,63,93],notic:[25,31,51,60,72,74,101],notif:72,notimplementederror:25,notin:69,notingradi:75,notion:70,notori:6,now:[7,9,10,20,21,24,34,44,47,52,59,60,61,63,82,86,93,104],nproc:0,nullptr:[43,54,60,63,74],num:[81,93],num_class:36,num_gradient_serv:[81,92,93],num_hidden:36,num_input:72,num_parameter_serv:5,num_pass:[87,92,93,95],num_pserv:22,num_row:64,num_shard:12,num_step:70,num_train:22,number:[0,8,10,12,24,26,40,52,54,58,59,65,70,74,81,82,85,86,93,97],numdevices_:95,numer:75,numeric_grad:6,numerical_grad:6,numlogicaldevices_:95,numpi:[1,12,30,34,57,58,75],numreal:13,numsampl:98,numtimeout:14,nv_:9,nv_gpu:0,nv_librari:9,nv_test:9,nvcc:[9,30,32],nvidia:[0,2,30,47,51,67,93,98],nvlink:51,nvprof:54,object:[5,13,20,22,25,26,34,36,40,45,50,54,57,59,61,63,77,98],observ:[74,98],obtain:[17,20,52,67],obvious:[9,47,97],occup:40,occupi:[30,54],occur:40,occurr:8,oct:87,off:[0,1,2,46,82,91,103,104,105,106],offer:[8,59,65],offici:[9,72,78,86,103],offlin:[10,12,106],offset:13,often:[13,36,40,47,72,81,97],ograd:74,old:[6,15,17,49,59,93],older:[31,103],omega:61,omp_num_thread:97,ompi_comm_world_rank:81,onc:[10,14,19,22,24,26,31,35,52,68,72,74,78,86],one:[0,2,5,6,7,8,10,13,14,15,17,18,19,20,21,22,25,26,27,30,31,32,33,34,36,38,39,43,44,47,48,49,50,51,52,53,55,56,57,58,59,60,63,64,66,67,68,69,70,72,74,75,76,82,84,86,87,88,93,95,99,106],onehotcrossentropyopkernel:75,ones:[33,34,59,72],onli:[0,1,3,4,5,6,7,9,13,14,15,16,17,18,19,20,22,24,25,26,27,29,30,31,34,35,40,43,48,49,50,51,53,54,57,59,64,65,66,67,68,69,70,74,75,76,77,78,82,86,87,92,93,95,98,101,104,106],onlin:[10,12,40,58],only_cpu:6,onnx:31,onto:[22,24,86,88],op1:[40,69],op1_2_op2:69,op1_to_op2:69,op2:[40,69],op3:40,op_:75,op_check:75,op_class:[59,65],op_desc:[25,38,56],op_info:99,op_kei:43,op_maker_class:[59,65],op_proto:65,op_registri:99,op_siz:25,op_test:75,op_typ:[59,75,76],op_unique_kei:43,opattrcheck:75,opcreat:65,opdesc:[8,25,35,55,56,57,59,60,65,71],opdescbind:[38,60],opdescbuild:8,open:[5,12,31,34,42,58,72,85,86,97],openbla:[1,2,103],openmp:97,openmpi:85,opensourc:51,oper:[6,8,19,21,22,23,24,26,27,30,31,32,34,35,36,38,39,48,49,50,51,54,56,61,63,66,67,69,71,72,74,76,77,86,93,98,99,101,103],operand:30,operator_grad:6,operator_list:54,operatorbas:[8,33,59,60,65,75],operatorwithkernel:[69,75],opinfo:[38,59,60],opinfomak:38,opinfomap:60,opkernel:77,opkernelbas:76,opkernelkei:59,opkerneltyp:[47,69,76],opmak:65,opproto:75,opprotoandcheckermak:[60,75],opprotomak:[65,75],opregist:65,opregistri:65,ops:[6,7,8,9,19,20,32,35,36,52,55,56,57,59,67,75,106],ops_:8,ops_test:9,opt:[1,5,50,56,65],opt_op_list:50,optest:75,optestmeta:75,optim:[6,7,22,23,24,32,34,51,52,53,55,59,61,64,66,74,82,83,97,98,99,103,105],optimis:50,optimize_op:82,optimize_op_attr:57,optimizer_op:82,option:[0,5,9,22,34,39,44,55,56,57,59,64,65,66,71,74,81,82,84,95,97,103,104,106],optmization_op_list:50,opts_np:56,optyp:[38,65],opwithkernel:64,order:[1,7,35,44,54,58,61,70,74,83,86,87,93,97,106],oregon:86,org:[12,28,34],orient:65,origin:[6,30,34,63,70,72,77],other:[0,1,8,10,15,19,29,30,31,32,38,40,43,47,48,52,56,61,63,65,66,67,69,72,82,83,86,87,95,97,99,101,103,104,105,106],otherwis:[5,7,10,15,17,34,38,43,58,66,72,84,95,101],our:[0,1,4,5,7,9,20,21,22,24,34,38,40,47,51,52,63,70,72,74,82,86,87,97,101,103],out:[5,8,9,14,17,20,22,25,31,36,40,43,48,49,57,69,75,77,80,86,87,88,93,97,98,101],out_dir:86,out_mem:101,outgrad_:42,outlin:94,output:[0,1,5,6,7,8,12,17,19,20,24,25,29,32,33,34,35,36,37,38,40,43,44,48,49,52,55,56,57,58,59,60,63,64,65,67,69,70,72,74,75,76,77,81,87,93,95,97,98,101,103],output_:[42,74],output_all_step:48,output_arg_nam:25,output_lay:80,output_mem:101,output_nam:6,output_num:48,output_path:12,output_seg:70,outputbuff:13,outputgradi:60,outsid:[22,63],outupt:70,outv:74,outval_:42,over:[5,31,40,51,52,70,72,74,98],overal:[34,52,54,72,106],overfit:61,overhead:98,overlap:74,overload:[30,39],overrid:[8,10,29,43,67,74,75,77],overview:[14,15,16,67],overwhelm:72,overwrit:[29,81],own:[7,15,17,25,27,36,38,50,51,52,61,65,75,81,84,86,103,104],owner:[0,72],pack:[70,103],packag:[1,2,14,18,19,33,42,62,72,75,86,97],pad:[43,66],paddl:[0,1,2,4,5,8,9,10,12,18,20,22,29,32,33,34,37,41,42,43,44,45,46,48,49,53,55,59,61,62,65,66,67,70,72,74,75,76,78,80,81,82,84,86,87,88,91,93,95,97,98,99,101,103,106],paddle_begin_init_param:15,paddle_dir:75,paddle_element_typ:15,paddle_element_type_float32:15,paddle_element_type_float64:15,paddle_element_type_int32:15,paddle_element_type_int64:15,paddle_element_type_uint32:15,paddle_element_type_uint64:15,paddle_enforc:[8,20,43],paddle_enforce_eq:[75,77],paddle_error:[45,46],paddle_exampl:18,paddle_finish_init_param:15,paddle_get_param:15,paddle_gradi:15,paddle_init_num_gradient_serv:81,paddle_init_param:15,paddle_init_port:81,paddle_init_ports_num:81,paddle_init_ports_num_for_spars:81,paddle_init_pserv:81,paddle_init_trainer_count:81,paddle_init_trainer_id:81,paddle_init_use_gpu:81,paddle_job:18,paddle_manylinux_devel:1,paddle_matrix:[45,46],paddle_matrix_cr:46,paddle_matrix_get_shap:45,paddle_matrix_shap:45,paddle_new_etcd_pserver_cli:15,paddle_new_pserver_cli:15,paddle_on_cloud:18,paddle_output:87,paddle_paramet:15,paddle_pserver2:84,paddle_pserver_cli:15,paddle_pserver_client_releas:15,paddle_save_model:15,paddle_send_grad:15,paddle_train:[46,62,84],paddle_with_cuda:54,paddle_with_mkldnn:47,paddlepaddl:[0,3,9,10,12,15,16,17,18,19,22,28,29,33,34,35,37,39,44,48,49,50,53,54,57,58,59,63,70,71,72,74,75,76,80,81,83,84,85,88,89,90,91,97,98,101,106],paddlepaddle_gpu:4,paddlepaddlebook:2,paddlepaddlehub:2,page:[72,86],pair:[7,8,22,35,50,54,59],pakcag:9,panic:21,paper:[34,66],para:13,paradigm:[19,27,59],paragraph:48,paragraph_data:48,paragraph_out:48,parallel:[0,19,21,22,24,51,54,59,69,81,83,85,86,87,93,95,98],parallel_for:19,parallel_nn:[92,93],paralleldo:23,parallelfor:19,paralleliz:66,param:[6,8,15,53,57,67,77],param_attr:[13,57,101],param_config_proto:15,paramattr:101,paramet:[1,6,7,8,9,11,13,17,19,22,23,25,27,29,31,32,34,35,36,38,44,48,50,51,55,58,63,65,66,70,72,74,75,76,77,80,83,84,95,96,99,104],parameter_block_s:[92,93],parameter_block_size_for_spars:[92,93],parameter_list:[7,50],parameter_nam:5,parameter_serv:5,parameter_valu:13,parameterattribut:13,parameterclient_:13,parametermap:74,parametermutex_:13,parameters_:74,parameters_and_grad:50,parameterserver2:13,parameterset:5,parameterupdat:53,parameterupdater_:13,params_grad:[50,82],paramt:86,paraspars:74,parent:[8,19,55,57,59,74],parent_:[8,63],parent_idx:57,parenthes:59,pars:[0,9,22,36,86,95],part:[7,8,17,22,31,43,44,55,57,66,67,74,81,82,83,97,98,101,106],parti:[0,98,103,104,105],particip:75,particular:[35,44,59,66,69,98],partit:[10,12,22,24,59,83,86],pass:[7,8,10,21,25,26,31,34,40,44,50,52,53,56,57,58,59,61,63,66,68,70,72,74,81,82,84,86,87,93,98],pass_id:[22,82],pass_idx:58,pass_num:82,passtyp:74,password:88,past:[2,5,80,86],patch:28,path:[1,2,10,14,15,18,40,49,58,66,81,86,87,93,95,103,104,105],path_to_paddlepaddle_working_directori:78,pattern:[10,45,52,61,86],paus:[10,17],pcie:51,peer:51,pem:[5,12,86],pend:[10,14],peopl:0,pep425tag:4,pep8:72,per:[10,15,51,52,58,61,75,93],percal:97,perf_test:97,perfectli:66,perfom:[93,95],perform:[0,6,15,21,22,26,30,31,34,40,51,53,54,58,59,61,66,67,69,74,75,82,85,92,96,101,103,104,105],perftool:[54,97],period:[10,17,93],permiss:86,persist:[27,64,66,71,86],persistentvolum:86,persistentvolumeclaim:86,person:[5,39],perspect:[59,98],perturb:[6,74],pex:106,pfs:[12,29],pfsclient:12,pfspath:29,pgp:86,phase:[43,49,51,52,58,60,66,106],philosophi:[52,61],photo:34,physic:[104,106],pick:[86,104],pickl:[81,88],pictur:51,piec:[19,54,77,82],pil:81,pillow:18,ping:72,pip:[1,3,62,72,78,80,97],pipelin:[26,66],pivot:43,pixel:22,place:[7,8,10,17,22,24,27,39,43,51,59,69,74,77,82,98,99],place_:[39,47,67,69],place_typ:76,placehold:[34,67,77],placement:24,plain:[18,44,46,47],plan:[10,19,43,59,66,74,103],platform:[4,8,32,43,47,54,67,69,72,75,76,77,81,85,86,99,103,104,105],pleas:[0,1,2,4,5,10,14,15,16,19,21,32,36,47,48,57,58,59,66,67,71,72,74,75,77,78,82,86,91,97,101,103,104,105],plot:5,plug:[51,52],pne:75,pnpairvalidationlay:93,pnpairvalidationpredict_fil:92,pod:[12,18,19,86,87],pod_nam:86,point:[0,8,10,18,21,30,40,43,51,67,72,75,77,97,98,103,106],pointer:[8,15,36,40,47,57,59,63,67,77],polici:86,poll:21,pollut:17,polyak:52,ponit:36,pool3:74,pool:[23,40,66],pop:[8,27],popul:15,popular:[9,34,36,54],port:[9,19,81,82,86,87,92,93,97],port_num:92,portabl:36,portal:78,ports_num:[81,93],ports_num_for_spars:[13,81,92,93,95],pose:10,possibl:[5,8,14,21,24,40,57,61,71,98],post:[18,28],postpon:61,potenti:[30,98],power:[30,40,51,66,77,106],ppo_workspac:78,pprof:97,practic:[74,101],pre:[1,5,15,39,40,72,86,87,103,105],pre_activ:57,pre_bia:57,pre_stat:[48,70],preambl:57,precis:[1,26,30,52],precompil:27,pred:[36,40],predecessor:40,predetermin:93,predict:[22,61,80,93,101],predict_fil:93,predict_output_dir:[92,93],prefer:[31,39],prefetch:[13,74],prefix:[10,12,49,66,86],pregel:21,pregrad:74,prepand:57,prepar:[6,18,53,66,83,89,101],prepend:57,prepend_oper:57,preprocess:[66,70,87],present:[5,7,8,54,70],preserv:29,prev_batch_st:[92,93],prevent:[5,10,14,17,25,61,97],preview:[59,78],previou:[7,10,24,29,48,49,74,86,93,97],previous:87,previous_memori:8,price:[59,80],prim:43,primari:[31,35],primarili:[52,61],primer:72,primit:[30,42,43,51,70],primitive_desc:43,primitivedesc:43,principl:[5,9,47],print:[4,5,21,22,31,36,57,68,80,88,93,97],print_graphviz:36,printallstatu:98,println:21,printstatu:98,prioriti:59,privat:[8,46,54,57,63,64,65,67,70,72,77],privileg:[0,86],pro:51,prob:80,probabl:[2,49,66,72,101],problem:[0,4,5,6,9,17,20,31,34,35,52,59,61],proc:2,proce:[2,10,58,86],procedur:[8,44,77,104],process:[5,7,8,12,13,14,17,19,20,21,22,26,27,31,32,36,40,42,44,51,61,65,69,72,84,85,86,87,93,95,97,101],processor:[30,98],produc:[10,31,36,58],product:[18,31,74,86,87],productgraph:87,prof:97,profil:[29,54,66],profilerst:54,proflier:[54,98],program:[5,7,12,15,17,22,24,27,35,37,40,50,51,54,58,59,63,68,71,84,93,97,98],programdesc:[19,22,27,31,40,44,56,57,60,71],programm:[22,31,57],progress:[10,14,93],project:[18,46,66,72,74,75,101],promis:49,prompt:[29,31,82],prone:5,pronunc:66,prop_kind:43,propag:[7,31,52,75,93,95],proper:[39,91],properli:[0,39,82],properti:[36,61,93],propos:[8,23,24,49,50,51,52,70],proprietari:42,protect:[20,30,65,74,75],proto:[21,39,44,47,55,59,65,71,75],proto_:65,protobuf:[8,18,19,22,27,31,32,35,36,40,44,55,57,59,60,65],protoc:[103,105],protocol:[93,99,106],provi:81,provid:[2,5,8,15,18,19,26,27,30,31,34,36,38,39,47,51,52,54,57,61,65,66,67,68,70,77,80,81,82,84,85,86,97,98,103,104,106],providermemory_threshold_on_load_data:92,provis:[86,106],prune:8,ps_desir:10,pserver:[13,15,16,18,59,81,82,86,92,93],pserver_addr:15,pserver_cpu:18,pserver_endpoint:82,pserver_id:11,pserver_mem:18,pserver_num_thread:[13,92,93],pserver_prog:82,pserver_startup:82,pserverstart_pserv:92,pseudo:[5,7,18,60,70],pseudocod:70,psize:74,ptr:[46,67],pub:88,publish:103,pull:[9,59,62,72,103],purpos:[10,22,24,39,98],push:[8,27,31,54,62,72],push_back:74,put:[9,10,13,24,40,43,57,67,74,82,87,103],pvc:86,pwd:[0,1,2,78,103],pxe:106,pybind:[8,21,30],pypi:4,python2:97,python3:4,python:[0,1,2,4,5,8,16,20,21,26,27,31,33,34,35,36,39,45,49,53,54,59,62,67,70,72,78,80,81,82,88,99,101],pytorch:[31,54],qualcomm:30,queri:86,question:[5,19,24,65,82,86],queue:[21,24],quick:[36,79,93],quick_start:[18,86,87,89],quick_start_data:87,quickli:[49,57,59],quickstart:87,quit:[49,98],r14b:103,rais:[25,36,81],rajathkmp:34,ran:[24,98],rand:[34,93,95,98],random:[12,21,34,47,53,57,58,75,83,93],random_imag:12,randomli:17,randomnumberse:92,rang:[12,19,22,30,34,40,54,58,65,72,82,93,95],rank0:51,rank1:51,rank:[5,70,77,86],rankdir:36,rapid:60,raspberry_pi:105,raspberrypi:105,raspbian:105,rate:[15,66,74],rather:[7,18,34,70,86],ratio:93,raw:44,rdma:93,rdma_tcp:[92,93],reach:[10,40,51,98],read:[0,2,5,7,10,12,19,20,21,22,24,31,32,58,59,66,70,78,83,86,91,101,103,106],read_from_arrai:40,read_from_realistic_imag:5,read_from_rng:5,read_lock:11,read_minibatch:31,read_mnist_imag:5,read_ranking_model_data:5,readabl:[54,59,97],reader:[12,22,30,34,35,55,66,81,82,97],reader_cr:12,reader_creator_bool:58,reader_creator_random_imag:58,reader_creator_random_image_and_label:58,readi:[10,21,86,87,106],readlockguard:13,readm:46,readnext:20,readwritebuffer_:13,readwritemani:86,real:[13,34,58,81],realist:5,realiti:66,realiz:[8,48],realli:[31,61],reaon:76,reason:[5,6,10,21,31,72,82,87],receiv:[10,18,21,22,24,48,82],recent:[40,52],reciev:93,recognit:66,recommend:[1,2,3,5,72,74,78,84,91,93,101,103],recompil:98,record:[14,43,54,65,86],recordev:54,recordio:[5,12,14,20],recov:[10,70],recover:59,recoveri:14,recurr:[41,48,63,66],recurrent_group:[66,101],recurrent_op:70,recurrentgradientmachin:[46,49,70],recurrentlay:[41,93],recurs:[7,8,9,29,40,59],recv:[19,22,24,51,86],recvparametertyp:13,red:[34,97],reduc:[2,24,30,51,59,72,84,93,95,97],reduce_by_kei:59,reduce_mean:34,refactor:[22,24,35,49,52,53,57,61,70],refer:[0,1,2,8,10,14,15,16,19,30,36,43,47,48,51,55,57,59,61,63,67,70,71,74,75,77,82,87,101,103,104],referenc:14,reflect:14,reformat:72,refrain:75,reg:65,regard:[20,106],region:[63,98],regist:[21,40,47,60,67,69,74,98],register_gpu_profil:98,register_lay:74,register_op:[33,59,60,65,75],register_op_cpu_kernel:[67,75],register_op_cuda_kernel:[67,75],register_op_kernel:76,register_op_without_gradi:[59,75],register_oper:[38,60],register_tim:13,register_timer_info:98,registerop:65,registr:[75,76,99],registri:[18,38,67,87,106],regular:[7,74,86],reinit:20,reiniti:[20,43],reinstal:1,rel:[6,17,61,75,103],relat:[10,17,18,30,47,54,63,69,72,87,97,104,105,106],relationship:[60,67],releas:[62,66,86,103,104,105],relev:75,reli:[6,19,49,50,52,61,75,97],reliabl:[10,61],relu1:36,relu2:36,relu:[34,36,40,74],relwithdebinfo:97,remain:70,rememb:72,remot:[9,13,22,59,72,74,86,93,95],remoteparameterupdat:[13,16,93],remov:[7,22,29,31,49,72,93,103,104],renam:[4,7,29,30],reorder:43,reorder_primit:43,repeat:[8,35,55,56,64,65,71,97],repeatedli:[35,40],replac:[9,14,38,52,60,66],repli:72,replic:22,replicaset:18,repo:[9,72,78,105],report:[14,30,31,54,98],reportdataset:14,repositori:[78,103],repres:[7,8,14,19,22,24,25,31,36,44,47,49,52,57,59,61,64,67,70,71,74,86,101],represent:[15,22,32,34,35,40,47,49,64],reproduc:0,request:[9,10,13,17,19,59,62,72,86,87,106],requir:[0,4,5,7,10,15,17,18,20,22,24,25,29,30,36,40,42,48,52,54,55,56,59,61,64,65,66,71,72,74,75,78,81,86,87,103,105,106],requisit:40,rerun:75,research:[22,31],reserv:29,reserveoutput:74,reset:[10,26],reset_program:26,resetingrad:42,resetinvalu:42,resetoutgrad:42,resetoutvalu:42,resetxxx:42,reshap:[6,58,77],resid:0,residu:21,resiz:[13,67,75,77],resolv:[9,72,87],resourc:[22,27,51,54,67,76,86],respect:[6,20,25,30,34,48,74,93,101],respons:[13,21,22,26,34,51,52,53,61,86,87],rest:[8,18,28,32,69,106],restart:[10,15,86,87,106],restartpolici:[86,87],restor:[6,52],restrict:[61,63,93,97],result:[6,7,14,21,26,34,35,36,40,44,49,50,51,53,75,77,86,93,97,98,99],resum:17,retain:77,retran:86,retriev:[0,8,49,63,74,87,97],retriv:81,reuqest:62,reus:[8,17,49,58,59,74,75],rev:0,revamp:22,reveal:[5,97],revers:[7,101],review:[19,87],reviews_electronics_5:87,rewrit:[9,21,75],rid:[20,31],right:[6,7,8,9,18,26,40,59,61,72,76],ring:51,risk:7,rkt:[0,18],rmsprop:52,rmspropoptim:52,rnn:[8,31,34,49,57,59,63,66,92,96],rnn_bias_attr:101,rnn_layer_attr:101,rnn_out:101,rnn_output:70,rnn_use_batch:[41,92,93],rnnalgorithm:49,rnnstep:70,roadmap:[66,70],rocmplac:47,role:[5,14,15,22,51,82,86],rollback:57,root:[7,51,86,87,104],roughli:66,round:[30,51],routin:[30,42,51],row:[13,21,74],rows_:64,rpc:14,rpcserver:14,rpi:105,rpi_arm_neon:105,rpi_toolchain:105,rsize:86,rtk:106,rule:[7,22,25,31,35,74,86],run:[0,3,4,5,6,7,8,9,10,18,19,20,21,22,23,24,26,30,31,32,33,34,35,36,40,43,47,48,50,51,52,54,55,56,57,59,62,63,64,66,67,68,69,72,74,76,77,78,80,81,82,83,84,85,86,88,89,90,91,93,97,98,103,104,105,106],run_test:1,runinitfunct:98,runnabl:24,running_on_cloud:18,runserv:78,runtim:[2,8,19,21,22,38,48,59,71,76,84,103],runtime_table_:8,s_block:7,s_recurrent_group:101,safe:18,sai:[0,20,32,35,37,40,58,93,95],said:31,sake:74,same:[1,5,6,14,15,17,19,20,21,22,33,34,36,39,40,48,49,51,57,59,60,63,66,69,70,75,76,77,82,84,86,95,101],sampl:[2,26,34,57,65,81,84,93,95],sampler:34,satifi:40,satisfi:[4,9,43,64,86],save:[0,10,12,14,15,18,19,22,35,36,40,44,52,64,71,81,86,87,93,95],save_dir:[87,93,95],save_only_on:[92,93],save_persist:82,saving_period:[92,93],saving_period_by_batch:[92,93,95],scalabl:59,scalar:[7,8,37,68,70],scale:[22,24,52,60,65,66,75,85],scaleop:75,scaleopmak:[59,75],scan:[7,14,40,59],scatter:[7,51],scenario:[49,92],scene:92,schdule:86,schedul:[14,18,24,86],scheme:[13,61,75],scienc:40,scope:[6,19,23,27,32,69,99],score:49,scorer:66,scp:88,script:[0,1,51,75,81,84,85,86,88,103],sdk:104,search:[1,10,63,93,101],second:[5,19,29,31,34,36,48,49,55,56,58,63,65,75,84],secret:86,section:[7,24,31,57,72,74,83,86,97,101],see:[5,7,10,19,21,24,30,31,57,66,72,75,77,82,86,97,98],seed:[93,98],seem:[4,9,21,30,31,66],seen:[61,75],segment:[48,70,77],sel:21,select:[49,86],selected_generation_scor:49,selected_id:49,selected_row:[64,71],selected_rows_desc:[64,71],selected_scor:49,selectedrow:[38,71],selector:87,self:[6,25,26,34,36,40,41,42,44,50,57,70,74,75],self_addr:19,semant:[5,49,62],semaphor:21,semat:5,send:[10,15,19,22,24,39,51,59,65,72,82,83,86,93],send_back_parameter_typ:13,sendbackparameterspars:13,sendbackparametertyp:13,sendparameterrequest:13,sendparameterrespons:13,sens:[52,61,72,97],sent:[5,15,19,22,59,65,71,87],sentenc:[31,48,49,70,101],sentence_input:70,separ:[15,22,33,52,60,61,81,82,93],seper:70,seq_len:70,sequenc:[7,8,19,27,31,35,41,50,55,66,70,72,74],sequenti:[8,19,21,101],seri:[4,20],serial:[8,14,44,53,59],serializ:[59,71],serv:[2,22,30,59,70,81,86,98],server:[1,5,9,13,16,17,22,32,51,59,74,83,84,91,92,106],server_endpoint:82,serverless:10,servic:[81,97,106],sess:[34,36,50],session:[36,50,56,98],set:[0,1,5,7,10,18,20,34,38,40,43,47,48,49,54,56,57,59,60,63,66,67,70,72,74,75,77,78,81,82,84,86,87,92,93,95,96,97,98,101,104,105],set_active_typ:74,set_attr:25,set_drop_r:74,set_float_el:6,set_input:25,set_output:25,set_shap:20,set_siz:74,set_typ:[25,74],setdatatyp:64,setdefault:75,setp:86,setq:0,settup:74,setup:[22,52,62,74,75,106],seven:66,sever:[1,6,13,22,24,34,48,49,51,53,54,57,64,67,70,84,85,86,95],sexstant:106,sgd:[5,10,18,24,52,53,64,82,83,99],sgd_optim:[82,99],sgdasync_count:92,shall:[7,9],shape:[6,7,8,20,22,34,37,47,48,55,57,59,64,66,67,75,77,82,99],shapes_:20,shard:[10,11,12,13,14,15,17,22,24,83,86],share:[0,9,20,34,46,53,57,59,61,66,67,70,75,93,98],shared_librari:9,shared_ptr:[43,45,46,63,67,77],shell:[2,86],shoul:6,should:[5,6,7,8,15,18,21,22,25,26,30,32,33,34,38,39,43,47,48,49,50,52,53,54,55,58,59,60,61,64,65,66,68,69,70,71,75,76,78,80,82,84,86,101,103],should_be_fals:5,should_be_tru:5,show:[0,4,7,8,10,20,21,29,31,37,40,44,48,51,52,55,68,70,77,83,86,87,93],show_check_sparse_distribution_log:[92,93],show_layer_stat:[92,93],show_parameter_stats_period:[87,92,93,95],shown:[5,22,26,51,54,66,74,77,86,98,101],shrink:74,shrunk:25,shuffl:[20,22,82],shuffleread:20,sid:86,side:[22,26,40,53,77,83],sig:86,sigint:84,sigmod:65,sigmod_op:65,sigmod_output:65,sigmoid:[8,65,70,74],sign:[28,44,86],signal:84,signatur:86,signific:[66,98],similar:[8,19,21,22,24,27,31,49,52,54,58,59,61,66,67,69,70,75,86,97,106],similarli:[31,40,75],simpl:[19,24,30,32,35,36,40,48,52,55,61,63,65,66,70,82,93,98],simple_attent:101,simple_gru:101,simple_rnn:101,simpler:53,simplest:86,simpli:[2,5,15,22,80,98,101],simplifi:[5,49,57,65,66,74,87],simul:[31,104],simultan:86,sinc:[10,14,16,17,21,22,23,24,31,38,40,43,47,52,57,58,60,61,70,77,82,86,98,104,106],sincer:72,singl:[1,7,10,20,22,24,26,30,39,51,59,63,66,74,80,83,87,97],singleton:[19,23],sit:22,site:[9,86,97],situat:[7,56,69],size:[2,10,12,13,15,21,22,30,34,40,44,49,52,57,58,64,65,66,67,70,74,75,77,80,82,93,99,101,103,104,105],size_in_byt:43,size_t:[13,20,67,70,74],sizeof:8,skip:[7,58,72,84,86],slice:19,slide:10,slight:31,slightli:34,slow:98,slowli:[0,97],small:[6,19,32,34,42,49,72,74,93],small_messag:[92,93],smaller:[6,10,30,49,72],smart:63,snap:87,snapdragon:30,snapshot:[11,17,86],snippet:[21,33,50,74,86,98,101],sock:18,sock_recv_buf_s:[92,93],sock_send_buf_s:[92,93],socket:93,softmax:[5,8,22,24,31,36,37,49,55,74,101],softmaxoutput:36,softwar:[30,54,98,106],solid:34,solut:[51,106],solv:[5,7,20,40,59],some:[5,7,8,9,13,14,15,17,18,20,21,22,24,25,30,32,33,34,35,39,40,43,47,48,49,50,55,56,57,58,59,60,63,67,69,70,72,74,75,76,77,81,86,92,93,95,98,103,104,105,106],some_c_api_funct:46,some_inst:46,some_op:[38,48,70],some_python_class:45,somecppclass:45,somegotyp:45,someth:[0,7,13,57,72,97],sometim:[0,54,58,98],somewhat:15,somewher:63,soon:10,sophist:74,sort:[70,86,93,97],sort_by_length:70,sortagrad:66,sourc:[0,6,9,29,31,34,42,44,46,49,58,59,85,86,87,97,101,104],source_dict_dim:[49,101],source_dict_s:49,source_language_word:[49,101],space:[0,24,30,57,61,66,98,101],span:54,spars:[13,21,74,77,81,86,93],sparse_remot:13,sparse_upd:13,sparseparam:74,sparseprefetchrowcpumatrix:74,speak:101,spec:[86,87],specfii:93,special:[7,15,22,30,32,38,47,49,50,75],specialvartypeinfer:38,specif:[0,7,9,10,20,22,25,29,32,49,59,63,67,75,82,95,103],specifi:[0,2,5,6,13,14,15,18,19,21,22,23,25,26,27,29,34,44,54,57,63,65,70,72,74,77,78,86,93,97,101,103,104],spectrogram:66,speech:66,speed:[1,30,44,51,52,106],speedup:54,sphinx:[45,78],split:[17,19,20,23,31,37,49,59,70,81,83,86,95],split_count:[81,86],spread:7,squar:36,square_error_cost:[82,99],srand:93,src:[9,43,81],src_backward:101,src_embed:[49,101],src_forward:101,src_primitive_desc:43,src_word_id:[49,101],src_word_vec:49,sreializ:71,ssh:[86,87,88,105],ssh_server:84,sstabl:5,stabil:[6,40,75],stabl:[62,86],stack:[27,59,70,86],stage:[9,16,23,34,40,43,66,71,84,103],stale:10,stamp:98,standalon:103,standard:[0,4,21,31,59,61,66,97],stanford:[6,87],star:9,start:[0,1,2,4,7,9,10,13,14,15,17,18,21,22,23,49,51,53,54,84,88,93,97,98,101,102],start_mpi_train:88,start_op_idx:7,start_pass:[92,93],start_pserv:93,startup:[10,18,31,86],stat:[93,98],state:[8,10,26,27,48,49,54,63,66,70,76,87,93,101],statem:40,statement:[21,31,35,40,74,86],static_cast:[43,77],staticinput:101,statist:[26,54,93],statset:98,statu:[18,49,86,87,98],status:87,std:[9,13,20,36,38,39,43,45,46,54,56,59,60,63,65,67,74,75,77,93],stdbuf:81,stderr:84,stdout:84,step:[1,2,6,8,10,15,21,22,24,26,31,34,35,41,49,52,53,57,59,65,66,70,72,74,80,83,86,87,88,97,98,101,103,105,106],step_gradi:7,step_id:70,step_input:70,step_net:8,step_output:70,step_scop:59,stepnet:[8,48,59,63],still:[4,7,14,17,22,31,40,60,77],stirng:57,stmt1482205552000:86,stmt1482205746000:86,stochast:[10,14,17,52,83],stop:[0,57,84,87,93],stop_gradi:57,storag:[28,30,81,86,87],store:[6,8,9,13,27,36,38,44,47,49,53,55,57,59,60,61,63,70,74,75,77,78,81,83,86,87,88,93,104,105],str:[7,18,70,95],straight:[55,58,64],straightforward:43,strategi:[10,57,93],stream:[22,43,54,67,76],stream_:67,strict:[58,83],stride:[43,47,66],string:[7,8,14,29,36,39,44,54,55,56,57,59,60,63,64,65,71,74,75,86,93],strip:97,strongli:91,struct:[14,15,28,30,38,39,46,47,54,60,65,69,76],structur:[7,8,14,31,34,44,49,55,57,59,64,84,86],sts:86,stuff:72,style:[1,59,65],sub:[5,7,17,19,24,34,40,48,51,53,57,74,101,103],sub_block:7,subclass:57,subcommand:29,subgraph:[24,34],submiss:22,submit:[43,59,78,85,86,92,93],subnet0:86,subnet:[5,86],subobjectpath:87,subsequ:51,subset:74,subtract:6,succ:40,succeed:[14,87],success:[15,86,87],successfulcr:87,successfulli:75,successor:93,sucess:40,sucessor:40,sudo:[0,86],suffer:6,suffici:93,suffix:[4,18,81],suggest:[9,72,98],suit:106,suitabl:[64,67,93],sum:[7,8,11,23,38,57,74,101],sum_op:7,summar:[34,54],summari:54,sumopgradmak:60,supercomput:40,suppli:64,support:[0,1,2,4,6,8,10,17,18,19,21,22,24,31,33,34,40,43,44,47,49,52,53,54,56,58,59,60,61,64,66,69,74,75,77,78,80,83,85,86,93,98,101,103,104,105,106],support_inplac:40,suppos:[9,19,33,64,74],suppress:29,sure:[0,1,74,82,86,97],svs:65,swagger:28,swig:[1,16,45,46,103,104],switchop:8,sychron:51,symbol:[4,8,36,46],symbols_ready_:8,symbolt:[8,59],symlink:72,sync:[10,52,61,93],sync_with_cpp:97,syncflag:74,synchron:[10,14,21,43,51,54,83,86,93],syntax:[19,27,31,49,58],sysroot:103,system:[1,2,4,8,9,10,15,17,21,22,24,28,33,34,40,42,66,75,78,81,85,87,97,103],tab:4,tabl:[8,19,31,38,44,64,71,104],tablelookup:64,tablelookupgrad:64,tablelookupop:64,tag:[2,62,91,101],tail:49,take:[0,1,5,7,8,9,10,17,19,20,21,22,25,27,30,32,34,35,37,38,40,43,47,52,55,56,57,58,59,60,67,69,70,72,74,75,76,81,82,86,87,91,97,98,101],taken:[25,36,40,47,70],talk:[15,32,105],tangl:97,tanh:[34,49,74,101],tar:86,tarbal:86,target:[1,7,8,9,25,27,34,36,50,56,59,75,101,103,104,105],target_block:[7,25],target_dict_dim:101,target_dict_s:49,target_language_word:101,target_link_librari:9,target_word:49,task13:66,task14:66,task:[22,44,49,54,65,82,95,101],task_queu:14,taskentri:14,taskqueu:14,tbd:[16,43,66],tcp:[86,93],tear:98,technic:[7,10,82],techniqu:[40,74,97,101],technolog:[0,31],tee:87,tell:[2,10,14,15,49,65,98,103],templat:[33,43,65,67,75,76,77,87,106],tempor:66,temporari:[7,18,27,40,52,57],tempori:40,ten:0,tensor:[6,9,19,21,23,24,30,31,32,34,36,38,39,43,44,47,48,49,64,70,71,75,99],tensor_arrai:19,tensor_array_read:70,tensor_array_s:70,tensor_array_stack:70,tensor_array_unstack:70,tensor_array_writ:70,tensor_data:44,tensor_in:69,tensor_s:6,tensor_test:9,tensor_to_check:6,tensorarrai:23,tensorarraydesc:70,tensordesc:[44,64],tensorflow:[8,19,21,22,24,31,34,37,61,70,77],term:[10,60,61,66],termin:87,terminolog:40,tessorarrai:70,test1:12,test:[0,5,6,9,36,46,52,58,62,77,80,81,82,88,92,98,99],test_:75,test_all_data_in_one_period:87,test_check_grad_ingore_i:75,test_check_grad_ingore_x:75,test_check_grad_norm:75,test_check_output:75,test_data_dir:81,test_fcgrad:74,test_gpuprofil:98,test_layergrad:74,test_mkldnn:42,test_mklpack:41,test_mul_op:[1,75],test_norm:75,test_pass:[92,93,95],test_period:[92,93,95],test_recurrent_op:72,test_wait:[92,93],testa:5,testb:5,testbilinearfwdbwd:98,testcas:75,testconfig:74,testfcgrad:74,testfclay:74,testlayergrad:74,testmodel_list:92,testmulop:75,testq:5,testsave_dir:92,testutil:74,text1:29,text:[5,44,48,54,66,86],tflop:98,tftp:106,tgz:4,than:[0,1,7,10,18,19,20,25,31,32,33,34,57,59,61,68,70,74,81,82,86,101,103,106],the_step:31,theano:31,thei:[0,5,7,9,10,15,17,19,20,21,24,25,29,31,34,35,39,40,49,50,54,57,59,65,70,71,72,74,75,77,82,83,86,92,98,101],them:[0,5,6,7,9,10,13,18,20,21,24,25,31,32,33,38,39,40,49,57,58,59,60,63,64,65,69,70,71,72,75,78,82,86,92,93,98],themselv:[7,9],theori:[31,98],therefor:[7,40,52],therein:8,theta:34,theta_d:34,theta_g:34,thi:[0,2,4,5,6,7,8,9,10,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,30,31,32,33,34,35,36,39,40,43,47,48,49,50,51,52,53,54,55,57,58,59,60,61,64,65,66,67,69,70,72,74,75,76,77,78,80,81,82,83,86,87,91,93,95,97,98,99,101,103,104,105,106],thin:38,thing:[22,34,59,67,98],think:[5,9,82],third:[10,36,75,97,98,103,104,105],third_parti:[42,103,104,105],thirt:0,those:[8,9,10,33,35,36,37,55,103],though:[70,106],thought:[9,98],thread:[19,21,23,54,74,81,93,95,97,98],thread_count:23,thread_id:54,thread_id_:54,thread_local_rand_use_global_se:[92,93],thread_pool:23,threadid:95,threadloc:98,threadpool:19,three:[6,7,10,21,26,30,31,32,35,43,49,50,53,54,55,58,66,67,93,103],threshold:[10,14,25,72,93],through:[7,9,10,14,16,26,40,50,52,74,75,78,81,98,99,101,104],throughout:27,throughput:[81,98],thrust:59,thu:[17,26,36,40,66,74,86],tier:87,time:[0,1,5,6,9,10,14,17,20,21,22,24,25,31,33,38,40,41,47,48,49,51,54,57,58,59,60,64,65,66,70,71,77,87,93,95,97,98,101,106],timelin:[54,59,98],timeo:86,timeout:[10,14],timestamp:11,timestep:63,tip:[103,104],titan:40,tls:28,tmp:57,todo:[8,10,14,17,49,65,66],togeth:[7,70,82,101],token:[5,66,101],toler:[1,6,75],too:[6,19,21,25,43,69,70],took:106,tool:[0,1,4,54,82,85,86,97,101,103,105],toolchain:[97,103,104],toolkit:66,top:[48,49,66,75],top_k:49,top_level_rnn:48,topic:43,topk_generated_scor:49,topk_id:49,topk_scor:49,toplevel:0,topolog:[5,10,22,36,40,44,53],topoloi:36,torch:[8,31],total:[10,24,26,51,54,58,81,85,87,97,98,106],total_pass:58,tottim:97,toward:31,trace:[8,32,34],track:[10,14,36,57],tradit:[8,30,66],traffic:22,train:[7,8,12,14,15,17,19,20,25,26,27,31,32,34,35,40,41,44,51,52,53,54,55,56,57,59,61,64,66,67,71,74,85,89,90,92,96,98,101,104],train_config_dir:86,train_data:81,train_data_dir:81,train_id:86,train_list:81,train_loop:31,train_read:[22,82],trainabl:[44,57],traindot_period:92,trainer:[5,11,12,13,14,16,22,24,32,41,42,52,53,59,74,82,83,84,93,95],trainer_config:[86,87],trainer_config_help:74,trainer_count:[80,81,86,87,92,93,95],trainer_cpu:18,trainer_cr:18,trainer_gpu:18,trainer_id:[81,86,93],trainer_intern:13,trainer_mem:18,trainer_packag:18,trainer_prog:22,trainerid:17,training_rol:82,trainingjob:22,trainingtest_period:92,trainonebatch:13,tran:[43,74,93],trans_var:69,transact:[10,14],transcript:66,transfer:[40,54],transform:[59,66,74,77,101],translat:40,translation_id:49,translation_scor:49,transpar:[49,84],transpil:[19,82],transport:93,transpos:74,travers:[7,35,40],travi:72,treat:[8,15,40],treatment:[15,30],tree:[8,19,27,31,57,93,99,105],trg_dic_siz:49,trg_embed:[49,101],trick:49,tricki:45,trigger:[17,20,53],trivial:[49,70],true_block:[8,37,55],true_imag:58,true_label:58,true_neg:26,true_posit:26,true_read:58,tune:[66,96,97],tuninglog_barrier_abstract:92,tupl:[7,57,58],turn:[2,57,58],tutori:[1,2,74,75,86,88,89,90,97,98,101,104],twice:[24,34,82],twine:62,two:[1,5,7,15,16,17,18,19,20,21,22,26,29,30,31,32,34,35,38,40,44,47,49,52,54,55,58,59,60,61,63,64,65,66,69,70,71,75,77,84,86,95,98,101,103,105],txt:[9,18,29,41,42,74,78,81,86,88],type:[0,5,7,8,10,13,14,17,18,20,22,28,29,30,32,38,39,43,44,45,46,48,49,55,56,57,58,59,60,61,64,65,66,67,69,71,74,76,77,80,81,83,86,87,91,93,95,101,104],type_nam:65,typedef:[15,30,45,46,47,67,76],typeerror:25,typeid:65,typenam:[33,65,67,75,76,77],typic:[22,98,104],ubuntu:[4,62,80,97],ubyt:58,uci_h:[80,82],uid:87,uint16_t:30,uint32:[28,44],uint32_t:54,uint64:[44,45],uint64_t:45,unawar:15,unbalanc:93,unbias:6,unblock:21,unbound:[40,101],unbuff:21,unclear:17,uncreat:7,under:[1,2,9,14,24,51,69,77,78,81,84,85,86],underli:[20,49],understand:[31,57,66,97,98,106],understand_senti:101,undeterminist:98,uni:66,unidirect:66,unifi:[20,27,36,64,72],uniform:[12,34,57,58,93],uniform_random:57,uniniti:7,uninstal:1,uniqu:[5,8,10,17,18,43,47,57,63,75,82,86,91,93],unique_nam:57,unique_name_gener:57,unique_ptr:[60,63,67,74],unit:[0,1,9,52,54,61,67,77,101],unittest:[46,72,75],unittestcheckgrad_ep:92,unix:21,unk:[64,71],unlik:[49,75],unnecessari:[7,66,72],unordered_map:63,unpack:70,unrol:48,unseen:61,unsign:[15,30],unstack:70,unstack_from:70,unsupervis:34,unsupport:75,until:[10,15,21,23,24,31,40,63,82,86],unzip:103,updat:[4,7,10,14,15,22,28,30,34,48,49,50,51,52,53,63,66,70,74,81,83,93,95,97],update_memori:8,update_op:50,updatecallback:74,updatestack:86,upgrad:[1,4,51],upload:[10,18,21,28,62,83],upon:10,upstream:72,uri:86,url:72,usag:[30,37,40,53,57,68,75,98,104],use:[0,1,2,4,5,6,8,9,10,16,20,21,22,23,24,27,30,34,36,38,39,40,43,47,49,50,51,53,54,57,63,64,65,66,69,70,71,72,74,75,76,78,80,81,83,86,87,93,95,97,98,101,103,104,105],use_cpu:39,use_cudnn:39,use_eigen_bla:103,use_eigen_for_bla:[103,104],use_gpu:[80,81,87,92,93,95],use_mkl_pack:41,use_mkldnn:[39,42],use_old_updat:[13,92,93],use_sparse_remote_updat:13,used:[0,1,4,5,6,8,9,10,16,17,20,21,22,25,27,30,31,34,36,40,48,49,52,53,54,57,58,59,61,63,65,67,69,70,74,75,77,86,92,93,95,97,98,101,103,104,105],useful:[6,30,40,57,63,69,74,95,101,103],usegpu:74,user:[2,5,6,7,8,9,12,14,17,18,19,22,23,24,25,26,27,29,33,34,35,36,38,39,43,47,49,50,51,52,54,57,58,59,60,61,63,65,67,69,70,72,76,78,81,86,92,93,97,103,106],user_nam:12,usercert:12,userkei:12,usernam:12,uses:[0,1,4,6,10,17,19,21,22,30,40,47,48,49,53,54,67,69,72,74,77,78,83,86,93,101,103],using:[1,2,3,4,5,6,7,8,9,10,14,15,17,18,21,22,27,29,30,31,33,34,36,38,40,48,50,52,55,57,58,60,61,63,65,66,67,72,74,75,76,77,78,80,81,86,87,88,91,93,95,98,101,103,105],usr:[1,2,81,86,93],usual:[7,18,40,47,54,55,61,67,72,75,86,93,95,97,98],util:[22,41,42,51,74,75,76,98,101,106],uuid:[11,17],v7a:103,v8a:103,val:7,valid:[58,59,63,75,86,104],valu:[6,7,8,10,19,21,25,26,36,37,40,42,44,48,49,50,52,53,55,59,63,64,65,68,70,71,74,75,76,82,86,93,95,101,103,104],value1:93,value2:93,value_:64,valueerror:36,values_:70,vanilla:101,var_nam:[7,69],var_recurs:25,vardesc:[8,35,55,57,59,64],vardescbuild:8,vari:[86,98],variabl:[5,6,8,19,20,21,22,24,25,26,27,32,34,35,36,37,38,47,48,49,50,52,55,56,60,61,64,65,66,69,70,74,75,76,81,85,86,87,97,99,103,104],variablenamemap:75,varialbl:34,variant:[38,47,67,70,76],varibal:7,varibl:36,varienc:70,varient:70,variou:[8,21,30,40,61,103],varproto:65,vars_:[8,63],vartyp:[64,71],vartypeinfer:38,vec2seq:66,veclib:104,vector:[5,8,13,15,20,36,37,43,48,49,54,57,59,60,64,66,68,70,74,77,101],vectorenable_parallel_vector:92,vendor:9,verbos:[29,72],veri:[9,14,19,24,27,31,33,34,40,43,49,53,58,61,63,66,67,70,84,97,98,101],verifi:[8,74,104],version:[0,1,2,7,9,18,22,25,29,32,34,36,37,44,49,62,66,74,80,82,86,87,91,92,93,97,98,103,104,105],versu:5,via:[3,7,10,47,72,82,86,98,104,106],view:[44,47],vim:2,viriabl:81,virtual:[0,20,25,38,39,60,67,76],virtualenv:0,visibl:[17,63],visit:7,visual:[49,98],vlog:[13,72],vocabulari:66,voila:80,volum:[78,87],volumemount:[86,87],volumn:86,wai:[0,5,7,15,17,21,27,31,39,40,49,52,57,58,61,70,72,74,95,101],wait:[10,15,21,23,76,81,82,83,93],walk:104,wangkuiyi:9,want:[0,1,2,5,18,19,21,26,34,39,47,52,54,56,58,61,63,67,68,69,70,72,74,78,81,93,95,97,103,105],warn:29,warp:98,warp_ctc:66,wast:51,watch:10,wbia:86,web:[78,97],websit:78,weight:[41,44,61,74,93,95,101],weightlist:74,weights_:74,weights_primitive_desc:43,weights_t:74,welcom:[9,66,72],well:[7,18,21,22,24,31,33,34,61,64,66,74,82,86,93],wer:66,were:[9,21,31],west:86,wget:103,wgt:43,what:[9,20,31,34,49,57,65,69,75,97,106],whatev:[0,81],wheel:4,when:[0,1,3,7,8,9,10,13,14,15,18,19,22,24,25,26,27,29,30,31,32,36,49,51,52,53,54,55,57,59,67,70,72,74,75,77,78,81,83,85,86,87,93,95,97,98,101,103,104,106],whenev:[57,66,72],where:[5,7,8,10,17,19,22,31,32,35,47,48,49,52,55,59,61,67,70,74,75,93,95,97,98,99,101],wherea:[8,14,33,37,67,68,71],whether:[1,2,6,7,8,20,27,54,58,64,70,74,75,93,104],which:[0,1,4,5,6,7,8,9,10,12,14,15,17,18,19,20,21,22,23,25,27,30,31,32,33,34,36,38,40,43,44,47,48,49,50,51,53,55,56,57,58,59,60,63,64,65,68,69,70,71,72,74,75,76,77,81,82,83,84,86,93,95,97,98,101,103,104,106],while_grad:40,while_loop:[49,70],while_op:7,whileloop:70,whileop:8,white:66,whl:1,who:[7,33,35,51,57,72],whoever:15,whole:[7,20,34,37,40,45,46,48,51,56,65,66,72,83,86,87,106],wholli:20,whose:[6,7,10,17,25,48,59,60,65,70,101],why:[0,6,46],wide:[4,9,25,34,84,88],width:[13,45,58,74,75],wiki:9,window:[0,2,52,66,103],wirt:36,wise:[24,59,66,77],wish:[1,4,78,81,82],with_avx:[1,2,91,103,104],with_bia:65,with_c_api:[1,103,104,105],with_distribut:82,with_doc:1,with_doubl:[1,74,91],with_dso:1,with_golang:[1,103],with_gpu:[0,1,91,103,104],with_mkl:[1,41,42,103],with_mkldnn:42,with_mklml:42,with_profil:98,with_python:[1,91,103,104],with_rdma:[91,103,104],with_style_check:[1,72],with_swig_pi:[1,103,104],with_test:[1,75],with_tim:[91,98],within:[14,22,31,66,104],without:[7,10,15,20,21,54,57,58,59,66,75,81,88,97],wloop:70,wmt14:101,won:[83,98],word2vec:[18,81],word:[7,24,35,38,40,48,49,59,65,66,70,76,81,95,101],word_dict:[81,88],word_vector_dim:[49,101],wordcount:66,work:[0,2,5,8,9,10,22,27,30,31,39,50,52,54,57,72,74,78,82,83,86,87,93,97,98,101,106],worker:[24,71,86],workercount:86,workflow:[59,86],workspac:[72,81,84,93],world:81,worri:6,worth:99,would:[0,2,8,9,10,17,21,22,23,24,31,33,34,35,43,50,52,53,57,58,64,66,70,72,82,86,97,103,106],wouldn:[31,35],wrap:[20,31,33,34,51,106],wrapper:[9,20,21,33,51,52,60,70,98],write:[0,5,10,17,19,20,21,22,24,30,31,32,33,36,38,43,50,52,57,58,59,60,67,70,73,81,85,86],write_lock:11,write_to_arrai:40,writer:[5,57],written:[1,2,7,8,19,24,27,34,44,52,59,60,64,75,77,84,97],wrong:58,wrote:36,wsize:86,x64:[103,105],x86:104,x86_64:[103,104],x_neg:6,x_po:6,xarg:[2,74,88],xcode:104,xcodebuild:104,xeon:76,xgbe0:93,xgbe1:93,xpu:31,xrang:[6,31,34,54,58,74,80],xx_layer:39,xxx:[5,70],xxxx:11,xxxxxxxxx:86,xxxxxxxxxx:86,xxxxxxxxxxxxx:86,xxxxxxxxxxxxxxxxxxx:86,y_dim:34,y_neg:6,y_po:6,y_predict:[80,82,99],yaml:[9,84,86,88,106],yancey1989:18,yapf:72,year:31,yep:[54,97],yet:[31,66,106],yield:[5,12,20,58],you:[0,1,2,3,4,6,18,22,30,63,72,74,75,76,78,80,81,82,84,86,88,91,93,95,97,98,101,103,104,105,106],your:[0,1,3,4,5,9,13,18,29,59,72,74,78,81,82,84,86,91,95,98,103,104,105,106],your_access_key_id:86,your_secrete_access_kei:86,your_source_root:46,yourself:1,yuang:31,yuyang:97,z_dim:34,z_size:34,zero:[6,7,10,21,34,49,53,57,64,74,86,93],zip:[57,103],zone:86,zxvf:86},titles:["Build using Docker","Build from Sources","Run in Docker Containers","Install and Build","Install Using pip","PaddlePaddle Design Doc","Auto Gradient Check Design","Backward Building","Design Doc: Block and Scope","Required CMake Function","Design Doc: Distributed Training","\u6a21\u578b\u53c2\u6570\u68c0\u67e5\u70b9\uff08Checkpointing\uff09","\u8bad\u7ec3\u6570\u636e\u7684\u5b58\u50a8\u548c\u5206\u53d1","Alalysis of large model distributed training in Paddle","Design Doc: Master Server","Design Doc: The Client Library of Parameter Server","Design Doc: Remote Parameter Updater for Cluster Train","Design Doc: Save Model","Submit a Distributed Training Job","Design Doc: Concurrent Programming with Fluid","C++ Data Feeding","Design Doc: CSP in PaddlePaddle Fluid","Design Doc: Distributed Training Architecture","Design Doc: Execute the Program with Multi CPU","Design Doc: Parameter Server","Error Clip","Evaluator Design","Executor Design Doc","FileManager\u8bbe\u8ba1\u6587\u6863","PFSClient","Design Doc: float16","Design Doc: PaddlePaddle Fluid","PaddlePaddle Fluid: Towards a Compiled Programming Language","Design Doc: Functions, Operators, and Layers","Design for GAN","Design Doc: Computations as a Graph","Survey on Graph","The IfElse
Operator","Design Doc: InferVarType","Problem","Memory Optimization","Intel\u00ae MKL Packed on PaddlePaddle: Design Doc","Intel\u00ae MKL-DNN on PaddlePaddle: Design Doc","Design Doc: Add MKLDNN Kernel in Fluid Operator","Design Doc: Model Format","Paddle\u591a\u8bed\u8a00\u63a5\u53e3\u5b9e\u73b0","C-API \u6a21\u578b\u63a8\u65ad\u5b9e\u73b0\u6587\u6863","Design Doc: The Keys of Operator Kernel Type","RNNOp design","Design: Sequence Decoder Generating LoDTensors","Optimizer Design","Design Doc: NCCL support in Paddle Fluid","Averaging Parameter in PaddlePaddle","Design Doc: The C++ Class Parameters
","Introduction","Design Doc: PaddlePaddle Programs","Prune","Design Doc: Python API","Python Data Reader Design Doc","Design Doc: Refactorization Overview","Design Doc: Gradient Operators Registration","Regularization in PaddlePaddle","PaddlePaddle\u53d1\u884c\u89c4\u8303","Design of Scope in Paddle","Design Doc: Selected Rows","Interaction between C++ and Python","DeepSpeech2 on PaddlePaddle: Design Doc","Design Doc: Supporting new Device/Library","Design Doc: Switch","Background","Design for TensorArray","Background","Contribute Code","Development","Write New Layers","How to write a new operator","Add Kernels for a New Device","How to use Eigen in Paddle","Contribute Documentation","GET STARTED","Quick Start","Command-line arguments","Fluid Distributed Training","Distributed Training","Cluster Training Using Fabric","Use different clusters","Distributed PaddlePaddle Training on AWS with Kubernetes","PaddlePaddle On Kubernetes","Cluster Training Using OpenMPI","<no title>","<no title>","Preparations","Argument Outline","Detail Description","Set Command-line Parameters","Use Case","HOW TO","Profiling the Python Code","Tune GPU Performance","PaddlePaddle Fluid Source Code Overview","RNN Models","RNN Configuration","PaddlePaddle Documentation","Build PaddlePaddle for Android","Build PaddlePaddle for iOS","Build PaddlePaddle for Raspberry Pi","Cluster bootstrapping tool survey"],titleterms:{"\u4e0a\u4f20\u8bad\u7ec3\u6587\u4ef6":12,"\u4e0d\u4f7f\u7528":45,"\u4e0d\u4f7f\u7528swig\u8fd9\u79cd\u4ee3\u7801\u751f\u6210\u5668":45,"\u4e0d\u5bfc\u51fapaddle\u5185\u90e8\u7684\u7ed3\u6784\u4f53":45,"\u4e0d\u5f15\u7528\u5176\u4ed6\u52a8\u6001\u5e93":45,"\u4ec5\u4ec5\u4f7f\u7528void":45,"\u4ece\u5feb\u7167\u6062\u590d":11,"\u4f7f\u7528\u52a8\u6001\u5e93\u6765\u5206\u53d1paddl":45,"\u4f7f\u7528\u8f6c\u6362\u5e93":12,"\u5177\u4f53\u67d0\u79cd\u7c7b\u578b\u7684\u5934\u6587\u4ef6":46,"\u5177\u4f53\u67d0\u79cd\u7c7b\u578b\u7684\u5b9e\u73b0\u6587\u4ef6":46,"\u5206\u5757\u6587\u4ef6\u4f20\u8f93":28,"\u5206\u652f\u89c4\u8303":62,"\u52a0\u901f\u6267\u884c":11,"\u52a8\u6001\u5e93\u4e2d\u4e0d\u5d4c\u5165\u4efb\u4f55\u5176\u4ed6\u8bed\u8a00\u7684\u89e3\u91ca\u5668":45,"\u52a8\u6001\u6269\u5bb9":11,"\u539f\u56e0":45,"\u539f\u56e0\u5217\u8868":45,"\u53c2\u8003\u6587\u6863":28,"\u53d1\u5e03docker\u955c\u50cf":62,"\u53d1\u5e03wheel\u5305\u5230pypi":62,"\u540d\u8bcd\u89e3\u91ca":28,"\u57fa\u672c\u8981\u6c42":45,"\u5b9e\u73b0":45,"\u5b9e\u73b0\u65b9\u5f0f":46,"\u5bfc\u51fac":45,"\u5feb\u7167\u4fdd\u5b58\u7684\u8bbe\u8ba1\u5982\u4e0b":11,"\u6307\u9488\u4f5c\u4e3a\u7c7b\u578b\u7684\u53e5\u67c4":45,"\u63a8\u6d4b\u6267\u884c":11,"\u652f\u6301\u7528\u6237\u81ea\u5b9a\u4e49\u7684\u6570\u636e\u9884\u5904\u7406job":12,"\u6587\u4ef6\u4f20\u8f93\u4f18\u5316":28,"\u6587\u4ef6\u8bbf\u95ee\u65b9\u5f0f":12,"\u6587\u4ef6\u8bbf\u95ee\u7684\u6743\u9650":12,"\u6587\u4ef6\u9884\u5904\u7406":12,"\u66b4\u9732\u63a5\u53e3\u539f\u5219":46,"\u672f\u8bed":11,"\u67b6\u6784\u56fe":28,"\u6846\u67b6\u751f\u6210":28,"\u6982\u5ff5\u89e3\u91ca":12,"\u6a21\u5757":28,"\u6a21\u578b\u53c2\u6570\u68c0\u67e5\u70b9":11,"\u6a21\u578b\u63a8\u65ad\u5b9e\u73b0\u6587\u6863":46,"\u6d41\u7a0b\u4ecb\u7ecd":12,"\u751f\u6210sparse\u6587\u4ef6":28,"\u7528\u6237\u4f7f\u7528\u6d41\u7a0b":28,"\u76ee\u5f55\u7ed3\u6784":46,"\u76ee\u6807":28,"\u793a\u4f8b\u7a0b\u5e8f":12,"\u7b26\u53f7":45,"\u7c7b":45,"\u7f16\u8bd1\u9009\u9879":46,"\u7f29\u5bb9":11,"\u800c\u662f\u624b\u5199\u591a\u8bed\u8a00\u7ed1\u5b9a":45,"\u80cc\u666f":45,"\u8986\u76d6\u4e0d\u4e00\u81f4\u7684\u90e8\u5206":28,"\u8bad\u7ec3\u6570\u636e\u5b58\u50a8":12,"\u8bad\u7ec3\u6570\u636e\u7684\u5b58\u50a8\u548c\u5206\u53d1":12,"\u8f6c\u6362\u5e93":12,"\u8fd9\u4e2a\u52a8\u6001\u5e93\u4f7f\u7528c99\u6807\u51c6\u7684\u5934\u6587\u4ef6\u5bfc\u51fa\u4e00\u4e9b\u51fd\u6570":45,"\u8fdb\u884c\u8bad\u7ec3":12,"abstract":[22,23,24,51,106],"book\u4e2d\u6240\u6709\u7ae0\u8282":62,"case":[7,95],"class":[34,53,57,74],"filemanager\u8bbe\u8ba1\u6587\u6863":28,"final":39,"function":[9,33,34,57],"new":[67,74,75,76],"paddle\u52a8\u6001\u5e93\u4e2d":45,"paddle\u591a\u8bed\u8a00\u63a5\u53e3\u5b9e\u73b0":45,"paddlepaddle\u53d1\u884c\u89c4\u8303":62,"paddlepaddle\u56de\u5f52\u6d4b\u8bd5\u5217\u8868":62,"return":[57,58],"switch":[43,67,68],"tensor\u5230eigentensor\u7684\u8f6c\u6362":77,AWS:86,DNS:86,E2E:82,EFS:86,For:[9,87],KMS:86,Not:0,The:[8,15,19,27,31,34,35,37,38,47,50,53,59,60,68,105],Use:[8,55,78,80,85,87,95],Using:[4,9,15,84,88,103],With:18,about:34,absolut:49,access:86,account:86,action:[41,42],activ:42,actor:21,add:[40,43,76,86],address:86,advanc:67,alalysi:13,algorithm:[6,10,22,48,56],all:[63,70],analog:19,analysi:[22,40],android:103,api:[22,41,42,46,50,52,57,61,65],appendix:106,approach:98,arbitrari:31,architectur:[22,54,101],argument:[29,58,81,92,95,103,105],arrai:6,asset:86,associ:[63,86],assumpt:106,async:93,attent:101,attribut:[40,61],auto:6,averag:52,aws:86,background:[6,24,41,67,68,69,70,71,75,76],backward:[7,31,35,59,75],base:[18,49],basic:[40,67,106],batch:58,batch_siz:58,beam:[49,66],benchmark:[41,42],benefit:[24,59],between:[5,21,57,59,65,67],binari:8,bind:75,bla:1,block:[8,32,34,35,55,57,59],blockdesc:55,book:2,bool:1,bootstrap:106,bottleneck:97,bring:106,bucket:86,build:[0,1,3,7,34,59,78,87,103,104,105],built:98,can:63,capi:46,capi_priv:46,challeng:[7,24,56],chang:49,channel:21,check:[6,74,84],checkpoint:[10,11,17],choic:39,choos:[9,86],client:15,clip:25,close:6,cloudform:86,cluster:[16,82,84,85,86,88,95,106],cmake:[9,41,42,105],code:[18,32,57,72,97,99],command:[81,94,95],commit:87,common:93,commun:93,compar:106,comparis:57,compat:31,compil:[1,8,30,32,55,59,75,99,103,104,105],complet:31,compos:58,comput:[8,35,43,59,61,77],con:106,concept:[57,59,86],concern:42,conclus:[17,36,106],concurr:[19,21],condit:34,config:95,configur:[86,101,104],construct:35,contain:[2,87],content:[41,42,46,66,86,98],context:76,contribut:[72,78],control:[40,59],contruct:40,convert:17,convolut:66,core:[6,57,86],corner:7,cpu:[23,95],creat:[7,21,58,59,63,86,87],createreaderop:20,creation:[14,52,61],creator:58,credenti:86,cross:[103,104,105],csp:21,ctc:66,cuda:[1,30],cudnn:1,current:[30,60],custom:58,data:[10,20,22,58,69,86,87],dataflow:40,dataprovid:93,dataset:[10,14,81],datatyp:47,decod:49,decor:58,decoratedread:20,deep:[8,31],deepspeech2:66,defin:[75,86],definit:71,delet:86,demo:[34,82,86],dens:17,dep:4,depend:[1,4,34,66],deploi:18,deriv:74,describ:[31,50],descript:[29,59,93],design:[5,6,8,10,14,15,16,17,19,21,22,23,24,26,27,30,31,33,34,35,38,41,42,43,44,47,48,49,50,51,53,55,57,58,59,60,63,64,66,67,68,70],destroi:[63,86],detail:[13,66,93],develop:[0,59,73],devic:[67,76,95],devicecontext:67,dictionari:58,differ:[59,67,85,95],directori:86,discrimin:34,discuss:[24,34],dispatch:[10,14],distribut:[5,10,13,18,22,24,82,83,86,93],dnn:42,doc:[5,8,10,14,15,16,17,19,21,22,23,24,27,30,31,33,35,38,41,42,43,44,47,51,53,55,57,58,59,60,64,66,67,68],docker:[0,2,18,87,103],document:[78,102],doe:58,down:86,download:[86,87],dure:[49,58],dylib:46,dynam:[10,70],dynet:36,each:4,ec2:86,eigen:77,elast:86,elect:17,els:8,engin:34,enough:6,entri:58,environ:[18,103],equat:74,error:25,evalu:26,event:[5,54],evolut:31,examin:97,exampl:[5,9,19,21,37,46],execut:[8,23,31,55,59],executor:27,explan:6,extern:86,fabric:84,faq:[3,4],fault:10,feed:20,file:[8,86,87,97],fileread:20,find:86,float16:30,flow:40,fluid:[19,21,31,32,43,51,82,99],format:[8,10,44],forward:[35,75],frame:8,framework:[6,76,77],from:[1,3,5,17,65],functor:67,futur:[31,66],gan:34,gate:101,gener:[0,32,34,49,97,101,106],get:[79,82,87],give:58,global:[55,57],gotcha:0,gpu:[2,93,95,98],grad_op:7,gradient:[6,7,15,42,60,74],graph:[35,36,40,59,61],group:86,gru:93,hand:98,handler:[5,45],happen:17,hardwar:30,have:82,helper:57,hierarchi:8,high:[50,52,61,65],how:[1,6,13,52,58,59,67,75,77,78,96,98],iOS:104,iam:86,identifi:97,ifels:37,ifelseop:8,imag:[2,18,87,103],implement:[6,7,9,13,23,25,26,30,44,48,51,52,57,58,59,60,61,74,75,76,77],infer:103,infershap:[55,64],infervartyp:38,ingredi:5,ingress:28,initi:[15,34,86,95],insid:63,inspect:86,instal:[3,4,80,82,86,103,104,105,106],instanc:86,instead:58,integr:[67,86],intel:[41,42],interact:65,interfac:[6,10,15,16,27,50,58,63],intermedi:59,introduc:[49,70,82],introduct:[54,61,82],isn:58,issu:30,job:[10,18,84,86,87,88],kei:[41,47,86],kernel:[43,47,59,76],kill:84,kube:86,kubectl:86,kubernet:[18,86,87],languag:[8,32],larg:13,launch:[2,84,88],layer:[5,33,41,42,57,74,95],layout:47,learn:[8,31],leval:65,level:[50,52,61,65],libpaddle_capi_shar:46,libpaddle_capi_whol:46,librari:[15,30,47,59,67,103],limit:22,line:[81,94],linux:[84,103],list:[11,58],live:40,load:21,local:[22,63,86,95],lod:49,lodtensor:[48,49,70],lodtensordesc:71,log:72,logic:14,look:97,low:[52,61,65],lstm:93,machin:49,macro:59,main:34,make:40,manag:9,map:[58,59],master:[10,14,18,19],math:67,mathemat:6,matrix:[42,93],member:34,memori:[40,48,67],messag:65,method:49,might:34,migrat:59,mileston:59,mini:58,minibatch:21,mix:95,mkl:[41,42],mkldnn:43,mkldnn_helper:43,mkldnndevicecontext:43,model:[5,13,15,17,21,31,34,44,49,84,95,100,101],modifi:87,modul:[59,67,77],more:34,motiv:[7,21,27,44,51,56],multi:[23,32],multipl:58,mxnet:36,name:[63,86],nativ:32,nccl:51,necess:57,necessari:59,need:[0,58,98],nest:48,network:[59,95,101],neural:101,nlp:93,non:82,norm:61,note:6,numer:6,numpi:6,nvprof:98,nvvp:98,object:10,offset:49,onli:[58,63],op_mak:59,openmpi:88,oper:[20,33,37,40,43,47,52,55,57,59,60,64,70,75],opinfomap:59,opkernel:[59,67,75,76],opproto:65,ops:61,optim:[10,15,35,40,50,57],option:[1,29],opwithkernel:59,order:29,org:78,origin:59,orthogon:63,other:42,outlin:92,output:[84,86],overview:[17,25,27,41,42,59,63,66,99],pack:[41,49],packag:[4,9],paddl:[13,51,58,63,77],paddlejob:18,paddlepaddl:[1,2,4,5,8,21,31,32,41,42,52,55,61,62,66,78,82,86,87,99,102,103,104,105],pair:86,paradigm:31,parallel_nn:95,paramet:[5,10,15,16,18,21,24,42,52,53,57,61,81,82,86,93,94],parameteraverageoptim:52,parent:63,part:35,partit:15,pass:[1,95],path:[17,29],penalti:61,perform:[52,93,97,98],persist:14,pfsclient:[28,29],pfsserver:28,pip:4,place:[40,47,67,76],placement:22,point:[41,86],polici:40,pose:[38,60],potenti:39,prefetch:58,prepar:[81,82,84,86,88,91,104],principl:43,privat:86,pro:106,problem:[26,38,39,40,47,50,60,69],procedur:106,process:[0,10,15,18,50,59],profil:[97,98],program:[2,8,19,21,23,31,32,55,57,81,82],programdesc:[32,55],project:9,propos:[38,60,61],protobuf:64,protomak:75,provid:58,prune:56,pserver:17,pull:2,python:[6,18,22,41,42,48,50,52,57,58,61,65,71,74,75,97],qualiti:59,queue:[10,14],quick:80,randomnumb:93,raspberri:105,reader:[5,20,58],readerbas:20,readerhold:20,readi:82,readop:20,realiz:59,recoveri:10,recurr:101,recv:21,refactor:59,refer:[6,22,24,40,41,42,66,98],region:86,regist:[38,59,65,75,76],registr:[59,60],registri:59,regular:[15,61],rel:49,relat:[20,59,70],remark:75,remot:16,remoteexecutor:22,render:86,represent:[8,59],requir:[9,34],result:[84,87],retri:14,reus:57,review:72,rnn:[48,70,93,100,101],rnnop:[8,48,59],route53:86,row:[64,66],rpc:21,run:[1,2,27,75,87,99],runtim:[4,18],save:17,scale:10,scope:[8,48,59,63],script:[82,87],search:[49,66],secur:86,select:[15,21,64],selectedrow:64,semant:68,send:21,separ:59,sequenc:[49,101],server:[10,14,15,18,21,24,81,82,86,93],servic:86,set:94,setup:[86,103],sextant:106,sgd:93,shape:49,share:[5,7,40,63],should:63,shuffl:58,simpl:[49,101],singl:58,slice:82,solut:[38,39,40,41,47,56,60,69],some:0,sourc:[1,3,99],spars:[15,16,17,64,95],specifi:95,stack:8,standard:72,start:[5,79,80,81,86,87],startup:87,statement:26,step:[3,48],storag:61,store:10,strategi:40,style:72,subcommond:29,submit:18,suffici:58,suitabl:9,sulut:43,summar:[5,19],summari:44,support:[30,51,67,70],survei:[30,36,61,106],synopsi:29,syntax:21,system:[31,86],tabl:[46,66],task:[10,14,66],tear:86,tecton:106,templat:86,tensor:[59,67,77],tensorarrai:[49,70],tensordesc:71,tensorflow:36,test:[1,41,42,43,72,74,75,93,95],theori:6,thi:63,think:34,three:70,time:99,timelin:17,timer:98,tip:98,todo:[11,12,23],togeth:63,toler:10,tool:[9,78,98,106],toolchain:105,topic:67,toward:32,train:[2,5,10,13,16,18,22,50,58,81,82,83,84,86,87,88,93,95],trainer:[10,15,17,18,21,81,86],transform:69,translat:49,transpil:[22,23,24,32,40,51],tune:[93,98],ture:31,two:6,type:[1,21,47,75],uniform:70,unit:[41,42,43,72,74,75,93],unpack:49,updat:[5,16,17,78,82,86],usag:[7,25,48,49,58,77],use:[13,58,77],user:10,using:0,valu:57,vardesc:71,variabl:[7,40,57,59,63,71],vector:93,verifi:86,version:[4,19,30],volum:86,vpc:86,what:[0,13,17,98],when:[17,63],whl:4,why:[30,31,52,58,59,70,98],work:66,worker:19,workflow:72,wrapper:74,write:[72,74,75,76,78],www:78,yaml:87,your:[2,76]}})
\ No newline at end of file
diff --git a/develop/doc_cn/_sources/api/index_cn.rst.txt b/develop/doc_cn/_sources/api/index_cn.rst.txt
deleted file mode 100644
index 84f9097a6cdc2da269bd6a0685796e14e26da37e..0000000000000000000000000000000000000000
--- a/develop/doc_cn/_sources/api/index_cn.rst.txt
+++ /dev/null
@@ -1,10 +0,0 @@
-API
-===
-
-.. toctree::
- :maxdepth: 1
-
- 模型配置 paddle.v2.activation.
Abs
Abs Activation.
-Forward: \(f(z) = abs(z)\)
-Derivative:
-paddle.v2.activation.
Exp
Exponential Activation.
-paddle.v2.activation.
Identity
Linear
的别名
paddle.v2.activation.
Linear
Identity Activation.
-Just do nothing for output both forward/backward.
-paddle.v2.activation.
Log
Logarithm Activation.
-paddle.v2.activation.
Square
Square Activation.
-paddle.v2.activation.
Sigmoid
Sigmoid activation.
-paddle.v2.activation.
Softmax
Softmax activation for simple input
-paddle.v2.activation.
SequenceSoftmax
Softmax activation for one sequence. The dimension of input feature must be -1 and a sequence.
-result = softmax(for each_feature_vector[0] in input_feature)
-for i, each_time_step_output in enumerate(output):
- each_time_step_output = result[i]
-
paddle.v2.activation.
Relu
Relu activation.
-forward. \(y = max(0, z)\)
-derivative:
-paddle.v2.activation.
BRelu
BRelu Activation.
-forward. \(y = min(24, max(0, z))\)
-derivative:
-paddle.v2.activation.
SoftRelu
SoftRelu Activation.
-paddle.v2.activation.
Tanh
Tanh activation.
-paddle.v2.activation.
STanh
Scaled Tanh Activation.
-paddle.v2.activation.
SoftSign
SoftSign Activation.
-paddle.v2.attr.
Param
ParameterAttribute
的别名
paddle.v2.attr.
Extra
ExtraLayerAttribute
的别名
paddle.v2.attr.
Hook
HookAttribute
的别名
paddle.v2.attr.
HookAttr
HookAttribute
的别名
paddle.v2.attr.
ParamAttr
ParameterAttribute
的别名
paddle.v2.attr.
ExtraAttr
ExtraLayerAttribute
的别名
paddle.v2.attr.
ParameterAttribute
(name=None, is_static=False, initial_std=None, initial_mean=None, initial_max=None, initial_min=None, l1_rate=None, l2_rate=None, learning_rate=None, momentum=None, gradient_clipping_threshold=None, sparse_update=False, update_hooks=None, initializer=None)Parameter Attributes object. To fine-tuning network training process, user -can set attribute to control training details, such as l1,l2 rate / learning -rate / how to init param.
-NOTE: IT IS A HIGH LEVEL USER INTERFACE.
-参数: |
|
-
---|
set_default_parameter_name
(name)Set default parameter name. If parameter not set, then will use default -parameter name.
-参数: | name (basestring) – default parameter name. | -
---|
paddle.v2.attr.
ExtraLayerAttribute
(error_clipping_threshold=None, drop_rate=None, device=None)Some high level layer attributes config. You can set all attributes here, -but some layer doesn’t support all attributes. If you set an attribute to a -layer that not support this attribute, paddle will print an error and core.
-参数: |
|
-
---|
paddle.v2.evaluator.
classification_error
(*args, **xargs)Classification Error Evaluator. It will print error rate for classification.
-The classification error is:
-The simple usage is:
-eval = classification_evaluator.error(input=prob,label=lbl)
-
参数: |
|
-
---|---|
返回: | None. - |
-
paddle.v2.evaluator.
auc
(*args, **xargs)Auc Evaluator which adapts to binary classification.
-The simple usage:
-eval = evaluator.auc(input, label)
-
参数: |
|
-
---|
paddle.v2.evaluator.
ctc_error
(*args, **xargs)This evaluator is to calculate sequence-to-sequence edit distance.
-The simple usage is :
-eval = ctc_evaluator.error(input=input, label=lbl)
-
参数: |
|
-
---|
paddle.v2.evaluator.
chunk
(*args, **xargs)Chunk evaluator is used to evaluate segment labelling accuracy for a -sequence. It calculates precision, recall and F1 scores for the chunk detection.
-To use chunk evaluator, several concepts need to be clarified firstly.
-We can name a label by combining tag type and chunk type. (ie. B-ORG for begining of an organization name)
-The construction of label dictionary should obey the following rules:
-Scheme Description
-plain Use the same label for the whole chunk.
-IOB Two labels for chunk type X, B-X for chunk begining and I-X for chunk inside.
-IOE Two labels for chunk type X, E-X for chunk ending and I-X for chunk inside.
-IOBES Four labels for chunk type X, B-X for chunk begining, I-X for chunk inside, E-X for chunk end and S-X for single word chunk.
-
To make it clear, let’s illustrate by an NER example. -Assuming that there are three named entity types including ORG, PER and LOC which are called ‘chunk type’ here, -if ‘IOB’ scheme were used, the label set will be extended to a set including B-ORG, I-ORG, B-PER, I-PER, B-LOC, I-LOC and O, -in which B-ORG for begining of ORG and I-ORG for inside of ORG. -Prefixes which are called ‘tag type’ here are added to chunk types and there are two tag types including B and I. -Of course, the training data should be labeled accordingly.
-The following table are equations to extract tag type and chunk type from a label.
-tagType = label % numTagType
-chunkType = label / numTagType
-otherChunkType = numChunkTypes
-
The following table shows the mapping rule between tagType and tag type in each scheme.
-Scheme Begin Inside End Single
-plain 0 - - -
-IOB 0 1 - -
-IOE - 0 1 -
-IOBES 0 1 2 3
-
Continue the NER example, and the label dict should look like this to satify above equations:
-B-ORG 0
-I-ORG 1
-B-PER 2
-I-PER 3
-B-LOC 4
-I-LOC 5
-O 6
-
In this example, chunkType has three values: 0 for ORG, 1 for PER, 2 for LOC, because the scheme is -“IOB” so tagType has two values: 0 for B and 1 for I. -Here we will use I-LOC to explain the above mapping rules in detail. -For I-LOC, the label id is 5, so we can get tagType=1 and chunkType=2, which means I-LOC is a part of NER chunk LOC -and the tag is I.
-The simple usage is:
-eval = evaluator.chunk(input, label, chunk_scheme, num_chunk_types)
-
参数: |
|
-
---|
paddle.v2.evaluator.
precision_recall
(*args, **xargs)An Evaluator to calculate precision and recall, F1-score. -It is adapt to the task with multiple labels.
-The simple usage:
-eval = precision_evaluator.recall(input, label)
-
参数: |
|
-
---|
paddle.v2.evaluator.
pnpair
(*args, **xargs)Positive-negative pair rate Evaluator which adapts to rank task like -learning to rank. This evaluator must contain at least three layers.
-The simple usage:
-eval = evaluator.pnpair(input, label, query_id)
-
参数: |
|
-
---|
paddle.v2.evaluator.
sum
(*args, **xargs)An Evaluator to sum the result of input.
-The simple usage:
-eval = evaluator.sum(input)
-
参数: |
|
-
---|
paddle.v2.evaluator.
column_sum
(*args, **xargs)This Evaluator is used to sum the last column of input.
-The simple usage is:
-eval = column_evaluator.sum(input, label)
-
参数: |
|
-
---|
paddle.v2.evaluator.
classification_error_printer
(*args, **xargs)This Evaluator is used to print the classification error of each sample.
-The simple usage is:
-eval = classification_error_evaluator.printer(input)
-
参数: |
|
-
---|
paddle.v2.evaluator.
gradient_printer
(*args, **xargs)This Evaluator is used to print the gradient of input layers. It contains -one or more input layers.
-The simple usage is:
-eval = gradient_evaluator.printer(input)
-
参数: |
|
-
---|
paddle.v2.evaluator.
maxid_printer
(*args, **xargs)This Evaluator is used to print maximum top k values and their indexes -of each row of input layers. It contains one or more input layers. -k is specified by num_results.
-The simple usage is:
-eval = maxid_evaluator.printer(input)
-
参数: |
|
-
---|
paddle.v2.evaluator.
maxframe_printer
(*args, **xargs)This Evaluator is used to print the top k frames of each input layers. -The input layers should contain sequences info or sequences type. -k is specified by num_results. -It contains one or more input layers.
-注解
-The width of each frame is 1.
-The simple usage is:
-eval = maxframe_evaluator.printer(input)
-
参数: |
|
-
---|
paddle.v2.evaluator.
seqtext_printer
(*args, **xargs)Sequence text printer will print text according to index matrix and a -dictionary. There can be multiple input to this layer:
-1. If there is no id_input, the input must be a matrix containing -the sequence of indices;
-The output format will be:
-id prob space_seperated_tokens_from_dictionary_according_to_seq
-
id space_seperated_tokens_from_dictionary_according_to_seq
-
id space_seperated_tokens_from_dictionary_according_to_sub_seq
- space_seperated_tokens_from_dictionary_according_to_sub_seq
-...
-
Typically SequenceTextPrinter layer takes output of maxid or RecurrentGroup -with maxid (when generating) as an input.
-The simple usage is:
-eval = seqtext_evaluator.printer(input=maxid,
- id_input=sample_id,
- dict_file=dict_file,
- result_file=result_file)
-
参数: |
|
-
---|---|
返回: | The seq_text_printer that prints the generated sequence to a file. - |
-
返回类型: | evaluator - |
-
paddle.v2.evaluator.
value_printer
(*args, **xargs)This Evaluator is used to print the values of input layers. It contains -one or more input layers.
-The simple usage is:
-eval = value_evaluator.printer(input)
-
参数: |
|
-
---|
paddle.v2.evaluator.
detection_map
(*args, **xargs)Detection mAP Evaluator. It will print mean Average Precision (mAP) for detection.
-The detection mAP Evaluator based on the output of detection_output layer counts -the true positive and the false positive bbox and integral them to get the -mAP.
-The simple usage is:
-eval = detection_evaluator.map(input=det_output,label=lbl)
-
参数: |
|
-
---|
paddle.v2.layer.
fc
The fully connected layer.
-The example usage is:
-fc = fc(input=layer,
- size=1024,
- act=paddle.v2.activation.Linear(),
- bias_attr=False)
-
which is equal to:
-with mixed(size=1024) as fc:
- fc += full_matrix_projection(input=layer)
-
参数: |
|
-
---|---|
返回: | paddle.v2.config_base.Layer object. - |
-
返回类型: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
selective_fc
Selectived fully connected layer. Different from fc, the output -of this layer can be sparse. It requires an additional input to indicate -several selected columns for output. If the selected columns is not -specified, selective_fc acts exactly like fc.
-The simple usage is:
-sel_fc = selective_fc(input=input, size=128, act=paddle.v2.activation.Tanh())
-
参数: |
|
-
---|---|
返回: | paddle.v2.config_base.Layer object. - |
-
返回类型: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
conv_operator
Different from img_conv, conv_op is an Operator, which can be used -in mixed. And conv_op takes two inputs to perform convolution. -The first input is the image and the second is filter kernel. It only -supports GPU mode.
-The example usage is:
-op = conv_operator(img=input1,
- filter=input2,
- filter_size=3,
- num_filters=64,
- num_channels=64)
-
参数: |
|
-
---|---|
返回: | A ConvOperator Object. - |
-
返回类型: | ConvOperator - |
-
paddle.v2.layer.
conv_projection
Different from img_conv and conv_op, conv_projection is a Projection, -which can be used in mixed and concat. It uses cudnn to implement -convolution and only supports GPU mode.
-The example usage is:
-proj = conv_projection(input=input1,
- filter_size=3,
- num_filters=64,
- num_channels=64)
-
参数: |
|
-
---|---|
返回: | A Projection Object. - |
-
返回类型: | ConvTransProjection | ConvProjection - |
-
paddle.v2.layer.
conv_shift
The example usage is:
-conv_shift = conv_shift(a=layer1, b=layer2)
-
参数: |
|
-
---|---|
返回: | paddle.v2.config_base.Layer object. - |
-
返回类型: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
img_conv
Convolution layer for image. Paddle can support both square and non-square -input currently.
-The details of convolution layer, please refer UFLDL’s convolution .
-Convolution Transpose (deconv) layer for image. Paddle can support both square -and non-square input currently.
-The details of convolution transpose layer, -please refer to the following explanation and references therein -<http://datascience.stackexchange.com/questions/6107/ -what-are-deconvolutional-layers/>`_ . -The num_channel means input image’s channel number. It may be 1 or 3 when -input is raw pixels of image(mono or RGB), or it may be the previous layer’s -num_filters.
-There are several groups of filters in PaddlePaddle implementation. -If the groups attribute is greater than 1, for example groups=2, -the input will be splitted into 2 parts along the channel axis, and -the filters will also be splitted into 2 parts. The first half of the filters -is only connected to the first half of the input channels, while the second -half of the filters is only connected to the second half of the input. After -the computation of convolution for each part of input, -the output will be obtained by concatenating the two results.
-The details of grouped convolution, please refer to: -ImageNet Classification with Deep Convolutional Neural Networks
-The example usage is:
-conv = img_conv(input=data, filter_size=1, filter_size_y=1,
- num_channels=8,
- num_filters=16, stride=1,
- bias_attr=False,
- act=paddle.v2.activation.Relu())
-
参数: |
|
-
---|---|
返回: | paddle.v2.config_base.Layer object. - |
-
返回类型: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
context_projection
Context Projection.
-It just reorganizes input sequence, combines “context_len” elements of the -sequence to one context from context_start. “context_start” will be set to --(context_len - 1) / 2 by default. When context position is out of sequence -length, padding will be filled as zero if padding_attr = False, otherwise -it is trainable.
-For example, origin sequence is [A B C D E F G], context len is 3, padding_attr -is not set, then after context projection, sequence will -be [ 0AB ABC BCD CDE DEF EFG FG0 ].
-参数: |
|
-
---|---|
返回: | Projection object. - |
-
返回类型: | Projection - |
-
paddle.v2.layer.
row_conv
The row convolution is called lookahead convolution. It is firstly -introduced in paper of Deep Speech 2: End-to-End Speech Recognition -in English and Mandarin .
-The bidirectional RNN that learns representation for a sequence by -performing a forward and a backward pass through the entire sequence. -However, unlike unidirectional RNNs, bidirectional RNNs are challenging -to deploy in an online and low-latency setting. The lookahead convolution -incorporates information from future subsequences in a computationally -efficient manner to improve unidirectional RNNs.
-The connection of row convolution is different from the 1D sequence -convolution. Assumed that, the future context-length is k, that is to say, -it can get the output at timestep t by using the the input feature from t-th -timestep to (t+k+1)-th timestep. Assumed that the hidden dim of input -activations are d, the activations r_t for the new layer at time-step t are:
-注解
-The context_len is k + 1. That is to say, the lookahead step -number plus one equals context_len.
-row_conv = row_conv(input=input, context_len=3)
-
参数: |
|
-
---|---|
返回: | paddle.v2.config_base.Layer object. - |
-
返回类型: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
img_pool
Image pooling Layer.
-The details of pooling layer, please refer to ufldl’s pooling .
-The example usage is:
-maxpool = img_pool(input=conv,
- pool_size=3,
- pool_size_y=5,
- num_channels=8,
- stride=1,
- stride_y=2,
- padding=1,
- padding_y=2,
- pool_type=MaxPooling())
-
参数: |
|
-
---|---|
返回: | paddle.v2.config_base.Layer object. - |
-
返回类型: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
spp
A layer performs spatial pyramid pooling.
- -The example usage is:
-spp = spp(input=data,
- pyramid_height=2,
- num_channels=16,
- pool_type=MaxPooling())
-
参数: |
|
-
---|---|
返回: | paddle.v2.config_base.Layer object. - |
-
返回类型: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
maxout
So groups should be larger than 1, and the num of channels should be able -to be devided by groups.
-The simple usage is:
-maxout = maxout(input,
- num_channels=128,
- groups=4)
-
参数: |
|
-
---|---|
返回: | paddle.v2.config_base.Layer object. - |
-
返回类型: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
roi_pool
A layer used by Fast R-CNN to extract feature maps of ROIs from the last -feature map.
-参数: |
|
-
---|---|
返回: | paddle.v2.config_base.Layer object. - |
-
返回类型: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
pad
This operation pads zeros to the input data according to pad_c,pad_h -and pad_w. pad_c, pad_h, pad_w specify the size in the corresponding -dimension. And the input data shape is NCHW.
-For example, pad_c=[2,3] means padding 2 zeros before the input data -and 3 zeros after the input data in the channel dimension. pad_h means -padding zeros in the height dimension. pad_w means padding zeros in the -width dimension.
-For example,
-input(2,2,2,3) = [
- [ [[1,2,3], [3,4,5]],
- [[2,3,5], [1,6,7]] ],
- [ [[4,3,1], [1,8,7]],
- [[3,8,9], [2,3,5]] ]
- ]
-
-pad_c=[1,1], pad_h=[0,0], pad_w=[0,0]
-
-output(2,4,2,3) = [
- [ [[0,0,0], [0,0,0]],
- [[1,2,3], [3,4,5]],
- [[2,3,5], [1,6,7]],
- [[0,0,0], [0,0,0]] ],
- [ [[0,0,0], [0,0,0]],
- [[4,3,1], [1,8,7]],
- [[3,8,9], [2,3,5]],
- [[0,0,0], [0,0,0]] ]
- ]
-
The simply usage is:
-pad = pad(input=ipt,
- pad_c=[4,4],
- pad_h=[0,0],
- pad_w=[2,2])
-
参数: |
|
-
---|---|
返回: | paddle.v2.config_base.Layer object. - |
-
返回类型: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
img_cmrnorm
Response normalization across feature maps.
- -The example usage is:
-norm = img_cmrnorm(input=net, size=5)
-
参数: |
|
-
---|---|
返回: | paddle.v2.config_base.Layer object. - |
-
返回类型: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
batch_norm
Batch Normalization Layer. The notation of this layer is as follows.
-\(x\) is the input features over a mini-batch.
-The example usage is:
-norm = batch_norm(input=net, act=paddle.v2.activation.Relu())
-
参数: |
|
-
---|---|
返回: | paddle.v2.config_base.Layer object. - |
-
返回类型: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
sum_to_one_norm
A layer for sum-to-one normalization, -which is used in NEURAL TURING MACHINE.
-where \(in\) is a (batchSize x dataDim) input vector, -and \(out\) is a (batchSize x dataDim) output vector.
-The example usage is:
-sum_to_one_norm = sum_to_one_norm(input=layer)
-
参数: |
|
-
---|---|
返回: | paddle.v2.config_base.Layer object. - |
-
返回类型: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
cross_channel_norm
Normalize a layer’s output. This layer is necessary for ssd. This -layer applys normalization across the channels of each sample to -a convolutional layer’s output and scales the output by a group of -trainable factors whose dimensions equal to the channel’s number.
-参数: |
|
-
---|---|
返回: | paddle.v2.config_base.Layer object. - |
-
返回类型: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
row_l2_norm
A layer for L2-normalization in each row.
-where the size of \(in\) is (batchSize x dataDim) , -and the size of \(out\) is a (batchSize x dataDim) .
-The example usage is:
-row_l2_norm = row_l2_norm(input=layer)
-
参数: |
|
-
---|---|
返回: | paddle.v2.config_base.Layer object. - |
-
返回类型: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
recurrent
Simple recurrent unit layer. It is just a fully connect layer through both -time and neural network.
-For each sequence [start, end] it performs the following computation:
-If reversed is true, the order is reversed:
-参数: |
|
-
---|---|
返回: | paddle.v2.config_base.Layer object. - |
-
返回类型: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
lstmemory
Long Short-term Memory Cell.
-The memory cell was implemented as follow equations.
-NOTE: In PaddlePaddle’s implementation, the multiplications -\(W_{xi}x_{t}\) , \(W_{xf}x_{t}\), -\(W_{xc}x_t\), \(W_{xo}x_{t}\) are not done in the lstmemory layer, -so an additional mixed with full_matrix_projection or a fc must -be included in the configuration file to complete the input-to-hidden -mappings before lstmemory is called.
-NOTE: This is a low level user interface. You can use network.simple_lstm -to config a simple plain lstm layer.
-参数: |
|
-
---|---|
返回: | paddle.v2.config_base.Layer object. - |
-
返回类型: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
grumemory
Gate Recurrent Unit Layer.
-The memory cell was implemented as follow equations.
-1. update gate \(z\): defines how much of the previous memory to -keep around or the unit updates its activations. The update gate -is computed by:
-2. reset gate \(r\): determines how to combine the new input with the -previous memory. The reset gate is computed similarly to the update gate:
-3. The candidate activation \(\tilde{h_t}\) is computed similarly to -that of the traditional recurrent unit:
-4. The hidden activation \(h_t\) of the GRU at time t is a linear -interpolation between the previous activation \(h_{t-1}\) and the -candidate activation \(\tilde{h_t}\):
-NOTE: In PaddlePaddle’s implementation, the multiplication operations -\(W_{r}x_{t}\), \(W_{z}x_{t}\) and \(W x_t\) are not performed -in gate_recurrent layer. Consequently, an additional mixed with -full_matrix_projection or a fc must be included before grumemory -is called.
- -The simple usage is:
-gru = grumemory(input)
-
参数: |
|
-
---|---|
返回: | paddle.v2.config_base.Layer object. - |
-
返回类型: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
gated_unit
The gated unit layer implements a simple gating mechanism over the input. -The input \(X\) is first projected into a new space \(X'\), and -it is also used to produce a gate weight \(\sigma\). Element-wise -product between \(X'\) and \(\sigma\) is finally returned.
-The example usage is:
-参数: |
|
-
---|---|
返回: | paddle.v2.config_base.Layer object. - |
-
返回类型: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
memory
The memory takes a layer’s output at previous time step as its own output.
-If boot_bias, the activation of the bias is the initial value of the memory.
-If boot_with_const_id is set, then the memory’s output at the first time step
-is a IndexSlot, the Arguments.ids()[0] is this cost_id
.
If boot is specified, the memory’s output at the first time step will -be the boot’s output.
-In other case, the default memory’s output at the first time step is zero.
-mem = memory(size=256, name='state')
-state = fc(input=mem, size=256, name='state')
-
If you do not want to specify the name, you can also use set_input() -to specify the layer to be remembered as the following:
-mem = memory(size=256)
-state = fc(input=mem, size=256)
-mem.set_input(mem)
-
参数: |
|
-
---|---|
返回: | paddle.v2.config_base.Layer object. - |
-
返回类型: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
recurrent_group
Recurrent layer group is an extremely flexible recurrent unit in -PaddlePaddle. As long as the user defines the calculation done within a -time step, PaddlePaddle will iterate such a recurrent calculation over -sequence input. This is useful for attention-based models, or Neural -Turning Machine like models.
-The basic usage (time steps) is:
-def step(input):
- output = fc(input=layer,
- size=1024,
- act=paddle.v2.activation.Linear(),
- bias_attr=False)
- return output
-
-group = recurrent_group(input=layer,
- step=step)
-
You can see following configs for further usages:
-参数: |
|
-
---|---|
返回: | paddle.v2.config_base.Layer object. - |
-
返回类型: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
lstm_step
LSTM Step Layer. This function is used only in recurrent_group. -The lstm equations are shown as follows.
-The input of lstm step is \(Wx_t + Wh_{t-1}\), and user should use
-mixed
and full_matrix_projection
to calculate these
-input vectors.
The state of lstm step is \(c_{t-1}\). And lstm step layer will do
-This layer has two outputs. The default output is \(h_t\). The other
-output is \(o_t\), whose name is ‘state’ and users can use
-get_output
to extract this output.
参数: |
|
-
---|---|
返回: | paddle.v2.config_base.Layer object. - |
-
返回类型: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
gru_step
参数: |
|
-
---|---|
返回: | paddle.v2.config_base.Layer object. - |
-
返回类型: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
beam_search
Beam search is a heuristic search algorithm used in sequence generation. -It explores a graph by expanding the most promising nodes in a limited set -to maintain tractability.
-The example usage is:
-def rnn_step(input):
- last_time_step_output = memory(name='rnn', size=512)
- with mixed(size=512, name='rnn') as simple_rnn:
- simple_rnn += full_matrix_projection(input)
- simple_rnn += last_time_step_output
- return simple_rnn
-
-generated_word_embedding = GeneratedInput(
- size=target_dictionary_dim,
- embedding_name="target_language_embedding",
- embedding_size=word_vector_dim)
-
-beam_gen = beam_search(name="decoder",
- step=rnn_step,
- input=[StaticInput(encoder_last),
- generated_word_embedding],
- bos_id=0,
- eos_id=1,
- beam_size=5)
-
Please see the following demo for more details:
-参数: |
|
-
---|---|
返回: | The generated word index. - |
-
返回类型: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
get_output
Get layer’s output by name. In PaddlePaddle, a layer might return multiple -values, but returns one layer’s output. If the user wants to use another -output besides the default one, please use get_output first to get -the output from input.
-参数: |
|
-
---|---|
返回: | paddle.v2.config_base.Layer object. - |
-
返回类型: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
mixed
Mixed Layer. A mixed layer will add all inputs together, then activate the sum. -Each input is a projection or operator.
-There are two styles of usages.
-with mixed(size=256) as m:
- m += full_matrix_projection(input=layer1)
- m += identity_projection(input=layer2)
-
m = mixed(size=256,
- input=[full_matrix_projection(input=layer1),
- full_matrix_projection(input=layer2)])
-
参数: |
|
-
---|---|
返回: | MixedLayerType object. - |
-
返回类型: | MixedLayerType - |
-
paddle.v2.layer.
embedding
Define a embedding Layer.
-参数: |
|
-
---|---|
返回: | paddle.v2.config_base.Layer object. - |
-
返回类型: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
scaling_projection
scaling_projection multiplies the input with a scalar parameter.
-The example usage is:
-proj = scaling_projection(input=layer)
-
参数: |
|
-
---|---|
返回: | ScalingProjection object. - |
-
返回类型: | ScalingProjection - |
-
paddle.v2.layer.
dotmul_projection
DotMulProjection takes a layer as input and performs -element-wise multiplication with weight.
-where \(.*\) means element-wise multiplication.
-The example usage is:
-proj = dotmul_projection(input=layer)
-
参数: |
|
-
---|---|
返回: | DotMulProjection object. - |
-
返回类型: | DotMulProjection - |
-
paddle.v2.layer.
dotmul_operator
DotMulOperator takes two inputs and performs element-wise multiplication:
-where \(.*\) means element-wise multiplication, and -scale is a config scalar, its default value is 1.
-The example usage is:
-op = dotmul_operator(a=layer1, b=layer2, scale=0.5)
-
参数: |
|
-
---|---|
返回: | DotMulOperator object. - |
-
返回类型: | DotMulOperator - |
-
paddle.v2.layer.
full_matrix_projection
Full Matrix Projection. It performs full matrix multiplication.
-There are two styles of usage.
-with mixed(size=100) as m:
- m += full_matrix_projection(input=layer)
-
proj = full_matrix_projection(input=layer,
- size=100,
- param_attr=ParamAttr(name='_proj'))
-
参数: |
|
-
---|---|
返回: | FullMatrixProjection Object. - |
-
返回类型: | FullMatrixProjection - |
-
paddle.v2.layer.
identity_projection
The example usage is:
-proj = identity_projection(input=layer)
-
The example usage is:
-proj = identity_projection(input=layer,
- offset=10)
-
Note that neither of the projections have trainable parameter.
-参数: |
|
-
---|---|
返回: | IdentityProjection or IdentityOffsetProjection object - |
-
返回类型: | IdentityProjection | IdentityOffsetProjection - |
-
paddle.v2.layer.
slice_projection
slice_projection slices the input value into multiple parts, -then selects and merges some of them into a new output.
-The example usage is:
-proj = slice_projection(input=layer, slices=[(0, 10), (20, 30)])
-
Note that slice_projection has no trainable parameter.
-参数: |
|
-
---|---|
返回: | SliceProjection object. - |
-
返回类型: | SliceProjection - |
-
paddle.v2.layer.
table_projection
Table Projection. It selects rows from parameter where row_id -is in input_ids.
-where \(out\) is output, \(table\) is parameter, \(ids\) is input_ids, -and \(i\) is row_id.
-There are two styles of usage.
-with mixed(size=100) as m:
- m += table_projection(input=layer)
-
proj = table_projection(input=layer,
- size=100,
- param_attr=ParamAttr(name='_proj'))
-
参数: |
|
-
---|---|
返回: | TableProjection Object. - |
-
返回类型: | TableProjection - |
-
paddle.v2.layer.
trans_full_matrix_projection
Different from full_matrix_projection, this projection performs matrix -multiplication, using the transpose of weight.
-\(w^\mathrm{T}\) means the transpose of weight. -The simply usage is:
-proj = trans_full_matrix_projection(input=layer,
- size=100,
- param_attr=ParamAttr(
- name='_proj',
- initial_mean=0.0,
- initial_std=0.01))
-
参数: |
|
-
---|---|
返回: | TransposedFullMatrixProjection Object. - |
-
返回类型: | TransposedFullMatrixProjection - |
-
paddle.v2.layer.
AggregateLevel
PaddlePaddle supports three sequence types:
-SequenceType.NO_SEQUENCE
means the sample is not a sequence.SequenceType.SEQUENCE
means the sample is a sequence.SequenceType.SUB_SEQUENCE
means the sample is a nested sequence,
-each timestep of which is also a sequence.Accordingly, AggregateLevel supports two modes:
-AggregateLevel.TO_NO_SEQUENCE
means the aggregation acts on each
-timestep of a sequence, both SUB_SEQUENCE
and SEQUENCE
will
-be aggregated to NO_SEQUENCE
.AggregateLevel.TO_SEQUENCE
means the aggregation acts on each
-sequence of a nested sequence, SUB_SEQUENCE
will be aggregated to
-SEQUENCE
.paddle.v2.layer.
pooling
Pooling layer for sequence inputs, not used for Image.
-If stride > 0, this layer slides a window whose size is determined by stride, -and returns the pooling value of the sequence in the window as the output. Thus, -a long sequence will be shortened. Note that for sequence with sub-sequence, the -default value of stride is -1.
-The example usage is:
-seq_pool = pooling(input=layer,
- pooling_type=AvgPooling(),
- agg_level=AggregateLevel.TO_NO_SEQUENCE)
-
参数: |
|
-
---|---|
返回: | paddle.v2.config_base.Layer object. - |
-
返回类型: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
last_seq
Get Last Timestamp Activation of a sequence.
-If stride > 0, this layer will slide a window whose size is determined by stride, -and return the last value of the sequence in the window as the output. Thus, a -long sequence will be shortened. Note that for sequence with sub-sequence, the -default value of stride is -1.
-The simple usage is:
-seq = last_seq(input=layer)
-
参数: |
|
-
---|---|
返回: | paddle.v2.config_base.Layer object. - |
-
返回类型: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
first_seq
Get First Timestamp Activation of a sequence.
-If stride > 0, this layer will slide a window whose size is determined by stride, -and return the first value of the sequence in the window as the output. Thus, a -long sequence will be shortened. Note that for sequence with sub-sequence, the -default value of stride is -1.
-The simple usage is:
-seq = first_seq(input=layer)
-
参数: |
|
-
---|---|
返回: | paddle.v2.config_base.Layer object. - |
-
返回类型: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
sub_seq
sub_seq will return sub-sequences from the input sequences. For each -sequence in the input sequence layer, sub_seq will slice it by given -offset and size. Please notice that, number of offset value and size value -both are equal to the number of sequence in the input layer.
-sub_seq = sub_seq(input=input_seq, offsets=offsets, sizes=sizes)
-
参数: |
|
-
---|---|
返回: | paddle.v2.config_base.Layer object. - |
-
返回类型: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
concat
Concatenate all input vectors to one vector. -Inputs can be a list of paddle.v2.config_base.Layer or a list of projection.
-The example usage is:
-concat = concat(input=[layer1, layer2])
-
参数: |
|
-
---|---|
返回: | paddle.v2.config_base.Layer object. - |
-
返回类型: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
seq_concat
Concatenate sequence a and sequence b.
-Output: [a1, ..., am, b1, ..., bn]
-Note that the above computation is for one sample. Multiple samples are -processed in one batch.
-The example usage is:
-concat = seq_concat(a=layer1, b=layer2)
-
参数: |
|
-
---|---|
返回: | paddle.v2.config_base.Layer object. - |
-
返回类型: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
seq_slice
seq_slice will return one or several sub-sequences from the -input sequence layer given start and end indices.
----
-- If only start indices are given, and end indices are set to None, -this layer slices the input sequence from the given start indices -to its end.
-- If only end indices are given, and start indices are set to None, -this layer slices the input sequence from its beginning to the -given end indices.
-- If start and end indices are both given, they should have the same -number of elements.
-
If start or end indices contains more than one elements, the input sequence -will be sliced for multiple times.
-seq_silce = seq_slice(input=input_seq,
- starts=start_pos, ends=end_pos)
-
参数: |
|
-
---|---|
返回: | paddle.v2.config_base.Layer object. - |
-
返回类型: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
sub_nested_seq
The sub_nested_seq accepts two inputs: the first one is a nested -sequence; the second one is a set of selceted indices in the nested sequence.
-Then sub_nest_seq trims the first nested sequence input according -to the selected indices to form a new output. This layer is useful in -beam training.
-The example usage is:
-sub_nest_seq = sub_nested_seq(input=data, selected_indices=selected_ids)
-
参数: |
|
-
---|---|
返回: | paddle.v2.config_base.Layer object. - |
-
返回类型: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
block_expand
The expanding method is the same with ExpandConvLayer, but saved the transposed -value. After expanding, output.sequenceStartPositions will store timeline. -The number of time steps is outputH * outputW and the dimension of each -time step is block_y * block_x * num_channels. This layer can be used after -convolutional neural network, and before recurrent neural network.
-The simple usage is:
-block_expand = block_expand(input=layer,
- num_channels=128,
- stride_x=1,
- stride_y=1,
- block_x=1,
- block_x=3)
-
参数: |
|
-
---|---|
返回: | paddle.v2.config_base.Layer object. - |
-
返回类型: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
ExpandLevel
Please refer to AggregateLevel first.
-ExpandLevel supports two modes:
-ExpandLevel.FROM_NO_SEQUENCE
means the expansion acts on
-NO_SEQUENCE
, which will be expanded to
-SEQUENCE
or SUB_SEQUENCE
.ExpandLevel.FROM_SEQUENCE
means the expansion acts on
-SEQUENCE
, which will be expanded to
-SUB_SEQUENCE
.paddle.v2.layer.
expand
A layer for expanding dense data or (sequence data where the length of each -sequence is one) to sequence data.
-The example usage is:
-expand = expand(input=layer1,
- expand_as=layer2,
- expand_level=ExpandLevel.FROM_NO_SEQUENCE)
-
参数: |
|
-
---|---|
返回: | paddle.v2.config_base.Layer object. - |
-
返回类型: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
repeat
A layer for repeating the input for num_repeats times.
-If as_row_vector:
-If not as_row_vector:
-The example usage is:
-expand = repeat(input=layer, num_repeats=4)
-
参数: |
|
-
---|---|
返回: | paddle.v2.config_base.Layer object. - |
-
返回类型: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
rotate
A layer for rotating 90 degrees (clock-wise) for each feature channel, -usually used when the input sample is some image or feature map.
-where \(x\) is (M x N x C) input, and \(y\) is (N x M x C) output.
-The example usage is:
-rot = rotate(input=layer,
- height=100,
- width=100)
-
参数: |
|
-
---|---|
返回: | paddle.v2.config_base.Layer object. - |
-
返回类型: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
seq_reshape
A layer for reshaping the sequence. Assume the input sequence has T instances, -the dimension of each instance is M, and the input reshape_size is N, then the -output sequence has T*M/N instances, the dimension of each instance is N.
-Note that T*M/N must be an integer.
-The example usage is:
-reshape = seq_reshape(input=layer, reshape_size=4)
-
参数: |
|
-
---|---|
返回: | paddle.v2.config_base.Layer object. - |
-
返回类型: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
addto
AddtoLayer.
-where \(y\) is output, \(x\) is input, \(b\) is bias, -and \(f\) is activation function.
-The example usage is:
-addto = addto(input=[layer1, layer2],
- act=paddle.v2.activation.Relu(),
- bias_attr=False)
-
This layer just simply adds all input layers together, then activates the -sum. All inputs should share the same dimension, which is also the dimension -of this layer’s output.
-There is no weight matrix for each input, because it just a simple add -operation. If you want a complicated operation before add, please use -mixed.
-参数: |
|
-
---|---|
返回: | paddle.v2.config_base.Layer object. - |
-
返回类型: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
linear_comb
where \(0 \le i \le N-1\)
-Or in the matrix notation:
-Note that the above computation is for one sample. Multiple samples are -processed in one batch.
-The simple usage is:
-linear_comb = linear_comb(weights=weight, vectors=vectors,
- size=elem_dim)
-
参数: |
|
-
---|---|
返回: | paddle.v2.config_base.Layer object. - |
-
返回类型: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
interpolation
This layer performs linear interpolation on two inputs, -which is used in NEURAL TURING MACHINE.
-where \(x_1\) and \(x_2\) are two (batchSize x dataDim) inputs, -\(w\) is (batchSize x 1) weight vector, and \(y\) is -(batchSize x dataDim) output.
-The example usage is:
-interpolation = interpolation(input=[layer1, layer2], weight=layer3)
-
参数: |
|
-
---|---|
返回: | paddle.v2.config_base.Layer object. - |
-
返回类型: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
bilinear_interp
This layer implements bilinear interpolation on convolutional layer’s output.
-Please refer to Wikipedia: https://en.wikipedia.org/wiki/Bilinear_interpolation
-The simple usage is:
-bilinear = bilinear_interp(input=layer1, out_size_x=64, out_size_y=64)
-
参数: |
|
-
---|---|
返回: | paddle.v2.config_base.Layer object. - |
-
返回类型: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
dropout
The example usage is:
-dropout = dropout(input=input, dropout_rate=0.5)
-
参数: |
|
-
---|---|
返回: | paddle.v2.config_base.Layer object. - |
-
返回类型: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
dot_prod
A layer for computing the dot product of two vectors.
-The example usage is:
-dot_prod = dot_prod(input1=vec1, input2=vec2)
-
参数: |
|
-
---|---|
返回: | paddle.v2.config_base.Layer object. - |
-
返回类型: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
out_prod
A layer for computing the outer product of two vectors -The result is a matrix of size(input1) x size(input2)
-The example usage is:
-out_prod = out_prod(input1=vec1, input2=vec2)
-
参数: |
|
-
---|---|
返回: | paddle.v2.config_base.Layer object. - |
-
返回类型: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
power
This layer applies a power function to a vector element-wise, -which is used in NEURAL TURING MACHINE.
-where \(x\) is an input vector, \(w\) is a scalar exponent, -and \(y\) is an output vector.
-The example usage is:
-power = power(input=layer1, weight=layer2)
-
参数: |
|
-
---|---|
返回: | paddle.v2.config_base.Layer object. - |
-
返回类型: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
scaling
A layer for multiplying input vector by weight scalar.
-where \(x\) is size=dataDim input, \(w\) is size=1 weight, -and \(y\) is size=dataDim output.
-Note that the above computation is for one sample. Multiple samples are -processed in one batch.
-The example usage is:
-scale = scaling(input=layer1, weight=layer2)
-
参数: |
|
-
---|---|
返回: | paddle.v2.config_base.Layer object. - |
-
返回类型: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
clip
A layer for clipping the input value by the threshold.
-clip = clip(input=input, min=-10, max=10)
-
参数: |
|
-
---|---|
返回: | paddle.v2.config_base.Layer object. - |
-
返回类型: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
resize
The resize layer resizes the input matrix with a shape of [Height, Width] -into the output matrix with a shape of [Height x Width / size, size], -where size is the parameter of this layer indicating the output dimension.
-参数: |
|
-
---|---|
返回: | A paddle.v2.config_base.Layer object. - |
-
返回类型: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
slope_intercept
This layer for applying a slope and an intercept to the input.
-The simple usage is:
-scale = slope_intercept(input=input, slope=-1.0, intercept=1.0)
-
参数: |
|
-
---|---|
返回: | paddle.v2.config_base.Layer object. - |
-
返回类型: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
tensor
This layer performs tensor operation on two inputs. -For example:
-The simple usage is:
-tensor = tensor(a=layer1, b=layer2, size=1000)
-
参数: |
|
-
---|---|
返回: | paddle.v2.config_base.Layer object. - |
-
返回类型: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
cos_sim
Cosine Similarity Layer. The cosine similarity equation is here.
-The size of a is M, size of b is M*N, -Similarity will be calculated N times by step M. The output size is -N. The scale will be multiplied to similarity.
-Note that the above computation is for one sample. Multiple samples are -processed in one batch.
-The example usage is:
-cos = cos_sim(a=layer1, b=layer2, size=3)
-
参数: |
|
-
---|---|
返回: | paddle.v2.config_base.Layer object. - |
-
返回类型: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
l2_distance
This layer calculates and returns the Euclidean distance between two input -vectors x and y. The equation is as follows:
-The output size of this layer is fixed to be 1. Note that the above -computation is for one sample. Multiple samples are processed in one batch.
-The example usage is:
-l2_sim = l2_distance(x=layer1, y=layer2)
-
参数: |
|
-
---|---|
返回: | The returned paddle.v2.config_base.Layer object. - |
-
返回类型: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
trans
A layer for transposing a minibatch matrix.
-where \(x\) is (M x N) input, and \(y\) is (N x M) output.
-The example usage is:
-trans = trans(input=layer)
-
参数: |
|
-
---|---|
返回: | paddle.v2.config_base.Layer object. - |
-
返回类型: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
scale_shift
A layer applies a linear transformation to each element in each row of -the input matrix. For each element, the layer first re-scales it and then -adds a bias to it.
-This layer is very like the SlopeInterceptLayer, except the scale and -bias are trainable.
-scale_shift = scale_shift(input=input, bias_attr=False)
-
参数: |
|
-
---|---|
返回: | paddle.v2.config_base.Layer object. - |
-
返回类型: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
factorization_machine
The Factorization Machine models pairwise feature interactions as inner -product of the learned latent vectors corresponding to each input feature. -The Factorization Machine can effectively capture feature interactions -especially when the input is sparse.
-This implementation only consider the 2-order feature interactions using -Factorization Machine with the formula:
-注解
-X is the input vector with size n. V is the factor matrix. Each row of V -is the latent vector corresponding to each input dimesion. The size of -each latent vector is k.
-For details of Factorization Machine, please refer to the paper: -Factorization machines.
-参数: |
|
-
---|---|
返回: | paddle.v2.config_base.Layer object. - |
-
返回类型: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
max_id
A layer for finding the id which has the maximal value for each sample. -The result is stored in output.ids.
-The example usage is:
-maxid = maxid(input=layer)
-
参数: |
|
-
---|---|
返回: | paddle.v2.config_base.Layer object. - |
-
返回类型: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
sampling_id
A layer for sampling id from a multinomial distribution from the input layer. -Sampling one id for one sample.
-The simple usage is:
-samping_id = sampling_id(input=input)
-
参数: |
|
-
---|---|
返回: | paddle.v2.config_base.Layer object. - |
-
返回类型: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
multiplex
This layer multiplex multiple layers according to the indexes, -which are provided by the first input layer. -inputs[0]: the indexes of the layers to form the output of size batchSize. -inputs[1:N]; the candidate output data. -For each index i from 0 to batchSize - 1, the i-th row of the output is the -the same to the i-th row of the (index[i] + 1)-th layer.
-For each i-th row of output: -.. math:
-y[i][j] = x_{x_{0}[i] + 1}[i][j], j = 0,1, ... , (x_{1}.width - 1)
-
where, y is output. \(x_{k}\) is the k-th input layer and -\(k = x_{0}[i] + 1\).
-The example usage is:
-maxid = multiplex(input=layers)
-
参数: |
|
-
---|---|
返回: | paddle.v2.config_base.Layer object. - |
-
返回类型: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
cross_entropy_cost
A loss layer for multi class entropy.
-The example usage is:
-cost = cross_entropy(input=input,
- label=label)
-
参数: |
|
-
---|---|
返回: | paddle.v2.config_base.Layer object. - |
-
返回类型: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
cross_entropy_with_selfnorm_cost
A loss layer for multi class entropy with selfnorm. -Input should be a vector of positive numbers, without normalization.
-The example usage is:
-cost = cross_entropy_with_selfnorm(input=input,
- label=label)
-
参数: |
|
-
---|---|
返回: | paddle.v2.config_base.Layer object. - |
-
返回类型: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
multi_binary_label_cross_entropy_cost
A loss layer for multi binary label cross entropy.
-The example usage is:
-cost = multi_binary_label_cross_entropy(input=input,
- label=label)
-
参数: |
|
-
---|---|
返回: | paddle.v2.config_base.Layer object. - |
-
返回类型: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
huber_regression_cost
In statistics, the Huber loss is a loss function used in robust regression, -that is less sensitive to outliers in data than the squared error loss. -Given a prediction f(x), a label y and \(\delta\), the loss function -is defined as:
-The example usage is:
-cost = huber_regression_cost(input=input, label=label)
-
参数: |
|
-
---|---|
返回: | paddle.v2.config_base.Layer object. - |
-
返回类型: | paddle.v2.config_base.Layer. - |
-
paddle.v2.layer.
huber_classification_cost
For classification purposes, a variant of the Huber loss called modified Huber -is sometimes used. Given a prediction f(x) (a real-valued classifier score) and -a true binary class label \(y\in \{-1, 1 \}\), the modified Huber -loss is defined as:
-The example usage is:
-cost = huber_classification_cost(input=input, label=label)
-
参数: |
|
-
---|---|
返回: | paddle.v2.config_base.Layer object. - |
-
返回类型: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
lambda_cost
lambdaCost for lambdaRank LTR approach.
-The example usage is:
-cost = lambda_cost(input=input,
- score=score,
- NDCG_num=8,
- max_sort_size=-1)
-
参数: |
|
-
---|---|
返回: | paddle.v2.config_base.Layer object. - |
-
返回类型: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
square_error_cost
sum of square error cost:
-参数: |
|
-
---|---|
返回: | paddle.v2.config_base.Layer object. - |
-
返回类型: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
rank_cost
A cost Layer for learning to rank using gradient descent.
-The example usage is:
-cost = rank_cost(left=out_left,
- right=out_right,
- label=label)
-
参数: |
|
-
---|---|
返回: | paddle.v2.config_base.Layer object. - |
-
返回类型: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
sum_cost
A loss layer which calculates the sum of the input as loss.
-The example usage is:
-cost = sum_cost(input=input)
-
参数: |
|
-
---|---|
返回: | paddle.v2.config_base.Layer object. - |
-
返回类型: | paddle.v2.config_base.Layer. - |
-
paddle.v2.layer.
crf
A layer for calculating the cost of sequential conditional random -field model.
-The example usage is:
-crf = crf(input=input,
- label=label,
- size=label_dim)
-
参数: |
|
-
---|---|
返回: | paddle.v2.config_base.Layer object. - |
-
返回类型: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
crf_decoding
A layer for calculating the decoding sequence of sequential conditional -random field model. The decoding sequence is stored in output.ids. -If the input ‘label’ is provided, it is treated as the ground-truth label, and -this layer will also calculate error. output.value[i] is 1 for an incorrect -decoding and 0 for the correct.
-The example usage is:
-crf_decoding = crf_decoding(input=input,
- size=label_dim)
-
参数: |
|
-
---|---|
返回: | paddle.v2.config_base.Layer object. - |
-
返回类型: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
ctc
Connectionist Temporal Classification (CTC) is designed for temporal -classication task. e.g. sequence labeling problems where the -alignment between the inputs and the target labels is unknown.
-注解
-Considering the ‘blank’ label needed by CTC, you need to use (num_classes + 1) -as the size of the input, where num_classes is the category number. -And the ‘blank’ is the last category index. So the size of ‘input’ layer (e.g. -fc with softmax activation) should be (num_classes + 1). The size of -ctc should also be (num_classes + 1).
-The example usage is:
-ctc = ctc(input=input,
- label=label,
- size=9055,
- norm_by_times=True)
-
参数: |
|
-
---|---|
返回: | paddle.v2.config_base.Layer object. - |
-
返回类型: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
warp_ctc
A layer intergrating the open-source warp-ctc library, which is used in
-Deep Speech 2: End-toEnd Speech Recognition in English and Mandarin, to compute Connectionist Temporal
-Classification (CTC) loss. Besides, another warp-ctc repository, which is forked from
-the official one, is maintained to enable more compiling options. During the
-building process, PaddlePaddle will clone the source codes, build and
-install it to third_party/install/warpctc
directory.
注解
-The example usage is:
-ctc = warp_ctc(input=input,
- label=label,
- size=1001,
- blank=1000,
- norm_by_times=False)
-
参数: |
|
-
---|---|
返回: | paddle.v2.config_base.Layer object. - |
-
返回类型: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
nce
Noise-contrastive estimation.
- -The example usage is:
-cost = nce(input=[layer1, layer2], label=layer2,
- param_attr=[attr1, attr2], weight=layer3,
- num_classes=3, neg_distribution=[0.1,0.3,0.6])
-
参数: |
|
-
---|---|
返回: | paddle.v2.config_base.Layer object. - |
-
返回类型: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
hsigmoid
Organize the classes into a binary tree. At each node, a sigmoid function -is used to calculate the probability of belonging to the right branch.
-The example usage is:
-cost = hsigmoid(input=[layer1, layer2],
- label=data)
-
参数: |
|
-
---|---|
返回: | paddle.v2.config_base.Layer object. - |
-
返回类型: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
smooth_l1_cost
This is a L1 loss but more smooth. It requires that the -sizes of input and label are equal. The formula is as follows,
-in which
-The example usage is:
-cost = smooth_l1_cost(input=input,
- label=label)
-
参数: |
|
-
---|---|
返回: | paddle.v2.config_base.Layer object. - |
-
返回类型: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
multibox_loss
Compute the location loss and the confidence loss for ssd.
-参数: |
|
-
---|---|
返回: | paddle.v2.config_base.Layer object. - |
-
返回类型: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
detection_output
Apply the NMS to the output of network and compute the predict bounding -box location. The output’s shape of this layer could be zero if there is -no valid bounding box.
-参数: |
|
-
---|---|
返回: | paddle.v2.config_base.Layer object. - |
-
返回类型: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
eos
A layer for checking EOS for each sample: -- output_id = (input_id == conf.eos_id)
-The result is stored in output_.ids. -It is used by recurrent layer group.
-The example usage is:
-eos = eos(input=layer, eos_id=id)
-
参数: |
|
-
---|---|
返回: | paddle.v2.config_base.Layer object. - |
-
返回类型: | paddle.v2.config_base.Layer - |
-
paddle.v2.layer.
prelu
The Parametric Relu activation that actives outputs with a learnable weight.
-The example usage is:
-prelu = prelu(input=layers, partial_sum=1)
-
参数: |
|
-
---|---|
返回: | paddle.v2.config_base.Layer object. - |
-
返回类型: | paddle.v2.config_base.Layer - |
-
The v2.networks module contains pieces of neural network that combine multiple layers.
-paddle.v2.networks.
sequence_conv_pool
(*args, **kwargs)Text convolution pooling group.
-Text input => Context Projection => FC Layer => Pooling => Output.
-参数: |
|
-
---|---|
返回: | layer’s output. - |
-
返回类型: | LayerOutput - |
-
paddle.v2.networks.
text_conv_pool
(*args, **kwargs)Text convolution pooling group.
-Text input => Context Projection => FC Layer => Pooling => Output.
-参数: |
|
-
---|---|
返回: | layer’s output. - |
-
返回类型: | LayerOutput - |
-
paddle.v2.networks.
img_conv_bn_pool
(*args, **kwargs)Convolution, batch normalization, pooling group.
-Img input => Conv => BN => Pooling => Output.
-参数: |
|
-
---|---|
返回: | layer’s output - |
-
返回类型: | LayerOutput - |
-
paddle.v2.networks.
img_conv_group
(*args, **kwargs)Image Convolution Group, Used for vgg net.
-参数: |
|
-
---|---|
返回: | layer’s output - |
-
返回类型: | LayerOutput - |
-
paddle.v2.networks.
simple_img_conv_pool
(*args, **kwargs)Simple image convolution and pooling group.
-Img input => Conv => Pooling => Output.
-参数: |
|
-
---|---|
返回: | layer’s output - |
-
返回类型: | LayerOutput - |
-
paddle.v2.networks.
vgg_16_network
(input_image, num_channels, num_classes=1000)Same model from https://gist.github.com/ksimonyan/211839e770f7b538e2d8
-参数: |
|
-
---|---|
返回: | layer’s output - |
-
返回类型: | LayerOutput - |
-
paddle.v2.networks.
lstmemory_unit
(*args, **kwargs)lstmemory_unit defines the caculation process of a LSTM unit during a -single time step. This function is not a recurrent layer, so it can not be -directly used to process sequence input. This function is always used in -recurrent_group (see layers.py for more details) to implement attention -mechanism.
-Please refer to Generating Sequences With Recurrent Neural Networks -for more details about LSTM. The link goes as follows: -.. _Link: https://arxiv.org/abs/1308.0850
-The example usage is:
-lstm_step = lstmemory_unit(input=[layer1],
- size=256,
- act=TanhActivation(),
- gate_act=SigmoidActivation(),
- state_act=TanhActivation())
-
参数: |
|
-
---|---|
返回: | The lstmemory unit name. - |
-
返回类型: | LayerOutput - |
-
paddle.v2.networks.
lstmemory_group
(*args, **kwargs)lstm_group is a recurrent_group version of Long Short Term Memory. It -does exactly the same calculation as the lstmemory layer (see lstmemory in -layers.py for the maths) does. A promising benefit is that LSTM memory -cell states(or hidden states) in every time step are accessible to the -user. This is especially useful in attention model. If you do not need to -access the internal states of the lstm and merely use its outputs, -it is recommended to use the lstmemory, which is relatively faster than -lstmemory_group.
-NOTE: In PaddlePaddle’s implementation, the following input-to-hidden -multiplications: -\(W_{x_i}x_{t}\) , \(W_{x_f}x_{t}\), -\(W_{x_c}x_t\), \(W_{x_o}x_{t}\) are not done in lstmemory_unit to -speed up the calculations. Consequently, an additional mixed_layer with -full_matrix_projection must be included before lstmemory_unit is called.
-The example usage is:
-lstm_step = lstmemory_group(input=[layer1],
- size=256,
- act=TanhActivation(),
- gate_act=SigmoidActivation(),
- state_act=TanhActivation())
-
参数: |
|
-
---|---|
返回: | the lstmemory group. - |
-
返回类型: | LayerOutput - |
-
paddle.v2.networks.
simple_lstm
(*args, **kwargs)Simple LSTM Cell.
-It just combines a mixed layer with fully_matrix_projection and a lstmemory -layer. The simple lstm cell was implemented with follow equations.
-Please refer to Generating Sequences With Recurrent Neural Networks for more -details about lstm. Link is here.
-参数: |
|
-
---|---|
返回: | layer’s output. - |
-
返回类型: | LayerOutput - |
-
paddle.v2.networks.
bidirectional_lstm
(*args, **kwargs)A bidirectional_lstm is a recurrent unit that iterates over the input -sequence both in forward and backward orders, and then concatenate two -outputs to form a final output. However, concatenation of two outputs -is not the only way to form the final output, you can also, for example, -just add them together.
-Please refer to Neural Machine Translation by Jointly Learning to Align -and Translate for more details about the bidirectional lstm. -The link goes as follows: -.. _Link: https://arxiv.org/pdf/1409.0473v3.pdf
-The example usage is:
-bi_lstm = bidirectional_lstm(input=[input1], size=512)
-
参数: |
|
-
---|---|
返回: | LayerOutput object. - |
-
返回类型: | LayerOutput - |
-
paddle.v2.networks.
gru_unit
(*args, **kwargs)gru_unit defines the calculation process of a gated recurrent unit during a single -time step. This function is not a recurrent layer, so it can not be -directly used to process sequence input. This function is always used in -the recurrent_group (see layers.py for more details) to implement attention -mechanism.
-Please see grumemory in layers.py for the details about the maths.
-参数: |
|
-
---|---|
返回: | the gru output layer. - |
-
返回类型: | LayerOutput - |
-
paddle.v2.networks.
gru_group
(*args, **kwargs)gru_group is a recurrent_group version of Gated Recurrent Unit. It -does exactly the same calculation as the grumemory layer does. A promising -benefit is that gru hidden states are accessible to the user. This is -especially useful in attention model. If you do not need to access -any internal state and merely use the outputs of a GRU, it is recommended -to use the grumemory, which is relatively faster.
-Please see grumemory in layers.py for more detail about the maths.
-The example usage is:
-gru = gru_group(input=[layer1],
- size=256,
- act=TanhActivation(),
- gate_act=SigmoidActivation())
-
参数: |
|
-
---|---|
返回: | the gru group. - |
-
返回类型: | LayerOutput - |
-
paddle.v2.networks.
simple_gru
(*args, **kwargs)You may see gru_step_layer, grumemory in layers.py, gru_unit, gru_group, -simple_gru in network.py. The reason why there are so many interfaces is -that we have two ways to implement recurrent neural network. One way is to -use one complete layer to implement rnn (including simple rnn, gru and lstm) -with multiple time steps, such as recurrent_layer, lstmemory, grumemory. But -the multiplication operation \(W x_t\) is not computed in these layers. -See details in their interfaces in layers.py. -The other implementation is to use an recurrent group which can ensemble a -series of layers to compute rnn step by step. This way is flexible for -attenion mechanism or other complex connections.
-The computational speed is that, grumemory is relatively better than -gru_group, and gru_group is relatively better than simple_gru.
-The example usage is:
-gru = simple_gru(input=[layer1], size=256)
-
参数: |
|
-
---|---|
返回: | the gru group. - |
-
返回类型: | LayerOutput - |
-
paddle.v2.networks.
simple_gru2
(*args, **kwargs)simple_gru2 is the same with simple_gru, but using grumemory instead. -Please refer to grumemory in layers.py for more detail about the math. -simple_gru2 is faster than simple_gru.
-The example usage is:
-gru = simple_gru2(input=[layer1], size=256)
-
参数: |
|
-
---|---|
返回: | the gru group. - |
-
返回类型: | LayerOutput - |
-
paddle.v2.networks.
bidirectional_gru
(*args, **kwargs)A bidirectional_gru is a recurrent unit that iterates over the input -sequence both in forward and backward orders, and then concatenate two -outputs to form a final output. However, concatenation of two outputs -is not the only way to form the final output, you can also, for example, -just add them together.
-The example usage is:
-bi_gru = bidirectional_gru(input=[input1], size=512)
-
参数: |
|
-
---|---|
返回: | LayerOutput object. - |
-
返回类型: | LayerOutput - |
-
paddle.v2.networks.
simple_attention
(*args, **kwargs)Calculate and return a context vector with attention mechanism. -Size of the context vector equals to size of the encoded_sequence.
-where \(h_{j}\) is the jth element of encoded_sequence, -\(U_{a}h_{j}\) is the jth element of encoded_proj -\(s_{i-1}\) is decoder_state -\(f\) is weight_act, and is set to tanh by default.
-Please refer to Neural Machine Translation by Jointly Learning to -Align and Translate for more details. The link is as follows: -https://arxiv.org/abs/1409.0473.
-The example usage is:
-context = simple_attention(encoded_sequence=enc_seq,
- encoded_proj=enc_proj,
- decoder_state=decoder_prev,)
-
参数: |
|
-
---|---|
返回: | a context vector - |
-
返回类型: | LayerOutput - |
-
paddle.v2.networks.
dot_product_attention
(*args, **kwargs)Calculate and return a context vector with dot-product attention mechanism. -The dimension of the context vector equals to that of the attended_sequence.
-where \(h_{j}\) is the jth element of encoded_sequence, -\(z_{j}\) is the jth element of attended_sequence, -\(s_{i-1}\) is transformed_state.
-The example usage is:
-context = dot_product_attention(encoded_sequence=enc_seq,
- attended_sequence=att_seq,
- transformed_state=state,)
-
参数: |
|
-
---|---|
返回: | The context vector. - |
-
返回类型: | LayerOutput - |
-
paddle.v2.optimizer.
Momentum
(momentum=None, sparse=False, **kwargs)Momentum Optimizer.
-When sparse=False, the momentum update formula is as follows:
-where, \(k\) is momentum, \(\lambda\) is decay rate, -\(\gamma_t\) is learning rate at the t’th iteration. -\(w_{t}\) is the weight as the t’th iteration. -And the \(v_{t}\) is the history momentum variable.
-When sparse=True, the update scheme:
-where \(k\) is momentum, \(\lambda\) is decay rate, -\(\gamma_t\) is learning rate at the t’th iteration.
-参数: |
|
-
---|
paddle.v2.optimizer.
Adam
(beta1=0.9, beta2=0.999, epsilon=1e-08, **kwargs)Adam optimizer. -The details of please refer Adam: A Method for Stochastic Optimization
-参数: |
|
-
---|
paddle.v2.optimizer.
Adamax
(beta1=0.9, beta2=0.999, **kwargs)Adamax optimizer.
-The details of please refer this Adam: A Method for Stochastic Optimization
-参数: |
|
-
---|
paddle.v2.optimizer.
AdaGrad
(**kwargs)Adagrad(for ADAptive GRAdient algorithm) optimizer.
-For details please refer this Adaptive Subgradient Methods for -Online Learning and Stochastic Optimization.
-paddle.v2.optimizer.
DecayedAdaGrad
(rho=0.95, epsilon=1e-06, **kwargs)AdaGrad method with decayed sum gradients. The equations of this method -show as follow.
-参数: |
|
-
---|
paddle.v2.optimizer.
AdaDelta
(rho=0.95, epsilon=1e-06, **kwargs)AdaDelta method. The details of adadelta please refer to this -ADADELTA: AN ADAPTIVE LEARNING RATE METHOD.
-参数: |
|
-
---|
paddle.v2.optimizer.
RMSProp
(rho=0.95, epsilon=1e-06, **kwargs)RMSProp(for Root Mean Square Propagation) optimizer. For details please -refer this slide.
-The equations of this method as follows:
-参数: |
|
-
---|
paddle.v2.pooling.
BasePool
(name)Base Pooling Type. -Note these pooling types are used for sequence input, not for images. -Each PoolingType contains one parameter:
-参数: | name (basestring) – pooling layer type name used by paddle. | -
---|
paddle.v2.pooling.
Avg
(strategy='average')Average pooling.
-Return the average values for each dimension in sequence or time steps.
-paddle.v2.pooling.
Max
(output_max_index=None)Max pooling.
-Return the very large values for each dimension in sequence or time steps.
-参数: | output_max_index (bool|None) – True if output sequence max index instead of max -value. None means use default value in proto. | -
---|
paddle.v2.pooling.
Sum
Sum pooling.
-Return the sum values of each dimension in sequence or time steps.
-paddle.v2.pooling.
SquareRootN
Square Root Pooling.
-Return the square root values of each dimension in sequence or time steps.
-paddle.v2.pooling.
CudnnMax
Cudnn max pooling only support GPU. Return the maxinum value in the -pooling window.
-paddle.v2.data_type.
dense_array
(dim, seq_type=0)Dense Array. It means the input feature is dense array with float type. -For example, if the input is an image with 28*28 pixels, the input of -Paddle neural network could be a dense vector with dimension 784 or a -numpy array with shape (28, 28).
-For the 2-D convolution operation, each sample in one mini-batch must have -the similarly size in PaddlePaddle now. But, it supports variable-dimension -feature across mini-batch. For the variable-dimension, the param dim is not -used. While the data reader must yield numpy array and the data feeder will -set the data shape correctly.
-参数: |
|
-
---|---|
返回: | An input type object. - |
-
返回类型: | InputType - |
-
paddle.v2.data_type.
dense_vector
(dim, seq_type=0)Dense Array. It means the input feature is dense array with float type. -For example, if the input is an image with 28*28 pixels, the input of -Paddle neural network could be a dense vector with dimension 784 or a -numpy array with shape (28, 28).
-For the 2-D convolution operation, each sample in one mini-batch must have -the similarly size in PaddlePaddle now. But, it supports variable-dimension -feature across mini-batch. For the variable-dimension, the param dim is not -used. While the data reader must yield numpy array and the data feeder will -set the data shape correctly.
-参数: |
|
-
---|---|
返回: | An input type object. - |
-
返回类型: | InputType - |
-
paddle.v2.data_type.
dense_vector_sequence
(dim)Data type of a sequence of dense vector.
-参数: | dim (int) – dimension of dense vector. | -
---|---|
返回: | An input type object | -
返回类型: | InputType | -
paddle.v2.data_type.
integer_value
(value_range, seq_type=0)Data type of integer.
-参数: |
|
-
---|---|
返回: | An input type object - |
-
返回类型: | InputType - |
-
paddle.v2.data_type.
integer_value_sequence
(value_range)Data type of a sequence of integer.
-参数: | value_range (int) – range of each element. | -
---|
paddle.v2.data_type.
sparse_binary_vector
(dim, seq_type=0)Sparse binary vector. It means the input feature is a sparse vector and the -every element in this vector is either zero or one.
-参数: |
|
-
---|---|
返回: | An input type object. - |
-
返回类型: | InputType - |
-
paddle.v2.data_type.
sparse_binary_vector_sequence
(dim)参数: | dim (int) – dimension of sparse vector. | -
---|---|
返回: | An input type object | -
返回类型: | InputType | -
paddle.v2.data_type.
sparse_float_vector
(dim, seq_type=0)Sparse vector. It means the input feature is a sparse vector. Most of the -elements in this vector are zero, others could be any float value.
-参数: |
|
-
---|---|
返回: | An input type object. - |
-
返回类型: | InputType - |
-
paddle.v2.data_type.
sparse_float_vector_sequence
(dim)Data type of a sequence of sparse vector, which most elements are zero, -others could be any float value.
-参数: | dim (int) – dimension of sparse vector. | -
---|---|
返回: | An input type object | -
返回类型: | InputType | -
paddle.v2.data_type.
sparse_non_value_slot
(dim, seq_type=0)Sparse binary vector. It means the input feature is a sparse vector and the -every element in this vector is either zero or one.
-参数: |
|
-
---|---|
返回: | An input type object. - |
-
返回类型: | InputType - |
-
paddle.v2.data_type.
sparse_value_slot
(dim, seq_type=0)Sparse vector. It means the input feature is a sparse vector. Most of the -elements in this vector are zero, others could be any float value.
-参数: |
|
-
---|---|
返回: | An input type object. - |
-
返回类型: | InputType - |
-
paddle.v2.data_type.
InputType
(dim, seq_type, tp)InputType is the base class for paddle input types.
-注解
-this is a base class, and should never be used by user.
-参数: |
|
-
---|
At training and testing time, PaddlePaddle programs need to read data. To ease -the users’ work to write data reading code, we define that
-Indeed, data reader doesn’t have to be a function that reads and yields data
-items. It can be any function with no parameter that creates a iterable
-(anything can be used in for x in iterable
):
iterable = data_reader()
-
Element produced from the iterable should be a single entry of data, -not a mini batch. That entry of data could be a single item, or a tuple of -items. -Item should be of supported type (e.g., numpy 1d -array of float32, int, list of int)
-An example implementation for single item data reader creator:
-def reader_creator_random_image(width, height):
- def reader():
- while True:
- yield numpy.random.uniform(-1, 1, size=width*height)
-return reader
-
An example implementation for multiple item data reader creator:
-def reader_creator_random_image_and_label(width, height, label):
- def reader():
- while True:
- yield numpy.random.uniform(-1, 1, size=width*height), label
-return reader
-
TODO(yuyang18): Should we add whole design doc here?
-paddle.v2.reader.
map_readers
(func, *readers)Creates a data reader that outputs return value of function using -output of each data readers as arguments.
-参数: |
|
-
---|---|
Type: | callable - |
-
返回: | the created data reader. - |
-
返回类型: | callable - |
-
paddle.v2.reader.
buffered
(reader, size)Creates a buffered data reader.
-The buffered data reader will read and save data entries into a -buffer. Reading from the buffered data reader will proceed as long -as the buffer is not empty.
-参数: |
|
-
---|---|
返回: | the buffered data reader. - |
-
paddle.v2.reader.
compose
(*readers, **kwargs)Creates a data reader whose output is the combination of input readers.
-If input readers output following data entries: -(1, 2) 3 (4, 5) -The composed reader will output: -(1, 2, 3, 4, 5)
-参数: |
|
-
---|---|
返回: | the new data reader. - |
-
引发: | ComposeNotAligned – outputs of readers are not aligned. -Will not raise when check_alignment is set to False. - |
-
paddle.v2.reader.
chain
(*readers)Creates a data reader whose output is the outputs of input data -readers chained together.
-If input readers output following data entries: -[0, 0, 0] -[1, 1, 1] -[2, 2, 2] -The chained reader will output: -[0, 0, 0, 1, 1, 1, 2, 2, 2]
-参数: | readers – input readers. | -
---|---|
返回: | the new data reader. | -
返回类型: | callable | -
paddle.v2.reader.
shuffle
(reader, buf_size)Creates a data reader whose data output is shuffled.
-Output from the iterator that created by original reader will be -buffered into shuffle buffer, and then shuffled. The size of shuffle buffer -is determined by argument buf_size.
-参数: |
|
-
---|---|
返回: | the new reader whose output is shuffled. - |
-
返回类型: | callable - |
-
paddle.v2.reader.
firstn
(reader, n)Limit the max number of samples that reader could return.
-参数: |
|
-
---|---|
返回: | the decorated reader. - |
-
返回类型: | callable - |
-
paddle.v2.reader.
xmap_readers
(mapper, reader, process_num, buffer_size, order=False)Use multiprocess to map samples from reader by a mapper defined by user. -And this function contains a buffered decorator. -:param mapper: a function to map sample. -:type mapper: callable -:param reader: the data reader to read from -:type reader: callable -:param process_num: process number to handle original sample -:type process_num: int -:param buffer_size: max buffer size -:type buffer_size: int -:param order: keep the order of reader -:type order: bool -:return: the decarated reader -:rtype: callable
-paddle.v2.reader.
PipeReader
(command, bufsize=8192, file_type='plain')PipeReader read data by stream from a command, take it’s -stdout into a pipe buffer and redirect it to the parser to -parse, then yield data as your desired format.
-You can using standard linux command or call another program -to read data, from HDFS, Ceph, URL, AWS S3 etc:
-An example:
-def example_reader():
- for f in myfiles:
- pr = PipeReader("cat %s"%f)
- for l in pr.get_line():
- sample = l.split(" ")
- yield sample
-
get_line
(cut_lines=True, line_break='\n')---
-- - - - param cut_lines: - cut buffer to lines -- type cut_lines: bool -- param line_break: - - line break of the file, like -
type line_break: | |
---|---|
string | -|
return: | one line or a buffer of bytes | -
rtype: | string | -
Creator package contains some simple reader creator, which could -be used in user program.
-paddle.v2.reader.creator.
np_array
(x)Creates a reader that yields elements of x, if it is a -numpy vector. Or rows of x, if it is a numpy matrix. -Or any sub-hyperplane indexed by the highest dimension.
-参数: | x – the numpy array to create reader from. | -
---|---|
返回: | data reader created from x. | -
paddle.v2.reader.creator.
text_file
(path)Creates a data reader that outputs text line by line from given text file. -Trailing new line (‘\n’) of each line will be removed.
-Path: | path of the text file. | -
---|---|
返回: | data reader of text file | -
paddle.v2.reader.creator.
cloud_reader
(paths, etcd_endpoints, timeout_sec=5, buf_size=64)Paths: | path of recordio files, can be a string or a string list. | -
---|---|
Etcd_endpoints: | the endpoints for etcd cluster | -
返回: | data reader of recordio files. | -
paddle.v2.minibatch.
batch
(reader, batch_size)Create a batched reader.
-参数: |
|
-
---|---|
返回: | the batched reader. - |
-
返回类型: | callable - |
-
Dataset package.
-MNIST dataset.
-This module will download dataset from http://yann.lecun.com/exdb/mnist/ and -parse training set and test set into paddle reader creators.
-paddle.v2.dataset.mnist.
train
()MNIST training set creator.
-It returns a reader creator, each sample in the reader is image pixels in -[0, 1] and label in [0, 9].
-返回: | Training reader creator | -
---|---|
返回类型: | callable | -
paddle.v2.dataset.mnist.
test
()MNIST test set creator.
-It returns a reader creator, each sample in the reader is image pixels in -[0, 1] and label in [0, 9].
-返回: | Test reader creator. | -
---|---|
返回类型: | callable | -
paddle.v2.dataset.mnist.
convert
(path)Converts dataset to recordio format
-CIFAR dataset.
-This module will download dataset from -https://www.cs.toronto.edu/~kriz/cifar.html and parse train/test set into -paddle reader creators.
-The CIFAR-10 dataset consists of 60000 32x32 colour images in 10 classes, -with 6000 images per class. There are 50000 training images and 10000 test -images.
-The CIFAR-100 dataset is just like the CIFAR-10, except it has 100 classes -containing 600 images each. There are 500 training images and 100 testing -images per class.
-paddle.v2.dataset.cifar.
train100
()CIFAR-100 training set creator.
-It returns a reader creator, each sample in the reader is image pixels in -[0, 1] and label in [0, 99].
-返回: | Training reader creator | -
---|---|
返回类型: | callable | -
paddle.v2.dataset.cifar.
test100
()CIFAR-100 test set creator.
-It returns a reader creator, each sample in the reader is image pixels in -[0, 1] and label in [0, 9].
-返回: | Test reader creator. | -
---|---|
返回类型: | callable | -
paddle.v2.dataset.cifar.
train10
()CIFAR-10 training set creator.
-It returns a reader creator, each sample in the reader is image pixels in -[0, 1] and label in [0, 9].
-返回: | Training reader creator | -
---|---|
返回类型: | callable | -
paddle.v2.dataset.cifar.
test10
()CIFAR-10 test set creator.
-It returns a reader creator, each sample in the reader is image pixels in -[0, 1] and label in [0, 9].
-返回: | Test reader creator. | -
---|---|
返回类型: | callable | -
paddle.v2.dataset.cifar.
convert
(path)Converts dataset to recordio format
-Conll05 dataset. -Paddle semantic role labeling Book and demo use this dataset as an example. -Because Conll05 is not free in public, the default downloaded URL is test set -of Conll05 (which is public). Users can change URL and MD5 to their Conll -dataset. And a pre-trained word vector model based on Wikipedia corpus is used -to initialize SRL model.
-paddle.v2.dataset.conll05.
get_dict
()Get the word, verb and label dictionary of Wikipedia corpus.
-paddle.v2.dataset.conll05.
get_embedding
()Get the trained word vector based on Wikipedia corpus.
-paddle.v2.dataset.conll05.
test
()Conll05 test set creator.
-Because the training dataset is not free, the test dataset is used for -training. It returns a reader creator, each sample in the reader is nine -features, including sentence sequence, predicate, predicate context, -predicate context flag and tagged sequence.
-返回: | Training reader creator | -
---|---|
返回类型: | callable | -
IMDB dataset.
-This module downloads IMDB dataset from -http://ai.stanford.edu/%7Eamaas/data/sentiment/. This dataset contains a set -of 25,000 highly polar movie reviews for training, and 25,000 for testing. -Besides, this module also provides API for building dictionary.
-paddle.v2.dataset.imdb.
build_dict
(pattern, cutoff)Build a word dictionary from the corpus. Keys of the dictionary are words, -and values are zero-based IDs of these words.
-paddle.v2.dataset.imdb.
train
(word_idx)IMDB training set creator.
-It returns a reader creator, each sample in the reader is an zero-based ID -sequence and label in [0, 1].
-参数: | word_idx (dict) – word dictionary | -
---|---|
返回: | Training reader creator | -
返回类型: | callable | -
paddle.v2.dataset.imdb.
test
(word_idx)IMDB test set creator.
-It returns a reader creator, each sample in the reader is an zero-based ID -sequence and label in [0, 1].
-参数: | word_idx (dict) – word dictionary | -
---|---|
返回: | Test reader creator | -
返回类型: | callable | -
paddle.v2.dataset.imdb.
convert
(path)Converts dataset to recordio format
-imikolov’s simple dataset.
-This module will download dataset from -http://www.fit.vutbr.cz/~imikolov/rnnlm/ and parse training set and test set -into paddle reader creators.
-paddle.v2.dataset.imikolov.
build_dict
(min_word_freq=50)Build a word dictionary from the corpus, Keys of the dictionary are words, -and values are zero-based IDs of these words.
-paddle.v2.dataset.imikolov.
train
(word_idx, n, data_type=1)imikolov training set creator.
-It returns a reader creator, each sample in the reader is a word ID -tuple.
-参数: |
|
-
---|---|
返回: | Training reader creator - |
-
返回类型: | callable - |
-
paddle.v2.dataset.imikolov.
test
(word_idx, n, data_type=1)imikolov test set creator.
-It returns a reader creator, each sample in the reader is a word ID -tuple.
-参数: |
|
-
---|---|
返回: | Test reader creator - |
-
返回类型: | callable - |
-
paddle.v2.dataset.imikolov.
convert
(path)Converts dataset to recordio format
-Movielens 1-M dataset.
-Movielens 1-M dataset contains 1 million ratings from 6000 users on 4000 -movies, which was collected by GroupLens Research. This module will download -Movielens 1-M dataset from -http://files.grouplens.org/datasets/movielens/ml-1m.zip and parse training -set and test set into paddle reader creators.
-paddle.v2.dataset.movielens.
get_movie_title_dict
()Get movie title dictionary.
-paddle.v2.dataset.movielens.
max_movie_id
()Get the maximum value of movie id.
-paddle.v2.dataset.movielens.
max_user_id
()Get the maximum value of user id.
-paddle.v2.dataset.movielens.
max_job_id
()Get the maximum value of job id.
-paddle.v2.dataset.movielens.
movie_categories
()Get movie categoriges dictionary.
-paddle.v2.dataset.movielens.
user_info
()Get user info dictionary.
-paddle.v2.dataset.movielens.
movie_info
()Get movie info dictionary.
-paddle.v2.dataset.movielens.
convert
(path)Converts dataset to recordio format
-paddle.v2.dataset.movielens.
MovieInfo
(index, categories, title)Movie id, title and categories information are stored in MovieInfo.
-paddle.v2.dataset.movielens.
UserInfo
(index, gender, age, job_id)User id, gender, age, and job information are stored in UserInfo.
-The script fetch and preprocess movie_reviews data set that provided by NLTK
-TODO(yuyang18): Complete dataset.
-paddle.v2.dataset.sentiment.
get_word_dict
()Sorted the words by the frequency of words which occur in sample -:return:
---words_freq_sorted
paddle.v2.dataset.sentiment.
train
()Default training set reader creator
-paddle.v2.dataset.sentiment.
test
()Default test set reader creator
-paddle.v2.dataset.sentiment.
convert
(path)Converts dataset to recordio format
-UCI Housing dataset.
-This module will download dataset from -https://archive.ics.uci.edu/ml/machine-learning-databases/housing/ and -parse training set and test set into paddle reader creators.
-paddle.v2.dataset.uci_housing.
train
()UCI_HOUSING training set creator.
-It returns a reader creator, each sample in the reader is features after -normalization and price number.
-返回: | Training reader creator | -
---|---|
返回类型: | callable | -
paddle.v2.dataset.uci_housing.
test
()UCI_HOUSING test set creator.
-It returns a reader creator, each sample in the reader is features after -normalization and price number.
-返回: | Test reader creator | -
---|---|
返回类型: | callable | -
WMT14 dataset. -The original WMT14 dataset is too large and a small set of data for set is -provided. This module will download dataset from -http://paddlepaddle.cdn.bcebos.com/demo/wmt_shrinked_data/wmt14.tgz and -parse training set and test set into paddle reader creators.
-paddle.v2.dataset.wmt14.
train
(dict_size)WMT14 training set creator.
-It returns a reader creator, each sample in the reader is source language -word ID sequence, target language word ID sequence and next word ID -sequence.
-返回: | Training reader creator | -
---|---|
返回类型: | callable | -
paddle.v2.dataset.wmt14.
test
(dict_size)WMT14 test set creator.
-It returns a reader creator, each sample in the reader is source language -word ID sequence, target language word ID sequence and next word ID -sequence.
-返回: | Test reader creator | -
---|---|
返回类型: | callable | -
paddle.v2.dataset.wmt14.
convert
(path)Converts dataset to recordio format
-ACL2016 Multimodal Machine Translation. Please see this website for more -details: http://www.statmt.org/wmt16/multimodal-task.html#task1
-If you use the dataset created for your task, please cite the following paper: -Multi30K: Multilingual English-German Image Descriptions.
-}
-paddle.v2.dataset.wmt16.
train
(src_dict_size, trg_dict_size, src_lang='en')WMT16 train set reader.
-This function returns the reader for train data. Each sample the reader -returns is made up of three fields: the source language word index sequence, -target language word index sequence and next word index sequence.
-NOTE: -The original like for training data is: -http://www.quest.dcs.shef.ac.uk/wmt16_files_mmt/training.tar.gz
-paddle.dataset.wmt16 provides a tokenized version of the original dataset by -using moses’s tokenization script: -https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/tokenizer.perl
-参数: |
|
-
---|---|
返回: | The train reader. - |
-
返回类型: | callable - |
-
paddle.v2.dataset.wmt16.
test
(src_dict_size, trg_dict_size, src_lang='en')WMT16 test set reader.
-This function returns the reader for test data. Each sample the reader -returns is made up of three fields: the source language word index sequence, -target language word index sequence and next word index sequence.
-NOTE: -The original like for test data is: -http://www.quest.dcs.shef.ac.uk/wmt16_files_mmt/mmt16_task1_test.tar.gz
-paddle.dataset.wmt16 provides a tokenized version of the original dataset by -using moses’s tokenization script: -https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/tokenizer.perl
-参数: |
|
-
---|---|
返回: | The test reader. - |
-
返回类型: | callable - |
-
paddle.v2.dataset.wmt16.
validation
(src_dict_size, trg_dict_size, src_lang='en')WMT16 validation set reader.
-This function returns the reader for validation data. Each sample the reader -returns is made up of three fields: the source language word index sequence, -target language word index sequence and next word index sequence.
-NOTE: -The original like for validation data is: -http://www.quest.dcs.shef.ac.uk/wmt16_files_mmt/validation.tar.gz
-paddle.dataset.wmt16 provides a tokenized version of the original dataset by -using moses’s tokenization script: -https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/tokenizer.perl
-参数: |
|
-
---|---|
返回: | The validation reader. - |
-
返回类型: | callable - |
-
paddle.v2.dataset.wmt16.
get_dict
(lang, dict_size, reverse=False)return the word dictionary for the specified language.
-参数: |
|
-
---|---|
返回: | The word dictionary for the specific language. - |
-
返回类型: | dict - |
-
paddle.v2.dataset.wmt16.
fetch
()download the entire dataset.
-paddle.v2.dataset.wmt16.
convert
(path, src_dict_size, trg_dict_size, src_lang)Converts dataset to recordio format.
-This file contains some common interfaces for image preprocess. -Many users are confused about the image layout. We introduce -the image layout as follows.
-CHW Layout
-Color format: RGB or BGR
-OpenCV use BGR color format. PIL use RGB color format. Both -formats can be used for training. Noted that, the format should -be keep consistent between the training and inference peroid.
-paddle.v2.image.
batch_images_from_tar
(data_file, dataset_name, img2label, num_per_batch=1024)¶Read images from tar file and batch them into batch file.
-参数: |
|
-
---|---|
返回: | path of list file containing paths of batch file - |
-
返回类型: | string - |
-
paddle.v2.image.
load_image_bytes
(bytes, is_color=True)¶Load an color or gray image from bytes array.
-Example usage:
-with open('cat.jpg') as f:
- im = load_image_bytes(f.read())
-
参数: |
|
-
---|
paddle.v2.image.
load_image
(file, is_color=True)¶Load an color or gray image from the file path.
-Example usage:
-im = load_image('cat.jpg')
-
参数: |
|
-
---|
paddle.v2.image.
resize_short
(im, size)¶Resize an image so that the length of shorter edge is size.
-Example usage:
-im = load_image('cat.jpg')
-im = resize_short(im, 256)
-
参数: |
|
-
---|
paddle.v2.image.
to_chw
(im, order=(2, 0, 1))¶Transpose the input image order. The image layout is HWC format -opened by cv2 or PIL. Transpose the input image to CHW layout -according the order (2,0,1).
-Example usage:
-im = load_image('cat.jpg')
-im = resize_short(im, 256)
-im = to_chw(im)
-
参数: |
|
-
---|
paddle.v2.image.
center_crop
(im, size, is_color=True)¶Crop the center of image with size.
-Example usage:
-im = center_crop(im, 224)
-
参数: |
|
-
---|
paddle.v2.image.
random_crop
(im, size, is_color=True)¶Randomly crop input image with size.
-Example usage:
-im = random_crop(im, 224)
-
参数: |
|
-
---|
paddle.v2.image.
left_right_flip
(im, is_color=True)¶Flip an image along the horizontal direction. -Return the flipped image.
-Example usage:
-im = left_right_flip(im)
-
参数: |
|
-
---|
paddle.v2.image.
simple_transform
(im, resize_size, crop_size, is_train, is_color=True, mean=None)¶Simply data argumentation for training. These operations include -resizing, croping and flipping.
-Example usage:
-im = simple_transform(im, 256, 224, True)
-
参数: |
|
-
---|
paddle.v2.image.
load_and_transform
(filename, resize_size, crop_size, is_train, is_color=True, mean=None)¶Load image from the input file filename and transform image for -data argumentation. Please refer to the simple_transform interface -for the transform operations.
-Example usage:
-im = load_and_transform('cat.jpg', 256, 224, True)
-
参数: |
|
-
---|
paddle.v2.fluid.evaluator.
Accuracy
(input, label, k=1, **kwargs)Average Accuracy for multiple mini-batches.
-paddle.v2.fluid.evaluator.
ChunkEvaluator
(input, label, chunk_scheme, num_chunk_types, excluded_chunk_types=None)Accumulate counter numbers output by chunk_eval from mini-batches and -compute the precision recall and F1-score using the accumulated counter -numbers.
-paddle.v2.fluid.executor.
Executor
(places)paddle.v2.fluid.executor.
global_scope
()paddle.v2.fluid.executor.
scope_guard
(*args, **kwds)paddle.v2.fluid.executor.
switch_scope
(scope)paddle.v2.fluid.initializer.
Constant
ConstantInitializer
的别名
paddle.v2.fluid.initializer.
Uniform
UniformInitializer
的别名
paddle.v2.fluid.initializer.
Normal
NormalInitializer
的别名
paddle.v2.fluid.initializer.
Xavier
XavierInitializer
的别名
paddle.v2.fluid.io.
save_vars
(executor, dirname, main_program=None, vars=None, predicate=None, save_file_name=None)Save variables to directory by executor.
-参数: |
|
-
---|
program which fit predicate. Default default_main_program. -:param predicate: The Predicate describes a callable that returns a variable -as a bool. If it returns true, the corresponding input variable will be saved. -:param vars: variables need to be saved. If vars is specified, program & predicate -will be ignored -:param save_file_name: The name of a single file that all vars are saved to. -If it is None, save variables to separate files.
-返回: | None | -
---|
paddle.v2.fluid.io.
save_params
(executor, dirname, main_program=None, save_file_name=None)Save all parameters to directory with executor.
-paddle.v2.fluid.io.
save_persistables
(executor, dirname, main_program=None, save_file_name=None)Save all persistables to directory with executor.
-paddle.v2.fluid.io.
load_vars
(executor, dirname, main_program=None, vars=None, predicate=None, load_file_name=None)Load variables from directory by executor.
-参数: |
|
-
---|
program which fit predicate. Default default_main_program(). -:param predicate: The Predicate describes a callable that returns a variable -as a bool. If it returns true, the corresponding input variable will be loaded. -:param vars: variables need to be loaded. If vars is specified, program & -predicate will be ignored -:param load_file_name: The name of the single file that all vars are loaded from. -If it is None, load variables from separate files.
-返回: | None | -
---|
paddle.v2.fluid.io.
load_params
(executor, dirname, main_program=None, load_file_name=None)load all parameters from directory by executor.
-paddle.v2.fluid.io.
load_persistables
(executor, dirname, main_program=None, load_file_name=None)load all persistables from directory by executor.
-paddle.v2.fluid.io.
save_inference_model
(dirname, feeded_var_names, target_vars, executor, main_program=None, save_file_name=None)Build a model especially for inference, -and save it to directory by the executor.
-参数: |
|
-
---|
If it is None, save parameters to separate files.
-返回: | None | -
---|
paddle.v2.fluid.io.
load_inference_model
(dirname, executor, load_file_name=None)Load inference model from a directory
-参数: |
|
-
---|
If it is None, load parameters from separate files.
-返回: | [program, feed_target_names, fetch_targets] -program: program especially for inference. -feed_target_names: Names of variables that need to feed data -fetch_targets: Variables from which we can get inference results. | -
---|
paddle.v2.fluid.io.
get_inference_program
(target_vars, main_program=None)paddle.v2.fluid.layers.
split_lod_tensor
(input, mask, level=0)split_lod_tensor
-This function takes in an input that contains the complete lod information, -and takes in a mask which is used to mask certain parts of the input. -The output is the true branch and the false branch with the mask applied to -the input at a certain level in the tensor.
-参数: |
|
-
---|---|
返回: | The true branch of tensor as per the mask applied to input. -Variable: The false branch of tensor as per the mask applied to input. - |
-
返回类型: | Variable - |
-
Examples
-x = layers.data(name='x', shape=[1])
-x.persistable = True
-
-y = layers.data(name='y', shape=[1])
-y.persistable = True
-
-out_true, out_false = layers.split_lod_tensor(
- input=x, mask=y, level=level)
-
paddle.v2.fluid.layers.
merge_lod_tensor
(in_true, in_false, x, mask, level=0)merge_lod_tensor
-This function takes in an input \(x\), the True branch, the False -branch and a binary \(mask\). Using this information, this function -merges the True and False branches of the tensor into a single Output -at a certain lod level indiacted by \(level\).
-参数: |
|
-
---|---|
返回: | The merged output tensor. - |
-
返回类型: | Variable - |
-
Examples
-x = layers.data(
- name='x', shape=[1], dtype='float32', stop_gradient=False)
-y = layers.data(
- name='y', shape=[1], dtype='bool', stop_gradient=False)
-
-level = 0
-
-out_true, out_false = layers.split_lod_tensor(
- input=x, mask=y, level=level)
-out = layers.merge_lod_tensor(
- in_true=out_true, in_false=out_false, mask=y, x=x, level=level)
-
paddle.v2.fluid.layers.
BlockGuard
(main_program)BlockGuard class.
-BlockGuard class is used to create a sub-block in a program by -using the Python with keyword.
-paddle.v2.fluid.layers.
BlockGuardWithCompletion
(rnn)BlockGuardWithCompletion class.
-BlockGuardWithCompletion class is used to create an op with a block in a program.
-paddle.v2.fluid.layers.
StaticRNNMemoryLink
(init, pre_mem, mem=None)StaticRNNMemoryLink class.
-参数: |
|
-
---|
StaticRNNMemoryLink class is used to create a link between two -memory cells of a StaticRNN.
-paddle.v2.fluid.layers.
WhileGuard
(while_op)paddle.v2.fluid.layers.
While
(cond, name=None)paddle.v2.fluid.layers.
lod_rank_table
(x, level=0)LoD Rank Table Operator. Given an input variable x and a level number -of LoD, this layer creates a LodRankTable object. A LoDRankTable object -contains a list of bi-element tuples. Each tuple consists of an index and -a length, both of which are int type. Refering to specified level of LoD, -the index is the sequence index number and the length representes the -sequence length. Please note that the list is ranked in descending order by -the length. The following is an example:
-----x is a LoDTensor: - x.lod = [[0, 2, 3], - [0, 5, 6, 7]] - x.data = [a, b, c, d, e, f, g] - -1. set level to 0: - Create lod rank table: - lod_rank_table_obj = lod_rank_table(x, level=0) - - Get: - lod_rank_table_obj.items() = [(0, 2), (1, 1)] - -2. set level to 1: - Create lod rank table: - lod_rank_table_obj = lod_rank_table(x, level=1) - - Get: - lod_rank_table_obj.items() = [(0, 5), (1, 1), (2, 1)] -
参数: |
|
-
---|---|
返回: | The created LoDRankTable object. - |
-
返回类型: | Variable - |
-
Examples
-x = fluid.layers.data(name='x', shape=[10],
- dtype='float32', lod_level=1)
-out = layers.lod_rank_table(x=x, level=0)
-
paddle.v2.fluid.layers.
max_sequence_len
(rank_table)Max Sequence Len Operator. Given a LoDRankTable object, this layer -returns the max length of a batch of sequences. In fact, a LoDRankTable -object contains a list of tuples(<sequence index, sequence length>) and -the list is already sorted by sequence length in descending order, so the -operator just returns the sequence length of the first tuple element.
-参数: | rank_table (Variable) – Input variable which is a LoDRankTable object. | -
---|---|
返回: | The max length of sequence. | -
返回类型: | Variable | -
Examples
-x = fluid.layers.data(name='x', shape=[10],
- dtype='float32', lod_level=1)
-rank_table = layers.lod_rank_table(x=x, level=0)
-max_seq_len = layers.max_sequence_len(rank_table)
-
paddle.v2.fluid.layers.
topk
(input, k)topk
-This function performs the operation that selects the k entries in the input -vector and outputs their values and indices as vectors. Thus topk_out[j] is -the j-th largest entry in input, and its index is topk_indices[j]
-参数: |
|
-
---|---|
返回: |
|
-
返回类型: | Variable - |
-
Examples
-x = fluid.layers.data(name='x', shape=[10])
-k = 5
-array = fluid.layers.topk(x, k)
-
paddle.v2.fluid.layers.
lod_tensor_to_array
(x, table)Convert a LOD_TENSOR to an LOD_TENSOR_ARRAY.
-参数: |
|
-
---|---|
返回: |
|
-
返回类型: | Variable - |
-
Examples
-x = fluid.layers.data(name='x', shape=[10])
-table = fluid.layers.lod_rank_table(x, level=0)
-array = fluid.layers.lod_tensor_to_array(x, table)
-
paddle.v2.fluid.layers.
array_to_lod_tensor
(x, table)Convert a LoD_Tensor_Aarry to an LoDTensor.
-参数: |
|
-
---|---|
返回: |
|
-
返回类型: | Variable - |
-
Examples
-x = fluid.layers.data(name='x', shape=[10])
-table = fluid.layers.lod_rank_table(x, level=0)
-array = fluid.layers.lod_tensor_to_array(x, table)
-lod_tensor = fluid.layers.array_to_lod_tensor(array, table)
-
paddle.v2.fluid.layers.
increment
(x, value=1.0, in_place=True)This function performs an operation that increments each value in the -input \(x\) by an amount: \(value\) as mentioned in the input -parameter. This operation is performed in-place by default.
-参数: |
|
-
---|---|
返回: |
|
-
返回类型: | Variable - |
-
Examples
-data = fluid.layers.data(name='data', shape=[32, 32], dtype='float32')
-data = fluid.layers.increment(x=data, value=3.0, in_place=True)
-
paddle.v2.fluid.layers.
array_write
(x, i, array=None)This function writes the given input variable to the specified position -indicating by the arrary index to an output LOD_TENSOR_ARRAY. If the -output LOD_TENSOR_ARRAY is not given(None), a new one will be created and -returned.
-参数: |
|
-
---|---|
返回: | The output LOD_TENSOR_ARRAY where the input tensor is written. - |
-
返回类型: | Variable - |
-
Examples
-paddle.v2.fluid.layers.
create_array
(dtype)This function creates an array of type \(LOD_TENSOR_ARRAY\) using the -LayerHelper.
-参数: | dtype (int|float) – The data type of the elements in the array. | -
---|---|
返回: | The tensor variable storing the elements of data type. | -
返回类型: | Variable | -
Examples
-data = fluid.layers.create_array(dtype='float32')
-
paddle.v2.fluid.layers.
less_than
(x, y, cond=None, **ignored)Less than
-This layer returns the truth value of \(x < y\) elementwise.
-参数: |
|
-
---|---|
返回: | The tensor variable storing the output of less_than. - |
-
返回类型: | Variable - |
-
Examples
-less = fluid.layers.less_than(x=label, y=limit)
-
paddle.v2.fluid.layers.
array_read
(array, i)This function performs the operation to read the data in as an -LOD_TENSOR_ARRAY. -:param array: The input tensor that will be written to an array. -:type array: Variable|list -:param i: The subscript index in tensor array, that points the
---place where data will be written to.
返回: | The tensor type variable that has the data written to it. | -
---|---|
返回类型: | Variable | -
Examples
-paddle.v2.fluid.layers.
shrink_memory
(x, i, table)This function creates an operator to shrink_rnn_memory using the RankTable -as mentioned in the input parameter.
-paddle.v2.fluid.layers.
array_length
(array)This function performs the operation to find the length of the input -LOD_TENSOR_ARRAY.
-参数: | array (LOD_TENSOR_ARRAY) – The input array that will be used -to compute the length. | -
---|---|
返回: | The length of the input LoDTensorArray. | -
返回类型: | Variable | -
Examples
-paddle.v2.fluid.layers.
IfElse
(cond, name=None)paddle.v2.fluid.layers.
DynamicRNN
(name=None)paddle.v2.fluid.layers.
ConditionalBlock
(inputs, is_scalar_condition=False, name=None)paddle.v2.fluid.layers.
StaticRNN
(name=None)StaticRNN class.
-StaticRNN class is used to create a StaticRNN. The RNN will have its -own parameters like inputs, outputs, memories, status and length.
-memory
(init=None, shape=None, batch_ref=None, init_value=0.0, init_batch_dim_idx=0, ref_batch_dim_idx=1)参数: |
|
-
---|
paddle.v2.fluid.layers.
reorder_lod_tensor_by_rank
(x, rank_table)ReorderLoDTensorByRankTable operator.
-Input(X) is a batch of sequences. Input(RankTable) stores new orders of the -input sequence batch. The reorder_lod_tensor_by_rank operator reorders the -Input(X) according to the information provided by Input(RankTable).
-For example:
-If the indices stored in the Input(RankTable) are [3, 0, 2, 1], the -Input(X) will be reordered that the fourth sequence in Input(X) will become the -first one, and then followed by the original first, third, and the second one.
-This is: -X = [Seq0, Seq1, Seq2, Seq3]. The indices in RankTable are [3, 0, 2, 1]. -Out = [Seq3, Seq0, Seq2, Seq1] with a new LoD information.
-If the LoD information of Input(X) is empty, this means Input(X) is not sequence -data. This is also identical to a batch of sequences where each sequence has a -fixed length 1. In this case, the reorder_lod_tensor_by_rank operator reorders -each slice of Input(X) along the first axis according to Input(RankTable).
-This is: -X = [Slice0, Slice1, Slice2, Slice3] and its LoD information is empty. The -indices in RankTable are [3, 0, 2, 1]. -Out = [Slice3, Slice0, Slice2, Slice1] with no LoD information is appended.
-NOTE: This operator sorts Input(X) according to a given LoDRankTable which does -not need to be calculated according to Input(X). It can be calculated according -to another different sequence, and then this operator sorts Input(X) according -to the given LoDRankTable.
-参数: |
|
-
---|---|
返回: | (LoDTensor), the reordered lod tensor. - |
-
paddle.v2.fluid.layers.
ParallelDo
(places, name=None)ParallelDo class.
-ParallelDo class is used to create a ParallelDo.
-paddle.v2.fluid.layers.
Print
(input, first_n=-1, message=None, summarize=-1, print_tensor_name=True, print_tensor_type=True, print_tensor_shape=True, print_tensor_lod=True, print_phase='both')Print operator
-This creates a print op that will print when a tensor is accessed.
-Wraps the tensor passed in so that whenever that a tensor is accessed, -the message message is printed, along with the current value of the -tensor t.
-参数: |
|
-
---|---|
返回: | Output tensor, same data with input tensor. - |
-
返回类型: | Variable - |
-
Examples
-
-
value = some_layer(...) -Print(value, summarize=10,
---message=”The content of some_layer: ”)
paddle.v2.fluid.layers.
get_places
(device_count=None, device_type=None)Returns a list of places based on flags. The list will be used for parallel -execution.
-参数: |
|
-
---|---|
返回: | vector of Place - |
-
paddle.v2.fluid.layers.
data
(name, shape, append_batch_size=True, dtype='float32', lod_level=0, type=VarType.LOD_TENSOR, stop_gradient=True)Data Layer
-This function takes in the input and based on whether data has -to be returned back as a minibatch, it creates the global variable by using -the helper functions. The global variables can be accessed by all the -following operators in the graph.
-All the input variables of this function are passed in as local variables -to the LayerHelper constructor.
-参数: |
|
-
---|---|
返回: | The global variable that gives access to the data. - |
-
返回类型: | Variable - |
-
Examples
-data = fluid.layers.data(name='x', shape=[784], dtype='float32')
-
paddle.v2.fluid.layers.
BlockGuardServ
(server)BlockGuardServ class.
-BlockGuardServ class is used to create an op with a block in a program.
-paddle.v2.fluid.layers.
ListenAndServ
(endpoint, fan_in=1, optimizer_mode=True)ListenAndServ class.
-ListenAndServ class is used to wrap listen_and_serv op to create a server -which can receive variables from clients and run a block.
-paddle.v2.fluid.layers.
Send
(endpoints, send_vars, get_vars)Send layer
-参数: |
|
-
---|
Send variables to the server side, and get vars from server -side when server have finished running server side program.
-paddle.v2.fluid.layers.
fc
(input, size, num_flatten_dims=1, param_attr=None, bias_attr=None, act=None, name=None)Fully Connected Layer
-The fully connected layer can take multiple tensors as its inputs. It -creates a variable (one for each input tensor) called weights for each -input tensor, which represents a fully connected weight matrix from -each input unit to each output unit. The fully connected layer -multiplies each input tensor with its coresponding weight to produce -an output Tensor. If multiple input tensors are given, the results of -multiple multiplications will be sumed up. If bias_attr is not None, -a biases variable will be created and added to the output. Finally, -if activation is not None, it will be applied to the output as well.
-This process can be formulated as follows:
-In the above equation:
-参数: |
|
-
---|---|
返回: | The output tensor variable. - |
-
返回类型: | Variable - |
-
Raises: |
|
-
Examples
-data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
-fc = fluid.layers.fc(input=data, size=1000, act="tanh")
-
paddle.v2.fluid.layers.
embedding
(input, size, is_sparse=False, padding_idx=None, param_attr=None, dtype='float32')Embedding Layer
-This layer is used to lookup embeddings of IDs, provided by input
, in
-a lookup table. The result of this lookup is the embedding of each ID in the
-input
.
All the input variables are passed in as local variables to the LayerHelper -constructor.
-参数: |
|
-
---|---|
返回: | The tensor variable storing the embeddings of the supplied inputs. - |
-
返回类型: | Variable - |
-
Examples
-dict_size = len(dataset.ids)
-data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
-fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
-
paddle.v2.fluid.layers.
dynamic_lstm
(input, size, param_attr=None, bias_attr=None, use_peepholes=True, is_reverse=False, gate_activation='sigmoid', cell_activation='tanh', candidate_activation='tanh', dtype='float32', name=None)Dynamic LSTM Layer
-The defalut implementation is diagonal/peephole connection -(https://arxiv.org/pdf/1402.1128.pdf), the formula is as follows:
-where the \(W\) terms denote weight matrices (e.g. \(W_{xi}\) is -the matrix of weights from the input gate to the input), \(W_{ic}, W_{fc}, W_{oc}\) are diagonal weight matrices for peephole connections. In -our implementation, we use vectors to reprenset these diagonal weight -matrices. The \(b\) terms denote bias vectors (\(b_i\) is the input -gate bias vector), \(\sigma\) is the non-linear activations, such as -logistic sigmoid function, and \(i, f, o\) and \(c\) are the input -gate, forget gate, output gate, and cell activation vectors, respectively, -all of which have the same size as the cell output activation vector \(h\).
-The \(\odot\) is the element-wise product of the vectors. \(act_g\) -and \(act_h\) are the cell input and cell output activation functions -and tanh is usually used for them. \(\tilde{c_t}\) is also called -candidate hidden state, which is computed based on the current input and -the previous hidden state.
-Set use_peepholes to False to disable peephole connection. The formula -is omitted here, please refer to the paper -http://www.bioinf.jku.at/publications/older/2604.pdf for details.
-Note that these \(W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}\) -operations on the input \(x_{t}\) are NOT included in this operator. -Users can choose to use fully-connect layer before LSTM layer.
-参数: |
|
-
---|---|
返回: | The hidden state, and cell state of LSTM. The shape of both is (T x D), and lod is the same with the input. - |
-
返回类型: | tuple - |
-
Examples
-hidden_dim = 512
-forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
- act=None, bias_attr=None)
-forward, _ = fluid.layers.dynamic_lstm(
- input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
-
paddle.v2.fluid.layers.
dynamic_lstmp
(input, size, proj_size, param_attr=None, bias_attr=None, use_peepholes=True, is_reverse=False, gate_activation='sigmoid', cell_activation='tanh', candidate_activation='tanh', proj_activation='tanh', dtype='float32', name=None)Dynamic LSTMP Layer
-LSTMP (LSTM with recurrent projection) layer has a separate projection -layer after the LSTM layer, projecting the original hidden state to a -lower-dimensional one, which is proposed to reduce the number of total -parameters and furthermore computational complexity for the LSTM, -espeacially for the case that the size of output units is relative -large (https://research.google.com/pubs/archive/43905.pdf).
-The formula is as follows:
-In the above formula:
-Set use_peepholes to False to disable peephole connection. The formula -is omitted here, please refer to the paper -http://www.bioinf.jku.at/publications/older/2604.pdf for details.
-Note that these \(W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}\) -operations on the input \(x_{t}\) are NOT included in this operator. -Users can choose to use fully-connected layer before LSTMP layer.
-参数: |
|
-
---|---|
返回: | The projection of hidden state, and cell state of LSTMP. The shape of projection is (T x P), for the cell state which is (T x D), and both LoD is the same with the input. - |
-
返回类型: | tuple - |
-
Examples
-hidden_dim, proj_dim = 512, 256
-fc_out = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
- act=None, bias_attr=None)
-proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
- size=hidden_dim * 4,
- proj_size=proj_dim,
- use_peepholes=False,
- is_reverse=True,
- cell_activation="tanh",
- proj_activation="tanh")
-
paddle.v2.fluid.layers.
dynamic_gru
(input, size, param_attr=None, bias_attr=None, is_reverse=False, gate_activation='sigmoid', candidate_activation='tanh', h_0=None)Dynamic GRU Layer
-Refer to Empirical Evaluation of Gated Recurrent Neural Networks on -Sequence Modeling
-The formula is as follows:
-The \(\odot\) is the element-wise product of the vectors. \(act_g\) -is the update gate and reset gate activation function and \(sigmoid\) -is usually used for it. \(act_c\) is the activation function for -candidate hidden state and \(tanh\) is usually used for it.
-Note that these \(W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}\) operations on -the input \(x_{t}\) are NOT included in this operator. Users can choose -to use fully-connect layer before GRU layer.
-参数: |
|
-
---|---|
返回: | The hidden state of GRU. The shape is \((T \times D)\), and lod is the same with the input. - |
-
返回类型: | Variable - |
-
Examples
-hidden_dim = 512
-x = fluid.layers.fc(input=data, size=hidden_dim * 3)
-hidden = fluid.layers.dynamic_gru(input=x, dim=hidden_dim)
-
paddle.v2.fluid.layers.
gru_unit
(input, hidden, size, weight=None, bias=None, activation='tanh', gate_activation='sigmoid')GRU unit layer. The equation of a gru step is:
----\[ \begin{align}\begin{aligned}u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)\\r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)\\m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)\\h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})\end{aligned}\end{align} \]-
The inputs of gru unit includes \(z_t\), \(h_{t-1}\). In terms -of the equation above, the \(z_t\) is split into 3 parts - -\(xu_t\), \(xr_t\) and \(xm_t\). This means that in order to -implement a full GRU unit operator for an input, a fully -connected layer has to be applied, such that \(z_t = W_{fc}x_t\).
-The terms \(u_t\) and \(r_t\) represent the update and reset gates -of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is -an intermediate candidate hidden output, which is denoted by \(m_t\). -This layer has three outputs \(h_t\), \(dot(r_t, h_{t-1})\) -and concatenation of \(u_t\), \(r_t\) and \(m_t\).
-参数: |
|
-
---|---|
返回: | The hidden value, reset-hidden value and gate values. - |
-
返回类型: | tuple - |
-
Examples
-# assuming we have x_t_data and prev_hidden of size=10
-x_t = fluid.layers.fc(input=x_t_data, size=30)
-hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
- hidden = prev_hidden)
-
paddle.v2.fluid.layers.
linear_chain_crf
(input, label, param_attr=None)paddle.v2.fluid.layers.
crf_decoding
(input, param_attr, label=None)paddle.v2.fluid.layers.
cos_sim
(X, Y, **kwargs)This function performs the cosine similarity between two tensors -X and Y and returns that as the output.
-paddle.v2.fluid.layers.
cross_entropy
(input, label, **kwargs)Cross Entropy Layer
-This layer computes the cross entropy between input and label. It -supports both standard cross-entropy and soft-label cross-entropy loss -computation.
-soft_label = False, Label[i, 0] indicates the class index for sample i:
-soft_label = True, Label[i, j] indicates the soft label of class j -for sample i:
-Please make sure that in this case the summation of each row of label -equals one.
-As a special case of 2), when each row of ‘label’ has only one -non-zero element which is equal to 1, soft-label cross-entropy degenerates -to a one-hot cross-entropy with one-hot label representation.
-参数: |
|
-
---|---|
返回: | A 2-D tensor with shape [N x 1], the cross entropy loss. - |
-
Raises: | ValueError – 1) the 1st dimension of input and label are not equal. -2) when soft_label == True, and the 2nd dimension of ---
|
-
Examples
-predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
-cost = fluid.layers.cross_entropy(input=predict, label=label)
-
paddle.v2.fluid.layers.
square_error_cost
(input, label, **kwargs)Square error cost layer
-This layer accepts input predictions and target label and returns the -squared error cost.
-For predictions, \(X\), and target labels, \(Y\), the equation is:
-In the above equation:
----
-- \(X\): Input predictions, a tensor.
-- \(Y\): Input labels, a tensor.
-- \(Out\): Output value, same shape with \(X\).
-
参数: |
|
-
---|---|
返回: | The tensor variable storing the element-wise squared error difference of input and label. - |
-
返回类型: | Variable - |
-
Examples
-y = layers.data(name='y', shape=[1], dtype='float32')
-y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
-cost = layers.square_error_cost(input=y_predict, label=y)
-
paddle.v2.fluid.layers.
accuracy
(input, label, k=1, correct=None, total=None, **kwargs)This function computes the accuracy using the input and label. -The output is the top_k inputs and their indices.
-paddle.v2.fluid.layers.
chunk_eval
(input, label, chunk_scheme, num_chunk_types, excluded_chunk_types=None, **kwargs)This function computes and outputs the precision, recall and -F1-score of chunk detection.
-paddle.v2.fluid.layers.
sequence_conv
(input, num_filters, filter_size=3, filter_stride=1, padding=None, bias_attr=None, param_attr=None, act=None)This function creates the op for sequence_conv, using the inputs and -other convolutional configurations for the filters and stride as given -in the input parameters to the function.
-paddle.v2.fluid.layers.
conv2d
(input, num_filters, filter_size, stride=None, padding=None, groups=None, param_attr=None, bias_attr=None, use_cudnn=True, act=None)Convlution2D Layer
-The convolution2D layer calculates the output based on the input, filter -and strides, paddings, dilations, groups parameters. Input(Input) and -Output(Output) are in NCHW format. Where N is batch size, C is the number of -channels, H is the height of the feature, and W is the width of the feature. -The details of convolution layer, please refer UFLDL’s convolution, . -If bias attribution and activation type are provided, bias is added to the -output of the convolution, and the corresponding activation function is -applied to the final result.
-For each input \(X\), the equation is:
-In the above equation:
-Example
-Input:
-Input shape: $(N, C_{in}, H_{in}, W_{in})$
-Filter shape: $(C_{out}, C_{in}, H_f, W_f)$
-Output: -Output shape: $(N, C_{out}, H_{out}, W_{out})$
-Where
-H_{out}&= frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \ -W_{out}&= frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
-参数: |
|
-
---|---|
返回: | The tensor variable storing the convolution and non-linearity activation result. - |
-
返回类型: | Variable - |
-
Raises: |
|
-
Examples
-data = fluid.layers.data(
- name='data', shape=[3, 32, 32], dtype='float32')
-conv2d = fluid.layers.conv2d(
- input=data, num_filters=2, filter_size=3, act="relu")
-
paddle.v2.fluid.layers.
sequence_pool
(input, pool_type, **kwargs)This function add the operator for sequence pooling. -It pools features of all time-steps of each instance, and is applied -on top of the input using pool_type mentioned in the parameters.
-It supports four pool_type:
-x is a 1-level LoDTensor:
- x.lod = [[0, 2, 5, 7]]
- x.data = [1, 3, 2, 4, 6, 5, 1]
- x.dims = [7, 1]
-
-then output is a Tensor:
- out.dim = [3, 1]
- with condition len(x.lod[-1]) - 1 == out.dims[0]
-
-for different pool_type:
- average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
- sum : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
- sqrt : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
- 6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
- max : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
-
参数: |
|
-
---|---|
返回: | The sequence pooling variable which is a Tensor. - |
-
Examples
-x = fluid.layers.data(name='x', shape=[7, 1],
- dtype='float32', lod_level=1)
-avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
-sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
-sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
-max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
-
paddle.v2.fluid.layers.
pool2d
(input, pool_size, pool_type, pool_stride=None, pool_padding=None, global_pooling=False, use_cudnn=True, name=None)This function adds the operator for pooling in 2 dimensions, using the -pooling configurations mentioned in input parameters.
-paddle.v2.fluid.layers.
batch_norm
(input, act=None, is_test=False, momentum=0.9, epsilon=1e-05, param_attr=None, bias_attr=None, data_layout='NCHW', name=None, moving_mean_name=None, moving_variance_name=None)This function helps create an operator to implement -the BatchNorm layer using the configurations from the input parameters.
-paddle.v2.fluid.layers.
layer_norm
(input, scale=True, shift=True, begin_norm_axis=1, epsilon=1e-05, param_attr=None, bias_attr=None, act=None, name=None)Layer Normalization
-Assume feature vectors exist on dimensions
-begin_norm_axis ... rank(input)
and calculate the moment statistics
-along these dimensions for each feature vector \(a\) with size
-\(H\), then normalize each feature vector using the corresponding
-statistics. After that, apply learnable gain and bias on the normalized
-tensor to scale and shift if scale
and shift
are set.
Refer to Layer Normalization
-The formula is as follows:
-参数: |
|
-
---|---|
返回: | A tensor variable with the same shape as the input. - |
-
返回类型: | Variable - |
-
Examples
-data = fluid.layers.data(
- name='data', shape=[3, 32, 32], dtype='float32')
-x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
-
paddle.v2.fluid.layers.
beam_search_decode
(ids, scores, name=None)paddle.v2.fluid.layers.
conv2d_transpose
(input, num_filters, output_size=None, filter_size=None, padding=None, stride=None, dilation=None, param_attr=None, use_cudnn=True, name=None)Convlution2D transpose layer
-The convolution2D transpose layer calculates the output based on the input, -filter, and dilations, strides, paddings. Input(Input) and output(Output) -are in NCHW format. Where N is batch size, C is the number of channels, -H is the height of the feature, and W is the width of the feature. -Parameters(dilations, strides, paddings) are two elements. These two elements -represent height and width, respectively. The details of convolution transpose -layer, please refer to the following explanation and references -therein.
-For each input \(X\), the equation is:
-In the above equation:
-Example
-Input:
-Input shape: $(N, C_{in}, H_{in}, W_{in})$
-Filter shape: $(C_{in}, C_{out}, H_f, W_f)$
-Output:
-Output shape: $(N, C_{out}, H_{out}, W_{out})$
-Where
-参数: |
|
-
---|---|
返回: | The tensor variable storing the convolution transpose result. - |
-
返回类型: | Variable - |
-
Raises: |
|
-
Examples
-data = fluid.layers.data(
- name='data', shape=[3, 32, 32], dtype='float32')
-conv2d_transpose = fluid.layers.conv2d_transpose(
- input=data, num_filters=2, filter_size=3)
-
paddle.v2.fluid.layers.
sequence_expand
(x, y, name=None)Sequence Expand Layer. This layer will expand the input variable x -according to LoD information of y. And the following examples will -explain how sequence_expand works:
-* Case 1
- x is a LoDTensor:
- x.lod = [[0, 2, 3],
- [0, 1, 3, 4]]
- x.data = [a, b, c, d]
- x.dims = [4, 1]
-
- y is a LoDTensor:
- y.lod = [[0, 2, 4],
- [0, 3, 6, 7, 8]]
-
- with condition len(y.lod[-1]) - 1 == x.dims[0]
-
- then output is a 2-level LoDTensor:
- out.lod = [[0, 2, 4],
- [0, 3, 6, 7, 8]]
- out.data = [a, a, a, b, b, b, c, d]
- out.dims = [8, 1]
-
-* Case 2
- x is a Tensor:
- x.data = [a, b, c]
- x.dims = [3, 1]
-
- y is a LoDTensor:
- y.lod = [[0, 2, 3, 6]]
-
- with condition len(y.lod[-1]) - 1 == x.dims[0]
-
- then output is a 1-level LoDTensor:
- out.lod = [[0, 2, 3, 6]]
- out.data = [a, a, b, c, c, c]
- out.dims = [6, 1]
-
参数: |
|
-
---|---|
返回: | The expanded variable which is a LoDTensor. - |
-
返回类型: | Variable - |
-
Examples
-x = fluid.layers.data(name='x', shape=[10], dtype='float32')
-y = fluid.layers.data(name='y', shape=[10, 20],
- dtype='float32', lod_level=1)
-out = layers.sequence_expand(x=x, y=y)
-
paddle.v2.fluid.layers.
lstm_unit
(x_t, hidden_t_prev, cell_t_prev, forget_bias=0.0, param_attr=None, bias_attr=None, name=None)Lstm unit layer. The equation of a lstm step is:
----\[ \begin{align}\begin{aligned}i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)\\f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)\\c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)\\o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)\\h_t & = o_t tanh(c_t)\end{aligned}\end{align} \]-
The inputs of lstm unit include \(x_t\), \(h_{t-1}\) and -\(c_{t-1}\). The 2nd dimensions of \(h_{t-1}\) and \(c_{t-1}\) -should be same. The implementation separates the linear transformation and -non-linear transformation apart. Here, we take \(i_t\) as an example. -The linear transformation is applied by calling a fc layer and the -equation is:
----\[L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i\]-
The non-linear transformation is applied by calling lstm_unit_op and the -equation is:
----\[i_t = \sigma(L_{i_t})\]-
This layer has two outputs including \(h_t\) and \(o_t\).
-参数: |
|
-
---|---|
返回: | The hidden value and cell value of lstm unit. - |
-
返回类型: | tuple - |
-
Raises: |
|
-
Examples
-x_t = fluid.layers.fc(input=x_t_data, size=10)
-prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
-prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
-hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
- hidden_t_prev=prev_hidden,
- cell_t_prev=prev_cell)
-
paddle.v2.fluid.layers.
reduce_sum
(input, dim=None, keep_dim=False, name=None)Computes the sum of tensor elements over the given dimension.
-参数: |
|
-
---|---|
返回: | The reduced Tensor variable. - |
-
返回类型: | Variable - |
-
Examples
-# x is a Tensor variable with following elements:
-# [[0.2, 0.3, 0.5, 0.9]
-# [0.1, 0.2, 0.6, 0.7]]
-# Each example is followed by the correspending output tensor.
-fluid.layers.reduce_sum(x) # [3.5]
-fluid.layers.reduce_sum(x, dim=0) # [0.3, 0.5, 1.1, 1.6]
-fluid.layers.reduce_sum(x, dim=-1) # [1.9, 1.6]
-fluid.layers.reduce_sum(x, dim=1, keep_dim=True) # [[1.9], [1.6]]
-
paddle.v2.fluid.layers.
reduce_mean
(input, dim=None, keep_dim=False, name=None)Computes the mean of tensor elements over the given dimension.
-参数: |
|
-
---|---|
返回: | The reduced Tensor variable. - |
-
返回类型: | Variable - |
-
Examples
-# x is a Tensor variable with following elements:
-# [[0.2, 0.3, 0.5, 0.9]
-# [0.1, 0.2, 0.6, 0.7]]
-# Each example is followed by the correspending output tensor.
-fluid.layers.reduce_mean(x) # [0.4375]
-fluid.layers.reduce_mean(x, dim=0) # [0.15, 0.25, 0.55, 0.8]
-fluid.layers.reduce_mean(x, dim=-1) # [0.475, 0.4]
-fluid.layers.reduce_mean(x, dim=1, keep_dim=True) # [[0.475], [0.4]]
-
paddle.v2.fluid.layers.
reduce_max
(input, dim=None, keep_dim=False, name=None)Computes the maximum of tensor elements over the given dimension.
-参数: |
|
-
---|---|
返回: | The reduced Tensor variable. - |
-
返回类型: | Variable - |
-
Examples
-# x is a Tensor variable with following elements:
-# [[0.2, 0.3, 0.5, 0.9]
-# [0.1, 0.2, 0.6, 0.7]]
-# Each example is followed by the correspending output tensor.
-fluid.layers.reduce_max(x) # [0.9]
-fluid.layers.reduce_max(x, dim=0) # [0.2, 0.3, 0.6, 0.9]
-fluid.layers.reduce_max(x, dim=-1) # [0.9, 0.7]
-fluid.layers.reduce_max(x, dim=1, keep_dim=True) # [[0.9], [0.7]]
-
paddle.v2.fluid.layers.
reduce_min
(input, dim=None, keep_dim=False, name=None)Computes the minimum of tensor elements over the given dimension.
-参数: |
|
-
---|---|
返回: | The reduced Tensor variable. - |
-
返回类型: | Variable - |
-
Examples
-# x is a Tensor variable with following elements:
-# [[0.2, 0.3, 0.5, 0.9]
-# [0.1, 0.2, 0.6, 0.7]]
-# Each example is followed by the correspending output tensor.
-fluid.layers.reduce_min(x) # [0.1]
-fluid.layers.reduce_min(x, dim=0) # [0.1, 0.2, 0.5, 0.7]
-fluid.layers.reduce_min(x, dim=-1) # [0.2, 0.1]
-fluid.layers.reduce_min(x, dim=1, keep_dim=True) # [[0.2], [0.1]]
-
paddle.v2.fluid.layers.
sequence_first_step
(input, **kwargs)This funciton get the first step of sequence.
-x is a 1-level LoDTensor:
- x.lod = [[0, 2, 5, 7]]
- x.data = [1, 3, 2, 4, 6, 5, 1]
- x.dims = [7, 1]
-
-then output is a Tensor:
- out.dim = [3, 1]
- with condition len(x.lod[-1]) - 1 == out.dims[0]
- out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
-
参数: | input (variable) – The input variable which is a LoDTensor. | -
---|---|
返回: | The sequence’s first step variable which is a Tensor. | -
Examples
-x = fluid.layers.data(name='x', shape=[7, 1],
- dtype='float32', lod_level=1)
-x_first_step = fluid.layers.sequence_first_step(input=x)
-
paddle.v2.fluid.layers.
sequence_last_step
(input, **kwargs)This funciton get the last step of sequence.
-x is a 1-level LoDTensor:
- x.lod = [[0, 2, 5, 7]]
- x.data = [1, 3, 2, 4, 6, 5, 1]
- x.dims = [7, 1]
-
-then output is a Tensor:
- out.dim = [3, 1]
- with condition len(x.lod[-1]) - 1 == out.dims[0]
- out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
-
参数: | input (variable) – The input variable which is a LoDTensor. | -
---|---|
返回: | The sequence’s last step variable which is a Tensor. | -
Examples
-x = fluid.layers.data(name='x', shape=[7, 1],
- dtype='float32', lod_level=1)
-x_last_step = fluid.layers.sequence_last_step(input=x)
-
paddle.v2.fluid.layers.
dropout
(x, dropout_prob, is_test=False, seed=None, **kwargs)Computes dropout.
-Drop or keep each element of x independently. Dropout is a regularization -technique for reducing overfitting by preventing neuron co-adaption during -training. The dropout operator randomly set (according to the given dropout -probability) the outputs of some units to zero, while others are remain -unchanged.
-参数: |
|
-
---|---|
返回: | A tensor variable. - |
-
返回类型: | Variable - |
-
Examples
-x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
-droped = fluid.layers.dropout(input=x, dropout_rate=0.5)
-
paddle.v2.fluid.layers.
split
(input, num_or_sections, dim=-1, name=None)Split the input tensor into multiple sub-tensors.
-参数: |
|
-
---|---|
返回: | The list of segmented tensor variables. - |
-
返回类型: | List - |
-
Examples
-# x is a Tensor variable with shape [3, 9, 5]:
-x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
-x0.shape # [3, 3, 5]
-x1.shape # [3, 3, 5]
-x2.shape # [3, 3, 5]
-x0, x1, x2 = fluid.layers.split(x, num_or_sections=[2, 3, 4], dim=1)
-x0.shape # [3, 2, 5]
-x1.shape # [3, 3, 5]
-x2.shape # [3, 4, 5]
-
paddle.v2.fluid.layers.
ctc_greedy_decoder
(input, blank, name=None)This op is used to decode sequences by greedy policy by below steps: -1. Get the indexes of max value for each row in input. a.k.a.
---numpy.argmax(input, axis=0).
A simple example as below:
-Given:
-
-input.data = [[0.6, 0.1, 0.3, 0.1],
- [0.3, 0.2, 0.4, 0.1],
- [0.1, 0.5, 0.1, 0.3],
- [0.5, 0.1, 0.3, 0.1],
-
- [0.5, 0.1, 0.3, 0.1],
- [0.2, 0.2, 0.2, 0.4],
- [0.2, 0.2, 0.1, 0.5],
- [0.5, 0.1, 0.3, 0.1]]
-
-input.lod = [[0, 4, 8]]
-
-Then:
-
-output.data = [[2],
- [1],
- [3]]
-
-output.lod = [[0, 2, 3]]
-
参数: |
|
-
---|---|
返回: | CTC greedy decode result. If all the sequences in result were -empty, the result LoDTensor will be [-1] with LoD [[0]] and dims [1, 1]. - |
-
返回类型: | Variable - |
-
Examples
-x = fluid.layers.data(name='x', shape=[8], dtype='float32')
-
-cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
-
paddle.v2.fluid.layers.
edit_distance
(input, label, normalized=False, ignored_tokens=None, name=None)EditDistance operator computes the edit distances between a batch of -hypothesis strings and their references. Edit distance, also called -Levenshtein distance, measures how dissimilar two strings are by counting -the minimum number of operations to transform one string into anthor. -Here the operations include insertion, deletion, and substitution.
-For example, given hypothesis string A = “kitten” and reference -B = “sitting”, the edit distance is 3 for A will be transformed into B -at least after two substitutions and one insertion:
-“kitten” -> “sitten” -> “sittin” -> “sitting”
-Input(Hyps) is a LoDTensor consisting of all the hypothesis strings with -the total number denoted by batch_size, and the separation is specified -by the LoD information. And the batch_size reference strings are arranged -in order in the same way in the LoDTensor Input(Refs).
-Output(Out) contains the batch_size results and each stands for the edit -distance for a pair of strings respectively. If Attr(normalized) is true, -the edit distance will be divided by the length of reference string.
-参数: |
|
-
---|---|
返回: | sequence-to-sequence edit distance in shape [batch_size, 1]. - |
-
返回类型: | Variable - |
-
Examples
-x = fluid.layers.data(name='x', shape=[8], dtype='float32')
-y = fluid.layers.data(name='y', shape=[7], dtype='float32')
-
-cost = fluid.layers.edit_distance(input=x,label=y)
-
paddle.v2.fluid.layers.
l2_normalize
(x, axis, epsilon=1e-12, name=None)L2 normalize Layer
-The l2 normalize layer normalizes x along dimension axis using an L2 -norm. For a 1-D tensor (dim is fixed to 0), this layer computes
-output = x / sqrt(max(sum(x**2), epsilon))
-For x with more dimensions, this layer independently normalizes each 1-D -slice along dimension axis.
-参数: |
|
-
---|---|
返回: | The output tensor variable. - |
-
返回类型: | Variable - |
-
Examples
-data = fluid.layers.data(name="data",
- shape=(3, 17, 13),
- dtype="float32")
-normed = fluid.layers.l2_normalize(x=data, axis=1)
-
paddle.v2.fluid.layers.
matmul
(x, y, transpose_x=False, transpose_y=False, name=None)Applies matrix multiplication to two tensors.
-Currently, the input tensors’ rank can be any, but when the rank of any -inputs is bigger than 3, this two inputs’ rank should be equal.
-The actual behavior depends on the shapes of \(x\), \(y\) and the
-flag values of transpose_x
, transpose_y
. Specifically:
Also note that if the raw tensor \(x\) or \(y\) is rank-1 and -nontransposed, the prepended or appended dimension \(1\) will be -removed after matrix multiplication.
-参数: |
|
-
---|---|
返回: | The product Tensor variable. - |
-
返回类型: | Variable - |
-
Examples
-# Examples to clarify shapes of the inputs and output
-# x: [B, ..., M, K], y: [B, ..., K, N]
-fluid.layers.matmul(x, y) # out: [B, ..., M, N]
-
-# x: [B, M, K], y: [B, K, N]
-fluid.layers.matmul(x, y) # out: [B, M, N]
-
-# x: [B, M, K], y: [K, N]
-fluid.layers.matmul(x, y) # out: [B, M, N]
-
-# x: [M, K], y: [K, N]
-fluid.layers.matmul(x, y) # out: [M, N]
-
-# x: [B, M, K], y: [K]
-fluid.layers.matmul(x, y) # out: [B, M]
-
-# x: [K], y: [K]
-fluid.layers.matmul(x, y) # out: [1]
-
-# x: [M], y: [N]
-fluid.layers.matmul(x, y, True, True) # out: [M, N]
-
paddle.v2.fluid.layers.
warpctc
(input, label, blank=0, norm_by_times=False, **kwargs)An operator integrating the open source Warp-CTC library -(https://github.com/baidu-research/warp-ctc) -to compute Connectionist Temporal Classification (CTC) loss. -It can be aliased as softmax with CTC, since a native softmax activation is -interated to the Warp-CTC library, to to normlize values for each row of the -input tensor.
-参数: |
|
-
---|---|
返回: | The Connectionist Temporal Classification (CTC) loss, -which is a 2-D Tensor of the shape [batch_size, 1]. - |
-
返回类型: | Variable - |
-
Examples
-paddle.v2.fluid.layers.
sequence_reshape
(input, new_dim)Sequence Reshape Layer
-This layer will rearrange the input sequences. The new dimension is set by -user. Length of each sequence is computed according to original length, -original dimension and new dimension. The following example will help to -illustrate the function of this layer:
-x is a LoDTensor:
- x.lod = [[0, 2, 6]]
- x.data = [[1, 2], [3, 4],
- [5, 6], [7, 8], [9, 10], [11, 12]]
- x.dims = [6, 2]
-
-set new_dim = 4
-
-then out is a LoDTensor:
- out.lod = [[0, 1, 3]]
- out.data = [[1, 2, 3, 4],
- [5, 6, 7, 8], [9, 10, 11, 12]]
- out.dims = [3, 4]
-
Currently, only 1-level LoDTensor is supported and please make sure -(original length * original dimension) can be divided by new dimension with -no remainder for each sequence.
-参数: |
|
-
---|---|
返回: | Reshaped LoDTensor according to new dimension. - |
-
返回类型: | Variable - |
-
Examples
-x = fluid.layers.data(name='x', shape=[5, 20],
- dtype='float32', lod_level=1)
-x_reshaped = layers.sequence_reshape(input=x, new_dim=10)
-
paddle.v2.fluid.layers.
transpose
(x, perm, name=None)transpose Layer
-Permute the dimensions of input according to perm.
-The i-th dimension of the returned tensor will correspond to the -perm[i]-th dimension of input.
-参数: |
|
-
---|---|
返回: | A transposed Tensor. - |
-
返回类型: | Variable - |
-
Examples
-x = fluid.layers.data(name='x', shape=[5, 10, 15], dtype='float32')
-x_transposed = layers.transpose(x, perm=[1, 0, 2])
-
paddle.v2.fluid.layers.
im2sequence
(input, filter_size=1, stride=1, padding=0, name=None)Extracts image patches from the input tensor to form a tensor of shape -{input.batch_size * output_height * output_width, filter_size_H * -filter_size_W * input.channels} which is similar with im2col. -This op use filter / kernel to scan images and convert these images to -sequences. After expanding, the number of time step are -output_height * output_width for an image, in which output_height and -output_width are calculated by below equation:
-And the dimension of each time step is block_y * block_x * input.channels.
-参数: |
|
-
---|---|
返回: | The output is a LoDTensor with shape -{input.batch_size * output_height * output_width, -filter_size_H * filter_size_W * input.channels}. -If we regard output as a matrix, each row of this matrix is -a step of a sequence. - |
-
返回类型: | output - |
-
Examples:
-As an example:
-----Given: - -x = [[[[ 6. 2. 1.] - [ 8. 3. 5.] - [ 0. 2. 6.]] - - [[ 2. 4. 4.] - [ 6. 3. 0.] - [ 6. 4. 7.]]] - - [[[ 6. 7. 1.] - [ 5. 7. 9.] - [ 2. 4. 8.]] - - [[ 1. 2. 1.] - [ 1. 3. 5.] - [ 9. 0. 8.]]]] - -x.dims = {2, 2, 3, 3} - -And: - -filter = [2, 2] -stride = [1, 1] -padding = [0, 0] - -Then: - -output.data = [[ 6. 2. 8. 3. 2. 4. 6. 3.] - [ 2. 1. 3. 5. 4. 4. 3. 0.] - [ 8. 3. 0. 2. 6. 3. 6. 4.] - [ 3. 5. 2. 6. 3. 0. 4. 7.] - [ 6. 7. 5. 7. 1. 2. 1. 3.] - [ 7. 1. 7. 9. 2. 1. 3. 5.] - [ 5. 7. 2. 4. 1. 3. 9. 0.] - [ 7. 9. 4. 8. 3. 5. 0. 8.]] - -output.dims = {8, 9} - -output.lod = [[0, 4, 8]] -The simple usage is:
---output = fluid.layers.im2sequence( - input=layer, stride=[1, 1], filter_size=[2, 2]) -
paddle.v2.fluid.layers.
nce
(input, label, num_total_classes, sample_weight=None, param_attr=None, bias_attr=None, num_neg_samples=None)Compute and return the noise-contrastive estimation training loss. -See [Noise-contrastive estimation: A new estimation principle for unnormalized statistical models](http://www.jmlr.org/proceedings/papers/v9/gutmann10a/gutmann10a.pdf). -By default this operator uses a uniform distribution for sampling.
-参数: |
|
-
---|---|
返回: | (Tensor) A tensor of shape [batch_size, 1]. Cost of samples. - |
-
paddle.v2.fluid.layers.
beam_search
(pre_ids, ids, scores, beam_size, end_id, level=0)This function implements the beam search algorithm.
-paddle.v2.fluid.layers.
row_conv
(input, future_context_size, param_attr=None, act=None)Row Conv Operator. This layer will apply lookahead convolution to -input. The input variable should be a 2D LoDTensor with shape [T, D]. -Parameters with shape [future_context_size + 1, D] will be created. The math -equation of row convolution is as follows:
-In the above equation:
-More details about row_conv please refer to the paper (http://www.cs.cmu.edu/~dyogatam/papers/wang+etal.iclrworkshop2016.pdf) and -the design document (https://github.com/PaddlePaddle/Paddle/issues/2228#issuecomment-303903645).
-参数: |
|
-
---|---|
返回: | The output tensor with same shape as input tensor. - |
-
返回类型: | Variable - |
-
Examples
-x = fluid.layers.data(name='x', shape=[16],
- dtype='float32', lod_level=1)
-out = fluid.layers.row_conv(input=x, future_context_size=2)
-
paddle.v2.fluid.layers.
multiplex
(inputs, index)Multiplex Layer
-Referring to the given index variable, this layer selects rows from the -input variables to construct a multiplex variable. Assuming that there are -\(m\) input variables and \(I_i\) represents the i-th input -variable and \(i\) is in [0, \(m\)). All input variables are -tensors with same shape [\(d_0\), \(d_1\), ..., \(d_R\)]. -Please note that rank of the input tensor should be at least 2. Each input -variable will be treated as a 2-D matrix with shape [\(M\), \(N\)] -where \(M\) for \(d_0\) and \(N\) for \(d_1\) * \(d_2\) -* ... * \(d_R\). Let \(I_i[j]\) be the j-th row of the i-th input -variable. The given index variable should be a 2-D tensor with shape -[\(M\), 1]. Let ID[i] be the i-th index value of the index variable. -Then the output variable will be a tensor with shape [\(d_0\), -\(d_1\), ..., \(d_R\)]. If we treat the output tensor as a 2-D -matrix with shape [\(M\), \(N\)] and let \(O[i]\) be the i-th -row of the matrix, then O[i] is equal to \(I_{ID[i]}[i]\).
-参数: |
|
-
---|---|
返回: | Multiplex variable gathered from input variables. - |
-
返回类型: | Variable - |
-
Examples
-x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
-x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
-index = fluid.layers.data(name='index', shape=[1], dtype='int32')
-out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
-
paddle.v2.fluid.layers.
mean
(**kwargs)Mean Operator.
-Out is a scalar which is the mean of all elements in X.
-参数: | x – The input of mean op -Duplicable: False Optional: False | -
---|---|
返回: | The output of mean op | -
paddle.v2.fluid.layers.
mul
(**kwargs)Mul Operator.
-This operator is used to perform matrix multiplication for input $X$ and $Y$.
-The equation is:
-$$Out = X * Y$$
-Both the input $X$ and $Y$ can carry the LoD (Level of Details) information, -or not. But the output only shares the LoD information with input $X$.
-参数: |
|
-
---|---|
返回: | (Tensor), The output tensor of mul op. - |
-
paddle.v2.fluid.layers.
reshape
(**kwargs)Reshape Operator.
-Reshape Input(X) into the shape specified by Attr(shape).
-An example: -Given a 2-D tensor X with 2 rows and 2 columns : [[1, 2], [3, 4]]
-and target shape = [1, 4], the reshape operator will transform -the tensor X into a 2-D tensor: [[1, 2, 3, 4]]
-One dimension in the target shape can be set -1, representing that its -size is unknown. In this case, the real dimension will be infered from -the original shape of Input(X) and other dimensions in the target shape.
-参数: |
|
-
---|---|
返回: | The output tensor of reshape operator. - |
-
paddle.v2.fluid.layers.
scale
(**kwargs)Scale operator
-$$Out = scale*X$$
-参数: |
|
-
---|---|
返回: | (Tensor) Output tensor of scale operator. - |
-
paddle.v2.fluid.layers.
sigmoid_cross_entropy_with_logits
(**kwargs)SigmoidCrossEntropyWithLogits Operator.
-This measures the element-wise probability error in classification tasks -in which each class is independent. This can be thought of as predicting labels -for a data-point, where labels are not mutually exclusive. -For example, a news article can be about politics, technology or sports -at the same time or none of these.
-The logistic loss is given as follows:
---$$loss = -Labels * log(sigma(X)) - (1 - Labels) * log(1 - sigma(X))$$
We know that $$sigma(X) = (1 / (1 + exp(-X)))$$. By substituting this we get:
---$$loss = X - X * Labels + log(1 + exp(-X))$$
For stability and to prevent overflow of $$exp(-X)$$ when X < 0, -we reformulate the loss as follows:
---$$loss = max(X, 0) - X * Labels + log(1 + exp(-|X|))$$
Both the input X and Labels can carry the LoD (Level of Details) information. -However the output only shares the LoD with input X.
-参数: |
|
-
---|---|
返回: | (Tensor, default Tensor<float>), a 2-D tensor with shape N x D of elementwise logistic losses. - |
-
paddle.v2.fluid.layers.
elementwise_add
(**kwargs)Limited Elementwise Add Operator.
-The equation is:
-$$Out = X + Y$$
-$X$ is a tensor of any dimension and the dimensions of tensor $Y$ must be -smaller than or equal to the dimensions of $X$.
-There are two cases for this operator: -1. The shape of $Y$ is same with $X$; -2. The shape of $Y$ is a subset of $X$.
-For case 2: -$Y$ will be broadcasted to match the shape of $X$ and axis should be -set to index of the start dimension to broadcast $Y$ onto $X$.
-shape(X) = (2, 3, 4, 5), shape(Y) = (,)
-shape(X) = (2, 3, 4, 5), shape(Y) = (5,)
-shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5)
-shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
-shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
-
Either of the inputs $X$ and $Y$ or none can carry the LoD (Level of Details) -information. However, the output only shares the LoD information with input $X$.
-参数: |
|
-
---|---|
返回: | The output of elementwise op. - |
-
paddle.v2.fluid.layers.
elementwise_div
(**kwargs)Limited Elementwise Div Operator.
-The equation is:
-$$Out = X / Y$$
-$X$ is a tensor of any dimension and the dimensions of tensor $Y$ must be -smaller than or equal to the dimensions of $X$.
-There are two cases for this operator: -1. The shape of $Y$ is same with $X$; -2. The shape of $Y$ is a subset of $X$.
-For case 2: -$Y$ will be broadcasted to match the shape of $X$ and axis should be -set to index of the start dimension to broadcast $Y$ onto $X$.
-shape(X) = (2, 3, 4, 5), shape(Y) = (,)
-shape(X) = (2, 3, 4, 5), shape(Y) = (5,)
-shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5)
-shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
-shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
-
Either of the inputs $X$ and $Y$ or none can carry the LoD (Level of Details) -information. However, the output only shares the LoD information with input $X$.
-参数: |
|
-
---|---|
返回: | The output of elementwise op. - |
-
paddle.v2.fluid.layers.
elementwise_sub
(**kwargs)Limited Elementwise Sub Operator.
-The equation is:
-$$Out = X - Y$$
-$X$ is a tensor of any dimension and the dimensions of tensor $Y$ must be -smaller than or equal to the dimensions of $X$.
-There are two cases for this operator: -1. The shape of $Y$ is same with $X$; -2. The shape of $Y$ is a subset of $X$.
-For case 2: -$Y$ will be broadcasted to match the shape of $X$ and axis should be -set to index of the start dimension to broadcast $Y$ onto $X$.
-shape(X) = (2, 3, 4, 5), shape(Y) = (,)
-shape(X) = (2, 3, 4, 5), shape(Y) = (5,)
-shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5)
-shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
-shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
-
Either of the inputs $X$ and $Y$ or none can carry the LoD (Level of Details) -information. However, the output only shares the LoD information with input $X$.
-参数: |
|
-
---|---|
返回: | The output of elementwise op. - |
-
paddle.v2.fluid.layers.
elementwise_mul
(**kwargs)Limited Elementwise Mul Operator.
-The equation is:
-$$Out = X odotY$$
-$X$ is a tensor of any dimension and the dimensions of tensor $Y$ must be -smaller than or equal to the dimensions of $X$.
-There are two cases for this operator: -1. The shape of $Y$ is same with $X$; -2. The shape of $Y$ is a subset of $X$.
-For case 2: -$Y$ will be broadcasted to match the shape of $X$ and axis should be -set to index of the start dimension to broadcast $Y$ onto $X$.
-shape(X) = (2, 3, 4, 5), shape(Y) = (,)
-shape(X) = (2, 3, 4, 5), shape(Y) = (5,)
-shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5)
-shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
-shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
-
Either of the inputs $X$ and $Y$ or none can carry the LoD (Level of Details) -information. However, the output only shares the LoD information with input $X$.
-参数: |
|
-
---|---|
返回: | The output of elementwise op. - |
-
paddle.v2.fluid.layers.
elementwise_max
(**kwargs)Limited Elementwise Max Operator.
-The equation is:
-$$Out = max(X, Y)$$
-$X$ is a tensor of any dimension and the dimensions of tensor $Y$ must be -smaller than or equal to the dimensions of $X$.
-There are two cases for this operator: -1. The shape of $Y$ is same with $X$; -2. The shape of $Y$ is a subset of $X$.
-For case 2: -$Y$ will be broadcasted to match the shape of $X$ and axis should be -set to index of the start dimension to broadcast $Y$ onto $X$.
-shape(X) = (2, 3, 4, 5), shape(Y) = (,)
-shape(X) = (2, 3, 4, 5), shape(Y) = (5,)
-shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5)
-shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
-shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
-
Either of the inputs $X$ and $Y$ or none can carry the LoD (Level of Details) -information. However, the output only shares the LoD information with input $X$.
-参数: |
|
-
---|---|
返回: | The output of elementwise op. - |
-
paddle.v2.fluid.layers.
elementwise_min
(**kwargs)Limited Elementwise Max Operator.
-The equation is:
-$$Out = min(X, Y)$$
-$X$ is a tensor of any dimension and the dimensions of tensor $Y$ must be -smaller than or equal to the dimensions of $X$.
-There are two cases for this operator: -1. The shape of $Y$ is same with $X$; -2. The shape of $Y$ is a subset of $X$.
-For case 2: -$Y$ will be broadcasted to match the shape of $X$ and axis should be -set to index of the start dimension to broadcast $Y$ onto $X$.
-shape(X) = (2, 3, 4, 5), shape(Y) = (,)
-shape(X) = (2, 3, 4, 5), shape(Y) = (5,)
-shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5)
-shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
-shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
-
Either of the inputs $X$ and $Y$ or none can carry the LoD (Level of Details) -information. However, the output only shares the LoD information with input $X$.
-参数: |
|
-
---|---|
返回: | The output of elementwise op. - |
-
paddle.v2.fluid.layers.
elementwise_pow
(**kwargs)Limited Elementwise Pow Operator.
-The equation is:
-$$Out = X ^ Y$$
-$X$ is a tensor of any dimension and the dimensions of tensor $Y$ must be -smaller than or equal to the dimensions of $X$.
-There are two cases for this operator: -1. The shape of $Y$ is same with $X$; -2. The shape of $Y$ is a subset of $X$.
-For case 2: -$Y$ will be broadcasted to match the shape of $X$ and axis should be -set to index of the start dimension to broadcast $Y$ onto $X$.
-shape(X) = (2, 3, 4, 5), shape(Y) = (,)
-shape(X) = (2, 3, 4, 5), shape(Y) = (5,)
-shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5)
-shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
-shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
-
Either of the inputs $X$ and $Y$ or none can carry the LoD (Level of Details) -information. However, the output only shares the LoD information with input $X$.
-参数: |
|
-
---|---|
返回: | The output of elementwise op. - |
-
paddle.v2.fluid.layers.
clip
(**kwargs)Clip Operator.
-The clip operator limits the value of given input within an interval. The -interval is specified with arguments ‘min’ and ‘max’:
-$$ -Out = min(max(X, min), max) -$$
-参数: |
|
-
---|---|
返回: | (Tensor)The output of clip op with shape as input(X) - |
-
paddle.v2.fluid.layers.
clip_by_norm
(**kwargs)ClipByNorm Operator.
-This operator limits the L2 norm of the input $X$ within $max_norm$. -If the L2 norm of $X$ is less than or equal to $max_norm$, $Out$ will be -the same as $X$. If the L2 norm of $X$ is greater than $max_norm$, $X$ will -be linearly scaled to make the L2 norm of $Out$ equal to $max_norm$, as -shown in the following formula:
-$$ -Out = frac{max_norm * X}{norm(X)}, -$$
-where $norm(X)$ represents the L2 norm of $X$.
-参数: |
|
-
---|---|
返回: | (Tensor) The output of clip_by_norm op with shape as input(X) - |
-
paddle.v2.fluid.layers.
sequence_softmax
(**kwargs)Sequence Softmax Operator.
-SequenceSoftmaxOp computes the softmax activation among all time-steps for each -sequence. The dimension of each time-step should be 1. Thus, the shape of -input Tensor can be either [N, 1] or [N], where N is the sum of the length -of all sequences.
-The algorithm works as follows:
---for i-th sequence in a mini-batch:
$$ -Out(X[lod[i]:lod[i+1]], :) = frac{exp(X[lod[i]:lod[i+1], :])} {sum(exp(X[lod[i]:lod[i+1], :]))} -$$
-For example, for a mini-batch of 3 sequences with variable-length, -each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7], -then softmax will be computed among X[0:2, :], X[2:5, :], X[5:7, :] -and N turns out to be 7.
-参数: | x – (LoDTensor) 1-D or 2-D input LoDTensor with the 2-nd dimension of length 1. -Duplicable: False Optional: False | -
---|---|
返回: | (LoDTensor) 1-D or 2-D output LoDTensor with the 2-nd dimension of length 1. | -
paddle.v2.fluid.layers.
sigmoid
(**kwargs)Sigmoid Activation Operator
-$$out = frac{1}{1 + e^{-x}}$$
-参数: | x – Input of Sigmoid operator -Duplicable: False Optional: False | -
---|---|
返回: | Output of Sigmoid operator | -
paddle.v2.fluid.layers.
logsigmoid
(**kwargs)Logsigmoid Activation Operator
-$$out = log frac{1}{1 + e^{-x}}$$
-参数: | x – Input of LogSigmoid operator -Duplicable: False Optional: False | -
---|---|
返回: | Output of LogSigmoid operator | -
paddle.v2.fluid.layers.
exp
(**kwargs)Exp Activation Operator.
-$out = e^x$
-参数: | x – Input of Exp operator -Duplicable: False Optional: False | -
---|---|
返回: | Output of Exp operator | -
paddle.v2.fluid.layers.
relu
(**kwargs)Relu Activation Operator.
-$out = max(x, 0)$
-参数: | x – Input of Relu operator -Duplicable: False Optional: False | -
---|---|
返回: | Output of Relu operator | -
paddle.v2.fluid.layers.
tanh
(**kwargs)Tanh Activation Operator.
-$$out = frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$
-参数: | x – Input of Tanh operator -Duplicable: False Optional: False | -
---|---|
返回: | Output of Tanh operator | -
paddle.v2.fluid.layers.
tanh_shrink
(**kwargs)TanhShrink Activation Operator.
-$$out = x - frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$
-参数: | x – Input of TanhShrink operator -Duplicable: False Optional: False | -
---|---|
返回: | Output of TanhShrink operator | -
paddle.v2.fluid.layers.
softshrink
(**kwargs)Softshrink Activation Operator.
-$$ -out = begin{cases}
---x - lambda, text{if } x > lambda \ -x + lambda, text{if } x < -lambda \ -0, text{otherwise} -end{cases}
$$
-参数: |
|
-
---|---|
返回: | Output of Softshrink operator - |
-
paddle.v2.fluid.layers.
sqrt
(**kwargs)Sqrt Activation Operator.
-$out = sqrt{x}$
-参数: | x – Input of Sqrt operator -Duplicable: False Optional: False | -
---|---|
返回: | Output of Sqrt operator | -
paddle.v2.fluid.layers.
abs
(**kwargs)Abs Activation Operator.
-$out = |x|$
-参数: | x – Input of Abs operator -Duplicable: False Optional: False | -
---|---|
返回: | Output of Abs operator | -
paddle.v2.fluid.layers.
ceil
(**kwargs)Ceil Activation Operator.
-$out = ceil(x)$
-参数: | x – Input of Ceil operator -Duplicable: False Optional: False | -
---|---|
返回: | Output of Ceil operator | -
paddle.v2.fluid.layers.
floor
(**kwargs)Floor Activation Operator.
-$out = floor(x)$
-参数: | x – Input of Floor operator -Duplicable: False Optional: False | -
---|---|
返回: | Output of Floor operator | -
paddle.v2.fluid.layers.
round
(**kwargs)Round Activation Operator.
-$out = [x]$
-参数: | x – Input of Round operator -Duplicable: False Optional: False | -
---|---|
返回: | Output of Round operator | -
paddle.v2.fluid.layers.
reciprocal
(**kwargs)Reciprocal Activation Operator.
-$$out = frac{1}{x}$$
-参数: | x – Input of Reciprocal operator -Duplicable: False Optional: False | -
---|---|
返回: | Output of Reciprocal operator | -
paddle.v2.fluid.layers.
log
(**kwargs)Log Activation Operator.
-$out = ln(x)$
-Natural logarithm of x.
-参数: | x – Input of Log operator -Duplicable: False Optional: False | -
---|---|
返回: | Output of Log operator | -
paddle.v2.fluid.layers.
square
(**kwargs)Square Activation Operator.
-$out = x^2$
-参数: | x – Input of Square operator -Duplicable: False Optional: False | -
---|---|
返回: | Output of Square operator | -
paddle.v2.fluid.layers.
softplus
(**kwargs)Softplus Activation Operator.
-$out = ln(1 + e^{x})$
-参数: | x – Input of Softplus operator -Duplicable: False Optional: False | -
---|---|
返回: | Output of Softplus operator | -
paddle.v2.fluid.layers.
softsign
(**kwargs)Softsign Activation Operator.
-$$out = frac{x}{1 + |x|}$$
-参数: | x – Input of Softsign operator -Duplicable: False Optional: False | -
---|---|
返回: | Output of Softsign operator | -
paddle.v2.fluid.layers.
brelu
(**kwargs)BRelu Activation Operator.
-$out = max(min(x, t_{min}), t_{max})$
-参数: |
|
-
---|---|
返回: | Output of BRelu operator - |
-
paddle.v2.fluid.layers.
leaky_relu
(**kwargs)LeakyRelu Activation Operator.
-$out = max(x, alpha * x)$
-参数: |
|
-
---|---|
返回: | Output of LeakyRelu operator - |
-
paddle.v2.fluid.layers.
soft_relu
(**kwargs)SoftRelu Activation Operator.
-$out = ln(1 + exp(max(min(x, threshold), threshold))$
-参数: |
|
-
---|---|
返回: | Output of SoftRelu operator - |
-
paddle.v2.fluid.layers.
elu
(**kwargs)ELU Activation Operator.
-Applies the following element-wise computation on the input according to -https://arxiv.org/abs/1511.07289.
-$out = max(0, x) + min(0, alpha * (e^x - 1))$
-参数: |
|
-
---|---|
返回: | Output of ELU operator - |
-
paddle.v2.fluid.layers.
relu6
(**kwargs)Relu6 Activation Operator.
-$out = min(max(0, x), 6)$
-参数: |
|
-
---|---|
返回: | Output of Relu6 operator - |
-
paddle.v2.fluid.layers.
pow
(**kwargs)Pow Activation Operator.
-$out = x^{factor}$
-参数: |
|
-
---|---|
返回: | Output of Pow operator - |
-
paddle.v2.fluid.layers.
stanh
(**kwargs)STanh Activation Operator.
-$$out = b * frac{e^{a * x} - e^{-a * x}}{e^{a * x} + e^{-a * x}}$$
-参数: |
|
-
---|---|
返回: | Output of STanh operator - |
-
paddle.v2.fluid.layers.
hard_shrink
(**kwargs)HardShrink Activation Operator.
-$$ -out = begin{cases}
---x, text{if } x > lambda \ -x, text{if } x < -lambda \ -0, text{otherwise} -end{cases}
$$
-参数: |
|
-
---|---|
返回: | Output of HardShrink operator - |
-
paddle.v2.fluid.layers.
thresholded_relu
(**kwargs)ThresholdedRelu Activation Operator.
-$$ -out = begin{cases}
---x, text{if } x > threshold \ -0, text{otherwise} -end{cases}
$$
-参数: |
|
-
---|---|
返回: | Output of ThresholdedRelu operator - |
-
paddle.v2.fluid.layers.
hard_sigmoid
(**kwargs)HardSigmoid Activation Operator.
-Segment-wise linear approximation of sigmoid(https://arxiv.org/abs/1603.00391), -which is much faster than sigmoid.
-$out = max(0, min(1, slope * x + shift))$
-The slope should be positive. The offset can be either positive or negative. -The default slope and shift are set according to the above reference. -It is recommended to use the defaults for this activation.
-参数: |
|
-
---|---|
返回: | Output of HardSigmoid operator - |
-
paddle.v2.fluid.layers.
swish
(**kwargs)Swish Activation Operator.
-$$out = frac{x}{1 + e^{- beta x}}$$
-参数: |
|
-
---|---|
返回: | Output of Swish operator - |
-
paddle.v2.fluid.layers.
create_tensor
(dtype, name=None, persistable=False)paddle.v2.fluid.layers.
create_parameter
(shape, dtype, name=None, attr=None, is_bias=False, default_initializer=None)Create a parameter -:param shape: shape of the parameter -:type shape: list[int] -:param dtype: element type of the parameter -:type dtype: string -:param attr: attributes of the parameter -:type attr: ParamAttr -:param is_bias: This can affect which default initializer is chosen
---when default_initializer is None. If is_bias, -initializer.Constant(0.0) will be used. Otherwise, -Xavier() will be used.
参数: | default_initializer (Initializer) – initializer for the parameter | -
---|---|
返回: | the created parameter | -
返回类型: | Parameter | -
paddle.v2.fluid.layers.
create_global_var
(shape, value, dtype, persistable=False, force_cpu=False, name=None)Create a global variable. such as global_step -:param shape: shape of the variable -:type shape: list[int] -:param value: the value of the variable -:type value: float -:param dtype: element type of the parameter -:type dtype: string -:param persistable: if this variable is persistable -:type persistable: bool -:param force_cpu: force this variable to be on CPU -:type force_cpu: bool
-返回: | the created Variable | -
---|---|
返回类型: | Variable | -
paddle.v2.fluid.layers.
cast
(x, dtype)This function takes in the input with input_dtype -and casts it to the output_dtype as the output.
-paddle.v2.fluid.layers.
concat
(input, axis=0)Concat
-This function concatenates the input along the axis mentioned -and returns that as the output.
-参数: |
|
-
---|---|
返回: | Output variable of the concatenation - |
-
返回类型: | Variable - |
-
Examples
-paddle.v2.fluid.layers.
sums
(input, out=None)This function performs the sum operation on the input and returns the -result as the output.
-参数: | input (Variable|list) – The input tensor that has the elements -that need to be summed up. | -
---|---|
返回: |
|
-
返回类型: | Variable | -
Examples
-paddle.v2.fluid.layers.
assign
(input, output)Assign
-This function copies the input Variable to the output Variable.
-参数: |
|
-
---|---|
返回: | The destination variable that was supplied as the output. - |
-
返回类型: | Variable - |
-
Examples
-paddle.v2.fluid.layers.
fill_constant_batch_size_like
(input, shape, dtype, value, input_dim_idx=0, output_dim_idx=0)fill_constant_batch_size_like
-This function creates a tensor of specified shape, dtype and batch size, -and initializes this with a constant supplied in value. The batch size is -obtained from the input tensor.
-It also sets stop_gradient to True.
-参数: |
|
-
---|---|
返回: | The tensor variable storing the output - |
-
返回类型: | Variable - |
-
Examples
-data = fluid.layers.fill_constant_batch_size_like(
- input=like, shape=[1], value=0, dtype='int64')
-
paddle.v2.fluid.layers.
fill_constant
(shape, dtype, value, force_cpu=False, out=None)fill_constant
-This function creates a tensor with specified shape and dtype, and -initializes it with a constant specifed by value.
-The attribute stop_gradient of the created tensor is set to True.
-参数: |
|
-
---|---|
返回: | The tensor variable storing the output. - |
-
返回类型: | Variable - |
-
Examples
-data = fluid.layers.fill_constant(shape=[1], value=0, dtype='int64')
-
paddle.v2.fluid.layers.
ones
(shape, dtype, force_cpu=False)ones
-This function creates a tensor of specified shape and -dtype, and initializes this with 1.
-It also sets stop_gradient to True.
-参数: |
|
-
---|---|
返回: | The tensor variable storing the output - |
-
返回类型: | Variable - |
-
Examples
-data = fluid.layers.ones(shape=[1], dtype='int64')
-
paddle.v2.fluid.layers.
zeros
(shape, dtype, force_cpu=False)zeros
-This function creates a tensor of specified shape and -dtype, and initializes this with 0.
-It also sets stop_gradient to True.
-参数: |
|
-
---|---|
返回: | The tensor variable storing the output - |
-
返回类型: | Variable - |
-
Examples
-data = fluid.layers.zeros(shape=[1], dtype='int64')
-
paddle.v2.fluid.nets.
simple_img_conv_pool
(input, num_filters, filter_size, pool_size, pool_stride, act, param_attr=None, pool_type='max', use_cudnn=True)paddle.v2.fluid.nets.
sequence_conv_pool
(input, num_filters, filter_size, param_attr=None, act='sigmoid', pool_type='max')paddle.v2.fluid.nets.
glu
(input, dim=-1)The gated linear unit composed by split, sigmoid activation and elementwise -multiplication. Specifically, Split the input into two equal sized parts -\(a\) and \(b\) along the given dimension and then compute as -following:
----\[{GLU}(a, b)= a \otimes \sigma(b)\]-
Refer to Language Modeling with Gated Convolutional Networks.
-参数: |
|
-
---|---|
返回: | The Tensor variable with half the size of input. - |
-
返回类型: | Variable - |
-
Examples
-# x is a Tensor variable with shape [3, 6, 9]
-fluid.nets.glu(input=x, dim=1) # shape of output: [3, 3, 9]
-
paddle.v2.fluid.nets.
scaled_dot_product_attention
(queries, keys, values, num_heads=1, dropout_rate=0.0)The dot-product attention.
-Attention mechanism can be seen as mapping a query and a set of key-value -pairs to an output. The output is computed as a weighted sum of the values, -where the weight assigned to each value is computed by a compatibility -function (dot-product here) of the query with the corresponding key.
-The dot-product attention can be implemented through (batch) matrix -multipication as follows:
----\[Attention(Q, K, V)= softmax(QK^\mathrm{T})V\]-
Refer to Attention Is All You Need.
-参数: |
|
-
---|---|
返回: | A 3-D Tensor computed by multi-head scaled dot product attention. - |
-
返回类型: | Variable - |
-
Raises: |
|
-
注解
-1. When num_heads > 1, three linear projections are learned respectively -to map input queries, keys and values into queries’, keys’ and values’. -queries’, keys’ and values’ have the same shapes with queries, keys -and values.
-1. When num_heads == 1, scaled_dot_product_attention has no learnable -parameters.
-Examples
-# Suppose q, k, v are Tensors with the following shape:
-# q: [3, 5, 9], k: [3, 6, 9], v: [3, 6, 10]
-
-contexts = fluid.nets.scaled_dot_product_attention(q, k, v)
-contexts.shape # [3, 5, 10]
-
paddle.v2.fluid.optimizer.
SGD
SGDOptimizer
的别名
paddle.v2.fluid.optimizer.
Momentum
MomentumOptimizer
的别名
paddle.v2.fluid.optimizer.
Adagrad
AdagradOptimizer
的别名
paddle.v2.fluid.optimizer.
Adam
AdamOptimizer
的别名
paddle.v2.fluid.optimizer.
Adamax
AdamaxOptimizer
的别名
paddle.v2.fluid.optimizer.
DecayedAdagrad
DecayedAdagradOptimizer
的别名
paddle.v2.fluid.param_attr.
ParamAttr
(name=None, initializer=None, learning_rate=1.0, regularizer=None, trainable=True, gradient_clip=None)paddle.v2.fluid.param_attr.
WeightNormParamAttr
(dim=None, **kwargs)Used for weight normalization. Any field in ParamAttr can also be set here. -Besides, an extra field dim can be set to indicate the dimension except -which to normalize.
-paddle.v2.fluid.profiler.
cuda_profiler
(*args, **kwds)The CUDA profiler. -This fuctions is used to profile CUDA program by CUDA runtime application -programming interface. The profiling result will be written into -output_file with Key-Value pair format or Comma separated values format. -The user can set the output mode by output_mode argument and set the -counters/options for profiling by config argument. The default config -is [‘gpustarttimestamp’, ‘gpustarttimestamp’, ‘gridsize3d’, -‘threadblocksize’, ‘streamid’, ‘enableonstart 0’, ‘conckerneltrace’].
-参数: |
|
-
---|
paddle.v2.fluid.profiler.
reset_profiler
()The profiler clear interface. -reset_profiler will clear the previous time record.
-paddle.v2.fluid.profiler.
profiler
(*args, **kwds)The profiler interface. -Different from cuda_profiler, this profiler can be used to profile both CPU -and GPU program. By defalut, it records the CPU and GPU operator kernels, -if you want to profile other program, you can refer the profiling tutorial -to add more records.
-参数: |
|
-
---|
paddle.v2.fluid.regularizer.
append_regularization_ops
(parameters_and_grads, regularization=None)Create and add backward regularization Operators
-Creates and adds backward regularization operators in the BlockDesc. -This will add gradients of the regularizer function to the gradients -of the parameters and return these modified gradients. This is the -same as implementing weight decay in optimizers for regularization.
-参数: |
|
-
---|---|
返回: | list of (parameters, gradients) pair with the regularized gradient - |
-
Raises: |
|
-
paddle.v2.fluid.regularizer.
L1Decay
L1DecayRegularizer
的别名
paddle.v2.fluid.regularizer.
L2Decay
L2DecayRegularizer
的别名
paddle.v2.parameters.
Parameters
Parameters manages all the learnable parameters in a neural network. -It stores parameters’ information in an OrderedDict. The key is -the name of a parameter, and value is a parameter’s configuration(in -protobuf format), such as initialization mean and std, its size, whether it -is a static parameter, and so on.
-参数: |
|
-
---|
Basically usage is
-data = paddle.layers.data(...)
-...
-out = paddle.layers.fc(...)
-
-parameters = paddle.parameters.create(out)
-
-parameter_names = parameters.names()
-fc_mat = parameters.get('fc')
-print fc_mat
-
keys
()keys are the names of each parameter.
-返回: | list of parameter name | -
---|---|
返回类型: | list | -
names
()names of each parameter.
-返回: | list of parameter name | -
---|---|
返回类型: | list | -
has_key
(key)has_key return true if there are such parameter name == key
-参数: | key (basestring) – Parameter name | -
---|---|
返回: | True if contains such key | -
get_shape
(key)get shape of the parameter.
-参数: | key (basestring) – parameter name | -
---|---|
返回: | parameter’s shape | -
返回类型: | tuple | -
get
(parameter_name)Get parameter by parameter name.
-Note: | It will always copy the parameter from C++ side. | -
---|---|
参数: | parameter_name (basestring) – parameter name | -
返回: | The parameter matrix. | -
返回类型: | np.ndarray | -
get_grad
(key)Get grandient by parameter name.
-Note: | It will always copy the parameter from C++ side. | -
---|---|
参数: | key (basestring) – parameter name | -
返回: | The grandient matrix. | -
返回类型: | np.ndarray | -
set
(parameter_name, value)Set parameter by parameter name & matrix.
-参数: |
|
-
---|---|
返回: | Nothing. - |
-
append_gradient_machine
(gradient_machine)append gradient machine to parameters. This method is used internally in -Trainer.train.
-参数: | gradient_machine (api.GradientMachine) – PaddlePaddle C++ GradientMachine object. | -
---|---|
返回: | - |
serialize
(name, f)参数: |
|
-
---|---|
返回: | - | -
deserialize
(name, f)参数: |
|
-
---|---|
返回: | - | -
to_tar
(f)Save parameters to a tar file.
-参数: | f (file) – | -
---|---|
返回: | - |
from_tar
(f)Create a Parameters object from the given file. And -the Parameters only contains the parameters in this -file. It is adapted the parameters are same in the -defined network and the given file. For example, it -can be used in the inference.
-参数: | f (tar file) – the initialized model file. | -
---|---|
返回: | A Parameters object. | -
返回类型: | Parameters. | -
init_from_tar
(f, exclude_params=[])Different from from_tar, this interface can be used to -init partial network parameters from another saved model.
-参数: |
|
-
---|---|
返回: | Nothing. - |
-
Module Trainer
-paddle.v2.trainer.
SGD
(cost, parameters, update_equation, extra_layers=None, is_local=True, pserver_spec=None, use_etcd=True)Simple SGD Trainer. -SGD Trainer combines data reader, network topolopy and update_equation together -to train/test a neural network.
-参数: |
|
-
---|
train
(reader, num_passes=1, event_handler=None, feeding=None)Training method. Will train num_passes of input data.
-参数: |
|
-
---|---|
返回: | - | -
test
(reader, feeding=None)Testing method. Will test input data.
-参数: |
|
-
---|---|
返回: | - | -
Testing and training events.
-There are:
-paddle.v2.event.
TestResult
(evaluator, cost)Result that trainer.test return.
-paddle.v2.event.
BeginPass
(pass_id)Event On One Pass Training Start.
-paddle.v2.event.
EndPass
(pass_id, evaluator, gm)Event On One Pass Training Complete. -To get the output of a specific layer, add “event.gm.getLayerOutputs(‘predict_layer’)” -in your event_handler call back
-paddle.v2.event.
BeginIteration
(pass_id, batch_id)Event On One Batch Training Start.
-paddle.v2.event.
EndForwardBackward
(pass_id, batch_id, gm)Event On One Batch ForwardBackward Complete.
-paddle.v2.event.
EndIteration
(pass_id, batch_id, cost, evaluator, gm)Event On One Batch Training Complete. -To get the output of a specific layer, add “event.gm.getLayerOutputs(‘predict_layer’)” -in your event_handler call back
-paddle.v2.
infer
(output_layer, parameters, input, feeding=None, field='value')Infer a neural network by given neural network output and parameters. The -user should pass either a batch of input data or reader method.
-Example usage for sinlge output_layer:
-result = paddle.infer(output_layer=prediction,
- parameters=parameters,
- input=SomeData)
-print result
-
Example usage for multiple outout_layers and fields:
-result = paddle.infer(output_layer=[prediction1, prediction2],
- parameters=parameters,
- input=SomeData,
- field=[id, value]])
-print result
-
参数: |
|
-
---|---|
返回: | The prediction result. If there are multiple outout_layers and fields, -the return order is outout_layer1.field1, outout_layer2.field1, ..., -outout_layer1.field2, outout_layer2.field2 ... - |
-
返回类型: | numpy.ndarray - |
-
- |
- |
- | - |
|
-
- | - |
- |
- |
pooling 的使用示例如下,详细见 pooling 配置API。
+pooling 的使用示例如下,详细见 api_v2.layer_pooling 配置API。
seq_pool = pooling(input=layer,
pooling_type=pooling.Max(),
agg_level=AggregateLevel.TO_SEQUENCE)
@@ -256,7 +256,7 @@
last_seq 的使用示例如下( first_seq 类似),详细见 last_seq 配置API。
+last_seq 的使用示例如下( api_v2.layer_first_seq 类似),详细见 api_v2.layer_last_seq 配置API。
last = last_seq(input=layer,
agg_level=AggregateLevel.TO_SEQUENCE)
expand 的使用示例如下,详细见 ExpandLevel 配置API。
+expand 的使用示例如下,详细见 api_v2.layer_expand 配置API。
ex = expand(input=layer1,
expand_as=layer2,
expand_level=ExpandLevel.FROM_NO_SEQUENCE)
diff --git a/develop/doc_cn/objects.inv b/develop/doc_cn/objects.inv
index 62dc1f11802c1658c781df6e5b848d9625dafcaa..e1a1a249c4782467733fe8c815614892b7fab197 100644
Binary files a/develop/doc_cn/objects.inv and b/develop/doc_cn/objects.inv differ
diff --git a/develop/doc_cn/py-modindex.html b/develop/doc_cn/py-modindex.html
deleted file mode 100644
index 3532bace7f3b887553b9c4dd4604bbd1a4ebbd2f..0000000000000000000000000000000000000000
--- a/develop/doc_cn/py-modindex.html
+++ /dev/null
@@ -1,284 +0,0 @@
-
-
-
-
-
-
-
-
-
-
- Python 模块索引 — PaddlePaddle 文档
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
\ No newline at end of file
diff --git a/develop/doc_cn/searchindex.js b/develop/doc_cn/searchindex.js
index be677eb2b5618ebeafe7cfcff472777b13a37629..a6956aea96c0d25b076ee9ff8772f8d14d9b0516 100644
--- a/develop/doc_cn/searchindex.js
+++ b/develop/doc_cn/searchindex.js
@@ -1 +1 @@
-Search.setIndex({docnames:["api/index_cn","api/v2/config/activation","api/v2/config/attr","api/v2/config/evaluators","api/v2/config/layer","api/v2/config/networks","api/v2/config/optimizer","api/v2/config/pooling","api/v2/data","api/v2/data/data_reader","api/v2/data/dataset","api/v2/data/image","api/v2/fluid","api/v2/fluid/data_feeder","api/v2/fluid/evaluator","api/v2/fluid/executor","api/v2/fluid/initializer","api/v2/fluid/io","api/v2/fluid/layers","api/v2/fluid/nets","api/v2/fluid/optimizer","api/v2/fluid/param_attr","api/v2/fluid/profiler","api/v2/fluid/regularizer","api/v2/model_configs","api/v2/run_logic","build_and_install/build_cn","build_and_install/build_from_source_cn","build_and_install/docker_install_cn","build_and_install/index_cn","build_and_install/pip_install_cn","design/api","design/auto_gradient_check","design/backward","design/block","design/build_system/README","design/cluster_train/README","design/cluster_train/checkpointing","design/cluster_train/data_dispatch","design/cluster_train/large_model_dist_train","design/cluster_train/master_server","design/cluster_train/pserver_client","design/cluster_train/remote_parameter_updater","design/cluster_train/save_model","design/cluster_train/submit-job","design/concurrent_programming","design/cpp_data_feeding","design/csp","design/dist_refactor/distributed_architecture","design/dist_refactor/multi_cpu","design/dist_refactor/parameter_server","design/error_clip","design/evaluator","design/executor","design/file_manager/README","design/file_manager/pfs/pfsclient","design/float16","design/fluid","design/fluid_compiler","design/functions_operators_layers","design/gan_api","design/graph","design/graph_survey","design/if_else_op","design/infer_var_type","design/kernel_hint_design","design/memory_optimization","design/mkl/mkl_packed","design/mkl/mkldnn","design/mkl/mkldnn_fluid","design/model_format","design/multi_language_interface/00.why_plain_c","design/multi_language_interface/01.inference_implementation","design/operator_kernel_type","design/ops/rnn","design/ops/sequence_decoder","design/optimizer","design/paddle_nccl","design/parameter_average","design/parameters_in_cpp","design/profiler","design/program","design/prune","design/python_api","design/reader/README","design/refactorization","design/register_grad_op","design/regularization","design/releasing_process","design/scope","design/selected_rows","design/simple_op_design","design/speech/deep_speech_2","design/support_new_device","design/switch","design/switch_kernel","design/tensor_array","design/var_desc","dev/contribute_to_paddle_cn","dev/index_cn","dev/new_layer_cn","dev/new_op_cn","dev/use_eigen_cn","dev/write_docs_cn","faq/build_and_install/index_cn","faq/cluster/index_cn","faq/index_cn","faq/local/index_cn","faq/model/index_cn","faq/parameter/index_cn","getstarted/concepts/use_concepts_cn","getstarted/index_cn","getstarted/quickstart_cn","howto/capi/compile_paddle_lib_cn","howto/capi/index_cn","howto/capi/organization_of_the_inputs_cn","howto/capi/workflow_of_capi_cn","howto/cluster/cmd_argument_cn","howto/cluster/index_cn","howto/cluster/multi_cluster/fabric_cn","howto/cluster/multi_cluster/index_cn","howto/cluster/multi_cluster/k8s_aws_cn","howto/cluster/multi_cluster/k8s_cn","howto/cluster/multi_cluster/k8s_distributed_cn","howto/cluster/multi_cluster/openmpi_cn","howto/cluster/multi_cluster/src/k8s_data/README","howto/cluster/multi_cluster/src/k8s_train/README","howto/cluster/preparations_cn","howto/cmd_parameter/arguments_cn","howto/cmd_parameter/detail_introduction_cn","howto/cmd_parameter/index_cn","howto/cmd_parameter/use_case_cn","howto/index_cn","howto/optimization/cpu_profiling_cn","howto/optimization/gpu_profiling_cn","howto/read_source","howto/rnn/hierarchical_layer_cn","howto/rnn/hrnn_rnn_api_compare_cn","howto/rnn/index_cn","howto/rnn/recurrent_group_cn","howto/rnn/rnn_config_cn","index_cn","mobile/cross_compiling_for_android_cn","mobile/cross_compiling_for_ios_cn","mobile/cross_compiling_for_raspberry_cn","survey/cluster_bootstrapping_tools"],envversion:50,filenames:["api/index_cn.rst","api/v2/config/activation.rst","api/v2/config/attr.rst","api/v2/config/evaluators.rst","api/v2/config/layer.rst","api/v2/config/networks.rst","api/v2/config/optimizer.rst","api/v2/config/pooling.rst","api/v2/data.rst","api/v2/data/data_reader.rst","api/v2/data/dataset.rst","api/v2/data/image.rst","api/v2/fluid.rst","api/v2/fluid/data_feeder.rst","api/v2/fluid/evaluator.rst","api/v2/fluid/executor.rst","api/v2/fluid/initializer.rst","api/v2/fluid/io.rst","api/v2/fluid/layers.rst","api/v2/fluid/nets.rst","api/v2/fluid/optimizer.rst","api/v2/fluid/param_attr.rst","api/v2/fluid/profiler.rst","api/v2/fluid/regularizer.rst","api/v2/model_configs.rst","api/v2/run_logic.rst","build_and_install/build_cn.md","build_and_install/build_from_source_cn.rst","build_and_install/docker_install_cn.rst","build_and_install/index_cn.rst","build_and_install/pip_install_cn.rst","design/api.md","design/auto_gradient_check.md","design/backward.md","design/block.md","design/build_system/README.md","design/cluster_train/README.md","design/cluster_train/checkpointing.md","design/cluster_train/data_dispatch.md","design/cluster_train/large_model_dist_train.md","design/cluster_train/master_server.md","design/cluster_train/pserver_client.md","design/cluster_train/remote_parameter_updater.md","design/cluster_train/save_model.md","design/cluster_train/submit-job.md","design/concurrent_programming.md","design/cpp_data_feeding.md","design/csp.md","design/dist_refactor/distributed_architecture.md","design/dist_refactor/multi_cpu.md","design/dist_refactor/parameter_server.md","design/error_clip.md","design/evaluator.md","design/executor.md","design/file_manager/README.md","design/file_manager/pfs/pfsclient.md","design/float16.md","design/fluid.md","design/fluid_compiler.md","design/functions_operators_layers.md","design/gan_api.md","design/graph.md","design/graph_survey.md","design/if_else_op.md","design/infer_var_type.md","design/kernel_hint_design.md","design/memory_optimization.md","design/mkl/mkl_packed.md","design/mkl/mkldnn.md","design/mkl/mkldnn_fluid.md","design/model_format.md","design/multi_language_interface/00.why_plain_c.md","design/multi_language_interface/01.inference_implementation.md","design/operator_kernel_type.md","design/ops/rnn.md","design/ops/sequence_decoder.md","design/optimizer.md","design/paddle_nccl.md","design/parameter_average.md","design/parameters_in_cpp.md","design/profiler.md","design/program.md","design/prune.md","design/python_api.md","design/reader/README.md","design/refactorization.md","design/register_grad_op.md","design/regularization.md","design/releasing_process.md","design/scope.md","design/selected_rows.md","design/simple_op_design.md","design/speech/deep_speech_2.md","design/support_new_device.md","design/switch.md","design/switch_kernel.md","design/tensor_array.md","design/var_desc.md","dev/contribute_to_paddle_cn.md","dev/index_cn.rst","dev/new_layer_cn.rst","dev/new_op_cn.md","dev/use_eigen_cn.md","dev/write_docs_cn.rst","faq/build_and_install/index_cn.rst","faq/cluster/index_cn.rst","faq/index_cn.rst","faq/local/index_cn.rst","faq/model/index_cn.rst","faq/parameter/index_cn.rst","getstarted/concepts/use_concepts_cn.rst","getstarted/index_cn.rst","getstarted/quickstart_cn.rst","howto/capi/compile_paddle_lib_cn.md","howto/capi/index_cn.rst","howto/capi/organization_of_the_inputs_cn.md","howto/capi/workflow_of_capi_cn.md","howto/cluster/cmd_argument_cn.md","howto/cluster/index_cn.rst","howto/cluster/multi_cluster/fabric_cn.md","howto/cluster/multi_cluster/index_cn.rst","howto/cluster/multi_cluster/k8s_aws_cn.md","howto/cluster/multi_cluster/k8s_cn.md","howto/cluster/multi_cluster/k8s_distributed_cn.md","howto/cluster/multi_cluster/openmpi_cn.md","howto/cluster/multi_cluster/src/k8s_data/README.md","howto/cluster/multi_cluster/src/k8s_train/README.md","howto/cluster/preparations_cn.md","howto/cmd_parameter/arguments_cn.md","howto/cmd_parameter/detail_introduction_cn.md","howto/cmd_parameter/index_cn.rst","howto/cmd_parameter/use_case_cn.md","howto/index_cn.rst","howto/optimization/cpu_profiling_cn.md","howto/optimization/gpu_profiling_cn.rst","howto/read_source.md","howto/rnn/hierarchical_layer_cn.rst","howto/rnn/hrnn_rnn_api_compare_cn.rst","howto/rnn/index_cn.rst","howto/rnn/recurrent_group_cn.md","howto/rnn/rnn_config_cn.rst","index_cn.rst","mobile/cross_compiling_for_android_cn.md","mobile/cross_compiling_for_ios_cn.md","mobile/cross_compiling_for_raspberry_cn.md","survey/cluster_bootstrapping_tools.md"],objects:{"paddle.v2":{image:[11,0,0,"-"]},"paddle.v2.image":{batch_images_from_tar:[11,1,1,""],center_crop:[11,1,1,""],left_right_flip:[11,1,1,""],load_and_transform:[11,1,1,""],load_image:[11,1,1,""],load_image_bytes:[11,1,1,""],random_crop:[11,1,1,""],resize_short:[11,1,1,""],simple_transform:[11,1,1,""],to_chw:[11,1,1,""]}},objnames:{"0":["py","module","Python \u6a21\u5757"],"1":["py","function","Python \u51fd\u6570"]},objtypes:{"0":"py:module","1":"py:function"},terms:{"00m":134,"01org":104,"03m":134,"0424m":134,"0473v3":5,"04\u4ee5\u4e0a":30,"04\u4ee5\u53camaco":112,"055ee37d":121,"0630u":134,"06u":134,"0810u":134,"0957m":134,"0\u53f7\u8bad\u7ec3\u8282\u70b9\u662f\u4e3b\u8bad\u7ec3\u8282\u70b9":129,"0\u5c42\u5e8f\u5217":136,"0_cudnn5":27,"0_cudnn5_avx_mkl":[28,30],"0_cudnn7_avx_mkl":30,"0ab":4,"0rc1":88,"0rc2":88,"0x10f256d50":62,"0x7ffe4de00110":62,"100gi":121,"100m":107,"10g":44,"1150u":134,"11\u5b9e\u73b0\u4e86c":72,"11e6":122,"124n":134,"12\u4ee5\u4e0a":30,"12\u64cd\u4f5c\u7cfb\u7edf":104,"12gb":66,"13m":122,"1490u":134,"14\u7248\u672c\u4ee5\u4e0a\u7684":144,"14\u8fd9\u79cd\u5199\u6cd5\u5c06\u4f1a\u6d4b\u8bd5\u6a21\u578b":131,"1550u":134,"15\u884c":137,"16\u5b57\u8282\u8868\u793a\u4fdd\u5b58\u7684\u53c2\u6570\u603b\u4e2a\u6570":109,"16u":134,"173n":134,"1770u":134,"18ad":121,"18e457ce3d362ff5f3febf8e7f85ffec852f70f3b629add10aed84f930a68750":122,"197u":134,"1\u4e4b\u540e\u7684\u4efb\u4f55\u4e00\u4e2a\u7248\u672c\u6765\u7f16\u8bd1\u8fd0\u884c":27,"1\u7684\u5c42\u4e4b\u5916":131,"1\u7a00\u758f\u6570\u636e":100,"1\u8f6e\u5b58\u50a8\u7684\u6240\u6709\u6a21\u578b":131,"1st":18,"210u":134,"211839e770f7b538e2d8":5,"215n":134,"228u":134,"2520u":134,"2680u":134,"26\u884c":137,"279n":134,"27m":134,"285m":134,"2863m":134,"28m":134,"2977m":134,"2\u4e09\u7c7b\u7684\u6bd4\u4f8b\u4e3a":109,"2\u4e2a\u5b50\u5e8f\u5217":115,"2\u5206\u522b\u4ee3\u88683\u4e2a\u8282\u70b9\u7684trainer":123,"2\u610f\u5473\u77400\u53f7\u548c1\u53f7gpu\u5c06\u4f1a\u4f7f\u7528\u6570\u636e\u5e76\u884c\u6765\u8ba1\u7b97fc1\u548cfc2\u5c42":131,"2\u8fd9\u51e0\u4e2a\u76ee\u5f55\u8868\u793apaddlepaddle\u8282\u70b9\u4e0etrain":123,"2cbf7385":121,"2nd":18,"302n":134,"30u":134,"328n":134,"32u":134,"32x32":10,"331n":134,"3320u":134,"365e":121,"36u":134,"3710m":134,"3768m":134,"387u":134,"38u":134,"3920u":134,"39u":134,"3\u4ee5\u4e0a\u7684\u7b26\u53f7":30,"3\u53f7gpu":107,"4035m":134,"4090u":134,"4096mb":129,"4279m":134,"43u":134,"448a5b355b84":122,"4560u":134,"4563m":134,"45u":134,"4650u":134,"4726m":134,"473m":122,"4\u4e2a\u5e8f\u5217\u7684\u957f\u5ea6\u5206\u522b\u4e3a":115,"4\u5b57\u8282\u8868\u793apaddlepaddle\u7248\u672c\u4fe1\u606f":109,"4gb":129,"500m":107,"50bd":121,"50gi":121,"514u":134,"525n":134,"526u":134,"536u":134,"5460u":134,"5470u":134,"54u":134,"5690m":134,"573u":134,"578n":134,"5798m":134,"586u":134,"58s":122,"5969m":134,"5\u4f5c\u4e3a\u7f16\u8bd1\u73af\u5883":30,"5\u5373\u5c06\u505c\u6b62\u7ef4\u62a4":30,"5_cudnn5_avx_mkl":30,"5_cudnn5_avx_openbla":[30,112],"6080u":134,"6140u":134,"6305m":134,"639u":134,"64\u5e73\u53f0\u4e3a\u4f8b":142,"64m":70,"655u":134,"6780u":134,"6810u":134,"682u":134,"6970u":134,"6\u4e07\u4ebf\u6b21\u6d6e\u70b9\u8fd0\u7b97\u6bcf\u79d2":134,"6\u4ee5\u4e0a":[30,112],"6\u4f5c\u4e3a\u6807\u51c6\u7f16\u8bd1\u73af\u5883":30,"6ce9":121,"6th":10,"704u":134,"7090u":134,"72u":134,"73u":134,"75u":134,"760u":134,"767u":134,"783n":134,"784u":134,"78m":134,"7\u4ee5\u4e0a":142,"7\u4ee5\u4e0a\u7684\u7b26\u53f7":30,"7\u4ee5\u4e0b":142,"7\u548cpip":104,"7\u7248\u672c\u5f00\u59cb":142,"7\u7cfb\u5217":30,"7eamaa":10,"7kb":122,"8000\u5c31\u53ef\u4ee5\u5728\u7f51\u9875\u4e0a\u751f\u6210\u9700\u8981\u7684\u6587\u6863":103,"8250u":134,"8300u":134,"830n":134,"849m":134,"861u":134,"8661m":134,"892m":134,"8\u5b57\u8282\u8868\u793a\u6bcf\u4e2a\u53c2\u6570\u5360\u7528\u7684\u5b57\u8282\u6570":109,"901n":134,"90u":134,"918u":134,"9247m":134,"924n":134,"9261m":134,"9330m":134,"94u":134,"9530m":134,"983m":134,"988u":134,"997u":134,"99u":134,"9a235":143,"9f18":122,"\u4e00\u4e2a":115,"\u4e00\u4e2a0\u5c42\u5e8f\u5217":136,"\u4e00\u4e2a0\u5c42\u5e8f\u5217\u7ecf\u8fc7\u8fd0\u7b97\u6269\u5c55\u6210\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":136,"\u4e00\u4e2a\u4e0d\u5171\u4eab\u7684\u4f8b\u5b50\u662f":101,"\u4e00\u4e2a\u5178\u578b\u7684chunk\u5982\u4e0b\u6240\u793a":54,"\u4e00\u4e2a\u5206\u5e03\u5f0fpaddlepaddle\u8bad\u7ec3\u4efb\u52a1\u4e2d":122,"\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":136,"\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217\u6216\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217":136,"\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217\u7ecf\u8fc7\u8fd0\u7b97\u6269\u5c55\u6210\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217":136,"\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217\u8fdb\u5165":139,"\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217":136,"\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217\u6216\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":136,"\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217\u7ecf\u8fc7\u8fd0\u7b97\u53d8\u6210\u4e00\u4e2a0\u5c42\u5e8f\u5217":136,"\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217\u7ecf\u8fc7\u8fd0\u7b97\u53d8\u6210\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":136,"\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217\u8fdb\u5165":139,"\u4e00\u4e2a\u53cc\u5c42rnn\u7531\u591a\u4e2a\u5355\u5c42rnn\u7ec4\u6210":139,"\u4e00\u4e2a\u53ef\u8c03\u7528\u7684\u51fd\u6570":139,"\u4e00\u4e2a\u5e38\u7528\u7684cmake\u914d\u7f6e\u5982\u4e0b":144,"\u4e00\u4e2a\u6570\u636e\u96c6\u5927\u90e8\u5206\u5e8f\u5217\u957f\u5ea6\u662f100":107,"\u4e00\u4e2a\u662f\u6d6e\u70b9\u8ba1\u7b97\u91cf":134,"\u4e00\u4e2a\u72ec\u7acb\u7684\u5143\u7d20":136,"\u4e00\u4e2a\u72ec\u7acb\u7684\u8bcd\u8bed":136,"\u4e00\u4e2a\u795e\u7ecf\u7f51\u7edc\u7684\u6a21\u578b\u7531\u5927\u91cf\u7684\u53c2\u6570\u7ec4\u6210":37,"\u4e00\u4e2a\u7f51\u7edc\u5c42\u7684\u524d\u5411\u4f20\u64ad\u90e8\u5206\u628a\u8f93\u5165\u8f6c\u5316\u4e3a\u76f8\u5e94\u7684\u8f93\u51fa":100,"\u4e00\u4e2a\u7f51\u7edc\u5c42\u7684\u53c2\u6570\u662f\u5728":100,"\u4e00\u4e2a\u7f51\u7edc\u5c42\u7684c":100,"\u4e00\u4e2a\u8f93\u51fa\u6570\u636e\u540c\u6837\u88ab\u7ec4\u7ec7\u4e3a\u4e00\u4e2a":115,"\u4e00\u4e2a\u8f93\u51fa\u7ec4\u6210":101,"\u4e00\u4e2a\u91cd\u8981\u7684\u95ee\u9898\u662f\u9009\u62e9\u6b63\u786e\u7684learning_r":109,"\u4e00\u4e2achunk\u7531\u6240\u5728\u7684\u6587\u4ef6\u504f\u79fb":54,"\u4e00\u4e2agpu\u8bbe\u5907\u4e0a\u4e0d\u5141\u8bb8\u914d\u7f6e\u591a\u4e2a\u6a21\u578b":129,"\u4e00\u4e2agradientmachine\u7c7b\u7684\u5bf9\u8c61\u7ba1\u7406\u7740\u4e00\u7ec4\u8ba1\u7b97\u5c42":116,"\u4e00\u4e2alabel":137,"\u4e00\u4e2amemory\u5305\u542b":140,"\u4e00\u4e2aposix\u517c\u5bb9\u7684\u6587\u4ef6\u7cfb\u7edf":54,"\u4e00\u4e9b\u60c5\u51b5\u4e3a\u4e86\u4fbf\u4e8e\u53d1\u5e03":116,"\u4e00\u53e5\u8bdd\u662f\u7531\u8bcd\u8bed\u6784\u6210\u7684\u5e8f\u5217":139,"\u4e00\u53f0\u7535\u8111":26,"\u4e00\u662fbatch":107,"\u4e00\u6837\u7684\u65b9\u5f0f":26,"\u4e00\u7ef4\u6570\u7ec4":[115,116],"\u4e00\u7ef4\u6574\u578b\u6570\u7ec4":115,"\u4e00\u81f4":[136,137],"\u4e00\u822c\u4e0d\u5141\u8bb8\u518d\u4ece":88,"\u4e00\u822c\u4ece":98,"\u4e00\u822c\u5728paddlepaddle\u4e2d":137,"\u4e00\u822c\u662f\u7531\u4e8e\u76f4\u63a5\u4f20\u9012\u5927\u5b57\u5178\u5bfc\u81f4\u7684":109,"\u4e00\u822c\u6765\u8bf4":140,"\u4e00\u822c\u7531mkl":68,"\u4e00\u822c\u8868\u793a":137,"\u4e00\u822c\u8bbe\u7f6e":109,"\u4e00\u8282":116,"\u4e09\u79cd\u5e8f\u5217\u6a21\u5f0f":110,"\u4e0a":98,"\u4e0a\u4ea4\u53c9\u7f16\u8bd1raspberri":144,"\u4e0a\u4f20\u5230cloud\u6216\u8005\u4e0b\u8f7d\u5230\u672c\u5730\u7684\u65f6\u95f4\u53ef\u80fd\u6bd4\u8f83\u957f":54,"\u4e0a\u4f20\u65b9\u6cd5":88,"\u4e0a\u4f20\u8ba1\u7b97\u5f97\u51fa\u7684\u68af\u5ea6":118,"\u4e0a\u56fe\u4e2d\u7684":115,"\u4e0a\u56fe\u4e2d\u865a\u7ebf\u7684\u8fde\u63a5":137,"\u4e0a\u56fe\u63cf\u8ff0\u4e86\u4e00\u4e2a3\u8282\u70b9\u7684\u5206\u5e03\u5f0f\u8bad\u7ec3\u573a\u666f":123,"\u4e0a\u6ce8\u518c\u4e00\u4e0b":54,"\u4e0a\u7f16\u8bd1\u5f88\u6162":26,"\u4e0a\u8fd0\u884c":142,"\u4e0a\u8ff0\u4ee3\u7801\u5c06bias\u5168\u90e8\u521d\u59cb\u5316\u4e3a1":109,"\u4e0a\u8ff0\u547d\u4ee4\u4e2d":28,"\u4e0a\u8ff0\u547d\u4ee4\u7f16\u8bd1\u51fa\u4e00\u4e2a":26,"\u4e0a\u8ff0\u7684":108,"\u4e0a\u8ff0\u7684\u4ee3\u7801\u7247\u6bb5\u5305\u542b\u4e86\u4e24\u79cd\u65b9\u6cd5":134,"\u4e0a\u8ff0paddlepaddl":88,"\u4e0a\u9762\u7684\u4ee3\u7801\u5728":101,"\u4e0a\u9762\u7684\u4ee3\u7801\u9996\u5148\u5bfc\u5165\u4f9d\u8d56\u7684\u5305":101,"\u4e0b":[101,103],"\u4e0b\u4e00\u4e2awheel\u5305\u9700\u8981\u66f4\u65b0\u7248\u672c\u53f7\u624d\u53ef\u4ee5\u4e0a\u4f20":88,"\u4e0b\u4f1a\u770b\u5230\u5982\u4e0b\u76ee\u5f55\u7ed3\u6784":113,"\u4e0b\u540c":109,"\u4e0b\u56fe\u4e2d\u5c31\u5c55\u793a\u4e86\u4e00\u4e9b\u5173\u4e8e\u5185\u5b58\u6570\u636e\u8fc1\u5f99\u548c\u8ba1\u7b97\u8d44\u6e90\u5229\u7528\u7387\u7684\u5efa\u8bae":134,"\u4e0b\u56fe\u662f\u4e00\u4e2a\u5168\u8fde\u63a5\u5c42\u7684\u793a\u610f\u56fe":100,"\u4e0b\u56fe\u662fcsr\u5b58\u50a8\u7a00\u758f\u77e9\u9635\u7684\u793a\u610f\u56fe":115,"\u4e0b\u5b58\u653e\u516c\u5171\u6570\u636e\u96c6\u5408":38,"\u4e0b\u627e\u5230":113,"\u4e0b\u62c9\u6846\u4e2d\u627e\u5230\u751f\u6210\u76843\u4e2a\u4e8c\u8fdb\u5236\u6587\u4ef6":88,"\u4e0b\u6587\u4ee5nlp\u4efb\u52a1\u4e3a\u4f8b":139,"\u4e0b\u6587\u4f1a\u8be6\u7ec6\u8fdb\u884c\u4ecb\u7ecd":115,"\u4e0b\u6587\u4f7f\u7528":123,"\u4e0b\u6587\u5c31\u662f\u7528job\u7c7b\u578b\u7684\u8d44\u6e90\u6765\u8fdb\u884c\u8bad\u7ec3":122,"\u4e0b\u6587\u8be6\u7ec6\u89e3\u91ca":115,"\u4e0b\u7684":[116,123],"\u4e0b\u8868\u5217\u51fa\u4e86python\u7aef\u8bad\u7ec3\u63a5\u53e3\u66b4\u9732\u7684\u6570\u636e\u7c7b\u578b":115,"\u4e0b\u8f7d":54,"\u4e0b\u8f7d\u5230\u672c\u5730":54,"\u4e0b\u8f7d\u5b8c\u6570\u636e\u540e":122,"\u4e0b\u8f7d\u5f97\u5230":88,"\u4e0b\u8f7d\u6307\u5b9a\u7248\u672c\u7684docker\u955c\u50cf":28,"\u4e0b\u8f7dgpu\u7248\u672c":28,"\u4e0b\u9762":116,"\u4e0b\u9762\u4e3e\u4e2a\u7b80\u5355\u7684\u4f8b\u5b50":134,"\u4e0b\u9762\u4ecb\u7ecd\u4ecb\u7ecd":101,"\u4e0b\u9762\u4ee5":117,"\u4e0b\u9762\u4ee5\u77e9\u9635\u4e58\u64cd\u4f5c":101,"\u4e0b\u9762\u4ee5addop\u4e3a\u4f8b\u8bf4\u660etensor\u7684\u4f7f\u7528\u8fc7\u7a0b":102,"\u4e0b\u9762\u5206\u522b\u4ecb\u7ecd\u67d0\u4e00\u7c7b\u6587\u4ef6\u7684\u5b9e\u73b0\u65b9\u5f0f":72,"\u4e0b\u9762\u5217\u51fa\u4e86":140,"\u4e0b\u9762\u5217\u51fa\u4e86\u5168\u8fde\u63a5\u5c42\u7684\u68af\u5ea6\u68c0\u67e5\u5355\u5143\u6d4b\u8bd5":100,"\u4e0b\u9762\u5c31\u6839\u636e\u8fd9\u51e0\u4e2a\u6b65\u9aa4\u5206\u522b\u4ecb\u7ecd":123,"\u4e0b\u9762\u6211\u4eec\u4f7f\u7528\u8fd9\u4e2a\u955c\u50cf\u6765\u4e0b\u8f7d\u6570\u636e\u5230docker":122,"\u4e0b\u9762\u662f":101,"\u4e0b\u9762\u662f\u5bf9":101,"\u4e0b\u9762\u662fc":116,"\u4e0b\u9762\u7684\u4ee3\u7801\u5c06\u968f\u673a\u751f\u6210\u7684\u77e9\u9635\u8f6c\u5316\u4e3a\u53ef\u4ee5\u88abpaddlepaddle\u52a0\u8f7d\u7684\u6a21\u578b\u53c2\u6570":109,"\u4e0b\u9762\u7684\u4ee3\u7801\u7247\u6bb5\u4ecegithub\u62c9\u53d6\u6700\u65b0\u4ee3\u7801":113,"\u4e0b\u9762\u7684\u4ee3\u7801\u7247\u6bb5\u521b\u5efa\u4e86\u4e00\u4e2a\u9ad8\u5ea6\u4e3a1":115,"\u4e0b\u9762\u7684\u4ee3\u7801\u7247\u6bb5\u521b\u5efa\u4e86\u4e00\u4e2acpu\u4e0a\u7684\u4e8c\u503c\u7a00\u758f\u77e9\u9635":115,"\u4e0b\u9762\u7684\u4ee3\u7801\u7247\u6bb5\u521b\u5efa\u4e86\u542b\u6709\u4e09\u4e2a\u5143\u7d20":115,"\u4e0b\u9762\u7684\u4ee3\u7801\u7247\u6bb5\u5728\u521b\u5efa\u4e86\u4e00\u4e2acpu\u4e0a\u7684\u5e26\u5143\u7d20\u503c\u7684\u7a00\u758f\u77e9\u9635":115,"\u4e0b\u9762\u7684\u4ee3\u7801\u7247\u6bb5\u5b9e\u73b0\u4e86":100,"\u4e0b\u9762\u7684\u70b9\u5b9e\u73b0\u4e86mulop\u7684\u5b9a\u4e49":101,"\u4e0b\u9762\u7ed9\u51fa\u4e86\u4e00\u4e2a\u4f8b\u5b50":100,"\u4e0b\u9762\u7ed9\u51fa\u5728\u4e09\u7ef4\u7a7a\u95f4\u4e2d\u4f7f\u7528\u7ebf\u6027\u56de\u5f52\u62df\u5408\u4e00\u6761\u76f4\u7ebf\u7684\u4f8b\u5b50":110,"\u4e0b\u9762\u8be6\u7ec6\u89e3\u91ca\u4ec0\u4e48\u662f":115,"\u4e0b\u9762\u8fd9\u4e9blayer\u80fd\u591f\u63a5\u53d7\u53cc\u5c42\u5e8f\u5217\u4f5c\u4e3a\u8f93\u5165":136,"\u4e0d\u4e00\u81f4\u7684\u7531pfsclient\u4e0b\u8f7d\u6216\u8005\u4f20\u8f93chunk\u5b8c\u6210":54,"\u4e0d\u4ec5\u8981\u63d0\u4f9b\u6bcf\u4e00\u4e2a\u5916\u5c42\u5e8f\u5217\u5728\u6574\u4e2a":115,"\u4e0d\u4f1a\u4fdd\u7559\u5728\u78c1\u76d8\u4e0a":26,"\u4e0d\u4f1a\u518d\u4ece":107,"\u4e0d\u4f1a\u865a\u62df\u4efb\u4f55\u786c\u4ef6":26,"\u4e0d\u4f7f\u7528\u9759\u6001\u5e93":71,"\u4e0d\u4f7f\u7528\u989d\u5916\u7a7a\u95f4":100,"\u4e0d\u4f7f\u7528c":71,"\u4e0d\u4f7f\u7528swig":71,"\u4e0d\u5141\u8bb8\u4e00\u4e2a\u6587\u4ef6\u4e2d\u5305\u542b\u591a\u4e2aop":101,"\u4e0d\u5171\u4eab\u5219\u4e0d\u52a0":101,"\u4e0d\u5171\u4eab\u7684\u4f8b\u5b50\u53ef\u4ee5\u53c2\u8003":101,"\u4e0d\u53ef\u4ee5\u66f4\u6539":88,"\u4e0d\u53ef\u518d\u8fdb\u884c\u62c6\u5206":115,"\u4e0d\u540c":68,"\u4e0d\u540c\u4e8e\u4e0a\u8ff0\u4ecb\u7ecd\u7684recurr":108,"\u4e0d\u540c\u4e8eop\u7684\u7f16\u8bd1\u6d4b\u8bd5":101,"\u4e0d\u540c\u53c2\u6570\u670d\u52a1\u5668\u4e0a\u6570\u636e\u5927\u5c0f\u7684\u6700\u5927\u503c\u4e0e\u6700\u5c0f\u503c\u7684\u6bd4\u7387":129,"\u4e0d\u540c\u5e8f\u5217\u53ef\u80fd\u4f1a\u542b\u6709\u4e0d\u540c\u6570\u76ee\u4e2a\u5143\u7d20":115,"\u4e0d\u540c\u65f6\u95f4\u6b65\u7684\u8f93\u5165\u662f\u4e0d\u540c\u7684":140,"\u4e0d\u540c\u7248\u672c\u7684\u7f16\u8bd1\u5668\u4e4b\u95f4":71,"\u4e0d\u540c\u7684\u4f18\u5316\u7b97\u6cd5\u9700\u8981\u4f7f\u7528\u4e0d\u540c\u5927\u5c0f\u7684\u5185\u5b58":107,"\u4e0d\u540c\u7684\u5206\u5e03\u5f0f\u6587\u4ef6\u7cfb\u7edf":123,"\u4e0d\u540c\u7684\u6570\u636e\u7c7b\u578b\u548c\u5e8f\u5217\u6a21\u5f0f\u8fd4\u56de\u7684\u683c\u5f0f\u4e0d\u540c":110,"\u4e0d\u540c\u8ba1\u7b97\u5c42\u5bf9\u7a7a\u8f93\u5165\u7684\u5904\u7406\u7b56\u7565\u6709\u53ef\u80fd\u4e0d\u540c":115,"\u4e0d\u540c\u8bbe\u5907":101,"\u4e0d\u540c\u8bed\u8a00\u7684\u63a5\u53e3\u9002\u5e94\u4e0d\u540c\u8bed\u8a00\u7684\u7279\u6027":71,"\u4e0d\u540c\u8f93\u5165\u542b\u6709\u7684\u5b50\u53e5":139,"\u4e0d\u540c\u8f93\u5165\u5e8f\u5217\u542b\u6709\u7684\u8bcd\u8bed\u6570\u5fc5\u987b\u4e25\u683c\u76f8\u7b49":139,"\u4e0d\u540cdataprovider\u5bf9\u6bd4\u5982\u4e0b":137,"\u4e0d\u540crank\u7684tensor\u662f\u4e0d\u540c\u7c7b\u578b":102,"\u4e0d\u5728":72,"\u4e0d\u5bb9\u6613\u51fa\u9519":54,"\u4e0d\u5d4c\u5165\u5176\u4ed6\u8bed\u8a00\u89e3\u91ca\u5668":71,"\u4e0d\u5d4c\u5165python\u89e3\u91ca\u5668":71,"\u4e0d\u5e94\u8be5\u88ab\u62c6\u89e3":139,"\u4e0d\u6307\u5b9a\u65f6":139,"\u4e0d\u652f\u6301":115,"\u4e0d\u652f\u6301\u5e8f\u5217\u957f\u5ea6\u4e3a":115,"\u4e0d\u662f\u4e00\u6761\u5e8f\u5217":110,"\u4e0d\u662f\u771f\u6b63\u7684layer":108,"\u4e0d\u662f\u901a\u8fc7\u4e00\u822c\u7684\u65b9\u5f0f\u6765\u5b9e\u73b0\u5bf9\u8f93\u51fa\u7684\u6fc0\u6d3b":108,"\u4e0d\u663e\u793a\u7684\u5199\u6bcf\u4e2a\u7c7b\u5177\u4f53\u5305\u542b\u4ec0\u4e48":71,"\u4e0d\u6ee1\u8db3\u94a9\u5b50\u7684":98,"\u4e0d\u7528mount\u7684\u65b9\u5f0f\u6765\u8bbf\u95ee\u6570\u636e":38,"\u4e0d\u80fd\u4fee\u6539op\u7684\u6210\u5458\u53d8\u91cf":101,"\u4e0d\u80fd\u592a\u968f\u610f":98,"\u4e0d\u80fd\u88ab\u63d0\u4ea4\u5230":98,"\u4e0d\u8981\u5728\u6ce8\u91cd\u6027\u80fd\u7684\u8bad\u7ec3\u573a\u666f\u4e0b\u4f7f\u7528":107,"\u4e0d\u8bba\u5e8f\u5217\u4e2d\u7684\u5143\u7d20\u5728\u5185\u5b58\u4e2d\u5360\u7528\u591a\u5c11\u5b9e\u9645\u5b58\u50a8\u7a7a\u95f4":115,"\u4e0d\u8bba\u6570\u636e\u57df\u662f":115,"\u4e0d\u8bba\u662f\u4e00\u7ef4\u6574\u578b\u6570\u7ec4\u8fd8\u662f\u4e8c\u7ef4\u6d6e\u70b9\u6570\u77e9\u9635":115,"\u4e0d\u8bba\u662f\u5355\u5c42\u5e8f\u5217\u8fd8\u662f\u53cc\u5c42\u5e8f\u5217\u7684\u5e8f\u5217\u4fe1\u606f":115,"\u4e0d\u8fc7\u5b9e\u9645\u4e0a\u662f\u8fd0\u884c\u5728\u4e00\u4e2a":26,"\u4e0d\u9700\u5728\u4f7f\u7528c":116,"\u4e0d\u9700\u8981\u4f9d\u8d56\u5176\u4ed6\u4efb\u4f55\u8f6f\u4ef6\u4e86":26,"\u4e0d\u9700\u8981\u63d0\u4f9b\u5143\u7d20\u503c":115,"\u4e0d\u9700\u8981\u8bbe\u7f6e":142,"\u4e0e":[68,101,123,133],"\u4e0e\u4e4b\u76f8\u5bf9\u7684\u662flocal":54,"\u4e0e\u5176\u4ed6\u7b2c\u4e09\u65b9\u5e93\u4e00\u6837":68,"\u4e0e\u5176\u5b83":116,"\u4e0e\u529f\u80fd\u5206\u652f\u4e0d\u540c\u7684\u662f":88,"\u4e0e\u5355\u5c42rnn\u7684\u914d\u7f6e\u7c7b\u4f3c":137,"\u4e0e\u53ef\u80fd\u6709\u7684":88,"\u4e0e\u540c\u6b65sgd\u76f8\u6bd4":118,"\u4e0e\u5bfb\u627epython\u4ee3\u7801\u7684\u6027\u80fd\u74f6\u9888\u7c7b\u4f3c":133,"\u4e0e\u5f53\u524d\u7684\u8870\u51cf\u56e0\u5b50\u7684\u4e58\u79ef":109,"\u4e0e\u672c\u5730\u8bad\u7ec3\u76f8\u540c":119,"\u4e0e\u6b64\u4e0d\u540c\u7684\u662f":123,"\u4e0e\u8c03\u4f18":133,"\u4e0e\u8f93\u5165\u4e0d\u540c\u7684\u662f":116,"\u4e0e\u8fd9\u4e2a\u8bad\u7ec3\u6570\u636e\u4ea4\u4e92\u7684layer":107,"\u4e0ebatch":67,"\u4e0ejob":123,"\u4e0eoperator\u524d\u5411\u8ba1\u7b97\u7684\u8f93\u51fa\u8fdb\u884c\u5bf9\u6bd4":101,"\u4e0eoperator\u6ce8\u518c\u65f6\u6ce8\u518c\u7684\u7c7b\u578b\u4e00\u81f4":101,"\u4e0epython\u4e0d\u540c":133,"\u4e14\u4e0d\u6392\u9664commit\u4e4b\u95f4\u7684\u4fee\u6539\u5b58\u5728\u76f8\u4e92\u8986\u76d6\u7684\u60c5\u51b5":98,"\u4e14\u4f7f\u7528":113,"\u4e14\u589e\u52a0\u4e00\u4e2a\u7b2c\u4e09\u65b9\u8bed\u8a00":71,"\u4e14\u5c55\u793a\u6548\u679c\u66f4\u597d":133,"\u4e14\u5e8f\u5217\u7684\u6bcf\u4e00\u4e2a\u5143\u7d20\u8fd8\u662f\u4e00\u4e2a\u65f6\u95f4\u5e8f\u5217":110,"\u4e14\u6bcf\u4e2a\u53e5\u5b50\u8868\u793a\u4e3a\u5bf9\u5e94\u7684\u8bcd\u8868\u7d22\u5f15\u6570\u7ec4":137,"\u4e14\u8c03\u7528\u65f6\u4e0d\u80fd\u629b\u51fa\u5f02\u5e38\u6216\u51fa\u73b0\u8fd0\u884c\u65f6\u9519\u8bef":72,"\u4e14c99\u652f\u6301bool\u7c7b\u578b\u548c\u5b9a\u957f\u6574\u6570":71,"\u4e14c99\u76f8\u5bf9\u4e8ec11\u4f7f\u7528\u66f4\u52a0\u5e7f\u6cdb":71,"\u4e24\u4e2a\u5b50\u76ee\u5f55\u4e0b":103,"\u4e24\u4e2a\u5d4c\u5957\u7684":139,"\u4e24\u4e2a\u64cd\u4f5c":134,"\u4e24\u4e2a\u8f93\u5165\u7684\u5b50\u5e8f\u5217\u957f\u5ea6\u4e5f\u5e76\u4e0d\u76f8\u540c":137,"\u4e24\u4e2a\u90e8\u5206":103,"\u4e24\u4e2a\u9690\u5c42\u7684\u7b80\u5355\u5168\u8fde\u63a5\u7f51\u7edc":116,"\u4e24\u6b21":115,"\u4e24\u79cd\u5e38\u7528\u7684\u6a21\u578b\u52a0\u8f7d\u65b9\u5f0f":116,"\u4e24\u79cd\u65b9\u6cd5\u7684\u533a\u522b":107,"\u4e24\u79cdblas\u5e93":27,"\u4e24\u8005\u90fd\u662f\u5bf9\u68af\u5ea6\u7684\u622a\u65ad":107,"\u4e25\u683c\u7684\u547d\u540d\u89c4\u8303pep":88,"\u4e2a\u5185\u5b58\u6c60\u5b9e\u9645\u4e0a\u51b3\u5b9a\u4e86shuffle\u7684\u7c92\u5ea6":107,"\u4e2a\u6027\u5316\u63a8\u8350":88,"\u4e2a\u6279\u6b21\u7684\u53c2\u6570\u5e73\u5747\u503c\u8fdb\u884c\u6d4b\u8bd5":129,"\u4e2a\u6a21\u578b\u6d4b\u8bd5\u6570\u636e":129,"\u4e2d":[67,68,71,72,100,101,102,107,115,123,133],"\u4e2d\u4e0d\u8981\u6dfb\u52a0\u5927\u6587\u4ef6\u7b49":98,"\u4e2d\u4f1a\u4f7f\u7528\u5230\u7684\u5b57\u5178\u6570\u636e\u6587\u4ef6":117,"\u4e2d\u4f1a\u63d0\u4f9b\u4e00\u4e9b\u5fc5\u8981\u7684\u63a5\u53e3\u548c\u51fd\u6570":68,"\u4e2d\u4f20\u5165\u53c2\u6570":117,"\u4e2d\u4f20\u5165\u7684\u53c2\u6570":117,"\u4e2d\u5143\u7d20\u4e2a\u6570\u603b\u662f\u7b49\u4e8e\u884c\u6570":115,"\u4e2d\u5143\u7d20\u7684\u4e2a\u6570\u7b49\u4e8e\u7f51\u7edc\u4e2d\u8f93\u51fa\u5c42\u7684\u4e2a\u6570":107,"\u4e2d\u5173\u4e8e\u65f6\u95f4\u9012\u5f52\u795e\u7ecf\u7f51\u7edc\u7684\u4ecb\u7ecd":137,"\u4e2d\u5199\u5165json\u5185\u5bb9":37,"\u4e2d\u5305\u542b\u4e00\u4e2araspberri":144,"\u4e2d\u5305\u542b\u6240\u4f9d\u8d56\u7684\u6240\u6709\u7b2c\u4e09\u65b9\u5e93":142,"\u4e2d\u5305\u542b\u82e5\u5e72\u4e2a\u4e0d\u540candroid":142,"\u4e2d\u5305\u542bc":[142,144],"\u4e2d\u5355\u5143\u6d4b\u8bd5\u7684\u4e00\u90e8\u5206":98,"\u4e2d\u5355\u5143\u6d4b\u8bd5\u80fd\u987a\u5229\u901a\u8fc7":98,"\u4e2d\u542b\u6709\u591a\u4e2a\u5e8f\u5217":115,"\u4e2d\u5b8c\u5168\u4e00\u81f4":71,"\u4e2d\u5b9a\u4e49":140,"\u4e2d\u5b9a\u4e49\u548c\u4f7f\u7528":139,"\u4e2d\u5b9e\u73b0\u4e86\u4e00\u4e2amerge\u7684\u65b9\u6cd5":68,"\u4e2d\u5b9e\u73b0\u7684\u7ed3\u6784\u4f53":72,"\u4e2d\u5bf9\u5e94\u7684layer\u5904":67,"\u4e2d\u5f15\u5165\u7684":67,"\u4e2d\u6253\u5370\u5176\u503c":107,"\u4e2d\u6307\u5b9a":129,"\u4e2d\u6307\u5b9a\u7684\u540d\u5b57":131,"\u4e2d\u63d0\u4f9b\u4e00\u4e2a\u4e0emkl\u6709\u5173\u7684\u603b\u5f00\u5173":68,"\u4e2d\u63d0\u4f9b\u4e86\u4e00\u4e9b\u5168\u5c40\u51fd\u6570\u7528\u6765\u5b9e\u73b0paddl":102,"\u4e2d\u641c\u7d22\u8fd9\u51e0\u4e2a\u5e93":27,"\u4e2d\u64cd\u4f5c":115,"\u4e2d\u6587\u6587\u6863":103,"\u4e2d\u6587\u6587\u6863\u76ee\u5f55":103,"\u4e2d\u6587\u7ef4\u57fa\u767e\u79d1\u9875\u9762":137,"\u4e2d\u6839\u636e":67,"\u4e2d\u6bcf\u4e2a\u5143\u7d20\u662f\u4e00\u4e2alayer\u7684\u8f93\u51fa\u7ed3\u679c\u77e9\u9635":107,"\u4e2d\u6bcf\u4e2apod\u7684ip\u5730\u5740":123,"\u4e2d\u6bcf\u5c42\u7684\u6570\u503c\u7edf\u8ba1":129,"\u4e2d\u6dfb\u52a0":67,"\u4e2d\u6dfb\u52a0\u4e00\u4e2a":68,"\u4e2d\u6dfb\u52a0\u4e24\u4e2a\u8f93\u5165":101,"\u4e2d\u7528\u4e8e\u5b58\u50a8\u6570\u636e\u7684":116,"\u4e2d\u7684":[102,116],"\u4e2d\u7684\u4e00\u884c":98,"\u4e2d\u7684\u4ee3\u7801\u4f5c\u4e3a\u5b9e\u4f8b":117,"\u4e2d\u7684\u504f\u79fb":115,"\u4e2d\u7684\u5bf9\u5e94\u5206\u652f\u5373\u53ef":98,"\u4e2d\u7684\u7248\u672c\u4fe1\u606f":88,"\u4e2d\u7684\u76f8\u5173\u811a\u672c":116,"\u4e2d\u7684\u8d77\u59cb\u504f\u79fb":115,"\u4e2d\u83b7\u53d6":123,"\u4e2d\u8bbe\u7f6e\u7684\u6240\u6709\u8282\u70b9":119,"\u4e2d\u8be6\u7ec6\u4ecb\u7ecd":100,"\u4e2d\u8c03\u7528":101,"\u4e2d\u8fd0\u884c\u4efb\u52a1\u7684\u89d2\u5ea6":38,"\u4e2d\u914d\u7f6e\u5faa\u73af\u795e\u7ecf\u7f51\u7edc":140,"\u4e34\u65f6\u53d8\u91cf\u7b49\u7b49":107,"\u4e3a":[67,68,101,115,140,142,143,144],"\u4e3a\u4e86\u4f7f":101,"\u4e3a\u4e86\u4f7f\u8bc4\u5ba1\u4eba\u5728\u8bc4\u5ba1\u4ee3\u7801\u65f6\u66f4\u597d\u5730\u4e13\u6ce8\u4e8e\u4ee3\u7801\u672c\u8eab":98,"\u4e3a\u4e86\u4fdd\u8bc1\u6548\u7387":100,"\u4e3a\u4e86\u4fdd\u8bc1gpu\u9a71\u52a8\u80fd\u591f\u5728\u955c\u50cf\u91cc\u9762\u6b63\u5e38\u8fd0\u884c":28,"\u4e3a\u4e86\u51cf\u5c11\u751f\u6210\u94fe\u63a5\u5e93\u7684\u5927\u5c0f\u628a":113,"\u4e3a\u4e86\u5c01\u88c5\u80fd\u591f\u6b63\u786e\u5de5\u4f5c":100,"\u4e3a\u4e86\u5c3d\u53ef\u80fd\u5c11\u7684\u5728\u7236\u7c7blayer\u4e2d\u6dfb\u52a0\u53d8\u91cf\u6216\u8005\u51fd\u6570":68,"\u4e3a\u4e86\u5e94\u5bf9\u4ee5\u4e0a\u7684\u95ee\u9898":54,"\u4e3a\u4e86\u5f00\u53d1paddlepaddl":26,"\u4e3a\u4e86\u63cf\u8ff0\u65b9\u4fbf":139,"\u4e3a\u4e86\u65b9\u4fbf\u5927\u5bb6":98,"\u4e3a\u4e86\u66b4\u9732\u7684\u63a5\u53e3\u5c3d\u91cf\u7b80\u5355":72,"\u4e3a\u4e86\u66f4\u597d\u7684\u7b26\u5408paddlepaddle\u7684\u4ee3\u7801\u98ce\u683c":68,"\u4e3a\u4e86\u6700\u5927\u7a0b\u5ea6\u51cf\u5c11\u591a\u6b21\u8c03\u7528":67,"\u4e3a\u4e86\u751f\u6210\u66f4\u53ef\u8bfb\u7684\u6027\u80fd\u5206\u6790\u7ed3\u679c":133,"\u4e3a\u4e86\u7b80\u5316cmake\u914d\u7f6e":142,"\u4e3a\u4e86\u8fbe\u5230\u6027\u80fd\u6700\u4f18":134,"\u4e3a\u4e86\u8fbe\u5230\u6700\u5feb\u7684\u8ba1\u7b97\u901f\u5ea6":[142,143],"\u4e3a\u4e86\u8fdb\u4e00\u6b65\u63d0\u5347paddlepaddle\u5728\u57fa\u672c\u6570\u5b66\u8fd0\u7b97\u7684\u8ba1\u7b97\u901f\u5ea6":68,"\u4e3a\u4ec0\u4e48\u7528":26,"\u4e3a\u4f7f\u7528c":116,"\u4e3a\u4f8b":[101,108],"\u4e3a\u4f8b\u6765\u4ecb\u7ecd\u5982\u4f55\u5199\u5e26kernel\u7684oper":101,"\u4e3a\u53c2\u6570\u77e9\u9635\u7684\u5bbd\u5ea6":109,"\u4e3a\u5b83\u4eec\u9644\u52a0\u4e0a\u5e8f\u5217\u4fe1\u606f\u5c06\u53d8\u6210\u5e8f\u5217\u8f93\u5165":115,"\u4e3a\u5bb9\u5668\u5185\u6267\u884c\u7684\u547d\u4ee4":28,"\u4e3a\u60a8\u505a\u6027\u80fd\u8c03\u4f18\u63d0\u4f9b\u4e86\u65b9\u5411":134,"\u4e3a\u65b9\u4fbf\u4f5c\u4e1a\u542f\u52a8\u63d0\u4f9b\u4e86\u4e24\u4e2a\u72ec\u7279\u7684\u547d\u4ee4\u9009\u9879":119,"\u4e3a\u6b64":122,"\u4e3a\u6bcf\u4e00\u4e2a":[115,116],"\u4e3a\u6bcf\u4e00\u4e2a\u8f93\u5165":[115,116],"\u4e3a\u6bcf\u4e2aop\u521b\u5efa\u5355\u72ec\u7684":101,"\u4e3a\u8f93\u51fa\u5206\u914d\u5185\u5b58":100,"\u4e3aconst\u51fd\u6570":101,"\u4e3aoutput_\u7533\u8bf7\u5185\u5b58":100,"\u4e3b\u8981\u4e3a\u5f00\u53d1\u8005\u4f7f\u7528":129,"\u4e3b\u8981\u529f\u80fd\u5305\u62ec":54,"\u4e3b\u8981\u5305\u62ec":68,"\u4e3b\u8981\u5305\u62ec\u4e86\u6df1\u5ea6\u5b66\u4e60\u76f8\u5173\u7684\u6570\u5b66\u539f\u8bed\u4e0e\u64cd\u4f5c":68,"\u4e3b\u8981\u5305\u62ec\u56db\u79cd\u7c7b\u578b":110,"\u4e3b\u8981\u539f\u56e0\u5305\u62ec\u4e24\u4e2a\u65b9\u9762":107,"\u4e3b\u8981\u7528\u4e8epython":101,"\u4e3b\u8981\u9488\u5bf9paddlepaddle\u5728\u91cd\u6784\u4e4b\u524d\u7684\u4ee3\u7801\u6846\u67b6\u4ee5\u53cav1\u7684api":68,"\u4e3e\u4e00\u4e2a\u4f8b\u5b50":109,"\u4e3e\u4f8b":107,"\u4e3e\u4f8b\u8bf4\u660e":137,"\u4e4b\u524d":98,"\u4e4b\u540e":[100,110],"\u4e4b\u540e\u4f7f\u7528":100,"\u4e4b\u540e\u4f7f\u7528\u77e9\u9635\u8fd0\u7b97\u51fd\u6570\u6765\u8ba1\u7b97":100,"\u4e4b\u540e\u518d\u7528\u7f51\u9875\u8fde\u5230http":103,"\u4e4b\u540e\u521d\u59cb\u5316\u6240\u6709\u7684\u6743\u91cd\u77e9\u9635":100,"\u4e4b\u540e\u624d\u80fd\u5f00\u59cb\u7f16\u8bd1\u7684\u6b65\u9aa4":27,"\u4e4b\u5916\u7684\u6240\u6709\u5934\u6587\u4ef6":72,"\u4e4b\u7c7b\u7684\u7a0b\u5e8f\u6765\u7f16\u8bd1\u6e90\u7801":26,"\u4e4b\u95f4\u7684\u8fd0\u7b97\u662f\u72ec\u7acb\u7684":139,"\u4e58\u4e0a\u8f93\u51fa\u7684\u68af\u5ea6":100,"\u4e58\u6cd5\u548c\u4e58\u6cd5\u68af\u5ea6\u7684\u8ba1\u7b97\u5360\u75282":133,"\u4e58\u9664\u7b49\u65f6\u5019":107,"\u4e5f\u4e0d\u4f7f\u7528\u5176\u4ed6\u52a8\u6001\u5e93":71,"\u4e5f\u4e0d\u5b58\u5728\u4e00\u4e2asubseq\u76f4\u63a5\u751f\u6210\u4e0b\u4e00\u4e2asubseq\u7684\u60c5\u51b5":139,"\u4e5f\u4e0d\u5e94\u8be5\u62a5\u9519":72,"\u4e5f\u4e0d\u751f\u6210":72,"\u4e5f\u4e0d\u80fd\u63a5\u6536\u5e8f\u5217\u6570\u636e\u4f5c\u4e3a\u8f93\u5165":108,"\u4e5f\u4f1a\u5360\u7528\u78c1\u76d8":26,"\u4e5f\u53ef\u4ee5\u4f7f\u7528":98,"\u4e5f\u53ef\u4ee5\u4f7f\u7528\u8fd9\u4e9b\u955c\u50cf":88,"\u4e5f\u53ef\u4ee5\u5229\u7528paddlepaddl":103,"\u4e5f\u53ef\u4ee5\u662f\u4e00\u4e2a\u8bcd\u8bed":139,"\u4e5f\u53ef\u4ee5\u662f\u5728\u4efb\u52a1\u542f\u52a8\u524d\u4e0b\u8f7d\u5230\u672c\u5730\u7684":117,"\u4e5f\u53ef\u4ee5\u76f4\u63a5\u5728\u7f51\u9875\u9884\u89c8\u6587\u6863":103,"\u4e5f\u53ef\u4ee5\u8bf4\u662f\u67d0\u4e9b\u7279\u5b9a\u6307\u4ee4\u7684\u4f7f\u7528\u60c5\u51b5":134,"\u4e5f\u53ef\u4ee5\u901a\u8fc7\u4fee\u6539":123,"\u4e5f\u53ef\u5199\u6210":101,"\u4e5f\u53ef\u81ea\u884c\u524d\u5f80\u5b98\u7f51\u4e0b\u8f7d":143,"\u4e5f\u53ef\u901a\u8fc7\u4ee5\u4e0b\u547d\u4ee4\u83b7\u53d6":142,"\u4e5f\u5c31\u662f":98,"\u4e5f\u5c31\u662f\u672c\u5730\u7684\u6e90\u7801\u6811\u6839\u76ee\u5f55\u91cc\u7684":26,"\u4e5f\u5c31\u662f\u7a7a\u8f93\u5165":115,"\u4e5f\u5c31\u662f\u81ea\u5df1\u7528\u6237\u540d\u4e0b\u7684":98,"\u4e5f\u5c31\u662f\u8bf4":[115,129,131],"\u4e5f\u5c31\u662f\u8bf4\u8f93\u51fa\u7684\u7ed3\u679c\u4e0d\u4f1a\u5728\u539f\u6765\u7684\u6570\u636e\u4e0a\u7d2f\u52a0":68,"\u4e5f\u5c31\u662fpaddlepaddle\u4e2d\u7684\u4e00\u7ef4\u6574\u578b\u6570\u7ec4":115,"\u4e5f\u63cf\u8ff0\u4e86\u5bb9\u5668\u9700\u8981\u4f7f\u7528\u7684\u5b58\u50a8\u5377\u6302\u8f7d\u7684\u60c5\u51b5":123,"\u4e5f\u652f\u6301cpu\u7684\u6027\u80fd\u5206\u6790":134,"\u4e5f\u662f\u4e00\u4e2a\u65f6\u95f4\u5e8f\u5217":137,"\u4e5f\u662fdecoder\u5faa\u73af\u5c55\u5f00\u7684\u4f9d\u636e":139,"\u4e5f\u6ca1\u7528":104,"\u4e66\u5199":71,"\u4e86":26,"\u4e86\u89e3\u5176\u8c03\u7528\u5173\u7cfb":133,"\u4e86\u89e3\u60a8\u7684\u786c\u4ef6":134,"\u4e86\u89e3\u66f4\u591a\u7ec6\u8282":140,"\u4e86\u89e3\u66f4\u591a\u8be6\u7ec6\u4fe1\u606f":140,"\u4e8c\u7ef4\u6d6e\u70b9\u578b\u77e9\u9635":115,"\u4e8c\u7ef4\u6d6e\u70b9\u6570\u77e9\u9635":115,"\u4e8c\u7ef4\u77e9\u9635":116,"\u4e8c\u7ef4\u77e9\u9635\u53ef\u4ee5\u8868\u793a\u884c\u5411\u91cf\u548c\u5217\u5411\u91cf":115,"\u4e8c\u8005\u8bed\u610f\u4e0a\u5b8c\u5168\u4e00\u81f4":137,"\u4e8e\u662f":115,"\u4e8e\u662f\u6211\u4eec\u53ef\u4ee5\u70b9\u51fb":133,"\u4e8e\u662f\u8fd9\u91cc\u4f7f\u7528":133,"\u4ea4\u4e92\u7684\u65b9\u6cd5":133,"\u4ea4\u53c9\u7f16\u8bd1\u5de5\u5177\u94fe\u4e3a":142,"\u4ea4\u53c9\u7f16\u8bd1android\u5e73\u53f0\u4e0a\u9002\u7528\u7684paddlepaddle\u5e93":142,"\u4ea4\u53c9\u7f16\u8bd1android\u7248\u672c\u7684paddlepaddle\u5e93\u65f6":142,"\u4ea4\u53c9\u7f16\u8bd1ios\u5e73\u53f0\u4e0a\u9002\u7528\u7684paddlepaddle\u5e93":143,"\u4ea4\u53c9\u7f16\u8bd1ios\u7248\u672c\u7684paddlepaddle\u5e93\u65f6":143,"\u4ea4\u53c9\u7f16\u8bd1raspberri":144,"\u4ea4\u7531cmake\u7cfb\u7edf\u672c\u8eab\u6765\u5904\u7406":142,"\u4ea6\u53ef\u4ee5\u901a\u8fc7\u624b\u52a8\u8bbe\u7f6e":[142,143],"\u4eab\u53d7\u60a8\u7684\u65c5\u7a0b":28,"\u4eba\u8138\u8bc6\u522b":38,"\u4ec0\u4e48\u662f":26,"\u4ec5\u4ec5\u4f7f\u7528":71,"\u4ec5\u4f1a\u5728\u652f\u6301avx2\u6307\u4ee4\u96c6\u53ca\u4ee5\u4e0a\u7684\u673a\u5668\u624d\u4f7f\u7528mkl":68,"\u4ec5\u5728\u8fdc\u7a0b\u7a00\u758f\u8bad\u7ec3\u65f6\u6709\u6548":100,"\u4ec5\u5bf9\u7a00\u758f\u6570\u636e\u6709\u6548":100,"\u4ec5\u652f\u6301\u6574\u578b\u503c":115,"\u4ec5\u7528\u4e8e\u5b58\u50a8\u6574\u578b\u503c":116,"\u4ecb\u7ecd\u4e86\u4e00\u79cd\u901a\u8fc7ssh\u8fdc\u7a0b\u5206\u53d1\u4efb\u52a1":123,"\u4ecb\u7ecd\u4ea4\u53c9\u7f16\u8bd1android\u5e73\u53f0\u4e0a\u9002\u7528\u7684paddlepaddle\u5e93\u7684\u65b9\u6cd5\u548c\u6b65\u9aa4":142,"\u4ecb\u7ecd\u4f7f\u7528paddlepaddl":117,"\u4ece":[88,105,134],"\u4ece0\u5230num":129,"\u4ece0\u5f00\u59cb\u7684\u6574\u6570":117,"\u4ece\u4e00\u4e2aword\u751f\u6210\u4e0b\u4e00\u4e2aword":139,"\u4ece\u5185\u6838\u51fd\u6570\u7684\u89d2\u5ea6":134,"\u4ece\u6a21\u578b\u6587\u4ef6\u5c06\u9884\u8bad\u7ec3\u53c2\u6570\u8f7d\u5165":109,"\u4ece\u6bcf\u4e00\u4e2a\u65f6\u95f4\u6b65\u6765\u770b":137,"\u4ece\u6e90\u7801\u4ea4\u53c9\u7f16\u8bd1ios\u5e73\u53f0\u4e0a\u9002\u7528\u7684paddlepaddle\u5e93":143,"\u4ece\u6e90\u7801\u4ea4\u53c9\u7f16\u8bd1paddlepaddl":142,"\u4ece\u6e90\u7801\u7f16\u8bd1":29,"\u4ece\u78c1\u76d8\u52a0\u8f7d\u9884\u6d4b\u6a21\u578b":116,"\u4ece\u78c1\u76d8\u6587\u4ef6\u4e2d\u52a0\u8f7duuid\u6587\u4ef6\u540d\u7684\u68c0\u67e5\u70b9\u5feb\u7167\u6587\u4ef6":37,"\u4ece\u800c\u53ef\u4ee5\u505a\u4e00\u4e9b\u4e0e\u8ba1\u7b97\u91cd\u53e0\u7684\u5de5\u4f5c":100,"\u4ece\u800c\u5f15\u53d1\u5176\u4ed6\u8282\u70b9\u65e0\u6cd5\u8fde\u63a5\u5bfc\u81f4":105,"\u4ece\u800c\u907f\u514d\u4e86packing\u5197\u4f59":67,"\u4ece\u8bed\u4e49\u4e0a\u770b":139,"\u4ece\u8d77\u59cb\u7aef\u53e3\u76d1\u542c\u591a\u4e2a\u7aef\u53e3\u7528\u4e8e\u901a\u4fe1":117,"\u4ece\u8f93\u5165\u6570\u636e\u4e0a\u770b":137,"\u4ececmake":142,"\u4eceetcd\u4e2d\u8bfb\u53d6\u8282\u70b9":37,"\u4ecestart":129,"\u4ed3\u5e93\u7684\u8fdc\u7a0b\u4e3b\u673a":98,"\u4ed6\u4e3b\u8981\u5305\u542b\u4e86\u5b9e\u9645\u66b4\u9732\u7684\u7c7b\u578b\u7ed3\u6784":72,"\u4ed6\u4eec\u5206\u522b\u662f":137,"\u4ed6\u4eec\u5728\u81ea\u5df1\u7684":26,"\u4ed6\u4eec\u5728paddle\u7684\u6587\u6863\u548capi\u4e2d\u662f\u4e00\u4e2a\u6982\u5ff5":137,"\u4ed6\u662f\u5c06":72,"\u4ed6\u7684\u76ee\u6807\u662f\u4f7f\u7528c":71,"\u4ee3\u66ff":123,"\u4ee3\u7801\u4e2d9":137,"\u4ee3\u7801\u53c2\u8003":117,"\u4ee3\u7801\u5982\u4e0b":[107,108,109,140],"\u4ee3\u7801\u6ce8\u91ca\u8bf7\u9075\u5b88":98,"\u4ee3\u7801\u7247\u6bb5\u5982\u4e0b":115,"\u4ee3\u7801\u751f\u6210\u7684\u7b26\u53f7\u53ef\u80fd\u4e0d\u4e00\u81f4":71,"\u4ee3\u7801\u7684\u6027\u80fd\u5206\u6790":133,"\u4ee3\u7801\u793a\u4f8b\u5982\u4e0b":[101,116],"\u4ee3\u8868\u5bbf\u4e3b\u673a\u76ee\u5f55":123,"\u4ee3\u8868\u8fd9\u4e2alayer\u662f\u7528\u4e8e\u8dd1\u5728mkl":68,"\u4ee3\u8868\u8fd9\u4e2ashard\u7684\u6700\u5927index":38,"\u4ee3\u8868shard\u7684index":38,"\u4ee5":108,"\u4ee5\u4e0a":[98,142],"\u4ee5\u4e0a\u4e24\u79cd\u65b9\u5f0f\u53ea\u9700\u9009\u62e9\u5176\u4e00\u5373\u53ef":116,"\u4ee5\u4e0a\u4ee3\u7801\u7684reader\u8f93\u51fa\u7684data":38,"\u4ee5\u4e0a\u547d\u4ee4\u4f1a\u5728\u5f53\u524d\u76ee\u5f55\u4e0b\u751f\u6210100\u4e2a\u6587\u4ef6":38,"\u4ee5\u4e0b":38,"\u4ee5\u4e0b\u4ee3\u7801\u7247\u6bb5\u5b9a\u4e49":140,"\u4ee5\u4e0b\u547d\u4ee4\u542f\u52a8\u4e00\u4e2a":26,"\u4ee5\u4e0b\u6307\u4ee4\u80fd\u68c0\u67e5linux\u7535\u8111\u662f\u5426\u652f\u6301avx":28,"\u4ee5\u4e0b\u64cd\u4f5c\u5747\u5728head\u8282\u70b9\u4e2d\u6267\u884c":124,"\u4ee5\u4e0b\u6559\u7a0b\u5c06\u6307\u5bfc\u60a8\u63d0\u4ea4\u4ee3\u7801":98,"\u4ee5\u4e0b\u7b80\u79f0rnn":67,"\u4ee5\u4ea4\u4e92\u5f0f\u7684\u65b9\u5f0f\u6267\u884c\u6216\u8c03\u8bd5\u60a8\u7684\u4ee3\u7801":28,"\u4ee5\u4f7f\u7528":142,"\u4ee5\u4f7f\u7528adam\u7b97\u6cd5\u4e3a\u4f8b":109,"\u4ee5\u4fbf\u6211\u4eec\u53ef\u4ee5\u628a\u66f4\u591a\u7684\u7cbe\u529b\u653e\u5230\u903b\u8f91\u672c\u8eab\u4e0a":54,"\u4ee5\u4fbf\u83b7\u5f97\u8bad\u7ec3\u6570\u636e\u7684\u4f4d\u7f6e\u548c\u83b7\u53d6\u73af\u5883\u53d8\u91cf\u914d\u7f6e":117,"\u4ee5\u4fdd\u8bc1\u68af\u5ea6\u7684\u6b63\u786e\u8ba1\u7b97":100,"\u4ee5\u4fdd\u8bc1\u68af\u5ea6\u8ba1\u7b97\u7684\u6b63\u786e\u6027":100,"\u4ee5\u4fdd\u8bc1\u7f16\u8bd1\u9ad8\u6548":26,"\u4ee5\u53ca":[26,67,100,115],"\u4ee5\u53ca\u4f7f\u7528\u5b50\u5e8f\u5217\u6765\u5b9a\u4e49\u5206\u7ea7\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u67b6\u6784":140,"\u4ee5\u53ca\u5207\u6362\u673a\u5668\u65f6\u9700\u8981\u65b0\u5b89\u88c5\u7684\u8f9b\u82e6":26,"\u4ee5\u53ca\u53cc\u5c42\u5e8f\u5217":136,"\u4ee5\u53ca\u5982\u4f55\u89e3\u6790\u795e\u7ecf\u7f51\u7edc\u524d\u5411\u8ba1\u7b97\u7684\u8f93\u51fa\u7ed3\u679c":115,"\u4ee5\u53ca\u76ee\u6807\u673a\u7248openblas\u5e93":144,"\u4ee5\u53ca\u76f8\u5173\u7684\u5c5e\u6027\u53c2\u6570":101,"\u4ee5\u53ca\u7b2c\u4e09\u65b9\u4f9d\u8d56\u94fe\u63a5\u5e93\u548c\u5934\u6587\u4ef6":113,"\u4ee5\u53ca\u8ba1\u7b97\u903b\u8f91\u5728\u5e8f\u5217\u4e0a\u7684\u5faa\u73af\u5c55\u5f00":139,"\u4ee5\u53ca\u8f93\u5165\u7684\u68af\u5ea6":100,"\u4ee5\u53caandroid":142,"\u4ee5\u53cagcc":27,"\u4ee5\u53canumpi":38,"\u4ee5\u53carelu":100,"\u4ee5\u63d0\u4f9b\u4e00\u4e9b\u9ed8\u8ba4\u7684\u7f16\u8bd1\u5668\u548c\u7f16\u8bd1\u53c2\u6570\u76f8\u5173\u914d\u7f6e":142,"\u4ee5\u63d0\u4f9b\u4e00\u4e9b\u9ed8\u8ba4\u7684\u7f16\u8bd1\u5668\u548c\u7f16\u8bd1\u53c2\u6570\u914d\u7f6e":143,"\u4ee5\u6b64\u8fbe\u5230\u6700\u597d\u7684\u6027\u80fd":68,"\u4ee5\u786e\u4fdd\u6240\u6709\u7684\u7b2c\u4e09\u65b9\u4f9d\u8d56\u5e93\u548cpaddlepaddle\u4ee3\u7801\u90fd\u662f\u9488\u5bf9\u65b0\u7684cmake\u914d\u7f6e\u91cd\u65b0\u7f16\u8bd1\u7684":[142,143,144],"\u4ee5\u793a\u533a\u5206":[67,68],"\u4ee5\u8f93\u51fa":107,"\u4ee5\u9017\u53f7\u95f4\u9694":129,"\u4ee5\u907f\u514d\u94fe\u63a5\u4e0d\u5fc5\u8981\u7684\u5e93":113,"\u4ee5eigentensor\u4e3a\u4f8b":102,"\u4ee5embedding\u5c42\u4e3a\u4f8b":109,"\u4ee5lstm\u4e3a\u4f8b":108,"\u4efb\u4f55\u65f6\u5019\u5982\u679c\u9700\u8981\u6d6e\u70b9\u578b\u6570\u7ec4":115,"\u4efb\u52a1\u6765\u7ec8\u6b62\u96c6\u7fa4\u4f5c\u4e1a":119,"\u4efb\u52a1\u88ab\u8c03\u5ea6\u5728\u96c6\u7fa4\u4e2d\u65f6":120,"\u4efb\u610f\u5c06\u4e00\u4e9b\u6570\u636e\u7ec4\u5408\u6210\u53cc\u5c42\u65f6\u95f4\u5e8f\u5217":137,"\u4efb\u610f\u65f6\u523b\u53ea\u53ef\u80fd\u540c\u65f6\u6709\u4e00\u53f0\u670d\u52a1\u5668\u6545\u969c":37,"\u4f18\u5316\u524d":67,"\u4f18\u5316\u540e":67,"\u4f18\u5316\u5668\u5219\u7528\u94fe\u5f0f\u6cd5\u5219\u6765\u5bf9\u6bcf\u4e2a\u53c2\u6570\u8ba1\u7b97\u635f\u5931\u51fd\u6570\u7684\u68af\u5ea6":100,"\u4f1a\u4ea7\u751f\u5f53\u524dpython\u4e8c\u8fdb\u5236\u7684\u5b8c\u6574\u8def\u5f84":133,"\u4f1a\u4ee5":[67,68],"\u4f1a\u4f7f\u7528":116,"\u4f1a\u4f7f\u7528\u76f8\u540c\u7684\u539f\u6570\u636e":67,"\u4f1a\u5148\u4e34\u65f6\u4fdd\u5b58\u5728":68,"\u4f1a\u5148\u8fdb\u884c\u53c2\u6570\u7684\u521d\u59cb\u5316\u4e0e\u89e3\u6790":123,"\u4f1a\u5171\u4eab\u53c2\u6570":109,"\u4f1a\u5173\u8054\u53c2\u6570":108,"\u4f1a\u5206\u522b\u4ecb\u7ecd\u96c6\u7fa4\u4f5c\u4e1a\u7684\u542f\u52a8\u548c\u505c\u6b62\u65b9\u6cd5":120,"\u4f1a\u52a0\u8f7d\u4e0a\u4e00\u8f6e\u7684\u53c2\u6570":129,"\u4f1a\u53d8\u6210\u8bcd\u8868\u4e2d\u7684\u4f4d\u7f6e":137,"\u4f1a\u542f\u52a8pserver\u4e0etrainer\u8fdb\u7a0b":123,"\u4f1a\u5728":[68,103],"\u4f1a\u5728\u5f53\u524d\u76ee\u5f55\u751f\u6210\u4e24\u4e2a\u5b50\u76ee\u5f55":103,"\u4f1a\u5728\u7f16\u8bd1paddlepaddle\u7684\u65f6\u5019\u4e0b\u8f7d\u5e76\u7f16\u8bd1mkl":68,"\u4f1a\u5927\u4e0d\u76f8\u540c":117,"\u4f1a\u5bf9\u6bcf\u4e00\u4e2a\u6fc0\u6d3b\u6682\u5b58\u4e00\u4e9b\u6570\u636e":107,"\u4f1a\u5bf9\u8bad\u7ec3\u6027\u80fd\u9020\u6210\u5f71\u54cd":107,"\u4f1a\u5bf9\u8fd9\u7c7b\u8f93\u5165\u8fdb\u884c\u62c6\u89e3":139,"\u4f1a\u5bfc\u81f4\u4e0d\u540c\u7248\u672cpython\u5728\u4e00\u4e2a\u8fdb\u7a0b\u91cc\u7684bug":71,"\u4f1a\u5c06\u6bcf\u4e2a\u65f6\u95f4\u6b65\u7684\u8f93\u51fa\u62fc\u63a5":139,"\u4f1a\u5c06\u7b2c\u4e00\u4e2a":107,"\u4f1a\u5f15\u5165":68,"\u4f1a\u6210\u4e3astep\u51fd\u6570\u7684\u8f93\u5165":139,"\u4f1a\u6253\u5370\u5230\u6807\u51c6\u8f93\u51fa":133,"\u4f1a\u628a\u8bad\u7ec3\u96c6\u548c\u6d4b\u8bd5\u96c6\u5206\u522b\u5206\u5272\u6210\u591a\u4e2a\u6587\u4ef6":117,"\u4f1a\u628acpu\u7684buffer\u5bf9\u9f50\u4e3a4096":68,"\u4f1a\u62a5\u5982\u4e0b\u7684\u9519\u8bef":107,"\u4f1a\u62a5\u9519":139,"\u4f1a\u6dfb\u52a0\u76f8\u5e94\u7684\u811a\u672c\u5728":68,"\u4f1a\u6dfb\u52a0\u76f8\u5e94\u7684\u811a\u672c\u7528\u4e8e\u6d4b\u8bd5\u548c\u5bf9\u6bd4\u5728\u4f7f\u7528mkl":67,"\u4f1a\u72ec\u7acb\u62e5\u6709\u4e00\u4efd\u8bad\u7ec3\u597d\u7684\u6a21\u578b":116,"\u4f1a\u751f\u6210\u6027\u80fd\u5206\u6790\u7ed3\u679c\u6587\u4ef6":133,"\u4f1a\u76f4\u63a5\u62a5\u9519\u9000\u51fa":71,"\u4f1a\u76f8\u5e94\u5730\u6539\u53d8\u8f93\u51fa\u7684\u5c3a\u5bf8":100,"\u4f1a\u81ea\u52a8\u4f7f\u7528mklml\u5e93\u4f5c\u4e3apaddlepaddle\u7684cblas\u548clapack\u5e93":68,"\u4f1a\u81ea\u52a8\u5173\u95ed\u5bf9\u5e94\u7684issu":98,"\u4f1a\u81ea\u52a8\u5728\u7f16\u8bd1\u65f6\u4e0b\u8f7d":27,"\u4f1a\u81ea\u52a8\u6839\u636e\u786c\u4ef6\u914d\u7f6e":68,"\u4f1a\u83b7\u53d6\u5f53\u524dnamespace\u4e0b\u7684\u6240\u6709pod":123,"\u4f1a\u88ab":117,"\u4f1a\u88ab\u62c6\u89e3\u4e3a\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":139,"\u4f1a\u88ab\u62c6\u89e3\u4e3a\u975e\u5e8f\u5217":139,"\u4f1a\u88abpickle\u5e8f\u5217\u5316\u6210\u5b57\u7b26\u4e32":38,"\u4f1a\u901a\u8fc7\u5224\u6570\u636e\u662f\u5426\u9644\u5e26\u6709\u5e8f\u5217\u4fe1\u606f\u6765\u5224\u65ad\u4e00\u4e2a\u5411\u91cf":115,"\u4f1a\u9020\u6210\u90ae\u4ef6\u707e\u96be":98,"\u4f20\u5165":38,"\u4f20\u7ed9dataprovider\u7684\u67d0\u4e00\u4e2aargs\u8fc7\u5927":109,"\u4f20\u9012\u7ed9\u914d\u7f6e\u6587\u4ef6\u7684\u53c2\u6570":129,"\u4f46":72,"\u4f46\u4e0d\u66b4\u9732":72,"\u4f46\u4e0d\u7528\u4e8e\u8ba1\u7b97\u68af\u5ea6":100,"\u4f46\u4e0d\u9700\u8981\u63d0\u524d\u521b\u5efa":129,"\u4f46\u4e8e\u53cc\u5c42\u5e8f\u5217\u7684lstm\u6765\u8bf4":137,"\u4f46\u53ef\u4ee5\u83b7\u53d6":107,"\u4f46\u548c\u5355\u5c42rnn\u4e0d\u540c":137,"\u4f46\u5b50\u53e5\u542b\u6709\u7684\u8bcd\u8bed\u6570\u53ef\u4ee5\u4e0d\u76f8\u7b49":139,"\u4f46\u5c3d\u91cf\u8bf7\u4fdd\u6301\u7f16\u8bd1\u548c\u8fd0\u884c\u4f7f\u7528\u7684cudnn\u662f\u540c\u4e00\u4e2a\u7248\u672c":27,"\u4f46\u5e76\u6ca1\u6709\u7ecf\u8fc7\u56de\u5f52\u6d4b\u8bd5":88,"\u4f46\u5e8f\u5217\u8f93\u51fa\u65f6":137,"\u4f46\u622a\u65ad\u65f6\u673a\u4e0d\u540c":107,"\u4f46\u6240\u6709fork\u7684\u7248\u672c\u5e93\u7684\u6240\u6709\u5206\u652f\u90fd\u76f8\u5f53\u4e8e\u7279\u6027\u5206\u652f":88,"\u4f46\u662f":[107,137],"\u4f46\u662f\u53c8\u8fc7\u4e8e\u7410\u788e":72,"\u4f46\u662f\u5728mkl":68,"\u4f46\u662f\u5728paddlepaddle\u4e2d":68,"\u4f46\u662f\u5927\u90e8\u5206\u53c2\u6570\u662f\u4e3a\u5f00\u53d1\u8005\u63d0\u4f9b\u7684":128,"\u4f46\u662f\u5b50\u5e8f\u5217\u7684\u6570\u76ee\u5fc5\u987b\u4e00\u6837":137,"\u4f46\u662f\u5e76\u4e0d\u80fd\u4fdd\u8bc1\u53c2\u6570\u540c\u6b65\u66f4\u65b0":118,"\u4f46\u662f\u652f\u6301avx\u6307\u4ee4\u96c6":98,"\u4f46\u662f\u6574\u4e2a\u8bad\u7ec3\u8fc7\u7a0b\u4e2d\u4e0d\u9700\u8981\u4efb\u4f55\u8f6c\u6362":68,"\u4f46\u662f\u6bcf\u4e2a\u6837\u672c\u4ec5\u5305\u542b\u51e0\u4e2a\u8bcd":131,"\u4f46\u662f\u6ce8\u610f\u7684\u662f":68,"\u4f46\u662f\u7a81\u7136\u6709\u4e00\u4e2a10000\u957f\u7684\u5e8f\u5217":107,"\u4f46\u662f\u865a\u62df\u7684\u4e0d\u4ec5\u4ec5\u662f":26,"\u4f46\u662f\u89e3\u91ca\u6027\u8bed\u8a00":71,"\u4f46\u662f\u8c03\u8bd5python\u4e2d\u4f7f\u7528\u7684\u52a8\u6001\u94fe\u63a5\u5e93\u4e0e\u76f4\u63a5\u8c03\u8bd5\u539f\u59cb\u4e8c\u8fdb\u5236\u76f8\u6bd4\u589e\u52a0\u4e86\u5f88\u591a\u590d\u6742\u5ea6":133,"\u4f46\u662fbatch":107,"\u4f46\u6709\u503c\u7684\u5730\u65b9\u5fc5\u987b\u4e3a1":110,"\u4f46\u6709\u503c\u7684\u90e8\u5206\u53ef\u4ee5\u662f\u4efb\u4f55\u6d6e\u70b9\u6570":110,"\u4f46\u7531\u4e8ecuda\u5e93\u901a\u5e38\u9700\u8981cento":30,"\u4f46\u9700\u6ce8\u610f\u53cd\u5411op\u6ca1\u6709":101,"\u4f46eigen":102,"\u4f5c\u4e3a\u4e0b\u4e00\u4e2a\u5b50\u53e5memory\u7684\u521d\u59cb\u72b6\u6001":137,"\u4f5c\u4e3a\u4f8b\u5b50\u6f14\u793a\u5982\u4f55\u914d\u7f6e\u590d\u6742\u7684\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u6a21\u578b":140,"\u4f5c\u4e3a\u53c2\u6570\u5c5e\u6027":101,"\u4f5c\u4e3a\u53c2\u6570\u7684id":109,"\u4f5c\u4e3a\u53e6\u4e00\u4e2a\u7b2c\u4e09\u65b9\u5e93\u96c6\u6210\u8fdbpaddlepaddl":68,"\u4f5c\u4e3a\u5b58\u50a8\u7cfb\u7edf":38,"\u4f5c\u4e3a\u5f53\u524d\u65f6\u523b\u8f93\u5165":139,"\u4f5c\u4e3a\u7c7b\u53e5\u67c4":71,"\u4f5c\u4e3a\u7edf\u8ba1\u7684\u57fa\u672c\u5355\u4f4d":115,"\u4f5c\u4e3a\u7f16\u8bd1\u5de5\u5177":27,"\u4f5c\u4e3a\u8c03\u7528":116,"\u4f5c\u4e3a\u8f93\u5165":115,"\u4f5c\u4e3a\u8f93\u51fa":140,"\u4f5c\u4e3aboot_layer\u4f20\u7ed9\u4e0b\u4e00\u4e2a\u5b50\u53e5\u7684memori":137,"\u4f5c\u7528":136,"\u4f60\u53ef\u4ee5\u5c06\u7f51\u7edc\u914d\u7f6e\u6210\u67d0\u4e9b\u5c42\u4f7f\u7528gpu\u8ba1\u7b97":131,"\u4f60\u8fd8\u53ef\u4ee5\u901a\u8fc7\u8fd0\u884cdjango\u6846\u67b6\u76f4\u63a5\u6fc0\u6d3b\u5de5\u5177\u7684\u670d\u52a1\u5668":103,"\u4f60\u9700\u8981\u4e00\u4e9b\u66f4\u590d\u6742\u7684\u5355\u5143\u6d4b\u8bd5\u6765\u4fdd\u8bc1\u4f60\u5b9e\u73b0\u7684\u7f51\u7edc\u5c42\u662f\u6b63\u786e\u7684":100,"\u4f60\u9700\u8981\u5728\u7f51\u7edc\u914d\u7f6e\u4e2d\u6307\u5b9a\u8bbe\u5907\u7684id\u53f7":131,"\u4f60\u9700\u8981\u5728\u914d\u7f6ecmake\u65f6\u5c06":100,"\u4f60\u9700\u8981\u628a\u8be5\u6587\u4ef6\u52a0\u5165":100,"\u4f7f\u4e4b\u53d8\u4e3a\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217\u8f93\u5165":115,"\u4f7f\u4e4b\u53d8\u4e3a\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217\u8f93\u5165":115,"\u4f7f\u5f97\u5355\u5143\u6d4b\u8bd5\u6709\u4e00\u4e2a\u5e72\u51c0\u7684\u73af\u5883":104,"\u4f7f\u5f97\u642d\u6a21\u578b\u65f6\u66f4\u65b9\u4fbf":100,"\u4f7f\u68af\u5ea6\u7684\u63d0\u4ea4\u548c\u53c2\u6570\u7684\u66f4\u65b0\u6309\u7167\u987a\u5e8f\u65b9\u5f0f\u6267\u884c":118,"\u4f7f\u7528":[68,72,88,100,107,108,109,113,115,116,129,133,134,137,139,140,142],"\u4f7f\u75280\u53f7\u548c1\u53f7gpu\u8ba1\u7b97fc2\u5c42":131,"\u4f7f\u75280\u53f7gpu\u8ba1\u7b97fc2\u5c42":131,"\u4f7f\u75281\u53f7gpu\u8ba1\u7b97fc3\u5c42":131,"\u4f7f\u75282\u53f7\u548c3\u53f7gpu\u8ba1\u7b97fc3\u5c42":131,"\u4f7f\u7528\u4e00\u4e2a\u5c3a\u5ea6\u4e3a":100,"\u4f7f\u7528\u4e00\u4e2a\u8bcd\u524d\u4e24\u4e2a\u8bcd\u548c\u540e\u4e24\u4e2a\u8bcd":107,"\u4f7f\u7528\u4e0a\u6587\u521b\u5efa\u7684yaml\u6587\u4ef6\u521b\u5efakubernet":122,"\u4f7f\u7528\u4e0b\u9762\u547d\u4ee4":38,"\u4f7f\u7528\u4e0b\u9762\u7684\u547d\u4ee4\u6765\u8fd0\u884c\u5b83":103,"\u4f7f\u7528\u4e86\u540c\u6837\u7684parameter\u548cbia":109,"\u4f7f\u7528\u4ee5\u4e0a\u8bad\u7ec3\u597d\u7684\u6a21\u578b\u8fdb\u884c\u9884\u6d4b":110,"\u4f7f\u7528\u52a8\u6001\u5e93":71,"\u4f7f\u7528\u53c2\u6570":[27,117],"\u4f7f\u7528\u540c\u6837\u7684\u8bad\u7ec3\u6570\u636eblock":37,"\u4f7f\u7528\u57fa\u4e8edocker\u5bb9\u5668\u7684\u7f16\u8bd1\u65b9\u5f0f":142,"\u4f7f\u7528\u591a\u5757\u663e\u5361\u8bad\u7ec3":107,"\u4f7f\u7528\u591a\u7ebf\u7a0b\u8bad\u7ec3":107,"\u4f7f\u7528\u5b66\u4e60\u5b8c\u6210\u7684\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u6a21\u578b\u751f\u6210\u5e8f\u5217":140,"\u4f7f\u7528\u5b83\u4f1a\u5f00\u542f\u4e00\u4e2ahttp\u670d\u52a1":133,"\u4f7f\u7528\u5bb9\u5668\u65b9\u5f0f\u8fd0\u884c\u8bad\u7ec3\u4efb\u52a1\u7684kubernet":123,"\u4f7f\u7528\u6211\u4eec\u4e4b\u524d\u6784\u9020\u7684\u955c\u50cf":122,"\u4f7f\u7528\u6570\u503c\u6cd5\u68c0\u6d4b\u68af\u5ea6\u6b63\u786e\u6027\u548c\u7a33\u5b9a\u6027":101,"\u4f7f\u7528\u6587\u6863":101,"\u4f7f\u7528\u663e\u5361\u8bad\u7ec3":107,"\u4f7f\u7528\u667a\u80fd\u6307\u9488\u7684\u539f\u56e0\u662f":72,"\u4f7f\u7528\u6848\u4f8b":130,"\u4f7f\u7528\u73af\u5883\u53d8\u91cf":117,"\u4f7f\u7528\u7684\u53c2\u6570\u4e0epaddlepaddle\u7533\u8bf7\u7684buffer\u5171\u7528\u4e00\u5757\u5185\u5b58":68,"\u4f7f\u7528\u76f8\u5bf9\u8def\u5f84\u7684\u5f15\u7528\u65b9\u5f0f":72,"\u4f7f\u7528\u8005\u4e0d\u9700\u8981\u5173\u5fc3":129,"\u4f7f\u7528\u8005\u53ea\u9700\u8981\u5173\u6ce8\u4e8e\u8bbe\u8ba1rnn\u5728\u4e00\u4e2a\u65f6\u95f4\u6b65\u4e4b\u5185\u5b8c\u6210\u7684\u8ba1\u7b97":139,"\u4f7f\u7528\u8005\u65e0\u9700\u5173\u5fc3\u8fd9\u4e2a\u53c2\u6570":129,"\u4f7f\u7528\u8005\u901a\u5e38\u65e0\u9700\u5173\u5fc3":129,"\u4f7f\u7528\u8be5learning_rate_schedule\u65f6":109,"\u4f7f\u7528\u8fd9\u4e2a\u795e\u7ecf\u7f51\u7edc\u53ef\u4ee5\u5b8c\u6210\u5bf9\u65b0\u6570\u636e\u7684\u9884\u6d4b":37,"\u4f7f\u7528\u8fd9\u79cd\u65b9\u5f0f":[116,137],"\u4f7f\u7528\u8fdc\u7a0b\u7a00\u758f\u65b9\u5f0f\u8bad\u7ec3\u65f6":100,"\u4f7f\u7528\u9759\u6001\u5e93\u548c\u52a8\u6001\u5e93\u96be\u5ea6\u5dee\u4e0d\u591a":71,"\u4f7f\u7528c":[72,113],"\u4f7f\u7528c99\u505a\u63a5\u53e3":71,"\u4f7f\u7528c99\u800c\u4e0d\u4f7f\u7528c11\u7684\u539f\u56e0\u662f":71,"\u4f7f\u7528c99\u800c\u4e0d\u4f7f\u7528c89":71,"\u4f7f\u7528checkgrad\u6a21\u5f0f\u65f6\u7684\u53c2\u6570\u53d8\u5316\u5927\u5c0f":129,"\u4f7f\u7528cmake\u7684\u8bdd":133,"\u4f7f\u7528cpu\u4e24\u7ebf\u7a0b\u8ba1\u7b97fc4\u5c42":131,"\u4f7f\u7528cpu\u8ba1\u7b97fc4\u5c42":131,"\u4f7f\u7528docker":28,"\u4f7f\u7528docker\u5b89\u88c5\u548c\u8fd0\u884cpaddlepaddle\u53ef\u4ee5\u65e0\u9700\u8003\u8651":28,"\u4f7f\u7528docker\u5b89\u88c5\u8fd0\u884c":29,"\u4f7f\u7528docker\u5c31\u4e0d\u7528\u914d\u7f6e\u4ea4\u53c9\u7f16\u8bd1\u73af\u5883\u4e86":26,"\u4f7f\u7528docker\u6784\u5efapaddlepaddle\u7684\u6587\u6863":103,"\u4f7f\u7528docker\u7684\u60c5\u51b5\u4e0b":27,"\u4f7f\u7528eigen\u8fdb\u884c\u77e9\u9635\u8ba1\u7b97":142,"\u4f7f\u7528fabric\u542f\u52a8\u96c6\u7fa4\u8bad\u7ec3":120,"\u4f7f\u7528init":131,"\u4f7f\u7528lstm\u4f5c\u4e3aencod":137,"\u4f7f\u7528memory\u7684rnn\u5b9e\u73b0\u4fbf\u5982\u4e0b\u56fe\u6240\u793a":137,"\u4f7f\u7528model":131,"\u4f7f\u7528openblas\u7684\u955c\u50cf":28,"\u4f7f\u7528openblas\u8fdb\u884c\u77e9\u9635\u8ba1\u7b97":142,"\u4f7f\u7528paddlepaddl":[113,116],"\u4f7f\u7528pip\u5b89\u88c5":29,"\u4f7f\u7528rdma\u8fd8\u662ftcp\u4f20\u8f93\u534f\u8bae":129,"\u4f7f\u7528regress":88,"\u4f7f\u7528swig\u53ea\u652f\u6301cpython\u89e3\u91ca\u5668":71,"\u4f7f\u7528swig\u9700\u8981\u591a\u8bed\u8a00\u7ed1\u5b9a\u7684\u5f00\u53d1\u4eba\u5458\u719f\u7ec3\u638c\u63e1swig\u914d\u7f6e":71,"\u4f7f\u7528void":71,"\u4f7f\u8be5\u5c42\u7684\u53c2\u6570\u5728\u8bad\u7ec3\u8fc7\u7a0b\u4e2d\u4fdd\u6301\u4e0d\u53d8":109,"\u4f8b\u5982":[27,38,71,72,88,100,107,108,110,115,123,128,129,131,134,137,140],"\u4f8b\u5982\u4e0b\u56fe\u4e2d":133,"\u4f8b\u5982\u4e0b\u9762\u4ee3\u7801":107,"\u4f8b\u5982\u4e5f\u53ef\u5728\u7a0b\u5e8f\u8fd0\u884c\u8fc7\u7a0b\u4e2d\u518d\u52a0\u8f7d\u53e6\u5916\u4e00\u4e2a\u6a21\u578b":116,"\u4f8b\u5982\u4f7f\u7528":107,"\u4f8b\u5982\u542b\u6709\u591a\u4e2a\u901a\u9053\u7684\u56fe\u7247":115,"\u4f8b\u5982\u5728deepspeech2":67,"\u4f8b\u5982\u5bf9\u4e8ejava\u6216\u8005python":71,"\u4f8b\u5982\u5bf9\u4e8ejava\u6765\u8bf4":71,"\u4f8b\u5982\u5bf9\u4e8epython":71,"\u4f8b\u5982\u5c06\u7b2c\u4e00\u6761\u6570\u636e\u8f6c\u5316\u4e3a":137,"\u4f8b\u5982\u6587\u672c\u5206\u7c7b\u4e2d":137,"\u4f8b\u5982\u672c\u4f8b\u4e2d\u7684\u4e24\u4e2a\u7279\u5f81":137,"\u4f8b\u5982\u673a\u5668\u4e0a\u67094\u5757gpu":107,"\u4f8b\u5982c":71,"\u4f8b\u5982java\u4e0epython\u7684\u9519\u8bef\u5904\u7406\u662f\u76f4\u63a5\u6254\u51fa\u6765except":71,"\u4f8b\u5982output\u76ee\u5f55\u4e0b\u5c31\u5b58\u653e\u4e86\u8f93\u51fa\u7ed3\u679c":123,"\u4f8b\u5982python\u53ef\u4ee5\u4f7f\u7528":71,"\u4f8b\u5982python\u7684":71,"\u4f8b\u5982rnn":67,"\u4f8b\u5982sigmoid":100,"\u4f8b\u5b50\u4e2d\u4e3a3\u4e2a":117,"\u4f8b\u5b50\u4e2d\u662f":100,"\u4f8b\u5b50\u4e2d\u662f0":100,"\u4f8b\u5b50\u4e2d\u662f100":100,"\u4f8b\u5b50\u4e2d\u662f4096":100,"\u4f8b\u5b50\u4e2d\u662f8192":100,"\u4f8b\u5b50\u4e2d\u662ffc":100,"\u4f8b\u5b50\u4e2d\u662fsoftmax":100,"\u4f9bpaddlepaddle\u52a0\u8f7d":129,"\u4f9d\u636e\u662f\u5426\u5305\u542bkernel":101,"\u4f9d\u6b21\u7c7b\u63a8":88,"\u4f9d\u8d56":[27,30],"\u4f9d\u8d56\u73af\u5883\u5373\u53ef\u8fd0\u884c":28,"\u4f9d\u8d56libpython2":27,"\u4fbf\u548c\u5355\u5c42rnn\u914d\u7f6e\u4e2d\u7684":137,"\u4fbf\u662f\u5c06\u9759\u6001\u5e93\u52a0\u5165jvm\u4e2d":71,"\u4fdd\u5b58\u6a21\u578b\u53c2\u6570\u7684\u76ee\u5f55":129,"\u4fdd\u5b58\u7684\u53c2\u6570\u4e5f\u662ffloat\u7c7b\u578b":109,"\u4fdd\u5b58\u7f51\u7edc\u5c42\u8f93\u51fa\u7ed3\u679c\u7684\u76ee\u5f55":129,"\u4fdd\u5b58\u9884\u6d4b\u7ed3\u679c\u7684\u6587\u4ef6\u540d":129,"\u4fdd\u6301\u5c3d\u91cf\u5c11\u7684commit":98,"\u4fdd\u8bc1\u4f7f\u7528gpu\u8bad\u7ec3\u65f6\u4e5f\u53ef\u4ee5\u83b7\u5f97":107,"\u4fe1\u53f7\u6765\u81ea\u52a8\u7ec8\u6b62\u5b83\u542f\u52a8\u7684\u6240\u6709\u8fdb\u7a0b":119,"\u4fe1\u606f":115,"\u4fee\u590d\u6240\u6709bug\u540e":88,"\u4fee\u590ddocker\u7f16\u8bd1\u955c\u50cf\u95ee\u9898":88,"\u4fee\u6539":[68,88,122],"\u4fee\u6539\u542f\u52a8\u811a\u672c\u540e":122,"\u4fee\u6539\u6210":88,"\u4fee\u6539\u6210\u66f4\u5feb\u7684\u7248\u672c":134,"\u503c\u5f97\u6ce8\u610f\u7684\u662f":[98,137],"\u503c\u5f97\u6df1\u5165\u5206\u6790":134,"\u503c\u7c7b\u578b":131,"\u5047\u5982\u6211\u4eec\u662f\u4e09\u5206\u7c7b\u95ee\u9898":109,"\u5047\u8bbe":100,"\u5047\u8bbe\u60a8\u5df2\u7ecf\u5728\u5f53\u524d\u76ee\u5f55":28,"\u5047\u8bbe\u635f\u5931\u51fd\u6570\u662f":100,"\u5047\u8bbe\u7b2c\u4e00\u4e2alayer\u7684\u8f93\u51faa\u662f\u4e00\u4e2a":107,"\u504f\u7f6e\u53c2\u6570\u7684\u5927\u5c0f":100,"\u505a\u4e00\u4e2a\u4ecb\u7ecd":102,"\u505a\u53ea\u8bfb\u6302\u8f7d":38,"\u505a\u5982\u4e0b\u51e0\u4e2a\u64cd\u4f5c":88,"\u505a\u63a5\u53e3":71,"\u505a\u68af\u5ea6\u68c0\u6d4b":101,"\u505a\u68c0\u67e5":101,"\u505c\u6b62\u4fdd\u5b58\u68c0\u67e5\u70b9\u7684\u7ebf\u7a0b":37,"\u505c\u6b62\u52a0\u8f7d\u6570\u636e":129,"\u5141\u8bb8\u5916\u7f51\u8bbf\u95ee\u8fd9\u4e2ahttp\u670d\u52a1":133,"\u5143\u7d20":136,"\u5143\u7d20\u4e4b\u95f4\u7684\u987a\u5e8f\u662f\u5e8f\u5217\u6240\u643a\u5e26\u7684\u91cd\u8981\u4fe1\u606f":115,"\u5143\u7d20\u4e4b\u95f4\u7684\u987a\u5e8f\u662f\u91cd\u8981\u7684\u8f93\u5165\u4fe1\u606f":136,"\u5145\u5206\u53d1\u6325\u82f1\u7279\u5c14\u5e73\u53f0\u7684\u4f18\u52bf":67,"\u5145\u5206\u5c55\u73b0\u82f1\u7279\u5c14\u5e73\u53f0\u7684\u4f18\u52bf":68,"\u5148\u4ece\u5355\u7ebf\u7a0b\u5f00\u59cb":133,"\u5148\u5378\u8f7d\u4e4b\u524d\u7684\u7248\u672c":27,"\u5148\u5b8c\u6210\u5bf9\u6743\u91cd\u7684packing\u64cd\u4f5c":67,"\u5148\u5b9e\u73b0\u6a21\u578b\u63a8\u65ad\u7684api":72,"\u5148\u627e\u51fa\u53c2\u6570":108,"\u5148\u67e5\u770b\u4e00\u4e0b\u662f\u5426\u66fe\u7ecf\u5b89\u88c5\u8fc7paddl":104,"\u5148\u68c0\u67e5\u5173\u952e\u8def\u5f84\u7684\u6027\u80fd\u95ee\u9898":133,"\u514b\u9686\u4e0b\u9762":144,"\u5168\u8fde\u63a5\u5c42\u4ee5\u4e00\u4e2a\u7ef4\u5ea6\u4e3a":100,"\u5168\u8fde\u63a5\u5c42\u6ca1\u6709\u7f51\u7edc\u5c42\u914d\u7f6e\u7684\u8d85\u53c2\u6570":100,"\u5168\u8fde\u63a5\u5c42\u7684\u5b9e\u73b0\u4f4d\u4e8e":100,"\u5168\u8fde\u63a5\u5c42\u7684\u6bcf\u4e2a\u8f93\u51fa\u90fd\u8fde\u63a5\u5230\u4e0a\u4e00\u5c42\u7684\u6240\u6709\u7684\u795e\u7ecf\u5143\u4e0a":100,"\u5168\u8fde\u63a5\u5c42python\u5c01\u88c5\u7684\u4f8b\u5b50\u4e2d\u5305\u542b\u4e0b\u9762\u51e0\u6b65":100,"\u516c\u5f0f":28,"\u5171\u4eab\u4e00\u4e2aop\u5b9a\u4e49":101,"\u5171\u4eab\u5185\u5b58":68,"\u5171\u4eab\u540c\u4e00\u4e2a\u6743\u91cd":67,"\u5171\u4eab\u540c\u4e00\u4e2akernel\u65f6":101,"\u5171\u4eab\u5b58\u50a8\u6302\u5728\u7684\u8def\u5f84":123,"\u5173\u4e8e\u4ec0\u4e48\u662f":115,"\u5173\u4e8e\u5728paddlepaddle\u4e2d\u5982\u4f55\u4f7f\u7528eigen\u5e93":101,"\u5173\u4e8e\u65f6\u95f4\u5e8f\u5217":137,"\u5173\u4e8e\u6784\u5efa\u548c\u6d4b\u8bd5\u7684\u66f4\u591a\u4fe1\u606f":98,"\u5173\u4e8eavx":28,"\u5173\u4e8eeigen":102,"\u5173\u4e8elstm":108,"\u5173\u4e8epaddlepaddle\u7684\u5206\u5e03\u5f0f\u8bad\u7ec3":123,"\u5173\u4e8epaddlepaddle\u7684\u66f4\u591a\u4f7f\u7528\u65b9\u6cd5\u8bf7\u53c2\u8003":110,"\u5173\u4e8eunbound":139,"\u5173\u952e\u8bcd\u5305\u62ec":98,"\u5176\u4e2d":[71,88,100,107,109,110,133,140,142,144],"\u5176\u4e2d\u5305\u542b\u4e86\u7528\u6237\u7684\u8bad\u7ec3\u7a0b\u5e8f":117,"\u5176\u4e2d\u5305\u542b\u6240\u4f9d\u8d56\u7684\u6240\u6709\u7b2c\u4e09\u65b9\u5e93":143,"\u5176\u4e2d\u5305\u542b\u6240\u6709c":143,"\u5176\u4e2d\u5305\u542bpaddlepaddle\u7684c":143,"\u5176\u4e2d\u6bcf\u4e2a\u5143\u7d20\u662f\u53cc\u5c42\u5e8f\u5217\u4e2d\u6bcf\u4e2asubseq\u6700\u540e\u4e00\u4e2a":136,"\u5176\u4e2dcheckgrad\u4e3b\u8981\u4e3a\u5f00\u53d1\u8005\u4f7f\u7528":129,"\u5176\u4e2dmean\u548cstd\u662f\u8bad\u7ec3\u914d\u7f6e\u4e2d\u7684\u53c2\u6570":129,"\u5176\u4e2dx\u8868\u793a\u8f93\u5165\u6570\u636e\u662f\u4e00\u4e2a\u7ef4\u5ea6\u4e3a2\u7684\u7a20\u5bc6\u5411\u91cf":110,"\u5176\u4e3b\u8981\u63a5\u53e3\u5982\u4e0b":102,"\u5176\u4ed6\u4eba\u53ef\u4ee5\u590d\u73b0\u95ee\u9898\u4ee5\u4fbf\u5e2e\u52a9":26,"\u5176\u4ed6\u5185\u5b58\u6742\u9879":107,"\u5176\u4ed6\u5185\u5b58\u6742\u9879\u662f\u6307paddlepaddle\u672c\u8eab\u6240\u7528\u7684\u4e00\u4e9b\u5185\u5b58":107,"\u5176\u4ed6\u51fd\u6570\u5747\u8fd4\u56de":72,"\u5176\u4ed6\u6240\u6709\u5c42\u90fd\u4f1a\u4f7f\u7528gpu\u8ba1\u7b97":131,"\u5176\u4ed6\u7528\u6237\u7684fork\u7248\u672c\u5e93\u5e76\u4e0d\u9700\u8981\u4e25\u683c\u9075\u5b88":88,"\u5176\u4ed6\u7684\u4f9d\u8d56\u8f6f\u4ef6":27,"\u5176\u4ed6\u914d\u7f6e\u53c2\u6570":[142,143],"\u5176\u4ed6\u9ad8\u7ea7\u529f\u80fd\u5305\u62ec\u5b9a\u4e49\u591a\u4e2amemori":140,"\u5176\u4f1a\u81ea\u52a8\u88ab\u52a0\u5165\u7f16\u8bd1\u5217\u8868":100,"\u5176\u547d\u4ee4\u5982\u4e0b":133,"\u5176\u5b83\u53ef\u9009\u7f16\u8bd1\u9009\u9879\u6309\u9700\u8fdb\u884c\u8bbe\u5b9a":113,"\u5176\u5b83layer\u7684\u8f93\u51fa":139,"\u5176\u5b9e\u4e5f\u662f\u548c\u6bcf\u4e2amini":107,"\u5176\u6b21":137,"\u5176\u8bf4\u660e\u5982\u4e0b":137,"\u5176\u8f6c\u6362\u6b21\u6570\u51cf\u5c11\u81f3":67,"\u5176\u8f93\u51fa\u88ab\u7528\u4f5cmemory\u7684\u521d\u59cb\u503c":140,"\u5176name\u7531\u53c2\u6570":108,"\u5177\u4f53\u4f7f\u7528\u65b9\u6cd5\u4e3a":[72,107],"\u5177\u4f53\u505a\u6cd5\u8bf7\u53c2\u8003":26,"\u5177\u4f53\u539f\u56e0\u53c2\u8003":72,"\u5177\u4f53\u53ef\u4ee5\u53c2\u8003":[100,107],"\u5177\u4f53\u53ef\u4ee5\u53c2\u8003mkl":68,"\u5177\u4f53\u53ef\u53c2\u8003\u6587\u6863":139,"\u5177\u4f53\u5b9e\u73b0\u65b9\u5f0f\u6bd4\u5982":[67,68],"\u5177\u4f53\u60c5\u51b5\u56e0\u4eba\u800c\u5f02":134,"\u5177\u4f53\u64cd\u4f5c\u5982\u4e0b":104,"\u5177\u4f53\u6b65\u9aa4\u5982\u4e0b":104,"\u5177\u4f53\u7684\u5b8c\u6210\u72b6\u6001\u53ef\u4ee5\u53c2\u89c1":68,"\u5177\u4f53\u7684\u89e3\u51b3\u65b9\u6cd5\u662f":104,"\u5177\u4f53\u8bf7\u53c2\u8003":[72,98],"\u5177\u4f53\u8bf7\u89c1":98,"\u5177\u6709\u76f8\u540c\u7684\u7ed3\u679c\u4e86":137,"\u5185":140,"\u5185\u5b58":134,"\u5185\u5b58\u4e0d\u8db3":105,"\u5185\u5b58\u5bb9\u9650\u9608\u503c":129,"\u5185\u5bb9":101,"\u5185\u5bb9\u5982\u4e0b":122,"\u5185\u5c42\u5e8f\u5217\u5728":115,"\u5185\u5c42inner_step\u7684recurrent_group\u548c\u5355\u5c42\u5e8f\u5217\u7684\u51e0\u4e4e\u4e00\u6837":137,"\u5185\u5df2\u7ecf\u5305\u542bpaddlepaddle\u7684\u6267\u884c\u7a0b\u5e8f\u4f46\u662f\u8fd8\u6ca1\u4e0a\u8ff0\u529f\u80fd":123,"\u5185\u7f6e\u7684":116,"\u5185\u90e8":[116,123],"\u5185\u90e8\u5b58\u50a8":68,"\u5185\u90e8\u7531":[115,116],"\u5185\u90e8\u9a71\u52a8python\u89e3\u91ca\u5668\u8fdb\u884c\u6a21\u578b\u914d\u7f6e\u89e3\u6790\u548c\u6570\u636e\u8bfb\u53d6":71,"\u518d\u4ee5":101,"\u518d\u505a\u4e00\u5b9a\u7684reshap":108,"\u518d\u5199\u5165\u7f51\u7edc\u53c2\u6570":109,"\u518d\u5728\u6bcf\u4e00\u4e2aapi\u4e2d\u81ea\u5df1\u68c0\u67e5\u7c7b\u578b":71,"\u518d\u57fa\u4e8e":88,"\u518d\u5b89\u88c5":[30,104],"\u518d\u5bf9\u6bcf\u4e00\u4e2a\u5355\u5c42\u65f6\u95f4\u5e8f\u5217\u8fdb\u884c\u5904\u7406":137,"\u518d\u5bf9\u6bcf\u4e00\u53e5\u8bdd\u7684\u7f16\u7801\u5411\u91cf\u7528lstm\u7f16\u7801\u6210\u4e00\u4e2a\u6bb5\u843d\u7684\u5411\u91cf":137,"\u518d\u5bf9\u8fd9\u4e2a\u6bb5\u843d\u5411\u91cf\u8fdb\u884c\u5206\u7c7b":137,"\u518d\u5c06\u66f4\u65b0\u540e\u7684\u53c2\u6570\u4e0b\u53d1\u5230\u6bcf\u4e2a\u8ba1\u7b97\u8282\u70b9":118,"\u518d\u5f00\u542f\u591a\u7ebf\u7a0b":133,"\u518d\u628a\u5df2\u8f6c\u6362\u4e3apacked\u683c\u5f0f\u7684\u6570\u636e\u4f20\u9012\u7ed9\u90a3\u4e9b\u590d\u7528\u540c\u4e00\u6570\u636e\u7684gemm":67,"\u518d\u6307\u5b9a":27,"\u518d\u68c0\u67e5\u5176\u4ed6\u90e8\u5206\u7684\u6027\u80fd\u95ee\u9898":133,"\u518d\u6b21\u5bf9\u4ee3\u7801\u8fdb\u884c\u6027\u80fd\u5206\u6790":134,"\u518d\u6b21\u8fdb\u884c\u6027\u80fd\u5206\u6790":133,"\u518d\u7528\u8fd9\u4e2a\u68af\u5ea6\u53bb\u548c":100,"\u518d\u901a\u8fc7\u51fd\u6570":123,"\u518d\u91cd\u65b0\u5b89\u88c5":27,"\u5199\u4ee3\u7801":71,"\u5199\u5165\u5feb\u7167\u6570\u636e":37,"\u5199\u5165\u6587\u4ef6\u4e2d":116,"\u5199\u68af\u5ea6\u68c0\u67e5\u5355\u5143\u6d4b\u8bd5\u662f\u4e00\u4e2a\u9a8c\u8bc1\u65b0\u5b9e\u73b0\u7684\u5c42\u662f\u5426\u6b63\u786e\u7684\u76f8\u5bf9\u7b80\u5355\u7684\u529e\u6cd5":100,"\u5199\u7684":133,"\u51c6\u5907\u60a8\u7684\u8ba1\u7b97\u96c6\u7fa4":127,"\u51c6\u5907\u8bad\u7ec3\u6570\u636e":124,"\u51c6\u5907\u8bad\u7ec3\u6570\u636e\u548c\u9a8c\u8bc1\u6570\u636e\u96c6":117,"\u51c6\u5907\u9884\u6d4b\u6a21\u578b\u548c":116,"\u51c6\u5907\u9884\u6d4b\u6a21\u578b\u90e8\u5206":116,"\u51cf\u5c0f\u5e8f\u5217\u7684\u957f\u5ea6":107,"\u51cf\u5c0f\u8fd9\u4e2a\u5185\u5b58\u6c60\u5373\u53ef\u51cf\u5c0f\u5185\u5b58\u5360\u7528":107,"\u51cf\u5c0fbatch":107,"\u51e0\u53f0\u5230\u51e0\u5343\u53f0\u89c4\u6a21":127,"\u51fa\u73b0":104,"\u51fa\u73b0\u4ee5\u4e0b\u9519\u8bef":109,"\u51fa\u73b0\u8be5\u9519\u8bef\u7684\u539f\u56e0\u4e00\u822c\u662f\u7528\u6237\u5bf9\u4e0d\u540clayer\u7684\u53c2\u6570":108,"\u51fa\u73b0\u8fd9\u4e2a\u95ee\u9898\u7684\u4e3b\u8981\u539f\u56e0\u662f":[30,104],"\u51fd\u6570":[67,68,100,115,133,134,140],"\u51fd\u6570\u4e2d\u64cd\u4f5c\u7684\u91cd\u8981\u53d8\u91cf\u7684\u8be6\u7ec6\u89e3\u91ca":101,"\u51fd\u6570\u5047\u8bbe":140,"\u51fd\u6570\u52a0\u5230\u4ee3\u7801\u4e2d":134,"\u51fd\u6570\u5373\u53ef\u5b8c\u6210\u8f6c\u6362":38,"\u51fd\u6570\u53ea\u5173\u6ce8\u4e8ernn\u4e00\u4e2a\u65f6\u95f4\u6b65\u4e4b\u5185\u7684\u8ba1\u7b97":139,"\u51fd\u6570\u540d":133,"\u51fd\u6570\u540d\u4e3a":72,"\u51fd\u6570\u547d\u540d":71,"\u51fd\u6570\u5b9a\u4e49\u8f93\u5165":101,"\u51fd\u6570\u5b9e\u9645\u4f7f\u7528\u7684\u603b\u65f6\u95f4":133,"\u51fd\u6570\u5f97\u5230\u7684\u68af\u5ea6\u53bb\u5bf9\u6bd4":100,"\u51fd\u6570\u5fc5\u987b\u5148\u8c03\u7528\u57fa\u7c7b\u4e2d\u7684\u51fd\u6570":100,"\u51fd\u6570\u5fc5\u987b\u8fd4\u56de\u4e00\u4e2a\u6216\u591a\u4e2alayer\u7684\u8f93\u51fa":139,"\u51fd\u6570\u603b\u65f6\u95f4":133,"\u51fd\u6570\u6307\u51fa\u4e86\u5728\u8bad\u7ec3\u65f6\u9700\u8981\u4ece\u53c2\u6570\u670d\u52a1\u5668\u53d6\u51fa\u7684\u884c":100,"\u51fd\u6570\u6765\u5c06\u4fe1\u606f\u8f93\u51fa\u5230\u754c\u9762\u4e2d":134,"\u51fd\u6570\u7684\u5b9e\u73b0\u662f\u6b63\u786e\u7684":100,"\u51fd\u6570\u7684\u5f00\u5934\u5fc5\u987b\u8c03\u7528":100,"\u51fd\u6570\u7684\u603b\u5171\u8017\u65f6\u5f88\u957f":133,"\u51fd\u6570\u7684\u8c03\u7528\u6b21\u6570":133,"\u51fd\u6570\u80fd\u591f\u5c06\u4f7f\u7528":116,"\u51fd\u6570\u91cc\u5b9e\u73b0":101,"\u5206\u4e3a":116,"\u5206\u522b\u4e3a\u6570\u636e\u8f93\u5165\u6dfb\u52a0\u5916\u5c42\u5e8f\u5217\u548c\u5185\u5c42\u5e8f\u5217\u7684\u5e8f\u5217\u4fe1\u606f":115,"\u5206\u522b\u4ece\u8bcd\u8bed\u548c\u53e5\u5b50\u7ea7\u522b\u7f16\u7801\u8f93\u5165\u6570\u636e":139,"\u5206\u522b\u4ee3\u8868\u8f93\u5165\u6570\u636e":68,"\u5206\u522b\u4f7f\u7528\u5355\u53cc\u5c42rnn\u4f5c\u4e3a\u7f51\u7edc\u914d\u7f6e\u7684\u6a21\u578b":137,"\u5206\u522b\u5b9a\u4e49\u5b50\u53e5\u7ea7\u522b\u548c\u8bcd\u8bed\u7ea7\u522b\u4e0a\u9700\u8981\u5b8c\u6210\u7684\u8fd0\u7b97":139,"\u5206\u522b\u5bf9\u5e94capi":88,"\u5206\u522b\u662f":136,"\u5206\u522b\u662frnn\u72b6\u6001\u548c\u8f93\u5165\u7684\u53d8\u6362\u77e9\u9635":140,"\u5206\u522b\u662fsentences\u548clabel":137,"\u5206\u522b\u662fwords\u548clabel":137,"\u5206\u522b\u8ba1\u7b97\u6bcf\u4e2a\u53c2\u6570\u7684\u68af\u5ea6":100,"\u5206\u522b\u8fdb\u884c\u5e8f\u5217\u64cd\u4f5c":137,"\u5206\u5e03\u5f0f\u5b58\u50a8\u670d\u52a1":37,"\u5206\u5e03\u5f0f\u8ba1\u7b97\u5e73\u53f0\u901a\u5e38\u4f1a\u901a\u8fc7api\u6216\u8005\u73af\u5883\u53d8\u91cf\u63d0\u4f9b\u4efb\u52a1\u8fd0\u884c\u9700\u8981\u7684\u53c2\u6570":120,"\u5206\u5e03\u5f0f\u8bad\u7ec3":132,"\u5206\u5e03\u5f0f\u8bad\u7ec3\u67b6\u6784\u5982\u4e0b\u56fe\u6240\u793a":118,"\u5206\u652f":[88,98],"\u5206\u652f\u4e00\u65e6\u5efa\u7acb":88,"\u5206\u652f\u4e0a":98,"\u5206\u652f\u4e0a\u521b\u5efa\u65b0\u5206\u652f":98,"\u5206\u652f\u4e2d":88,"\u5206\u652f\u4e3a\u5f00\u53d1":88,"\u5206\u652f\u4e3a\u6bcf\u4e00\u6b21release\u65f6\u5efa\u7acb\u7684\u4e34\u65f6\u5206\u652f":88,"\u5206\u652f\u4e3a\u7a33\u5b9a":88,"\u5206\u652f\u529f\u80fd\u7684\u5c01\u95ed":88,"\u5206\u652f\u5408\u5165":88,"\u5206\u652f\u5408\u5165master\u5206\u652f":88,"\u5206\u652f\u540c\u6b65\u4e3b\u7248\u672c\u5e93\u7684":88,"\u5206\u652f\u540d":98,"\u5206\u652f\u540d\u4e3a":88,"\u5206\u652f\u5b58\u5728\u7684\u65f6\u5019":88,"\u5206\u652f\u6d3e\u751f\u51fa\u65b0\u7684\u5206\u652f":88,"\u5206\u652f\u7528\u6765\u6d4b\u8bd5\u53ea\u9700\u8981\u8ba1\u7b97\u4e00\u4e2a\u8f93\u5165\u68af\u5ea6\u7684\u60c5\u51b5":101,"\u5206\u652f\u7684\u7248\u672c\u90fd\u662f\u7ecf\u8fc7\u5355\u5143\u6d4b\u8bd5\u548c\u56de\u5f52\u6d4b\u8bd5\u7684\u7248\u672c":88,"\u5206\u652f\u7684\u7248\u672c\u90fd\u7ecf\u8fc7\u5355\u5143\u6d4b\u8bd5":88,"\u5206\u652f\u89c4\u8303":98,"\u5206\u6790\u5f97\u5230\u7684\u4fe1\u606f\u7528\u4e8e\u534f\u52a9\u8fdb\u884c\u7a0b\u5e8f\u7684\u4f18\u5316":134,"\u5206\u7247":37,"\u5206\u7c7b\u4efb\u52a1\u4e2d\u7c7b\u522b\u6807\u7b7e":115,"\u5206\u914d\u5230\u5f53\u524d\u6570\u636e\u5757\u6837\u672c\u6570\u7684\u56db\u5206\u4e4b\u4e00":129,"\u5207\u6362\u5230":98,"\u5207\u6362\u5230\u6240\u5efa\u5206\u652f":98,"\u5217\u5143\u7d20\u6392\u5217\u6210\u7684\u77e9\u5f62\u9635\u5217":115,"\u5217\u540d":133,"\u5217\u8868\u5982\u4e0b":110,"\u5219\u4e0d\u9700\u8981\u91cd\u5199\u8be5\u51fd\u6570":100,"\u5219\u4f1a\u4f7f\u7528openblas\u4f5c\u4e3ablas\u5e93":27,"\u5219\u4f7f\u7528":143,"\u5219\u4f7f\u7528\u540c\u6b65\u8bad\u7ec3":129,"\u5219\u4f7f\u7528\u542f\u52a8\u53c2\u6570\u5b9a\u4e49\u7684\u521d\u59cb\u5316\u65b9\u6cd5\u521d\u59cb\u5316\u53c2\u6570":37,"\u5219\u4f7f\u7528\u8be5\u53c2\u6570\u4f5c\u4e3a\u9ed8\u8ba4\u503c":129,"\u5219\u53ef\u8bbe\u7f6e":[142,143,144],"\u5219\u5e76\u4e0d\u4f1a\u7b49\u5f85\u6240\u6709trainer\u63d0\u4ea4\u68af\u5ea6\u624d\u66f4\u65b0\u53c2\u6570":118,"\u5219\u5ffd\u7565":37,"\u5219\u603b\u4f1a\u663e\u793a\u963b\u9694\u6458\u8981\u4fe1\u606f":129,"\u5219\u628a\u53e6\u4e00\u4e2a\u6162\u901f\u7684kill\u6389":37,"\u5219\u662f\u5e26gui\u7684nvidia\u53ef\u89c6\u5316\u6027\u80fd\u5206\u6790\u5de5\u5177":134,"\u5219\u663e\u793a\u963b\u9694\u6027\u80fd\u7684\u6458\u8981\u4fe1\u606f":129,"\u5219\u76f4\u63a5\u5f15\u5165\u53e6\u4e00\u79cd\u7c7b\u578b\u7684\u5934\u6587\u4ef6":72,"\u5219\u8bbe\u7f6e\u6210":[142,144],"\u5219\u9700\u8981\u4f7f\u7528\u7b49\u4e8e\u6743\u91cd\u53c2\u6570\u89c4\u6a21\u5927\u7ea65\u500d\u7684\u5185\u5b58":107,"\u5219\u9700\u8981\u5206\u522b\u7f16\u8bd1\u771f\u673a\u548c\u6a21\u62df\u5668\u7248\u672c":143,"\u5219\u9700\u8981\u56de\u6eda\u5230\u4e0a\u4e00\u4e2a\u68c0\u67e5\u70b9":37,"\u5219\u9700\u8981\u5728\u672c\u673a\u5b89\u88c5\u4e0b\u9762\u7ae0\u8282\u5217\u51fa\u7684":27,"\u5219\u9700\u8981\u624b\u52a8\u62f7\u8d1d\u5c5e\u4e8e\u6bcf\u4e2atrainer\u8282\u70b9\u7684\u8bad\u7ec3\u6570\u636e\u5230\u5bf9\u5e94\u7684\u8282\u70b9\u4e0a":117,"\u521b\u5efa":[68,115,116],"\u521b\u5efa\u4e00\u4e2a":112,"\u521b\u5efa\u4e00\u4e2akubernet":123,"\u521b\u5efa\u5e76\u5207\u6362\u5230\u65b0\u5206\u652f":98,"\u521b\u5efa\u6210\u529f\u540e":123,"\u521b\u5efa\u65e5\u5fd7\u76ee\u5f55":124,"\u521b\u5efa\u7a00\u758f\u77e9\u9635\u65f6\u9700\u8981\u663e\u793a\u5730\u6307\u5b9a\u77e9\u9635\u7684":115,"\u521d\u59cb\u5316\u504f\u7f6e\u5411\u91cf":100,"\u521d\u59cb\u5316\u6743\u91cd\u8868":100,"\u521d\u59cb\u5316\u6a21\u578b\u7684\u8def\u5f84":129,"\u521d\u59cb\u5316\u7236\u7c7b":100,"\u521d\u59cb\u5316biases_":100,"\u521d\u59cb\u72b6\u6001":139,"\u5220\u9664":98,"\u5220\u9664\u78c1\u76d8\u76ee\u5f55\u4e2d\u4e0d\u662f\u5f53\u524duuid\u7684\u5feb\u7167\u6587\u4ef6":37,"\u5224\u65ad\u662f\u5426\u5b89\u88c5\u6210\u529f":143,"\u5229\u7528\u5206\u5e03\u5f0f\u8bad\u7ec3\u9a7e\u9a6d\u66f4\u591a\u7684\u8ba1\u7b97\u8d44\u6e90":107,"\u5229\u7528\u66f4\u591a\u7684\u8ba1\u7b97\u8d44\u6e90\u53ef\u4ee5\u5206\u4e3a\u4ee5\u4e0b\u51e0\u4e2a\u65b9\u5f0f\u6765\u8fdb\u884c":107,"\u5229\u7528\u8fd9\u79cd\u7279\u6027":139,"\u522b\u4eba\u5e2e\u4e86\u5fd9":98,"\u522b\u5fd8\u4e86":26,"\u5230":[37,104,140],"\u5230\u6307\u5b9a\u6587\u4ef6\u4e2d":116,"\u5230\u672c\u5730":98,"\u5230\u6b64":101,"\u5230\u7b2c\u4e8c\u6b65":88,"\u5236\u4f5c\u65b0\u955c\u50cf\u6765\u5b8c\u6210\u4ee5\u4e0a\u7684\u5de5\u4f5c":123,"\u5236\u4f5cpaddlepaddle\u955c\u50cf":123,"\u524d\u4e00\u7bc7\u6587\u7ae0\u4ecb\u7ecd\u4e86\u5982\u4f55\u5728kubernetes\u96c6\u7fa4\u4e0a\u542f\u52a8\u4e00\u4e2a\u5355\u673apaddlepaddle\u8bad\u7ec3\u4f5c\u4e1a":123,"\u524d\u540e\u7684\u7f51\u7edc\u6027\u80fd":67,"\u524d\u5411\u4f20\u64ad":100,"\u524d\u5411\u4f20\u64ad\u7ed9\u5b9a\u8f93\u5165":100,"\u524d\u5411\u548c\u540e\u5411":100,"\u524d\u5411\u8ba1\u7b97\u4e4b\u540epaddlepaddle\u5185\u90e8\u5df2\u7ecf\u5206\u914d":116,"\u524d\u5411op\u5b9e\u73b0\u5b8c\u6210":101,"\u524d\u8005\u5728":107,"\u524d\u8005\u5b58\u50a8op\u7684\u8f93\u5165\u8f93\u51fa\u548c\u53c2\u6570\u5c5e\u6027":101,"\u524d\u8005\u622a\u65ad\u53ef\u5b66\u4e60\u53c2\u6570\u7684\u68af\u5ea6":107,"\u524d\u8005op\u7684\u5b9a\u4e49\u7ee7\u627f\u81ea":101,"\u524d\u81ea\u52a8\u68c0\u67e5\u4e00\u4e9b\u57fa\u672c\u4e8b\u5b9c":98,"\u524d\u9700\u8981\u5b89\u88c5":133,"\u524d\u9988":118,"\u529f\u80fd":54,"\u529f\u80fd\u7684\u6b63\u786e\u6027\u5305\u62ec\u9a8c\u8bc1paddlepaddle\u76ee\u524d\u7684":88,"\u52a0\u4e0a\u504f\u7f6e\u5411\u91cf":100,"\u52a0\u5165":134,"\u52a0\u6743\u548c\u7528\u6765\u751f\u6210":140,"\u52a0\u6743\u7f16\u7801\u5411\u91cf":140,"\u52a0\u8f7d\u5177\u4f53\u7f51\u7edc\u53c2\u6570":109,"\u52a0\u8f7d\u6a21\u578b\u53ef\u5176\u5b83\u591a\u79cd\u65b9\u5f0f":116,"\u52a0\u8f7d\u6a21\u578b\u9700\u540c\u65f6\u6307\u5b9a":116,"\u52a0\u8f7d\u9884\u6d4b\u6a21\u578b":116,"\u52a0\u8f7d\u9884\u8bad\u7ec3\u53c2\u6570":109,"\u52a0\u8f7dtest":129,"\u52a0\u901f\u7f16\u8bd1":27,"\u52a0\u901fpaddlepaddle\u8bad\u7ec3\u53ef\u4ee5\u8003\u8651\u4ece\u4ee5\u4e0b\u51e0\u4e2a\u65b9\u9762":107,"\u52a8\u6001\u5e93":[71,113],"\u52a9\u624b":100,"\u5305":133,"\u5305\u542b\u4e86\u67d0\u79cd\u7c7b\u578b\u7684\u7c7b\u578b\u5b9a\u4e49\u548c\u66b4\u9732\u7684\u5168\u90e8\u51fd\u6570":72,"\u5305\u542b\u4f46\u4e0d\u9650\u4e8e":27,"\u5305\u542b\u6d4b\u8bd5\u6570\u636e\u96c6\u7684\u76ee\u5f55":117,"\u5305\u542b\u8bad\u7ec3\u6570\u636e\u7684\u76ee\u5f55":117,"\u5305\u542b\u8fd9\u4e2a\u51fd\u6570\u8c03\u7528\u5176\u4ed6\u51fd\u6570\u7684\u65f6\u95f4":133,"\u5305\u542bkernel\u7684op\u548c\u4e0d\u5305\u542bkernel\u7684op":101,"\u5305\u62ec":[38,67,68,113,120,129],"\u5305\u62ec\u4e86\u7f16\u8bd1\u51fa\u7684paddlepaddle\u5934\u6587\u4ef6\u548c\u94fe\u63a5\u5e93":113,"\u5305\u62ec\u5b57\u7b26\u4e32\u5206\u914d":107,"\u5305\u62ec\u6743\u91cdw\u548c\u504f\u7f6eb":37,"\u5305\u62ec\u751f\u6210cpu":27,"\u5305\u62ec\u795e\u7ecf\u7f51\u7edc\u62d3\u6251\u7ed3\u6784":110,"\u5305\u62ecbool":131,"\u5305\u62eclinux":142,"\u5305\u62ecmkl":68,"\u5305\u7684\u65b9\u6cd5\u662f":104,"\u533a\u522b\u662f\u540c\u65f6\u5904\u7406\u4e86\u4e24\u4e2a\u8f93\u5165":137,"\u533a\u522b\u662frnn\u4f7f\u7528\u4e24\u5c42\u5e8f\u5217\u6a21\u578b":137,"\u534f\u540c\u5b8c\u6210releas":88,"\u5355\u4e2a\u503c":38,"\u5355\u4f4d\u662fmb":129,"\u5355\u5143\u6d4b\u8bd5":[26,102],"\u5355\u5143\u6d4b\u8bd5\u4f1a\u5f15\u7528site":104,"\u5355\u5143\u6d4b\u8bd5\u4f1a\u88ab\u81ea\u52a8\u52a0\u5165\u5de5\u7a0b\u8fdb\u884c\u7f16\u8bd1":101,"\u5355\u5143\u6d4b\u8bd5\u5728\u5185\u7684\u6240\u6709\u5355\u5143\u6d4b\u8bd5":26,"\u5355\u5143\u6d4b\u8bd5checkgrad_ep":128,"\u5355\u53cc\u5c42\u5e8f\u5217\u7684\u53e5\u5b50\u662f\u4e00\u6837\u7684":137,"\u5355\u53cc\u5c42rnn":138,"\u5355\u5c42":139,"\u5355\u5c42\u4e0d\u7b49\u957frnn":137,"\u5355\u5c42\u548c\u53cc\u5c42\u5e8f\u5217\u7684\u4f7f\u7528\u548c\u793a\u4f8b2\u4e2d\u7684\u793a\u4f8b\u7c7b\u4f3c":137,"\u5355\u5c42\u5e8f\u5217":[115,136],"\u5355\u5c42\u5e8f\u5217\u7684\u6bcf\u4e2a\u5143\u7d20":136,"\u5355\u5c42\u5e8f\u5217\u7b2ci\u4e2a\u5143\u7d20":136,"\u5355\u5c42\u6216\u53cc\u5c42":136,"\u5355\u5c42\u65f6\u95f4\u5e8f\u5217":137,"\u5355\u5c42rnn":[137,139],"\u5355\u5c42rnn\u548c\u53cc\u5c42rnn\u7684\u7f51\u7edc\u914d\u7f6e":137,"\u5355\u673acpu\u8bad\u7ec3":107,"\u5355\u673agpu\u8bad\u7ec3":107,"\u5355\u6b65\u51fd\u6570":140,"\u5355\u6b65\u51fd\u6570\u548c\u8f93\u51fa\u51fd\u6570\u5728":140,"\u5355\u6b65\u51fd\u6570\u548c\u8f93\u51fa\u51fd\u6570\u90fd\u975e\u5e38\u7b80\u5355":140,"\u5355\u6b65\u51fd\u6570\u7684\u5b9e\u73b0\u5982\u4e0b\u6240\u793a":140,"\u5355\u6d4b\u5305\u62ec\u5bf9\u6bd4\u524d\u5411op\u4e0d\u540c\u8bbe\u5907":101,"\u5355\u70b9\u6545\u969c":37,"\u5355\u7eaf\u7684":133,"\u5355\u8fdb\u5355\u51fa":139,"\u5360\u7528\u4e8617":133,"\u5373":[72,101,103,107,108,123],"\u5373\u4e0a\u8ff0\u4ee3\u7801\u4e2d\u7684\u7b2c19\u884c":137,"\u5373\u4e0b\u8f7d\u5931\u8d25":104,"\u5373\u4e0d\u5141\u8bb8\u5728":101,"\u5373\u4e0d\u9700\u8981\u4f7f\u7528memori":137,"\u5373\u4e3a\u4e00\u4e2a\u65f6\u95f4\u6b65":137,"\u5373\u4e3a\u5355\u5c42rnn\u5e8f\u5217\u7684\u4f7f\u7528\u4ee3\u7801":137,"\u5373\u4e3a\u65f6\u95f4\u5e8f\u5217\u7684\u8f93\u5165":137,"\u5373\u4e3a\u8fd9\u4e2a\u53cc\u5c42rnn\u7684\u7f51\u7edc\u7ed3\u6784":137,"\u5373\u4e8c\u7ef4\u6570\u7ec4":137,"\u5373\u4f7f\u7528":[72,108],"\u5373\u4f7f\u7528\u6237\u76f4\u63a5\u5f15\u7528\u67d0\u79cd\u7c7b\u578b\u7684\u5934\u6587\u4ef6":72,"\u5373\u4f7f\u95f4\u9694\u5f88\u5c0f":129,"\u5373\u4f7fc":72,"\u5373\u4f8b\u5982":72,"\u5373\u4fbf\u662f":26,"\u5373\u4fbf\u8bbe\u7f6e":104,"\u5373\u4fbfpaddl":72,"\u5373\u521d\u59cb\u72b6\u6001\u4e3a0":139,"\u5373\u5355\u65f6\u95f4\u6b65\u6267\u884c\u7684\u51fd\u6570":140,"\u5373\u53cc\u5c42\u65f6\u95f4\u5e8f\u5217":137,"\u5373\u53cc\u5c42rnn\u7684\u6bcf\u4e2a\u72b6\u6001":139,"\u5373\u53ef":98,"\u5373\u53ef\u4ee5\u6781\u5927\u7684\u52a0\u901f\u6570\u636e\u8f7d\u5165\u6d41\u7a0b":107,"\u5373\u53ef\u4f7f\u7528\u5f00\u53d1\u955c\u50cf\u6765\u7f16\u8bd1android\u7248paddlepaddl":142,"\u5373\u53ef\u5728":144,"\u5373\u53ef\u5f00\u59cb\u4e0b\u8f7d":30,"\u5373\u53ef\u5f00\u59cb\u4e0b\u9762\u7684\u6b65\u9aa4":28,"\u5373\u53ef\u663e\u793a\u6027\u80fd\u5206\u6790\u7684\u7ed3\u679c":133,"\u5373\u53ef\u68c0\u67e5\u6211\u4eec\u8c03\u4f18\u540e\u7684\u4fee\u6b63\u662f\u5426\u80fd\u591f\u6539\u5584\u7a0b\u5e8f\u7684\u6027\u80fd":133,"\u5373\u5728\u53cc\u5c42\u5e8f\u5217\u7684\u539f\u59cb\u6570\u636e\u4e2d":137,"\u5373\u5728\u7f51\u7edc\u914d\u7f6e\u4e2d":107,"\u5373\u5927\u90e8\u5206\u503c\u4e3a0":110,"\u5373\u5b8c\u6210\u67d0\u4e00\u4e2a\u4efb\u52a1\u7684\u6700\u5c11\u51fd\u6570":72,"\u5373\u5c06\u4e00\u6bb5\u8bdd\u8fdb\u884c\u5206\u7c7b":137,"\u5373\u5c06nchw\u8f6c\u6362\u6210nhwc":108,"\u5373\u5f53\u524d\u65f6\u95f4\u6b65\u4e0b\u7684\u795e\u7ecf\u7f51\u7edc\u4f9d\u8d56\u524d\u4e00\u4e2a\u65f6\u95f4\u6b65\u795e\u7ecf\u7f51\u7edc\u4e2d\u67d0\u4e00\u4e2a\u795e\u7ecf\u5143\u8f93\u51fa":137,"\u5373\u6211\u4eec\u53ef\u4ee5\u5148\u5b9a\u4e49\u4e00\u4e2atensor":102,"\u5373\u628a\u5355\u5c42rnn\u751f\u6210\u540e\u7684subseq\u7ed9\u62fc\u63a5\u6210\u4e00\u4e2a\u65b0\u7684\u53cc\u5c42seq":139,"\u5373\u6574\u4e2a\u53cc\u5c42group\u662f\u5c06\u524d\u4e00\u4e2a\u5b50\u53e5\u7684\u6700\u540e\u4e00\u4e2a\u5411\u91cf":137,"\u5373\u6574\u4e2a\u8f93\u5165\u5e8f\u5217":136,"\u5373\u6574\u6570\u6570\u7ec4":137,"\u5373\u65f6\u95f4\u9012\u5f52\u795e\u7ecf\u7f51\u7edc":137,"\u5373\u662f\u8de8\u8d8a\u65f6\u95f4\u6b65\u7684\u7f51\u7edc\u8fde\u63a5":137,"\u5373\u66b4\u9732":72,"\u5373\u7279\u5f81\u7684\u6570\u7ec4":137,"\u5373\u7f51\u5361\u540d":123,"\u5373\u8868\u793a\u4e0d\u9700\u8981\u8f6c\u6362":68,"\u5373\u8bad\u7ec3\u8fc7\u7a0b\u4e2d\u51fa\u73b0nan\u6216\u8005inf":107,"\u5373\u8bbe\u7f6e":107,"\u5373\u8fd0\u884c\u8bad\u7ec3\u7a0b\u5e8f":28,"\u5373\u8fd9\u4e2a\u52a8\u6001\u5e93\u662f\u4e0d\u4f9d\u8d56\u4e8e\u5176\u4ed6\u4efb\u4f55\u6587\u4ef6\u7684":71,"\u5373define_py_data_sources2\u5e94\u6539\u4e3a":109,"\u5373input":139,"\u5373rnn\u4e4b\u95f4\u6709\u4e00\u6b21\u5d4c\u5957\u5173\u7cfb":137,"\u5378\u8f7dpaddlepaddle\u5305":104,"\u538b\u6241\u6210\u4e3aeigen\u7684\u4e00\u7ef4tensor":102,"\u538b\u7f29\u6210\u4e00\u4e2a\u5411\u91cf":137,"\u539f\u56e0":[98,104],"\u539f\u56e0\u5728\u4e8e\u6ca1\u6709\u628a\u673a\u5668\u4e0acuda\u76f8\u5173\u7684\u9a71\u52a8\u548c\u5e93\u6620\u5c04\u5230\u5bb9\u5668\u5185\u90e8":104,"\u539f\u56e0\u662f\u6bcf\u4e2a\u56de\u590d\u90fd\u4f1a\u53d1\u9001\u4e00\u5c01\u90ae\u4ef6":98,"\u539f\u6765\u7684\u65b9\u6848":68,"\u53c2\u6570":[2,3,4,5,6,7,9,10,11,17,18,19,22,23,25,26,71,100,107,116,123,128],"\u53c2\u6570\u4e3a":101,"\u53c2\u6570\u5171\u4eab\u7684\u914d\u7f6e\u793a\u4f8b\u4e3a":109,"\u53c2\u6570\u548c\u73af\u5883\u53d8\u91cf":117,"\u53c2\u6570\u670d\u52a1\u5668":[118,128],"\u53c2\u6570\u670d\u52a1\u5668\u4e4b\u95f4\u4e0d\u76f8\u4e92\u4f9d\u8d56":118,"\u53c2\u6570\u670d\u52a1\u5668\u4e5f\u4e0d\u4f1a\u7b49\u5f85\u8ba1\u7b97\u8282\u70b9\u5168\u90e8\u90fd\u63d0\u4ea4\u68af\u5ea6\u4e4b\u540e\u624d\u5f00\u59cb\u4e0b\u4e00\u6b65":118,"\u53c2\u6570\u670d\u52a1\u5668\u63a5\u6536\u4ece\u8ba1\u7b97\u8282\u70b9\u4e0a\u4f20\u7684\u68af\u5ea6":118,"\u53c2\u6570\u670d\u52a1\u5668\u7684\u53c2\u6570\u5206\u5757\u5927\u5c0f":129,"\u53c2\u6570\u670d\u52a1\u5668\u7684\u76d1\u542c\u7aef\u53e3":129,"\u53c2\u6570\u670d\u52a1\u5668\u7684\u7f51\u7edc\u8bbe\u5907\u540d\u79f0":129,"\u53c2\u6570\u670d\u52a1\u5668\u7684ip\u5730\u5740":129,"\u53c2\u6570\u670d\u52a1\u5668\u7a00\u758f\u66f4\u65b0\u7684\u53c2\u6570\u5206\u5757\u5927\u5c0f":129,"\u53c2\u6570\u6765\u63a7\u5236\u7f13\u5b58\u65b9\u6cd5":107,"\u53c2\u6570\u6982\u8ff0":130,"\u53c2\u6570\u7684\u4e2a\u6570\u548c\u53c2\u6570\u5217\u8868":116,"\u53c2\u6570\u7684\u89e3\u6790":123,"\u53c2\u6570\u8bbe\u7f6e":106,"\u53c2\u6570\u8bbe\u7f6e\u4e86\u5916\u5c42":137,"\u53c2\u6570\u8bf4\u660e":117,"\u53c2\u6570\u8bf4\u660e\u5bb9\u5668\u5df2\u4ea4\u4e92\u5f0f\u8fd0\u884c":28,"\u53c2\u6570\u8f93\u5165":107,"\u53c2\u6570\u9700\u8981\u5b9e\u73b0":140,"\u53c2\u7167\u4e0a\u8ff0\u6b65\u9aa4\u66f4\u65b0":98,"\u53c2\u8003":[28,54,71],"\u53c2\u8003\u4e0b\u56fe":88,"\u53c2\u8003\u5f3a\u8c03\u90e8\u5206":134,"\u53c2\u8003\u65f6\u95f4\u5e8f\u5217":137,"\u53c2\u8003\u6837\u4f8b\u6570\u636e\u51c6\u5907\u811a\u672c":117,"\u53c2\u8003\u955c\u50cf\u7684":123,"\u53c8\u53ef\u4ee5\u907f\u514d\u4e0d\u5fc5\u8981\u7684\u8f6c\u6362":68,"\u53c8\u662f\u4e00\u4e2a\u5355\u5c42\u7684\u5e8f\u5217":136,"\u53c8\u8981\u4fdd\u8bc1\u6570\u636e\u662f\u968f\u673a\u7684":107,"\u53ca":100,"\u53cc\u5411\u95e8\u63a7\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u7684\u9690\u85cf\u72b6\u6001":140,"\u53cc\u5411\u9a8c\u8bc1":54,"\u53cc\u5c42":139,"\u53cc\u5c42\u4e0d\u7b49\u957frnn":137,"\u53cc\u5c42\u5e8f\u5217":[115,136],"\u53cc\u5c42\u5e8f\u5217\u5728\u5904\u7406\u957f\u5e8f\u5217\u7684\u4efb\u52a1\u6216\u662f\u6784\u5efa\u5c42\u7ea7\u6a21\u578b\u65f6\u4f1a\u53d1\u6325\u4f5c\u7528":115,"\u53cc\u5c42\u5e8f\u5217\u6216\u5355\u5c42\u5e8f\u5217":136,"\u53cc\u5c42\u5e8f\u5217\u6570\u636e\u4e00\u5171\u67094\u4e2a\u6837\u672c":137,"\u53cc\u5c42\u5e8f\u5217\u662f\u4e00\u4e2a\u5d4c\u5957\u7684\u5e8f\u5217":136,"\u53cc\u5c42\u5e8f\u5217\u662fpaddlepaddle\u652f\u6301\u7684\u4e00\u79cd\u975e\u5e38\u7075\u6d3b\u7684\u6570\u636e\u7ec4\u7ec7\u65b9\u5f0f":139,"\u53cc\u5c42\u5e8f\u5217\u6bcf\u4e2asubseq\u4e2d\u6bcf\u4e2a\u5143\u7d20":136,"\u53cc\u5c42\u5e8f\u5217\u7ecf\u8fc7\u8fd0\u7b97\u53d8\u6210\u4e00\u4e2a0\u5c42\u5e8f\u5217":136,"\u53cc\u5c42\u5e8f\u5217\u9700\u8981\u8bbe\u7f6e\u5206\u522b\u4e3a\u5916\u5c42\u5e8f\u5217\u548c\u5185\u5c42\u5e8f\u5217\u5206\u522b\u8bbe\u7f6e":115,"\u53cc\u5c42\u6216\u8005\u5355\u5c42":136,"\u53cc\u5c42\u65f6\u95f4\u5e8f\u5217\u7684dataprovider\u7684\u4ee3\u7801":137,"\u53cc\u5c42rnn":139,"\u53cc\u5c42rnn\u6570\u636e\u968f\u610f\u52a0\u4e86\u4e00\u4e9b\u9694\u65ad":137,"\u53cc\u5c42rnn\u987e\u540d\u601d\u4e49":137,"\u53cc\u8fdb\u5355\u51fa":139,"\u53cc\u8fdb\u53cc\u51fa":139,"\u53cd\u5411\u4f20\u64ad":100,"\u53cd\u5411\u4f20\u64ad\u6839\u636e\u8f93\u51fa\u7684\u68af\u5ea6":100,"\u53cd\u5411\u8ba1\u7b97\u5df2\u7ecf\u81ea\u52a8\u96c6\u6210\u8fdb\u6d4b\u8bd5\u6846\u67b6":101,"\u53cd\u5411op\u7684\u68af\u5ea6\u6d4b\u8bd5":101,"\u53cd\u5411op\u7c7b":101,"\u53cd\u5411op\u7c7b\u7684\u5b9a\u4e49":101,"\u53cd\u5411opkernel\u7684\u5b9a\u4e49\u4e0e\u524d\u5411op\u7c7b\u4f3c":101,"\u53d1\u578b\u7248":88,"\u53d1\u5e03\u5230dockerhub":88,"\u53d1\u5e03docker\u955c\u50cf\u53ea\u9700\u8981\u5bf9\u81ea\u52a8push\u7684\u955c\u50cf\u6253\u4e0a":88,"\u53d1\u6563\u5230\u4e86\u4e00\u4e2a\u6570\u503c\u7279\u522b\u5927\u7684\u5730\u65b9":107,"\u53d1\u884c\u548c\u7ef4\u62a4":98,"\u53d1\u9001\u53c2\u6570\u7684\u7aef\u53e3\u53f7":129,"\u53d6\u503c\u76f8\u540c\u7684layer":108,"\u53d6\u5176\u4e2d\u4e00\u4e2a\u6a21\u578bparams_pass_90":110,"\u53d6\u51b3\u4e8e":101,"\u53d8\u6362\u77e9\u9635":100,"\u53d8\u91cf\u6765\u533a\u5206layer\u7684\u5c5e\u6027":68,"\u53e5\u5b50\u662f\u7531\u8bcd\u8bed\u6784\u6210\u7684\u5e8f\u5217":115,"\u53e6\u4e00\u4e2a\u65b9\u6cd5\u662f\u4ea4\u53c9\u7f16\u8bd1":144,"\u53e6\u4e00\u4e2a\u662f\u5185\u5b58\u64cd\u4f5c\u91cf":134,"\u53e6\u4e00\u4e2a\u662f\u6bcf\u6761\u5e8f\u5217":107,"\u53e6\u4e00\u79cd\u65b9\u5f0f\u662f\u5c06\u7f51\u7edc\u5c42\u5212\u5206\u5230\u4e0d\u540c\u7684gpu\u4e0a\u53bb\u8ba1\u7b97":131,"\u53e6\u5916":[26,137],"\u53e6\u5916\u6700\u65b0\u7684pip\u5b98\u65b9\u6e90\u4e2d\u7684\u5b89\u88c5\u5305\u9ed8\u8ba4\u662fmanylinux1\u6807\u51c6":30,"\u53ea\u4f5c\u4e3aread":139,"\u53ea\u4fdd\u5b58\u6700\u540e\u4e00\u8f6e\u7684\u53c2\u6570":129,"\u53ea\u5728\u7b2c\u4e00\u6b21cmake\u7684\u65f6\u5019\u6709\u6548":27,"\u53ea\u5bf9\u7279\u6b8a\u5728\u7ebf\u7cfb\u7edf\u8003\u8651\u4e24\u53f0\u4ee5\u4e0a\u540c\u65f6\u6545\u969c\u7684\u5bb9\u707e":37,"\u53ea\u5bf9\u795e\u7ecf\u7f51\u7edc\u7ed3\u6784\u8fdb\u884c\u5e8f\u5217\u5316":116,"\u53ea\u5c06\u795e\u7ecf\u7f51\u7edc\u7ed3\u6784\u8fdb\u884c\u5e8f\u5217\u5316":116,"\u53ea\u662f\u53cc\u5c42\u5e8f\u5217\u5c06\u5176\u53c8\u505a\u4e86\u5b50\u5e8f\u5217\u5212\u5206":137,"\u53ea\u66b4\u9732\u6982\u5ff5\u7684\u63a5\u53e3":72,"\u53ea\u6709\u5728\u9047\u5230\u9700\u8981":29,"\u53ea\u6709\u5f53\u8bbe\u7f6e\u4e86spars":129,"\u53ea\u7528\u4e8e\u5728\u5e8f\u5217\u751f\u6210\u4efb\u52a1\u4e2d\u6307\u5b9a\u8f93\u5165\u6570\u636e":139,"\u53ea\u7559\u4e0b\u6838\u5fc3\u8ba1\u7b97\u5c42":116,"\u53ea\u80fd\u5728recurrent_group\u4e2d\u4f5c\u4e3astep":108,"\u53ea\u80fd\u6309\u884c\u8ba1\u7b97":108,"\u53ea\u80fd\u6d4b\u8bd5\u5355\u4e2a\u6a21\u578b":131,"\u53ea\u80fd\u8bbf\u95ee\u5b83\u4eec\u7684\u8f93\u51fa\u503c":108,"\u53ea\u80fd\u8c03\u7528paddle\u7684\u52a8\u6001\u5e93":71,"\u53ea\u8981\u4e00\u7cfb\u5217\u7279\u5f81\u6570\u636e\u4e2d\u7684":137,"\u53ea\u8981\u51fa\u73b0\u6d6e\u70b9\u6570\u5f02\u5e38":107,"\u53ea\u8bfbmemory\u8f93\u5165":139,"\u53ea\u9488\u5bf9\u5185\u5b58":107,"\u53ea\u9700\u4e2d\u65ad":119,"\u53ea\u9700\u5728\u7f16\u8bd1\u65f6\u9700\u914d\u5236\u4e0b\u9762\u8fd9\u4e9b\u7f16\u8bd1\u9009\u9879":113,"\u53ea\u9700\u7528\u60a8\u5b9a\u4e49\u7684\u76ee\u5f55\u4fee\u6539":119,"\u53ea\u9700\u8981":140,"\u53ea\u9700\u8981\u6062\u590d\u8fd9\u53f0\u8282\u70b9":37,"\u53ea\u9700\u8981\u8bbe\u7f6e\u884c\u504f\u79fb":115,"\u53ea\u9700\u8981\u94fe\u63a5":113,"\u53ea\u9700\u8fdb\u884c\u524d\u5411\u8ba1\u7b97\u800c\u65e0\u9700\u8c03\u7528\u53cd\u5411\u8ba1\u7b97":116,"\u53ef\u4ee5":[28,88,98,103],"\u53ef\u4ee5\u4ece":28,"\u53ef\u4ee5\u4ece\u6211\u4eec\u7684ci\u7cfb\u7edf\u4e2d\u4e0b\u8f7d\u6700\u65b0\u7684whl\u5b89\u88c5\u5305\u548cc":30,"\u53ef\u4ee5\u4f30\u8ba1\u51fa\u5982\u679c\u6a21\u578b\u91c7\u7528\u4e0d\u53d8\u7684\u8f93\u51fa\u6700\u5c0f\u7684cost0\u662f\u591a\u5c11":109,"\u53ef\u4ee5\u4f7f\u7528":[109,116,120],"\u53ef\u4ee5\u4f7f\u7528\u4e0b\u9762\u7684\u547d\u4ee4\u66f4\u65b0\u60a8\u7684pip":30,"\u53ef\u4ee5\u4f7f\u7528\u5982\u4e0b\u4ee3\u7801":109,"\u53ef\u4ee5\u4f7f\u7528\u76f8\u5e94\u6570\u636e\u7c7b\u578b\u7684":109,"\u53ef\u4ee5\u4f7f\u7528\u8be5\u53c2\u6570":129,"\u53ef\u4ee5\u4f7f\u7528kubernetes\u7684\u547d\u4ee4\u884c\u5de5\u5177\u521b\u5efajob":123,"\u53ef\u4ee5\u5148\u4f7f\u7528":108,"\u53ef\u4ee5\u51cf\u5c0f\u7cfb\u7edf\u590d\u6742\u6027":37,"\u53ef\u4ee5\u51cf\u5c11\u7f13\u5b58\u6c60\u7684\u5927\u5c0f":107,"\u53ef\u4ee5\u521b\u5efa\u4e00\u4e2a":122,"\u53ef\u4ee5\u521b\u5efa\u975e":101,"\u53ef\u4ee5\u52a0\u901fpaddlepaddle\u7684\u8ba1\u7b97":28,"\u53ef\u4ee5\u53c2\u8003":[26,28,98,137,140],"\u53ef\u4ee5\u53c2\u8003\u4e0b\u9762\u7684\u6b65\u9aa4\u6392\u67e5":105,"\u53ef\u4ee5\u53c2\u8003paddlepaddl":110,"\u53ef\u4ee5\u540c\u65f6\u5728cpu":102,"\u53ef\u4ee5\u542b\u6709\u4e00\u6761\u6216\u591a\u6761\u6837\u672c":115,"\u53ef\u4ee5\u544a\u8bc9\u60a8\u67d0\u4e2a\u64cd\u4f5c\u5230\u5e95\u82b1\u4e86\u591a\u957f\u65f6\u95f4":134,"\u53ef\u4ee5\u5728":[27,119],"\u53ef\u4ee5\u5728\u4efb\u4f55\u673a\u5668\u4e0a\u6267\u884c\u7684":71,"\u53ef\u4ee5\u5728\u5171\u4eab\u5b58\u50a8\u4e0a\u67e5\u770b\u8f93\u51fa\u7684\u65e5\u5fd7\u548c\u6a21\u578b":123,"\u53ef\u4ee5\u5728\u6b64\u9875\u9762\u7684":88,"\u53ef\u4ee5\u5728\u8fd9\u4e2a":98,"\u53ef\u4ee5\u5728event_handler\u4e2d":107,"\u53ef\u4ee5\u5b8c\u6210\u795e\u7ecf\u7f51\u7edc\u7684sgd\u65b9\u6cd5\u7684\u8bad\u7ec3":118,"\u53ef\u4ee5\u5b9e\u73b0\u4ecepaddl":102,"\u53ef\u4ee5\u5c06cmake":133,"\u53ef\u4ee5\u5c06memory\u7406\u89e3\u4e3a\u4e00\u4e2a\u65f6\u5ef6\u64cd\u4f5c":139,"\u53ef\u4ee5\u5c06op\u5206\u4e3a\u4e24\u79cd":101,"\u53ef\u4ee5\u5c1d\u8bd5\u4ee5\u4e0b\u7684\u65b9\u6cd5":28,"\u53ef\u4ee5\u5e2e\u60a8\u63d0\u4f9b\u4e00\u4e9b\u5b9a\u4f4d\u6027\u80fd\u74f6\u9888\u7684\u5efa\u8bae":134,"\u53ef\u4ee5\u5e76\u884c\u7f16\u8bd1\u5417":26,"\u53ef\u4ee5\u5feb\u901f\u5728\u672c\u5730\u542f\u52a8\u4e00\u4e2a\u5305\u542b\u4e86paddlepaddle\u5b98\u65b9book\u6559\u7a0b\u7684jupyt":28,"\u53ef\u4ee5\u6267\u884c":[30,104],"\u53ef\u4ee5\u6267\u884c\u4ee5\u4e0b\u547d\u4ee4\u7f16\u8bd1\u751f\u6210\u6587\u6863":103,"\u53ef\u4ee5\u6267\u884cctest\u547d\u4ee4\u5373\u53ef":27,"\u53ef\u4ee5\u628a\u5b83\u60f3\u8c61\u4e3a\u4e00\u4e2a\u7c7b\u4f3c":26,"\u53ef\u4ee5\u628a\u672c\u5730\u7684\u6570\u636e\u4e0a\u4f20\u5230\u5b58\u50a8\u96c6\u7fa4\u4e2d":38,"\u53ef\u4ee5\u6307\u5b9a\u540c\u65f6\u6267\u884cgpu\u4e0a\u7684\u5355\u5143\u6d4b\u8bd5":27,"\u53ef\u4ee5\u6307\u5b9a\u54ea\u4e00\u4e2a\u8f93\u5165\u548c\u8f93\u51fa\u5e8f\u5217\u4fe1\u606f\u4e00\u81f4":137,"\u53ef\u4ee5\u6307\u5b9a\u5f00\u542f\u81ea\u52a8\u68c0\u6d4bsm\u67b6\u6784":27,"\u53ef\u4ee5\u6309\u7167\u4e0b\u9762\u7684\u65b9\u6cd5":27,"\u53ef\u4ee5\u662f\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":[136,139],"\u53ef\u4ee5\u662f\u4e00\u4e2a\u975e\u5e8f\u5217":139,"\u53ef\u4ee5\u662f\u4ece\u5206\u5e03\u5f0f\u5b58\u50a8\u6302\u8f7d\u8fc7\u6765\u7684":117,"\u53ef\u4ee5\u662f\u4ee5\u4e0b\u51e0\u79cd":100,"\u53ef\u4ee5\u662f\u6574\u578b":115,"\u53ef\u4ee5\u663e\u793a\u5730\u6307\u5b9a\u4e00\u4e2alayer\u7684\u8f93\u51fa\u7528\u4e8e\u521d\u59cb\u5316memori":139,"\u53ef\u4ee5\u66f4\u6709\u6b21\u5e8f\u7684\u5b8c\u6210\u6027\u80fd\u7684\u4f18\u5316":133,"\u53ef\u4ee5\u6709\u4ee5\u4e0b\u4e24\u79cd":139,"\u53ef\u4ee5\u6709\u6548\u51cf\u5c0f\u7f51\u7edc\u7684\u963b\u585e":129,"\u53ef\u4ee5\u6709\u6548\u7684\u907f\u514dparamet":37,"\u53ef\u4ee5\u67e5\u770b":123,"\u53ef\u4ee5\u67e5\u770b\u6b64pod\u8fd0\u884c\u7684\u5bbf\u4e3b\u673a":122,"\u53ef\u4ee5\u6d4b\u8bd5\u591a\u4e2a\u6a21\u578b":131,"\u53ef\u4ee5\u7528":[26,54],"\u53ef\u4ee5\u7528\u4ee5\u4e0b\u6307\u4ee4":38,"\u53ef\u4ee5\u7528\u5982\u4e0b\u547d\u4ee4":98,"\u53ef\u4ee5\u7528\u6765\u8ba1\u7b97cpu\u51fd\u6570\u6216cuda\u5185\u6838\u7684\u65f6\u95f4\u6d88\u8017":134,"\u53ef\u4ee5\u76f4\u63a5\u8fd0\u884c":116,"\u53ef\u4ee5\u770b\u4f5c\u662f\u4e00\u4e2a\u975e\u5e8f\u5217\u8f93\u5165":136,"\u53ef\u4ee5\u770b\u51fa":118,"\u53ef\u4ee5\u770b\u5230\u6700\u8017\u65f6\u7684\u51fd\u6570\u662fc":133,"\u53ef\u4ee5\u7cbe\u786e\u8bf4\u660e\u4e00\u4e2a\u957f\u8017\u65f6\u64cd\u4f5c\u7684\u5177\u4f53\u539f\u56e0":134,"\u53ef\u4ee5\u7ee7\u7eed\u5728\u81ea\u5df1\u7684\u529f\u80fd\u5206\u652f\u63d0\u4ea4\u4ee3\u7801":88,"\u53ef\u4ee5\u8003\u8651\u4f7f\u7528\u4e00\u4e9b\u4f18\u5316\u7b97\u6cd5":107,"\u53ef\u4ee5\u8054\u7cfbop":105,"\u53ef\u4ee5\u8054\u7cfbop\u662f\u5426\u53ef\u4ee5\u66f4\u6362\u96c6\u7fa4\u6216\u5347\u7ea7\u5f53\u524d\u96c6\u7fa4":105,"\u53ef\u4ee5\u83b7\u53d6\u7f51\u7edc\u4e2d\u5b9a\u4e49\u7684\u4efb\u610f\u591a\u4e2a":116,"\u53ef\u4ee5\u88c5\u7684\u662f":26,"\u53ef\u4ee5\u8bbe\u7f6e":[133,142,143,144],"\u53ef\u4ee5\u8bbf\u95ee\u7531recurr":108,"\u53ef\u4ee5\u8c03\u7528resize\u63a5\u53e3\u8fdb\u884c\u6539\u53d8":102,"\u53ef\u4ee5\u8f7b\u677e\u5730\u5b8c\u6210\u795e\u7ecf\u7f51\u7edc\u914d\u7f6e":110,"\u53ef\u4ee5\u8fd0\u884c":117,"\u53ef\u4ee5\u9009\u5728\u5728\u5f53\u524d\u673a\u5668\u5b89\u88c5\u4e5f\u53ef\u4ee5\u62f7\u8d1d\u5230\u76ee\u6807\u673a\u5668\u5b89\u88c5":27,"\u53ef\u4ee5\u9009\u62e9\u662f\u5426\u4f7f\u7528\u53c2\u6570":131,"\u53ef\u4ee5\u901a\u8fc7":98,"\u53ef\u4ee5\u901a\u8fc7\u4fee\u6539\u8fd9\u4e24\u4e2a\u51fd\u6570\u6765\u5b9e\u73b0\u590d\u6742\u7684\u7f51\u7edc\u914d\u7f6e":140,"\u53ef\u4ee5\u901a\u8fc7\u5728":107,"\u53ef\u4ee5\u901a\u8fc7\u7f51\u9875\u6d4f\u89c8":28,"\u53ef\u4ee5\u901a\u8fc7\u8fd9\u4e2a\u8f93\u51fa\u6765\u5b8c\u6210\u81ea\u5b9a\u4e49\u7684\u8bc4\u4f30\u6307\u6807\u8ba1\u7b97\u7b49\u529f\u80fd":107,"\u53ef\u4ee5\u901a\u8fc7\u9636\u6bb5\u6027\u7684\u4fdd\u5b58\u6bcf\u4e2aparamet":37,"\u53ef\u4ee5\u91c7\u53d6\u4e0b\u9762\u51e0\u70b9\u63aa\u65bd":133,"\u53ef\u4ee5\u91cd\u547d\u540d\u8fd9\u4e2awhl\u5305\u4e3a":[30,104],"\u53ef\u53c2\u8003":116,"\u53ef\u5728":113,"\u53ef\u5728\u547d\u4ee4\u884c\u6267\u884c":143,"\u53ef\u663e\u5f0f\u6307\u5b9a\u4e3a":143,"\u53ef\u7528\u4e8e\u5728\u7f51\u7edc\u914d\u7f6e\u4e2d\u89e3\u6790\u8fd9\u4e9b\u53c2\u6570":131,"\u53ef\u76f4\u63a5\u8fd0\u884c":116,"\u53ef\u80fd\u4f1a\u5bfc\u81f4\u51fa\u9519":123,"\u53ef\u80fd\u4f1a\u9020\u6210\u7f51\u7edc\u62e5\u585e":37,"\u53ef\u80fd\u7684\u4ee3\u7801\u4e3a":107,"\u53ef\u80fd\u7684\u539f\u56e0\u662f":109,"\u53ef\u80fd\u7684\u60c5\u51b5\u4e0b":134,"\u53ef\u80fd\u9700\u8981\u6ce8\u610f\u7ed9\u8fd9\u4e2a\u865a\u62df\u673a\u591a\u5206\u914d\u4e00\u4e9b":26,"\u53ef\u89c1\u8be5\u8ba1\u7b97\u7531\u4e24\u4e2a\u8f93\u5165":101,"\u53ef\u8bbe\u7f6e":[142,143],"\u53ef\u8bbe\u7f6e\u4e3a":143,"\u53ef\u8bbe\u7f6e\u7684\u76ee\u6807\u67b6\u6784\u5982\u4e0b\u8868\u6240\u793a":143,"\u53ef\u9009":[27,100,116,117],"\u53ef\u9009\u7684\u4e0d\u540c\u7f16\u8bd1\u73af\u5883docker\u955c\u50cf":27,"\u53ef\u9009\u914d\u7f6e\u9009\u9879":113,"\u53ef\u914d\u7f6e\u4e3a":113,"\u53ef\u91c7\u7528\u7b2c\u4e8c\u79cd\u65b9\u5f0f":108,"\u53f3\u4fa7\u7684":88,"\u5404\u6b21\u524d\u5411\u4e4b\u95f4\u4e5f\u90fd\u4f7f\u7528\u4e86\u76f8\u540c\u7684\u6743\u91cd":67,"\u5404\u9879\u66f4\u52a0\u5177\u4f53\u7684\u5355\u5143\u6d4b\u8bd5\u5728":101,"\u5408\u5e76\u5165\u4e00\u4e2a\u6587\u4ef6":116,"\u5408\u5e76\u6a21\u578b\u6587\u4ef6":116,"\u540c\u4e00\u6b21\u524d\u5411":67,"\u540c\u65f6":[67,68,104,107,134],"\u540c\u65f6\u4e5f\u4f1a\u8bfb\u53d6\u76f8\u5173\u8def\u5f84\u53d8\u91cf\u6765\u8fdb\u884c\u641c\u7d22":27,"\u540c\u65f6\u4e5f\u53ef\u4ee5\u52a0\u901f\u5f00\u59cb\u8bad\u7ec3\u524d\u6570\u636e\u8f7d\u5165\u7684\u8fc7\u7a0b":107,"\u540c\u65f6\u4e5f\u53ef\u4ee5\u901a\u8fc7":98,"\u540c\u65f6\u4e5f\u80fd\u591f\u5f15\u5165\u66f4\u52a0\u590d\u6742\u7684\u8bb0\u5fc6\u673a\u5236":139,"\u540c\u65f6\u4f1a\u5f00\u542fintel":68,"\u540c\u65f6\u5176\u5185\u90e8\u5b9e\u73b0\u53ef\u4ee5\u907f\u514d\u7eafcpu\u7248\u672cpaddlepaddle\u5728\u6267\u884c\u672c\u8bed\u53e5\u65f6\u53d1\u751f\u5d29\u6e83":134,"\u540c\u65f6\u518d\u5c06":88,"\u540c\u65f6\u53c8\u5c3d\u53ef\u80fd\u5c11\u7684\u727a\u7272mkl":68,"\u540c\u65f6\u5728\u5185\u5b58\u91cc\u76f4\u63a5\u968f\u5373\u9009\u53d6\u6570\u636e\u6765\u505ashuffl":107,"\u540c\u65f6\u5c06\u53c2\u6570\u521d\u59cb\u5316\u4e3a":109,"\u540c\u65f6\u628a\u5f53\u524d\u76ee\u5f55":26,"\u540c\u65f6\u63d0\u8d77":88,"\u540c\u65f6\u6570\u636e\u683c\u5f0f\u5c31\u662f":68,"\u540c\u65f6\u7528\u6237\u9700\u8981\u5728\u7f51\u7edc\u914d\u7f6e\u4e2d\u6307\u5b9a":131,"\u540c\u65f6\u8bbe\u7f6e\u5185\u5b58\u7f13\u5b58\u529f\u80fd":107,"\u540c\u65f6\u8f93\u51fa\u5e8f\u5217\u5c42\u548c\u975e\u5e8f\u5217\u5c42":107,"\u540c\u6837":110,"\u540c\u6837\u4e5f\u53ef\u4ee5\u5728\u6d4b\u8bd5\u6a21\u5f0f\u4e2d\u6307\u5b9a\u6a21\u578b\u8def\u5f84":129,"\u540c\u6837\u53ef\u4ee5\u6269\u5c55\u5230\u53cc\u5c42\u5e8f\u5217\u7684\u5904\u7406\u4e0a":139,"\u540c\u6837\u53ef\u83b7\u53d6\u5230\u8f93\u5165\u8f93\u51fa\u548c\u5c5e\u6027\u53c2\u6570":101,"\u540c\u6b65\u6267\u884c\u64cd\u4f5c\u7684\u7ebf\u7a0b\u6570":129,"\u540c\u7406":101,"\u540d\u5b57\u4fee\u9970":71,"\u540e":[27,98,109,123,142,143,144],"\u540e\u5411":67,"\u540e\u5411\u4f20\u64ad":100,"\u540e\u5411\u4f20\u64ad\u7ed9\u5b9a\u8f93\u51fa\u7684\u68af\u5ea6":100,"\u540e\u5411\u65f6\u590d\u7528\u5df2\u7ecf\u8f6c\u6362\u8fc7\u7684\u6743\u91cd":67,"\u540e\u7f00\u4e3a":117,"\u540e\u8005\u5728\u6fc0\u6d3b\u51fd\u6570\u53cd\u5411\u8ba1\u7b97\u65f6\u88ab\u8c03\u7528":107,"\u540e\u8005\u622a\u65ad\u56de\u4f20\u7ed9\u524d\u5c42\u7684\u68af\u5ea6":107,"\u540e\u8005\u7528\u4e8e\u68c0\u67e5\u53c2\u6570\u5c5e\u6027\u7684\u5408\u6cd5\u6027":101,"\u540e\u8005\u7ee7\u627f\u81ea":101,"\u540e\u9988":118,"\u5411\u6307\u5b9a\u7684\u76ee\u5f55\u4e2d\u4e00\u4e2a\u65b0\u7684\u6587\u4ef6":37,"\u5411\u91cf":115,"\u5411\u91cfenable_parallel_vector":128,"\u5411paddlepaddle\u7684\u4e3b\u7248\u672c\u5e93\u63d0\u4ea4":88,"\u5417":26,"\u5426\u5219":[101,142,144],"\u5426\u5219\u4f1a\u628a":98,"\u5426\u5219\u4f7f\u7528\u591a\u673a\u8bad\u7ec3":129,"\u5426\u5219\u4f7f\u7528cpu\u6a21\u5f0f":129,"\u5426\u5219\u4f7f\u7528gpu":131,"\u5426\u5219\u5b83\u4ee5\u4e00\u4e2a\u5e8f\u5217\u8f93\u5165":140,"\u5426\u5219\u5f97\u628apaddle\u9759\u6001\u5e93\u94fe\u63a5\u5230\u89e3\u91ca\u5668\u91cc":71,"\u5426\u5219\u9891\u7e41\u7684\u591a\u8282\u70b9\u5de5\u4f5c\u7a7a\u95f4\u90e8\u7f72\u53ef\u80fd\u4f1a\u5f88\u9ebb\u70e6":119,"\u542b\u4e49":133,"\u542b\u6709\u5e8f\u5217\u4fe1\u606f\u548c\u5b50\u5e8f\u5217\u4fe1\u606f\u7684\u7a20\u5bc6\u5411\u91cf":100,"\u542b\u6709\u5e8f\u5217\u4fe1\u606f\u7684\u6574\u6570":100,"\u542b\u6709\u5e8f\u5217\u4fe1\u606f\u7684\u7a20\u5bc6\u5411\u91cf":100,"\u542f\u52a8\u4e00\u4e2a\u65b0\u7684\u7ebf\u7a0b\u5f00\u59cb\u4fdd\u5b58\u68c0\u67e5\u70b9":37,"\u542f\u52a8\u4e00\u4e2a\u6d4b\u8bd5\u96c6\u7fa4":119,"\u542f\u52a8\u53c2\u6570\u8bf4\u660e":118,"\u542f\u52a8\u5bb9\u5668\u5f00\u59cb\u8bad\u7ec3":123,"\u542f\u52a8\u5e76\u884c\u5411\u91cf\u7684\u9608\u503c":129,"\u542f\u52a8\u5feb\u901f\u5e94\u7b54":129,"\u542f\u52a8\u8bad\u7ec3\u4efb\u52a1":124,"\u542f\u7528\u68af\u5ea6\u53c2\u6570\u7684\u9608\u503c":129,"\u547d\u4ee4\u4e3a":[104,122],"\u547d\u4ee4\u521b\u5efa\u65b0\u955c\u50cf":122,"\u547d\u4ee4\u5220\u9664":[142,143,144],"\u547d\u4ee4\u53ef\u4ee5\u8bbe\u7f6e":27,"\u547d\u4ee4\u65f6":142,"\u547d\u4ee4\u6709\u65f6\u5019\u4f1a\u4ea7\u751f\u4e00\u4e9b\u4e2d\u95f4\u7ed3\u679c":26,"\u547d\u4ee4\u770b\u5230\u505c\u6b62\u540e\u4f46\u662f\u6ca1\u6709\u5220\u9664\u7684":26,"\u547d\u4ee4\u7f16\u8bd1\u6e90\u7801\u5373\u53ef":26,"\u547d\u4ee4\u884c\u4e2d\u7684":133,"\u547d\u4ee4\u884c\u53c2\u6570\u8bbe\u7f6e":132,"\u547d\u4ee4\u8bbe\u7f6e\u8be5\u7c7b\u7f16\u8bd1\u9009\u9879":27,"\u547d\u4ee4\u9009\u9879\u5e76\u4e14":119,"\u547d\u4ee4\u91cc\u90fd\u7528\u4e86":26,"\u547d\u540d\u4e3a":98,"\u547d\u540d\u89c4\u8303":101,"\u547d\u540d\u8bf7\u9075\u5b88":101,"\u548c":[26,27,38,67,68,71,72,88,98,100,101,102,103,107,108,109,113,115,117,118,119,131,133,134,137,140,142,144],"\u548c\u4e00\u4e2a\u5df2\u7ecf\u5206\u8bcd\u540e\u7684\u53e5\u5b50":137,"\u548c\u4e09\u79cd\u5e8f\u5217\u6a21\u5f0f":110,"\u548c\u4e0b\u9762\u5c06\u8981\u4ecb\u7ecd\u7684\u6ce8\u518c\u51fd\u6570\u4e00\u8d77\u653e\u5728":101,"\u548c\u4e2d\u6587\u6587\u6863":103,"\u548c\u4e4b\u524d\u51cf\u5c0f\u901a\u8fc7\u51cf\u5c0f\u7f13\u5b58\u6c60\u6765\u51cf\u5c0f\u5185\u5b58\u5360\u7528\u7684\u539f\u7406\u4e00\u81f4":107,"\u548c\u504f\u7f6e\u5411\u91cf":100,"\u548c\u5185\u5b58":26,"\u548c\u5217\u53f7":115,"\u548c\u53cc\u5c42\u5e8f\u5217\u542b\u6709subseq":136,"\u548c\u5bf9\u5e94\u884c\u7684\u4ee3\u7801":133,"\u548c\u5e8f\u5217\u4e2d\u542b\u6709\u5143\u7d20\u7684\u6570\u76ee\u540c":136,"\u548c\u5f02\u6b65\u968f\u673a\u68af\u5ea6\u4e0b\u964d":118,"\u548c\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u7684\u8f93\u5165":140,"\u548c\u64cd\u4f5c\u7cfb\u7edf\u4e0a\u76f4\u63a5\u8fd0\u884c\u7684":26,"\u548c\u672a\u6765\u53ef\u80fd\u8fd8\u4f1a\u7528\u5230":68,"\u548c\u793a\u4f8b2\u4e2d\u7684\u914d\u7f6e\u7c7b\u4f3c":137,"\u548c\u79bb\u7ebf\u6570\u636e\u7684\u65b9\u5f0f":38,"\u548c\u90e8\u5206layer":139,"\u548cpool":136,"\u548cpserver\u4e4b\u95f4\u7528\u4e8e\u7a00\u758f\u7c7b\u578b\u53c2\u6570\u901a\u4fe1\u7684\u7aef\u53e3\u4e2a\u6570":117,"\u54ea\u4e2atrainer\u5148\u5b8c\u6210block\u7684\u8bad\u7ec3":37,"\u54ea\u4e9b\u4e0d\u662f":137,"\u56db\u79cd\u6570\u636e\u7c7b\u578b":110,"\u56e0\u4e3a\u5168\u8fde\u63a5\u5c42\u7684\u6fc0\u6d3b\u53ef\u4ee5\u662fsoftmax":100,"\u56e0\u4e3a\u53c2\u6570":131,"\u56e0\u4e3a\u5b83\u4eec\u7684\u8ba1\u7b97\u6548\u7387\u6bd4":140,"\u56e0\u4e3a\u5b83\u6bd4":140,"\u56e0\u4e3a\u5b98\u65b9\u955c\u50cf":123,"\u56e0\u4e3a\u6211\u4eec\u4f1a\u628a\u6240\u6709\u7f16\u8bd1\u5de5\u5177\u90fd\u5b89\u88c5\u8fdb\u4e00\u4e2a":26,"\u56e0\u4e3a\u6e90\u7801\u5c31\u5728\u672c\u673a\u4e0a":26,"\u56e0\u4e3a\u8fd9\u4e2a\u5de5\u5177\u5177\u6709web\u670d\u52a1\u754c\u9762":133,"\u56e0\u4e3a\u8fd9\u6837\u505a\u4e5f\u6ca1\u6cd5\u4fdd\u8bc1\u6d88\u9664\u968f\u673a\u6027":37,"\u56e0\u4e3ac":133,"\u56e0\u4e3apython\u7684\u641c\u7d22\u8def\u5f84\u662f\u4f18\u5148\u5df2\u7ecf\u5b89\u88c5\u7684python\u5305":104,"\u56e0\u4e3aswig\u5728\u7b2c\u4e09\u65b9\u8bed\u8a00\u4e2d\u66b4\u9732\u7684\u51fd\u6570\u540d":71,"\u56e0\u6b64":[67,100,137,139,142],"\u56e0\u6b64\u53cc\u5c42\u5e8f\u5217\u7684\u914d\u7f6e\u4e2d":137,"\u56e0\u6b64\u53ef\u80fd\u6d4b\u8bd5\u4e0d\u591f\u5b8c\u5907":102,"\u56e0\u6b64\u5728\u8f6c\u6362\u65f6\u9700\u8981\u663e\u793a\u7684\u6307\u5b9a":102,"\u56e0\u6b64\u5b83\u662finteger_value_sub_sequ":137,"\u56e0\u6b64\u5f53":142,"\u56e0\u6b64\u6211\u4eec\u91c7\u7528\u8f93\u51fa\u7684\u52a0\u6743\u548c":100,"\u56e0\u6b64\u7528\u6237\u5e76\u4e0d\u9700\u8981\u5173\u5fc3\u5b83\u4eec":128,"\u56e0\u6b64\u9519\u8bef\u7684\u4f7f\u7528\u4e8c\u8fdb\u5236\u53d1\u884c\u7248\u53ef\u80fd\u4f1a\u5bfc\u81f4\u8fd9\u79cd\u9519\u8bef":104,"\u56fd\u5185\u7528\u6237\u53ef\u4ee5\u4f7f\u7528\u4e0b\u9762\u7684\u955c\u50cf\u6e90\u6765\u52a0\u901f\u8bbf\u95ee":28,"\u56fe1":[115,116],"\u56fe2":115,"\u56fe\u50cf\u5206\u7c7b":88,"\u56fe\u8868":28,"\u5728":[26,67,68,72,88,98,101,115,116,117,133,136,140,143],"\u5728\u4e00\u4e2a\u4e0d\u53ef\u4e2d\u65ad\u5e76\u7f3a\u5c11\u5907\u4efd\u7684\u8bad\u7ec3\u4efb\u52a1\u4e2d":37,"\u5728\u4e00\u4e2a\u529f\u80fd\u9f50\u5168\u7684kubernetes\u673a\u7fa4\u91cc":122,"\u5728\u4e00\u4e2a\u53c2\u6570\u7684\u68af\u5ea6\u88ab\u66f4\u65b0\u540e":100,"\u5728\u4e00\u4e9b\u5206\u5e03\u5f0f\u7cfb\u7edf\u4e2d":117,"\u5728\u4e00\u6b21\u8bad\u7ec3\u4e2d":133,"\u5728\u4e00\u8f6e\u4e2d\u6bcfsave":129,"\u5728\u4e0a\u56fe\u4e2d\u663e\u793a\u4e86\u5728\u4e00\u4e2a\u5b9e\u9645\u751f\u4ea7\u73af\u5883\u4e2d\u7684\u5e94\u7528":38,"\u5728\u4e0a\u9762\u4ee3\u7801\u4e2d":137,"\u5728\u4e0a\u9762\u7684\u4ee3\u7801\u4e2d":101,"\u5728\u4e0b\u4e00\u7bc7\u4e2d":122,"\u5728\u4e0d\u540c\u96c6\u7fa4\u4e2d\u8fd0\u884c":118,"\u5728\u4e4b\u540e\u7684":107,"\u5728\u4e86\u89e3docker\u7684\u57fa\u672c\u4f7f\u7528\u65b9\u6cd5\u4e4b\u540e":28,"\u5728\u4efb\u610f\u65f6\u95f4\u67d0\u4e00\u53f0\u53c2\u6570\u670d\u52a1\u5668\u4e0a\u4fdd\u5b58\u7684\u53c2\u6570\u53ef\u80fd\u6bd4\u53e6\u4e00\u53f0\u8981\u66f4\u65b0":118,"\u5728\u4f7f\u7528\u4e0d\u540c\u7684\u5206\u5e03\u5f0f\u8ba1\u7b97\u5e73\u53f0\u65f6":117,"\u5728\u4f7f\u7528\u5206\u5e03\u5f0f\u8ba1\u7b97\u5e73\u53f0\u8fdb\u884c\u8bad\u7ec3\u65f6":120,"\u5728\u4f7f\u7528\u540c\u6b65sgd\u8bad\u7ec3\u795e\u7ecf\u7f51\u7edc\u65f6":118,"\u5728\u4f7f\u7528\u65f6":108,"\u5728\u4f7f\u7528\u8be5\u6587\u6863\u4e4b\u524d":110,"\u5728\u4f7f\u7528c":113,"\u5728\u4f7f\u7528paddlepaddl":113,"\u5728\u4f7f\u7528twine\u4e0a\u4f20\u4e4b\u524d":88,"\u5728\u5168\u8fde\u63a5\u5c42\u4e2d":100,"\u5728\u5177\u4f53\u7684\u8ba1\u7b97\u4e2d":102,"\u5728\u51c6\u5907\u53d1\u8d77":98,"\u5728\u51fa\u73b0\u5355\u70b9\u6545\u969c\u65f6":37,"\u5728\u51fd\u6570":123,"\u5728\u5206\u5e03\u5f0f\u73af\u5883\u4e2d\u6d4b\u8bd5":129,"\u5728\u5206\u5e03\u5f0f\u8bad\u7ec3\u4e2d":129,"\u5728\u521b\u5efaparameters\u540e":109,"\u5728\u5355\u5c42\u6570\u636e\u7684\u57fa\u7840\u4e0a":137,"\u5728\u53c2\u6570\u670d\u52a1\u5668\u4e0a\u52a0\u8f7d\u548c\u4fdd\u5b58\u53c2\u6570":129,"\u5728\u53c2\u6570\u670d\u52a1\u5668\u7ec8\u7aef\u6bcflog":129,"\u5728\u53cc\u5c42rnn\u4e2d\u7684\u7ecf\u5178\u60c5\u51b5\u662f\u5c06\u5185\u5c42\u7684\u6bcf\u4e00\u4e2a\u65f6\u95f4\u5e8f\u5217\u6570\u636e":137,"\u5728\u53cd\u5411\u4f20\u9012\u7684\u65f6\u5019":107,"\u5728\u53d8\u6362\u65f6\u9700\u8981\u5c06\u8f93\u5165\u5e8f\u5217\u4f20\u5165":137,"\u5728\u542f\u52a8job\u4e4b\u524d":123,"\u5728\u547d\u4ee4\u884c\u663e\u793a\u5206\u6790\u7ed3\u679c":133,"\u5728\u56de\u590d\u8bc4\u5ba1\u4eba\u610f\u89c1\u65f6":98,"\u5728\u56fe\u50cf\u4efb\u52a1\u4e2d":108,"\u5728\u591acpu\u8bad\u7ec3\u65f6\u5171\u4eab\u8be5\u53c2\u6570":129,"\u5728\u5b8c\u6210\u4e00\u5b9a\u91cf\u6570\u636e\u7684\u8bad\u7ec3\u540e":118,"\u5728\u5b8c\u6210\u795e\u7ecf\u7f51\u7edc\u7684\u642d\u5efa\u4e4b\u540e":110,"\u5728\u5b9a\u4e49\u8f93\u5165layer\u4e4b\u540e":110,"\u5728\u5b9e\u73b0\u6bcf\u4e2a\u5b50\u7c7b\u7684\u65f6\u5019\u5c31\u4e0d\u9700\u8981\u5173\u5fc3\u5206\u652f\u7684\u4e8b\u60c5\u4e86":68,"\u5728\u5b9e\u73b0\u8fc7\u7a0b\u4e2d":72,"\u5728\u5b9e\u9645\u5e94\u7528\u4e2d":108,"\u5728\u5bb9\u5668\u4e2d\u7f16\u8f91\u4ee3\u7801":28,"\u5728\u5bb9\u5668\u521b\u5efa\u540e":123,"\u5728\u5bf9\u5bb9\u5668\u7684\u63cf\u8ff0":123,"\u5728\u5bf9\u5e94\u7684":67,"\u5728\u5c42\u4e2d\u6307\u5b9a":131,"\u5728\u5c42\u521d\u59cb\u5316\u7684\u65f6\u5019":67,"\u5728\u5e8f\u5217\u751f\u6210\u4efb\u52a1\u4e2d":139,"\u5728\u5f00\u59cb\u8bad\u7ec3\u4e4b\u524d":38,"\u5728\u5f02\u6784\u96c6\u7fa4\u4e2d":37,"\u5728\u5f02\u6b65sgd\u4e2d":118,"\u5728\u5f15\u5165\u5176\u4ed6\u7c7b\u578b\u7684\u5934\u6587\u4ef6\u65f6":72,"\u5728\u5f53\u524d":107,"\u5728\u5f53\u524d\u7684\u5b9e\u73b0\u65b9\u5f0f\u4e0b":100,"\u5728\u5f97\u5230":123,"\u5728\u5feb\u7167\u5199\u5165\u5b8c\u6210\u540e":37,"\u5728\u60a8\u7684\u5b9e\u9645\u73af\u5883\u4e2d":37,"\u5728\u6211\u4eec\u7684\u4f8b\u5b50\u4e2d":140,"\u5728\u6267\u884c\u65f6":102,"\u5728\u63d0\u4ea4":98,"\u5728\u642d\u5efa\u795e\u7ecf\u7f51\u7edc\u7684\u8fc7\u7a0b\u4e2d":110,"\u5728\u65e0\u7279\u6b8a\u9700\u6c42\u60c5\u51b5\u4e0b":113,"\u5728\u6709\u666e\u901a\u7684cpu":68,"\u5728\u672c\u4f8b\u4e2d":[98,131,137],"\u5728\u672c\u6559\u7a0b\u4e2d":140,"\u5728\u672c\u6587\u6863\u4e2d":54,"\u5728\u672c\u793a\u4f8b\u4e2d":137,"\u5728\u672c\u8282\u4e2d":140,"\u5728\u673a\u7fa4\u4e0a\u8fd0\u884c\u8f6c\u6362\u7a0b\u5e8f":38,"\u5728\u67d0\u4e9b\u60c5\u51b5\u4e0b":107,"\u5728\u6811\u7684\u6bcf\u4e00\u5c42\u4e0a":129,"\u5728\u6837\u4f8b\u4e2d":72,"\u5728\u6b64":[128,131],"\u5728\u6bcf\u4e2a\u65f6\u95f4\u6b65\u4e2d":140,"\u5728\u6bcf\u4e2a\u65f6\u95f4\u6b65\u7684\u5b50\u5e8f\u5217\u957f\u5ea6\u53ef\u4ee5\u4e0d\u76f8\u7b49":137,"\u5728\u6bcf\u4e2a\u65f6\u95f4\u6b65\u957f":140,"\u5728\u6bcf\u4e2apod\u4e0a\u90fd\u901a\u8fc7volume\u65b9\u5f0f\u6302\u8f7d\u5206\u5e03\u5f0f\u6587\u4ef6\u7cfb\u7edf\u7684\u4e00\u4e2a\u76ee\u5f55\u7528\u4e8e\u4fdd\u5b58\u8bad\u7ec3\u6570\u636e\u548c\u8f93\u51fa\u7ed3\u679c":123,"\u5728\u6d4b\u8bd5\u9636\u6bb5":129,"\u5728\u6e90\u7801\u76ee\u5f55\u6811\u7684\u6839\u76ee\u5f55\u4e2d\u8fd0\u884c":98,"\u5728\u751f\u6210\u65f6":140,"\u5728\u7528\u6237\u4f7f\u7528c":72,"\u5728\u76f8\u5e94\u7684\u4f18\u5316\u7b97\u6cd5\u91cc\u8bbe\u7f6elearning_rate_schedule\u53ca\u76f8\u5173\u53c2\u6570":109,"\u5728\u76f8\u5e94layer\u7684":108,"\u5728\u795e\u7ecf\u7f51\u7edc\u4e2d\u7b49\u4e8e\u4e00\u6b21\u9884\u6d4b\u5904\u7406\u7684\u6837\u672c\u6570":115,"\u5728\u7a0b\u5e8f\u5b9e\u73b0\u4e2d\u90fd\u4f1a\u8f6c\u5316\u4e3a\u4e8c\u7ef4\u77e9\u9635":115,"\u5728\u7b2c\u4e8c\u4e2atab":88,"\u5728\u7ebf\u4e0a\u7cfb\u7edf\u4e2d":117,"\u5728\u7ebf\u6a21\u578b\u9884\u6d4b\u670d\u52a1":38,"\u5728\u7ec4\u5408\u65f6":110,"\u5728\u7ec4\u7ec7\u795e\u7ecf\u7f51\u7edc\u8f93\u5165":116,"\u5728\u7ec4\u7ec7\u795e\u7ecf\u7f51\u7edc\u8f93\u5165\u65f6":115,"\u5728\u7ec8\u7aef\u6267\u884c":116,"\u5728\u7f16\u8bd1\u5bbf\u4e3b\u673a\u7248protoc\u53ef\u6267\u884c\u6587\u4ef6\u548c\u76ee\u6807\u673a\u7248openblas\u5e93\u65f6\u9700\u8981\u7528\u5230":[142,144],"\u5728\u7f51\u7edc\u914d\u7f6e\u4e2d":100,"\u5728\u81ea\u7136\u8bed\u8a00\u5904\u7406\u4efb\u52a1\u4e2d":136,"\u5728\u8bad\u7ec3\u4e2d":140,"\u5728\u8bad\u7ec3\u4e4b\u524d":123,"\u5728\u8bad\u7ec3\u65f6":122,"\u5728\u8bad\u7ec3\u7ed3\u675f\u7684\u65f6\u5019\u518d\u4fdd\u5b58\u4e3apaddlepaddle\u7684\u683c\u5f0f":68,"\u5728\u8bad\u7ec3\u8fc7\u7a0b\u4e2d":123,"\u5728\u8bad\u7ec3\u8fc7\u7a0b\u4e2d\u6bcfshow":129,"\u5728\u8bad\u7ec3\u8fc7\u7a0b\u4e2d\u83b7\u5f97\u53c2\u6570\u7684\u6743\u91cd\u548c\u68af\u5ea6":107,"\u5728\u8bad\u7ec3\u8fc7\u7a0b\u4e2d\u83b7\u5f97\u67d0\u4e00\u4e2alayer\u7684output":107,"\u5728\u8bbe\u7f6e":[142,143,144],"\u5728\u8bc4\u5ba1\u8fc7\u7a0b\u4e2d":88,"\u5728\u8be5\u793a\u4f8b\u4e2d":109,"\u5728\u8be5\u914d\u7f6e\u76847":137,"\u5728\u8c03\u7528":116,"\u5728\u8c03\u7528c":116,"\u5728\u8f6f\u4ef6\u5de5\u7a0b\u7684\u8303\u7574\u91cc":134,"\u5728\u8f93\u51fa\u7684\u8fc7\u7a0b\u4e2d":139,"\u5728\u8fd0\u884c\u5b8c\u6027\u80fd\u5206\u6790\u540e":133,"\u5728\u8fd0\u884c\u65f6\u5c06\u795e\u7ecf\u7f51\u7edc\u7684\u591a\u4e2a\u53ef\u5b66\u4e60\u53c2\u6570\u653e\u5728\u540c\u4e00\u4e2a\u76ee\u5f55\u4e2d":116,"\u5728\u8fd0\u884c\u795e\u7ecf\u7f51\u7edc\u8ba1\u7b97\u56fe\u65f6":102,"\u5728\u8fd9\u4e2a":88,"\u5728\u8fd9\u4e2a\u4f8b\u5b50\u91cc":[100,122],"\u5728\u8fd9\u4e2a\u51fd\u6570\u4e2d":137,"\u5728\u8fd9\u4e2a\u52a8\u6001\u5e93\u4e2d\u4e0d\u5d4c\u5165\u4efb\u4f55\u5176\u4ed6\u8bed\u8a00\u7684\u89e3\u91ca\u5668":71,"\u5728\u8fd9\u4e2a\u6559\u7a0b\u4e2d":134,"\u5728\u8fd9\u4e2a\u6a21\u578b\u4e2d":140,"\u5728\u8fd9\u4e2a\u9636\u6bb5\u7684\u4ee3\u7801\u6b63\u5728\u7ecf\u5386\u56de\u5f52\u6d4b\u8bd5":88,"\u5728\u8fd9\u4e9b\u5934\u6587\u4ef6\u4e2d":72,"\u5728\u8fd9\u4e9b\u6587\u4ef6\u4e2d":72,"\u5728\u8fd9\u4e9blayer\u4e2d":137,"\u5728\u8fd9\u65f6\u771f\u6b63\u7684\u5206\u914d\u5185\u5b58":102,"\u5728\u8fd9\u6bb5\u4ee3\u7801\u4e2d":102,"\u5728\u8fd9\u79cd\u60c5\u51b5\u4e0b":[100,140],"\u5728\u8fd9\u79cd\u7ed3\u6784\u4e2d":139,"\u5728\u8fd9\u7bc7\u6587\u6863\u91cc":122,"\u5728\u8fd9\u7bc7\u6587\u7ae0\u91cc":123,"\u5728\u8fd9\u91cc":139,"\u5728\u8fd9\u91cc\u6211\u4eec\u4f7f\u7528\u5168\u8fde\u63a5\u5c42\u4f5c\u4e3a\u4f8b\u5b50\u6765\u5c55\u793a\u5b9e\u73b0\u65b0\u7f51\u7edc\u5c42\u6240\u9700\u8981\u7684\u56db\u4e2a\u6b65\u9aa4":100,"\u5728\u8fd9\u91cc\u7528eigenvector\u6765\u8868\u793a":102,"\u5728\u8fd9\u91cc\u9700\u8981\u6ce8\u610f\u7684\u662f":102,"\u5728\u8fdb\u884c\u5206\u5e03\u5f0f\u8bad\u7ec3\u65f6":117,"\u5728\u8fdb\u884c\u7f51\u7edc\u914d\u7f6e\u4e4b\u524d":110,"\u5728\u91c7\u7528sgd":109,"\u5728\u91cd\u6784\u524d\u7684paddlepaddle\u4e2d":68,"\u5728\u95ee\u9898\u672c\u8eab\u7684\u8ba1\u7b97\u91cf\u6bd4\u8f83\u5c0f\u7684\u65f6\u5019":67,"\u5728\u96c6\u7fa4\u4e0a\u8bad\u7ec3\u4e00\u4e2a\u7a00\u758f\u6a21\u578b\u9700\u8981\u52a0\u4e0a\u4e0b\u9762\u7684\u53c2\u6570":131,"\u5728\u975e\u5e8f\u5217\u8f93\u5165\u65f6":107,"\u5728android\u5e73\u53f0\u4e0a\u4e0d\u652f\u6301\u901a\u8fc7swig\u8c03\u7528\u6765\u8bad\u7ec3\u6216\u8005\u9884\u6d4b":142,"\u5728android\u5e73\u53f0\u4e0a\u53ea\u652f\u6301\u4f7f\u7528c":142,"\u5728batch":67,"\u5728build\u76ee\u5f55\u4e0b\u6267\u884c":104,"\u5728c":[71,115],"\u5728c\u7684\u5934\u6587\u4ef6":71,"\u5728cmake\u53c2\u6570\u914d\u7f6e\u4e0a":[142,143],"\u5728cmake\u7684\u547d\u4ee4\u884c\u4e2d":27,"\u5728eigen\u4e2d":102,"\u5728ios\u5e73\u53f0\u4e0a\u4e0d\u652f\u6301\u901a\u8fc7swig\u8c03\u7528\u6765\u8bad\u7ec3\u6216\u8005\u9884\u6d4b":143,"\u5728ios\u5e73\u53f0\u4e0a\u53ea\u652f\u6301\u4f7f\u7528c":143,"\u5728main":133,"\u5728openmpi\u96c6\u7fa4\u4e2d\u63d0\u4ea4\u8bad\u7ec3\u4f5c\u4e1a":120,"\u5728packing\u4e0a\u7684\u8017\u65f6":67,"\u5728paddl":123,"\u5728paddle\u4e2d":131,"\u5728paddle\u4e4b\u4e0a\u8fd0\u884c\u7684\u6df1\u5ea6\u5b66\u4e60\u8bad\u7ec3\u8f93\u51fa\u7684\u6a21\u578b\u4f1a\u63d0\u4f9b\u7ed9\u5728\u7ebf\u4eba\u8138\u8bc6\u522b\u7684\u5e94\u7528\u4f7f\u7528":38,"\u5728paddlepaddl":115,"\u5728paddlepaddle\u4e2d":[110,139],"\u5728paddlepaddle\u4e2d\u4f7f\u7528dropout\u6709\u4e24\u79cd\u65b9\u5f0f":108,"\u5728paddlepaddle\u4e2d\u5305\u542b\u4ee5\u4e0b":108,"\u5728paddlepaddle\u5185\u90e8":[115,116],"\u5728paddlepaddle\u7684\u6587\u6863\u4e2d":137,"\u5728paramet":37,"\u5728python\u811a\u672c\u4e2d\u5b9e\u73b0\u4e0e\u524d\u5411operator\u76f8\u540c\u7684\u8ba1\u7b97\u903b\u8f91":101,"\u5728rnn\u7684\u60c5\u51b5\u4e0b":67,"\u5728step\u51fd\u6570\u4e2d\u5b9a\u4e49":139,"\u5728step\u51fd\u6570\u4e2d\u5b9a\u4e49memori":139,"\u5728trainer":131,"\u5728trainer\u4e2d\u53ef\u4ee5\u4f7f\u7528\u4e0b\u9762\u53d6\u6a21\u7684\u65b9\u6cd5\u4e3a\u6bcf\u4e2atrainer\u5206\u914d\u8bad\u7ec3\u6570\u636e\u6587\u4ef6":117,"\u5747\u4f1a\u5b58\u653e\u4e8e":113,"\u5747\u4f1a\u88ab\u5b89\u88c5\u5230includ":72,"\u5747\u5300\u5206\u5e03":109,"\u5747\u5300\u5206\u5e03\u7684\u8303\u56f4\u662f":129,"\u5747\u662f\u5728":72,"\u5747\u6709\u4e09\u4e2a\u5b50\u5e8f\u5217":137,"\u5747\u6709\u4e24\u7ec4\u7279\u5f81":137,"\u57fa\u4e8e\u53cc\u5c42\u5e8f\u5217\u8f93\u5165":139,"\u57fa\u4e8e\u7c98\u6027\u4f1a\u8bdd\u7684\u8d1f\u8f7d\u5747\u8861\u529f\u80fd":54,"\u57fa\u672c\u4f7f\u7528\u6982\u5ff5":[111,116],"\u57fa\u7840\u4e0a":115,"\u57fa\u7c7b":101,"\u586b\u5199":98,"\u589e\u52a0":101,"\u589e\u52a0\u4e86\u4e00\u6761cd\u547d\u4ee4":122,"\u589e\u52a0\u4e86\u8bbe\u5907\u7c7b\u578b":101,"\u589e\u52a0\u5982\u4e0b\u53c2\u6570":131,"\u589e\u52a0\u68af\u5ea6\u68c0\u6d4b\u7684\u5355\u5143\u6d4b\u8bd5":100,"\u5904\u7406\u5668\u6709\u4e24\u4e2a\u5173\u952e\u6027\u80fd\u9650\u5236":134,"\u5904\u7406\u7684\u8f93\u5165\u5e8f\u5217\u4e3b\u8981\u5206\u4e3a\u4ee5\u4e0b\u4e09\u79cd\u7c7b\u578b":139,"\u5907\u6ce8":134,"\u590d\u6742\u5ea6\u6216\u65f6\u95f4\u590d\u6742\u5ea6":134,"\u5916\u5c42\u5e8f\u5217\u5728":115,"\u5916\u5c42memory\u662f\u4e00\u4e2a\u5143\u7d20":137,"\u5916\u5c42outer_step\u4e2d":137,"\u5916\u90e8\u5b58\u50a8":68,"\u591a\u4e2a":116,"\u591a\u4e2a\u503c":38,"\u591a\u4e2a\u5c42\u7684\u8f93\u51fa\u77e9\u9635\u7684\u9ad8\u5ea6\u4e0d\u4e00\u81f4\u5bfc\u81f4\u62fc\u63a5\u5931\u8d25":107,"\u591a\u4e2a\u6392\u6210\u4e00\u5217\u7684\u5143\u7d20":115,"\u591a\u4e2a\u8f93\u51fa\u5c42\u5904\u7406\u591a\u4e2a\u4e0d\u540c\u957f\u5ea6\u7684\u5e8f\u5217":107,"\u591a\u4e2aip\u4f7f\u7528":117,"\u591a\u4e2aparamet":37,"\u591a\u53e5\u8bdd\u8fdb\u4e00\u6b65\u6784\u6210\u4e86\u6bb5\u843d":139,"\u591a\u673a\u8bad\u7ec3":107,"\u591a\u6b21\u8c03\u7528":67,"\u591a\u7528\u4e8e\u81ea\u7136\u8bed\u8a00\u5904\u7406\u4efb\u52a1":116,"\u591a\u8f6e\u5bf9\u8bdd\u7b49\u66f4\u4e3a\u590d\u6742\u7684\u8bed\u8a00\u6570\u636e":139,"\u5927\u4e8e\u7b49\u4e8e\u4e00\u4e2a":116,"\u5927\u591a\u6570\u5c42\u4e0d\u9700\u8981\u8fdc\u7a0b\u7a00\u758f\u8bad\u7ec3\u51fd\u6570":100,"\u5927\u591a\u6570\u5c42\u9700\u8981\u8bbe\u7f6e\u4e3a":100,"\u5927\u591a\u6570\u7f51\u7edc\u5c42\u4e0d\u9700\u8981\u652f\u6301\u8fdc\u7a0b\u7a00\u758f\u66f4\u65b0":100,"\u5927\u591a\u6570\u8bed\u8a00\u90fd\u652f\u6301\u4f7f\u7528c\u8bed\u8a00api":71,"\u5927\u5bb6\u53ef\u4ee5\u7528\u628a\u5f00\u53d1\u5de5\u5177\u5b89\u88c5\u8fdb\u5165":26,"\u5927\u5bb6\u53ef\u4ee5\u901a\u8fc7\u5b83\u9605\u8bfb\u6559\u7a0b":28,"\u5927\u5c0f\u4e0d\u4e00\u6837\u65f6":107,"\u5927\u6982\u82b1\u5341\u5206\u949f\u770b\u4e00\u4e0b":26,"\u5927\u90e8\u5206":133,"\u5934\u4fe1\u606f\u4e2d":109,"\u5934\u6587\u4ef6\u4e2d\u628a\u53c2\u6570\u5b9a\u4e49\u4e3a\u7c7b\u7684\u6210\u5458\u53d8\u91cf":100,"\u5934\u6587\u4ef6\u5982\u4e0b":100,"\u5982":[98,101,131,140],"\u5982\u4e0a\u4e00\u5c0f\u8282\u6240\u793a":102,"\u5982\u4e0b":117,"\u5982\u4e0b\u56fe\u6240\u793a":[134,137],"\u5982\u4e0b\u6240\u793a":131,"\u5982\u4f55\u8d21\u732e\u4ee3\u7801":99,"\u5982\u4f55\u8d21\u732e\u6587\u6863":99,"\u5982\u56fe\u4e2dtrainer":37,"\u5982\u6709":101,"\u5982\u679c\u4e00\u4e2a\u7f51\u7edc\u5c42\u9700\u8981\u914d\u7f6e\u7684\u8bdd":100,"\u5982\u679c\u4e0a\u9762\u4e24\u6b65\u51fa\u73b0\u9519\u8bef":37,"\u5982\u679c\u4e0d\u4e3a0":129,"\u5982\u679c\u4e0d\u4f7f\u7528\u5206\u5e03\u5f0f\u5b58\u50a8":117,"\u5982\u679c\u4e0d\u4f7f\u7528docker":27,"\u5982\u679c\u4e0d\u4f7f\u7528docker\u7f16\u8bd1\u73af\u5883":27,"\u5982\u679c\u4e0d\u60f3\u4f7f\u7528":103,"\u5982\u679c\u4e0d\u6307\u5b9a\u8fd9\u4e2a\u6587\u4ef6":133,"\u5982\u679c\u4e0d\u6536\u655b":109,"\u5982\u679c\u4e0d\u9700\u8981\u5916\u90e8\u5b58\u50a8\u7528\u4e8e\u8f6c\u6362":68,"\u5982\u679c\u4e3a0":129,"\u5982\u679c\u4e3a\u5426\u5219\u662f\u7528openbla":27,"\u5982\u679c\u4e3afals":129,"\u5982\u679c\u4e3atrue":129,"\u5982\u679c\u4e4b\u540e\u60f3\u8981\u91cd\u65b0\u8bbe\u7f6e":27,"\u5982\u679c\u4ec5\u4ec5\u4fee\u6539\u4e00\u4e2a\u6587\u4ef6\u4f46\u63d0\u4ea4\u4e86\u5341\u51e0\u4e2acommit":98,"\u5982\u679c\u4ecd\u7136\u5b58\u5728\u95ee\u9898":30,"\u5982\u679c\u4ed4\u7ec6\u8bbe\u7f6e\u7684\u8bdd":129,"\u5982\u679c\u4f60\u53ea\u9700\u8981\u4f7f\u7528\u7b80\u5355\u7684rnn":140,"\u5982\u679c\u4f60\u60f3\u4f7f\u7528\u8fd9\u4e9b\u7279\u6027":131,"\u5982\u679c\u4f60\u60f3\u8981\u4fdd\u5b58\u67d0\u4e9b\u5c42\u7684\u7279\u5f81\u56fe":129,"\u5982\u679c\u4f60\u66fe\u5728\u6e90\u7801\u76ee\u5f55\u4e0b\u7f16\u8bd1\u8fc7\u5176\u4ed6\u5e73\u53f0\u7684paddlepaddle\u5e93":143,"\u5982\u679c\u4f60\u66fe\u7ecf\u5728\u6e90\u7801\u76ee\u5f55\u4e0b\u7f16\u8bd1\u8fc7\u5176\u4ed6\u5e73\u53f0\u7684paddlepaddle\u5e93":[142,144],"\u5982\u679c\u4f60\u6b63\u5728\u5904\u7406\u5e8f\u5217\u6807\u8bb0\u4efb\u52a1":140,"\u5982\u679c\u4f60\u8981\u4e3a\u4e86\u6d4b\u8bd5\u800c\u589e\u52a0\u65b0\u7684\u6587\u4ef6":100,"\u5982\u679c\u4f7f\u7528":116,"\u5982\u679c\u4f7f\u7528docker\u7f16\u8bd1\u73af\u5883":27,"\u5982\u679c\u4f7f\u7528mkl\u5e76\u4e14\u673a\u5668\u542b\u6709avx2\u6307\u4ee4\u96c6":27,"\u5982\u679c\u4f7f\u7528swig\u6211\u4eec\u9700\u8981\u5c06\u5728interface\u6587\u4ef6\u91cc":71,"\u5982\u679c\u5173\u95edmkl":27,"\u5982\u679c\u51fa\u73b0\u4ee5\u4e0bpython\u76f8\u5173\u7684\u5355\u5143\u6d4b\u8bd5\u90fd\u8fc7\u4e0d\u4e86\u7684\u60c5\u51b5":104,"\u5982\u679c\u53c2\u6570\u4fdd\u5b58\u4e0b\u6765\u7684\u6a21\u578b\u76ee\u5f55":107,"\u5982\u679c\u53d1\u73b0\u6700\u65e9\u7684\u62a5\u9519\u5c31\u662f\u7f51\u7edc\u901a\u4fe1\u7684\u95ee\u9898":105,"\u5982\u679c\u540c\u65f6\u4f7f\u7528":117,"\u5982\u679c\u5728\u4f7f\u7528mkl":68,"\u5982\u679c\u5728\u70b9\u51fb\u4e0b\u9762\u94fe\u63a5\u65f6\u51fa\u73b0\u5982\u4e0b\u767b\u9646\u754c\u9762":30,"\u5982\u679c\u5728\u7f16\u8bd1":113,"\u5982\u679c\u5728\u7f51\u7edc\u914d\u7f6e\u4e2d\u672a\u8bbe\u7f6easync":129,"\u5982\u679c\u5728\u8bad\u7ec3\u671f\u95f4\u540c\u65f6\u53d1\u8d77\u53e6\u5916\u4e00\u4e2a\u8fdb\u7a0b\u8fdb\u884c\u6d4b\u8bd5":129,"\u5982\u679c\u5728\u8bad\u7ec3\u914d\u7f6e\u4e2d\u8bbe\u7f6ebatch":129,"\u5982\u679c\u5728\u8bad\u7ec3nlp\u76f8\u5173\u6a21\u578b\u65f6":109,"\u5982\u679c\u591a\u4e2aop\u4f9d\u8d56\u4e00\u4e9b\u5171\u7528\u7684\u51fd\u6570":101,"\u5982\u679c\u5931\u8d25":88,"\u5982\u679c\u5b58\u5728\u6570\u636e\u6392\u5217\u683c\u5f0f\u4e0d\u4e00\u6837\u7684\u60c5\u51b5\u65f6":68,"\u5982\u679c\u5b58\u5728\u67d0\u4e9btrainer\u6267\u884c\u901f\u5ea6\u8fc7\u6162\u4f1a\u5f71\u54cd\u6574\u4f53\u96c6\u7fa4\u7684\u901f\u5ea6":37,"\u5982\u679c\u5c06\u8fd9\u4e2a\u5185\u5b58\u6c60\u51cf\u5c0f":107,"\u5982\u679c\u5c0f\u4e8e75m":104,"\u5982\u679c\u5df2\u7ecf\u6709pod\u8fd0\u884c":123,"\u5982\u679c\u5df2\u7ecf\u6b63\u5728\u6267\u884c\u4fdd\u5b58\u68c0\u67e5\u70b9\u7684\u7ebf\u7a0b":37,"\u5982\u679c\u5e0c\u671b\u53ef\u4ee5\u5728\u540e\u53f0\u8fd0\u884cpserver\u7a0b\u5e8f":117,"\u5982\u679c\u5f53\u524dmpi\u96c6\u7fa4\u5e76\u4e0d\u652f\u6301\u4efb\u52a1\u72ec\u5360\u6a21\u5f0f":105,"\u5982\u679c\u60a8\u5728\u4f7f\u7528window":28,"\u5982\u679c\u60a8\u60f3\u8981\u66f4\u6df1\u5165\u4e86\u89e3deep":28,"\u5982\u679c\u60a8\u671f\u671b\u5728\u7f16\u8bd1\u5b8c\u6210\u540e\u7acb\u5373\u6267\u884c\u6240\u6709\u7684\u5355\u5143\u6d4b\u8bd5":27,"\u5982\u679c\u60a8\u6ca1\u6709\u542c\u8bf4":26,"\u5982\u679c\u60a8\u7684\u7535\u8111\u4e0d\u652f\u6301avx":28,"\u5982\u679c\u60a8\u7684gpu\u7406\u8bba\u53ef\u4ee5\u8fbe\u52306":134,"\u5982\u679c\u60a8\u9009\u62e9\u4e0d\u4f7f\u7528docker\u955c\u50cf":27,"\u5982\u679c\u60f3\u4f7f\u7528\u53ef\u89c6\u5316\u7684\u5206\u6790\u5668":134,"\u5982\u679c\u60f3\u5f88\u597d\u7684\u7406\u89e3\u7a0b\u5e8f\u7684\u884c\u4e3a":134,"\u5982\u679c\u60f3\u6539\u53d8\u539f\u6709tensor\u7684shape\u4fe1\u606f":102,"\u5982\u679c\u60f3\u8981\u4e86\u89e3\u53cc\u5c42rnn\u5728\u5177\u4f53\u95ee\u9898\u4e2d\u7684\u4f7f\u7528":137,"\u5982\u679c\u60f3\u8981\u542f\u7528paddlepaddle\u7684\u5185\u7f6e\u5b9a\u65f6\u5668":134,"\u5982\u679c\u6211\u4eec\u53ea\u9700\u8981\u7f16\u8bd1\u4e00\u4e2a\u53ea\u652f\u6301":26,"\u5982\u679c\u6211\u77e5\u9053\u5185\u6838\u82b1\u4e8610ms\u6765\u79fb\u52a81gb\u6570\u636e":134,"\u5982\u679c\u6307\u5b9a\u4e862\u4e2alayer\u4f5c\u4e3a\u8f93\u51fa\u5c42":107,"\u5982\u679c\u63d0\u793a\u6b63\u786e":103,"\u5982\u679c\u652f\u6301\u589e\u52a0\u6b64\u53c2\u6570\u63d0\u4ea4":105,"\u5982\u679c\u662f\u4e00\u4e2a\u5e8f\u5217\u8f93\u5165":115,"\u5982\u679c\u662f\u5176\u5b83\u7c7b\u578b":38,"\u5982\u679c\u662f\u7528\u7f16\u8bd1\u65f6\u6307\u5b9acpu\u7248\u672c":113,"\u5982\u679c\u6709\u591a\u4e2a\u8f93\u5165":139,"\u5982\u679c\u6709\u591a\u4e2a\u8f93\u5165\u5e8f\u5217":139,"\u5982\u679c\u6709\u9700\u8981\u4fee\u6539\u7684\u5730\u65b9":98,"\u5982\u679c\u6709bugfix\u7684\u884c\u4e3a":88,"\u5982\u679c\u672a\u8bbe\u7f6e":129,"\u5982\u679c\u672a\u8bbe\u7f6egpu":131,"\u5982\u679c\u673a\u5668\u4e2d\u5df2\u7ecf\u5b89\u88c5\u8fc7paddlepaddl":27,"\u5982\u679c\u67d0\u4e00\u4e2a\u7c7b\u578b\u9700\u8981\u5f15\u7528\u53e6\u4e00\u4e2a\u7c7b\u578b":72,"\u5982\u679c\u67d0\u4e00\u4e2apaddl":72,"\u5982\u679c\u67d0\u4e00\u4e2apaddle\u6982\u5ff5\u5fc5\u987b\u8981\u66b4\u9732":72,"\u5982\u679c\u67d0\u4e00\u5757\u6839\u672c\u5c31\u4e0d\u600e\u4e48\u8017\u65f6":134,"\u5982\u679c\u68c0\u67e5\u5230\u5206\u914d\u5728\u4e0d\u540c\u53c2\u6570\u670d\u52a1\u5668\u4e0a\u7684\u53c2\u6570\u7684\u5206\u5e03\u4e0d\u5747\u5300\u6b21\u6570\u5927\u4e8echeck":129,"\u5982\u679c\u6ca1\u6709\u5b89\u88c5nvidia":28,"\u5982\u679c\u6ca1\u6709\u5b9a\u4e49memori":139,"\u5982\u679c\u6ca1\u8fc7":98,"\u5982\u679c\u6d88\u606f\u6570\u636e\u592a\u5c0f":129,"\u5982\u679c\u6ee1\u8db3\u6761\u4ef6":37,"\u5982\u679c\u7528\u516c\u7528\u7684\u7535\u8111\u5f00\u53d1":26,"\u5982\u679c\u7528\u6237\u4e0d\u9700\u8981\u8bbf\u95eelstm\u7684\u4e2d\u95f4\u53d8\u91cf":108,"\u5982\u679c\u7528\u6237\u60f3\u8981\u81ea\u5b9a\u4e49\u521d\u59cb\u5316\u65b9\u5f0f":109,"\u5982\u679c\u7528\u6237\u8981\u628apaddle\u7684\u9759\u6001\u5e93":71,"\u5982\u679c\u7528\u81ea\u5df1\u7684\u7535\u8111\u5f00\u53d1":26,"\u5982\u679c\u771f\u60f3\u6316\u6398\u5185\u6838\u6df1\u5904\u7684\u67d0\u4e2a\u79d8\u5bc6":134,"\u5982\u679c\u795e\u7ecf\u7f51\u7edc\u6709\u591a\u4e2a\u8f93\u5165\u6216\u8005\u591a\u4e2a\u8f93\u51fa":[115,116],"\u5982\u679c\u7a0b\u5e8f\u5d29\u6e83\u4f60\u4e5f\u53ef\u4ee5\u624b\u52a8\u7ec8\u6b62":119,"\u5982\u679c\u7cfb\u7edf\u5b89\u88c5\u4e86\u591a\u4e2apython\u7248\u672c":104,"\u5982\u679c\u7cfb\u7edf\u652f\u6301":[30,104],"\u5982\u679c\u7cfb\u7edf\u652f\u6301\u7684\u662f":[30,104],"\u5982\u679c\u7f16\u8bd1\u65f6\u6307\u5b9a\u7f16\u8bd1cpu\u7248\u672c":113,"\u5982\u679c\u7f16\u8bd1\u65f6\u6307\u5b9a\u7f16\u8bd1gpu\u7248\u672c":113,"\u5982\u679c\u7f16\u8bd1\u7684\u65f6\u5019\u6211\u4eec\u7528\u4e86":26,"\u5982\u679c\u7f51\u7edc\u5c42\u4e0d\u9700\u8981\u8fdc\u7a0b\u7a00\u758f\u66f4\u65b0":100,"\u5982\u679c\u7f51\u7edc\u67b6\u6784\u7b80\u5355":140,"\u5982\u679c\u8981\u4e0a\u4f20gpu\u7248\u672c\u7684\u5305":88,"\u5982\u679c\u8981\u542f\u7528gpu":127,"\u5982\u679c\u8981\u8fd0\u884c\u6240\u6709\u7684\u5355\u5143\u6d4b\u8bd5":98,"\u5982\u679c\u89e3\u51b3\u4e86\u67d0\u4e2aissue\u7684\u95ee\u9898":98,"\u5982\u679c\u8bad\u7ec3\u4e00\u4e2apass":109,"\u5982\u679c\u8bad\u7ec3\u8fc7\u7a0b\u7684\u7684cost\u660e\u663e\u9ad8\u4e8e\u8fd9\u4e2a\u5e38\u6570\u8f93\u51fa\u7684cost":109,"\u5982\u679c\u8bbe\u7f6e\u8be5\u53c2\u6570":129,"\u5982\u679c\u8bc4\u5ba1\u610f\u89c1\u6bd4\u8f83\u591a":98,"\u5982\u679c\u8c03\u7528\u9759\u6001\u5e93\u53ea\u80fd\u5c06\u9759\u6001\u5e93\u4e0e\u89e3\u91ca\u5668\u94fe\u63a5":71,"\u5982\u679c\u8f93\u5165\u662f\u5e8f\u5217\u6570\u636e":115,"\u5982\u679c\u8f93\u51fa\u662f\u4e00\u4e2a\u5e8f\u5217":115,"\u5982\u679c\u8f93\u51fa\u662fno":28,"\u5982\u679c\u8fd0\u884c":104,"\u5982\u679c\u8fd8\u4e0d\u884c":104,"\u5982\u679c\u9700\u8981":113,"\u5982\u679c\u9700\u8981\u5728c\u7ef4\u5ea6\u8ba1\u7b97softmax":108,"\u5982\u679c\u9700\u8981\u5b89\u88c5\u652f\u6301gpu\u7684\u7248\u672c":[30,112],"\u5982\u679c\u9700\u8981\u624b\u52a8\u7f16\u8bd1":88,"\u5982\u679c\u9700\u8981\u6269\u5927\u77e9\u9635":100,"\u5982\u679c\u9700\u8981\u7f29\u51cf\u77e9\u9635":100,"\u5982\u679c\u9700\u8981\u83b7\u53d6":30,"\u5982\u679ccuda":101,"\u5982\u679clearning_rate\u592a\u5927":109,"\u5982\u679clearning_rate\u592a\u5c0f":109,"\u5982\u679cmkl":68,"\u5982\u679cop\u6ca1\u6709\u5b9e\u73b0cuda":101,"\u5982\u679cop\u7684\u67d0\u4e2a\u8f93\u5165\u4e0d\u53c2\u4e0e\u53cd\u5411\u68af\u5ea6\u7684\u8ba1\u7b97":101,"\u5982\u679cpaddlepaddle\u5305\u5df2\u7ecf\u5728python\u7684sit":104,"\u5982\u679cpaddlepaddle\u5e93\u9700\u8981\u540c\u65f6\u652f\u6301\u771f\u673a\u548c\u6a21\u62df\u5668":143,"\u5982\u679cparamet":37,"\u5982\u6bcf\u4e2a\u6587\u4ef6\u53ea\u6709\u4e00\u4e2a":98,"\u5982\u795e\u7ecf\u5143\u6fc0\u6d3b\u503c\u7b49":107,"\u5982\u8981build\u8fd9\u4e2a\u5f00\u53d1\u955c\u50cf":98,"\u5982\u9ad8\u4eae\u90e8\u5206":134,"\u5982train":117,"\u5b50\u53e5":139,"\u5b50\u53e5\u7684\u5355\u8bcd\u6570\u548c\u6307\u5b9a\u7684\u4e00\u4e2a\u8f93\u5165\u5e8f\u5217\u4e00\u81f4":139,"\u5b50\u76ee\u5f55":26,"\u5b50\u7c7b\u53ea\u9700\u8981\u4f7f\u7528\u5b9a\u4e49\u597d\u7684\u63a5\u53e3":68,"\u5b57\u6bb5\u4e2d":123,"\u5b57\u6bb5\u4e3a\u4f8b":107,"\u5b57\u6bb5\u7684\u53d6\u503c":115,"\u5b57\u6bb5\u8868\u793a\u5bb9\u5668\u7684\u73af\u5883\u53d8\u91cf":123,"\u5b57\u6bb5\u8868\u793a\u8fd9\u4e2ajob\u4f1a\u540c\u65f6\u5f00\u542f3\u4e2apaddlepaddle\u8282\u70b9":123,"\u5b57\u6bb5\u8bbe\u4e3a":88,"\u5b57\u7b26\u4e32":38,"\u5b58\u50a8":[38,115,116],"\u5b58\u50a8\u6d6e\u70b9\u7c7b\u578b\u8f93\u5165":116,"\u5b58\u50a8\u7684\u538b\u7f29\u6587\u4ef6":116,"\u5b58\u6570\u6570\u636e":115,"\u5b66\u4e60":26,"\u5b66\u4e60\u6210\u672c\u9ad8":71,"\u5b66\u4e60\u7387\u4e3a":109,"\u5b83\u4eec\u4e3b\u8981\u662f\u7528\u4e8e":68,"\u5b83\u4eec\u7684\u6587\u4ef6\u540d\u662f":38,"\u5b83\u5305\u542b\u4ee5\u4e0b\u51e0\u6b65":100,"\u5b83\u5305\u542b\u4ee5\u4e0b\u53c2\u6570":100,"\u5b83\u53ea\u4f1a\u5305\u62ec\u751f\u6210\u597d\u7684\u52a8\u6001\u5e93\u548c\u5934\u6587\u4ef6":68,"\u5b83\u53eb\u505a":140,"\u5b83\u53ef\u4ee5\u5e2e\u52a9\u51cf\u5c11\u5206\u53d1\u5ef6\u8fdf":119,"\u5b83\u53ef\u4ee5\u5e2e\u52a9\u6211\u4eec\u683c\u5f0f\u5316\u6e90\u4ee3\u7801":98,"\u5b83\u53ef\u4ee5\u6307\u6d4b\u91cf\u4e00\u4e2a\u7a0b\u5e8f\u7684\u7a7a\u95f4":134,"\u5b83\u53ef\u80fd\u6709\u4e0d\u6b62\u4e00\u4e2a\u6743\u91cd":100,"\u5b83\u5b9a\u4e49\u4e86":140,"\u5b83\u5b9a\u4e49\u89e3\u7801\u7f51\u7edc\u7684":140,"\u5b83\u5c06\u88ab\u5206\u53d1\u5230":119,"\u5b83\u5e76\u4e0d\u662f\u4e00\u4e2a\u5b8c\u6574\u7684recurr":108,"\u5b83\u5e94\u8be5\u6253\u5370\u51fa\u9884\u6d4b\u4f4f\u623f\u6570\u636e\u7684\u6e05\u5355":112,"\u5b83\u652f\u6301\u591a\u7ebf\u7a0b\u66f4\u65b0":100,"\u5b83\u662finteger_value\u7c7b\u578b\u7684":137,"\u5b83\u662finteger_value_sequence\u7c7b\u578b\u7684":137,"\u5b83\u6709\u52a9\u4e8e\u5e2e\u52a9\u9891\u7e41\u4fee\u6539\u548c\u8bbf\u95ee\u5de5\u4f5c\u533a\u6587\u4ef6\u7684\u7528\u6237\u51cf\u5c11\u8d1f\u62c5":119,"\u5b83\u7684":140,"\u5b83\u7684\u529f\u80fd\u662f":101,"\u5b83\u7684\u6bcf\u4e00\u4e2a\u5143\u7d20":136,"\u5b83\u7684\u8f93\u5165\u4e0e\u7ecf\u8fc7\u5b66\u4e60\u7684\u53c2\u6570\u505a\u5185\u79ef\u5e76\u52a0\u4e0a\u504f\u7f6e":100,"\u5b83\u8868\u793a":26,"\u5b83\u8d1f\u8d23\u51b3\u5b9a\u7f16\u8bd1\u65f6\u662f\u5426\u4f7f\u7528mklml\u548cmkl":68,"\u5b83\u9996\u5148\u8c03\u7528\u57fa\u6784\u9020\u51fd\u6570":100,"\u5b89\u88c5":133,"\u5b89\u88c5\u4e0e\u7f16\u8bd1":141,"\u5b89\u88c5\u4e0e\u7f16\u8bd1c":114,"\u5b89\u88c5\u540e":28,"\u5b89\u88c5\u540e\u7684\u76ee\u5f55\u7ed3\u6784\u4e3a":72,"\u5b89\u88c5\u597ddocker\u4e4b\u540e\u53ca\u53ef\u7528\u4ee5\u4e0b\u547d\u4ee4\u542f\u52a8\u5de5\u5177":103,"\u5b89\u88c5\u597ddocker\u4e4b\u540e\u53ef\u4ee5\u4f7f\u7528\u6e90\u7801\u76ee\u5f55\u4e0b\u7684\u811a\u672c\u6784\u5efa\u6587\u6863":103,"\u5b89\u88c5\u5b8c\u6210\u4e4b\u540e":[127,143],"\u5b89\u88c5\u5b8c\u6bd5\u540e":133,"\u5b89\u88c5\u5f00\u53d1\u5de5\u5177\u5230":26,"\u5b89\u88c5\u6587\u6863":110,"\u5b89\u88c5\u65b9\u5f0f\u6765\u5feb\u901f\u5b89\u88c5paddlepaddl":127,"\u5b89\u88c5\u6d41\u7a0b":112,"\u5b8c\u6210":98,"\u5b8c\u6210\u4e00\u4e2a\u4f20\u8f93\u52a8\u4f5c\u5b8c\u6210\u7684\u65f6\u95f4\u4e5f\u6bd4\u8f83\u77ed":54,"\u5b8c\u6210\u4e0a\u8ff0\u51c6\u5907\u4e4b\u540e":116,"\u5b8c\u6210\u4efb\u610f\u7684\u8fd0\u7b97\u903b\u8f91":139,"\u5b8c\u6210\u540evolume\u4e2d\u7684\u6587\u4ef6\u5185\u5bb9\u5927\u81f4\u5982\u4e0b":123,"\u5b8c\u6210\u5728windows\u4e0a\u5b89\u88c5\u548c\u4f7f\u7528dock":28,"\u5b8c\u6210\u5b89\u88c5":30,"\u5b8c\u6210\u5e38\u7528layer\u7684mkl":68,"\u5b8c\u6210\u5e38\u89c1\u6df1\u5ea6\u795e\u7ecf\u7f51\u7edcvgg":68,"\u5b8c\u6210\u6570\u636e\u7684\u9884\u5904\u7406":38,"\u5b8c\u6210\u76f8\u5e94\u7684\u8ba1\u7b97":136,"\u5b8c\u6210\u81ea\u52a8\u5316\u4e8c\u8fdb\u5236\u7f16\u8bd1":88,"\u5b8c\u6210paddlepaddle\u7684\u5b89\u88c5":110,"\u5b8c\u6574\u4ee3\u7801\u53ef\u4ee5\u53c2\u8003\u793a\u4f8b":107,"\u5b8c\u6574\u4ee3\u7801\u53ef\u4ee5\u67e5\u770b":116,"\u5b8c\u6574\u6e90\u7801\u53ef\u53c2\u8003":109,"\u5b8c\u6574\u7684\u53c2\u6570\u77e9\u9635\u88ab\u5206\u5e03\u5728\u4e0d\u540c\u7684\u53c2\u6570\u670d\u52a1\u5668\u4e0a":100,"\u5b8c\u6574\u7684\u914d\u7f6e\u6587\u4ef6\u5728":140,"\u5b98\u65b9\u6587\u6863":27,"\u5b9a\u4e49":68,"\u5b9a\u4e49\u4e00\u4e2a\u65f6\u95f4\u6b65\u4e4b\u5185rnn\u5355\u5143\u5b8c\u6210\u7684\u8ba1\u7b97":139,"\u5b9a\u4e49\u4e00\u4e9b\u9664\u4e86layer\u548cmemory\u76f8\u5173\u7684\u7c7b\u548c\u51fd\u6570":68,"\u5b9a\u4e49\u4e86\u4e00\u4e2a\u53ea\u8bfb\u7684memori":139,"\u5b9a\u4e49\u4e86lstm\u5355\u5143\u5728\u4e00\u4e2a\u65f6\u95f4\u6b65\u5185\u7684\u8ba1\u7b97\u8fc7\u7a0b":108,"\u5b9a\u4e49\u4f4d\u7f6e":101,"\u5b9a\u4e49\u5728\u5916\u5c42":139,"\u5b9a\u4e49\u5f02\u6b65\u8bad\u7ec3\u7684\u957f\u5ea6":129,"\u5b9a\u4e49\u6e90\u8bed\u53e5\u7684\u6570\u636e\u5c42":140,"\u5b9a\u4e49\u7684\u795e\u7ecf\u7f51\u7edc\u7ed3\u6784":116,"\u5b9a\u4e49\u7c7b\u578b":101,"\u5b9a\u4e49\u89e3\u7801\u5668\u7684memori":140,"\u5b9a\u4e49\u8f93\u5165":101,"\u5b9a\u4e49\u8f93\u51fa":101,"\u5b9a\u4e49\u8f93\u51fa\u51fd\u6570":140,"\u5b9a\u4e49\u95e8\u63a7\u5faa\u73af\u5355\u5143\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u5355\u6b65\u51fd\u6570":140,"\u5b9d\u5854\u7684\u5e95\u7aef\u9700\u8981\u575a\u5b9e\u7684\u57fa\u5ea7\u6765\u652f\u6491":110,"\u5b9e\u73b0\u4e24\u4e2a\u5b8c\u5168\u7b49\u4ef7\u7684\u5168\u8fde\u63a5rnn":137,"\u5b9e\u73b0\u5177\u4f53\u7684\u51fd\u6570\u529f\u80fd\u5373\u53ef":68,"\u5b9e\u73b0\u524d\u5411\u4f20\u64ad\u7684\u90e8\u5206\u6709\u4e0b\u9762\u51e0\u4e2a\u6b65\u9aa4":100,"\u5b9e\u73b0\u5355\u6b65\u51fd\u6570":140,"\u5b9e\u73b0\u540e\u5411\u4f20\u64ad\u7684\u90e8\u5206\u6709\u4e0b\u9762\u51e0\u4e2a\u6b65\u9aa4":100,"\u5b9e\u73b0\u5728":101,"\u5b9e\u73b0\u5bf9":102,"\u5b9e\u73b0\u65b0\u7684op\u90fd\u6dfb\u52a0\u81f3\u76ee\u5f55":101,"\u5b9e\u73b0\u6784\u9020\u51fd\u6570":100,"\u5b9e\u73b0\u7684":108,"\u5b9e\u73b0\u7b80\u5355":71,"\u5b9e\u73b0\u7ec6\u8282":100,"\u5b9e\u73b0\u7f51\u7edc\u5c42\u7684\u524d\u5411\u4f20\u64ad":100,"\u5b9e\u73b0\u7f51\u7edc\u5c42\u7684\u540e\u5411\u4f20\u64ad":100,"\u5b9e\u73b0\u8bcd\u8bed\u548c\u53e5\u5b50\u4e24\u4e2a\u7ea7\u522b\u7684\u53cc\u5c42rnn\u7ed3\u6784":139,"\u5b9e\u73b0\u8be5\u5c42\u7684c":100,"\u5b9e\u9645\u4e0a\u4f7f\u7528\u4e86":108,"\u5b9e\u9645\u4e0a\u9700\u8981\u7684\u8f93\u51fa\u7ed3\u679c\u662f\u4e24\u4e2a\u77e9\u9635":107,"\u5bb9\u5668\u8fd0\u884c\u90fd\u8fd0\u884c":123,"\u5bb9\u5668\u9ed8\u8ba4\u6267\u884c":142,"\u5bbd\u5ea6":115,"\u5bbd\u5ea6\u4e3a":115,"\u5bbd\u5ea6\u7b49\u4e8e\u914d\u7f6e\u4e2dlayer\u7684s":107,"\u5bbf\u4e3b\u673a\u7684c":[142,143,144],"\u5bc4\u5b58\u5668\u4f7f\u7528\u60c5\u51b5\u548c\u5171\u4eab\u5185\u5b58\u4f7f\u7528\u60c5\u51b5\u80fd\u8ba9\u6211\u4eec\u5bf9gpu\u7684\u6574\u4f53\u4f7f\u7528\u6709\u66f4\u597d\u7684\u7406\u89e3":134,"\u5bf9":116,"\u5bf9\u4e00\u4e2a5\u7ef4\u975e\u5e8f\u5217\u7684\u7a00\u758f01\u5411\u91cf":110,"\u5bf9\u4e00\u4e2a5\u7ef4\u975e\u5e8f\u5217\u7684\u7a00\u758f\u6d6e\u70b9\u5411\u91cf":110,"\u5bf9\u4e8e":140,"\u5bf9\u4e8e\u4e0d\u540c\u7684\u8bad\u7ec3\u4efb\u52a1":117,"\u5bf9\u4e8e\u4e0d\u540c\u7684\u96c6\u7fa4\u5e73\u53f0":120,"\u5bf9\u4e8e\u4e0d\u540c\u8bed\u8a00":71,"\u5bf9\u4e8e\u4e24\u79cd\u4e0d\u540c\u7684\u8f93\u5165\u6570\u636e\u7c7b\u578b":137,"\u5bf9\u4e8e\u4e60\u60ef\u4f7f\u7528windows\u548cmacos\u7684\u5f00\u53d1\u8005\u6765\u8bf4":26,"\u5bf9\u4e8e\u5355\u5c42rnn":137,"\u5bf9\u4e8e\u5355\u5c42rnn\u7684\u6570\u636e\u4e00\u5171\u6709\u4e24\u4e2a\u6837\u672c":137,"\u5bf9\u4e8e\u53cc\u5c42rnn":137,"\u5bf9\u4e8e\u540c\u4e00\u6bb5c":71,"\u5bf9\u4e8e\u540c\u6837\u7684\u6570\u636e":137,"\u5bf9\u4e8e\u540c\u6837\u8bbe\u7f6e\u7684\u7f51\u7edc\u6a21\u578b":67,"\u5bf9\u4e8e\u56fd\u5185\u7528\u6237":28,"\u5bf9\u4e8e\u591a\u8bed\u8a00\u63a5\u53e3":71,"\u5bf9\u4e8e\u5927\u591a\u6570\u8bed\u8a00":71,"\u5bf9\u4e8e\u5e8f\u5217\u957f\u5ea6":67,"\u5bf9\u4e8e\u6027\u80fd\u7684\u5173\u952e\u8def\u5f84\u90fd\u505a\u51fa\u4e86\u7ea2\u8272\u6807\u8bb0":133,"\u5bf9\u4e8e\u6211\u4eec\u652f\u6301\u7684\u5168\u90e8\u77e9\u9635\u64cd\u4f5c":100,"\u5bf9\u4e8e\u6709\u53c2\u6570\u7684\u5c42":68,"\u5bf9\u4e8e\u672c\u6837\u4f8b\u4ee3\u7801":117,"\u5bf9\u4e8e\u6bb5\u843d\u7684\u6587\u672c\u5206\u7c7b":137,"\u5bf9\u4e8e\u6bcf\u4e00\u4e2a\u5355\u5c42rnn\u7684\u6570\u636e":137,"\u5bf9\u4e8e\u6bcf\u4e00\u4e2a\u65b0\u52a0\u7684rnn":67,"\u5bf9\u4e8e\u6bcf\u79cd\u7c7b\u578b":72,"\u5bf9\u4e8e\u6bcf\u79cdc":72,"\u5bf9\u4e8e\u8fd9\u6837\u7684\u9700\u6c42":116,"\u5bf9\u4e8e\u914d\u5907\u6709\u6ce8\u610f\u529b\u673a\u5236\u7684\u89e3\u7801\u5668":140,"\u5bf9\u4e8enchw":108,"\u5bf9\u4ee3\u7801\u8fdb\u884c\u6027\u80fd\u5206\u6790":134,"\u5bf9\u4f7f\u7528\u7684\u4e2d\u95f4\u53d8\u91cf\u548c\u8d44\u6e90\u8fdb\u884c\u6e05\u7406\u548c\u91ca\u653e":116,"\u5bf9\u5168\u8fde\u63a5\u5c42\u6765\u8bf4":100,"\u5bf9\u52a0\u8f7d\u9884\u8bad\u7ec3\u53c2\u6570\u7684\u5c42":109,"\u5bf9\u53cc\u5c42\u5e8f\u5217\u6765\u8bb2":115,"\u5bf9\u5df2\u7ecfpush\u5230\u8fdc\u7a0b\u4ed3\u5e93\u7684\u591a\u4e2acommit":98,"\u5bf9\u5e94":143,"\u5bf9\u5e94\u4e00\u4e2a\u5b50\u53e5":139,"\u5bf9\u5e94\u4e00\u4e2a\u8bcd":139,"\u5bf9\u5e94\u4e8e\u8c03\u7528c":115,"\u5bf9\u5e94\u7684\u68af\u5ea6op\u8ba1\u7b97\u4e4b\u4e2d":101,"\u5bf9\u5e94\u7740\u4e0a\u6587\u63d0\u5230\u7684\u4e00\u7ef4\u6574\u578b\u6570\u7ec4":115,"\u5bf9\u5e94\u7740\u4e0a\u6587\u63d0\u5230\u7684\u4e8c\u7ef4\u6d6e\u70b9\u578b\u77e9\u9635":115,"\u5bf9\u63a8\u8350\u914d\u7f6e\u4e2d\u7684\u9009\u9879\u5efa\u8bae\u6309\u7167\u8bbe\u7f6e":113,"\u5bf9\u65b0\u7684\u6743\u91cd\u8fdb\u884c\u8f6c\u6362\u7528\u4e8e\u4e0b\u6b21\u8fed\u4ee3":67,"\u5bf9\u6bcf\u4e2a\u8f93\u5165":100,"\u5bf9\u6bcf\u4e2a\u8f93\u5165\u4e58\u4e0a\u53d8\u6362\u77e9\u9635":100,"\u5bf9\u6bd4":71,"\u5bf9\u6bd4\u4f18\u5316\u540elayer\u4e0e\u76f8\u5bf9\u5e94\u7684paddlepaddle\u539f\u6709lay":67,"\u5bf9\u6bd4\u4f18\u5316\u540elayer\u81ea\u8eab":67,"\u5bf9\u6bd4\u53cd\u5411op\u4e0d\u540c\u8bbe\u5907":101,"\u5bf9\u6fc0\u6d3b\u6c42\u5bfc":100,"\u5bf9\u795e\u7ecf\u7f51\u7edc\u6765\u8bf4":115,"\u5bf9\u795e\u7ecf\u7f51\u7edc\u7ed3\u6784\u8fdb\u884c\u5e8f\u5217\u5316":116,"\u5bf9\u8bc4\u5ba1\u610f\u89c1\u4e0d\u540c\u610f\u7684":98,"\u5bf9\u8bc4\u5ba1\u610f\u89c1\u540c\u610f\u4e14\u6309\u5176\u4fee\u6539\u5b8c\u7684":98,"\u5bf9\u8c61":109,"\u5bf9\u8c61\u5206\u914d\u7a7a\u95f4":116,"\u5bf9\u8f93\u5165\u53c2\u6570\u7684\u5b89\u5168\u6027\u8fdb\u884c\u4e86\u5fc5\u8981\u7684\u5224\u65ad":72,"\u5bf9\u8f93\u51fa\u7684\u5408\u5e76":139,"\u5bf9\u8fd9\u4e2a\u7248\u672c\u7684\u63d0\u4ea4":88,"\u5bf9sparse_binary_vector\u548csparse_float_vector":110,"\u5bfb\u627e\u6709\u6ca1\u6709\u5176\u4ed6\u53ef\u4ee5\u4f18\u5316\u7684\u53ef\u80fd":68,"\u5bfb\u627epython\u4e0ec":133,"\u5bfc\u51fa\u8fd9\u4e9b\u63a5\u53e3":72,"\u5bfc\u81f4\u4e86\u6d6e\u70b9\u6570\u6ea2\u51fa":107,"\u5bfc\u81f4\u53c2\u6570\u6536\u655b\u5230\u4e86\u4e00\u4e9b\u5947\u5f02\u7684\u60c5\u51b5":107,"\u5bfc\u81f4\u53c2\u6570\u7d2f\u52a0":107,"\u5bfc\u81f4\u7f16\u8bd1paddlepaddle\u5931\u8d25":104,"\u5bfc\u81f4\u8bad\u7ec3\u65f6\u95f4\u8fc7\u957f":109,"\u5bfc\u81f4mklml\u5e93\u4e0b\u8f7d\u4e0d\u6210\u529f":104,"\u5c01\u88c5\u4e86":134,"\u5c01\u88c5\u8be5\u5c42\u7684python\u63a5\u53e3":100,"\u5c06":[88,109,134],"\u5c06\u4e00\u4e2a\u795e\u7ecf\u7f51\u7edc\u53c2\u6570\u62c6\u5206\u6210\u591a\u4efd":37,"\u5c06\u4e0a\u4e00\u65f6\u95f4\u6b65\u6240\u751f\u6210\u7684\u8bcd\u7684\u5411\u91cf\u6765\u4f5c\u4e3a\u5f53\u524d\u65f6\u95f4\u6b65\u7684\u8f93\u5165":140,"\u5c06\u4f1a\u4f18\u5148\u4f7f\u7528":117,"\u5c06\u4f1a\u59cb\u7ec8\u4f7f\u7528":142,"\u5c06\u4f1a\u5c06\u7528\u6237\u4f20\u8fdb\u6765\u7684\u914d\u7f6e\u53c2\u6570\u4f20\u9012cmake\u7cfb\u7edf":142,"\u5c06\u4f1a\u81ea\u52a8\u8ba1\u7b97\u51fa\u4e00\u4e2a\u5408\u9002\u7684\u503c":129,"\u5c06\u5176\u8bbe\u7f6e\u6210":107,"\u5c06\u53cc\u5c42\u65f6\u95f4\u5e8f\u5217\u6570\u636e\u5148\u53d8\u6362\u6210\u5355\u5c42\u65f6\u95f4\u5e8f\u5217\u6570\u636e":137,"\u5c06\u542b\u6709\u5b50\u53e5":139,"\u5c06\u542b\u6709\u8bcd\u8bed\u7684\u53e5\u5b50\u5b9a\u4e49\u4e3a\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":139,"\u5c06\u56fe\u7247\u5206\u7c7b\u5230":116,"\u5c06\u591a\u53e5\u8bdd\u770b\u6210\u4e00\u4e2a\u6574\u4f53\u540c\u65f6\u4f7f\u7528encoder\u538b\u7f29":137,"\u5c06\u591a\u53f0\u673a\u5668\u7684\u6d4b\u8bd5\u7ed3\u679c\u5408\u5e76":129,"\u5c06\u5927\u91cf\u7684":71,"\u5c06\u5b57\u5178\u7684\u5730\u5740\u4f5c\u4e3aargs\u4f20\u7ed9dataprovid":109,"\u5c06\u5b83\u4eec\u653e\u5728\u540c\u4e00\u76ee\u5f55\u4e2d":116,"\u5c06\u5bf9\u5e94\u6570\u636e\u5c42\u7684\u7ef4\u6570\u8bbe\u7f6e\u6210\u4e00\u4e2a\u5927\u4e8e\u8f93\u5165\u6570\u636e\u7ef4\u6570\u7684\u503c\u7528\u4e8e\u5360\u4f4d\u5373\u53ef":108,"\u5c06\u5e8f\u5217\u5316\u7ed3\u679c\u5199\u5165\u4e00\u4e2a\u6587\u4ef6\u5185":116,"\u5c06\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u7684\u524d\u5411\u548c\u53cd\u5411\u90e8\u5206\u6df7\u5408\u5728\u4e00\u8d77":140,"\u5c06\u6027\u80fd\u5206\u6790\u7ed3\u679c\u4ee5\u7f51\u9875\u7684\u5f62\u5f0f\u5c55\u793a\u51fa\u6765":133,"\u5c06\u6027\u80fd\u5206\u6790\u7ed3\u679c\u6309\u7167tottime\u6392\u5e8f":133,"\u5c06\u6570\u636e\u5207\u5206\u6210\u591a\u4efd":117,"\u5c06\u65b0\u5206\u652f\u7684\u7248\u672c\u6253\u4e0atag":88,"\u5c06\u65b0\u5efa\u7684\u6743\u91cd\u52a0\u5165\u6743\u91cd\u8868":100,"\u5c06\u660e\u6587\u53c2\u6570\u8f6c\u5316\u4e3apaddlepaddle\u53ef\u52a0\u8f7d\u7684\u6a21\u578b\u53c2\u6570\u65f6":109,"\u5c06\u672c\u5730\u7684\u4fee\u6539\u63a8\u9001\u5230":98,"\u5c06\u6b64\u76ee\u5f55\u6302\u8f7d\u4e3a\u5bb9\u5668\u7684":123,"\u5c06\u73af\u5883\u53d8\u91cf\u8f6c\u6362\u6210paddle\u7684\u547d\u4ee4\u884c\u53c2\u6570":123,"\u5c06\u7528\u4e8epython":101,"\u5c06\u7ed3\u679c\u4fdd\u5b58\u5230\u6b64\u76ee\u5f55\u91cc":123,"\u5c06\u7f51\u7edc\u7ed3\u6784\u5b9a\u4e49\u548c\u8bad\u7ec3\u7ed3\u675f\u5b58\u50a8\u4e0b\u6765\u7684\u6a21\u578b\u53c2\u6570\u6587\u4ef6":116,"\u5c06\u8bad\u7ec3\u6587\u4ef6\u4e0e\u5207\u5206\u597d\u7684\u6570\u636e\u4e0a\u4f20\u5230\u5171\u4eab\u5b58\u50a8":123,"\u5c06\u8df3\u8fc7\u5206\u53d1\u9636\u6bb5\u76f4\u63a5\u542f\u52a8\u6240\u6709\u8282\u70b9\u7684\u96c6\u7fa4\u4f5c\u4e1a":119,"\u5c06\u8fd9\u79cd\u8de8\u8d8a\u65f6\u95f4\u6b65\u7684\u8fde\u63a5\u7528\u4e00\u4e2a\u7279\u6b8a\u7684\u795e\u7ecf\u7f51\u7edc\u5355\u5143\u5b9e\u73b0":137,"\u5c06\u8fdc\u7a0b\u4ed3\u5e93":98,"\u5c06\u900f\u660e":119,"\u5c06\u9700\u8981\u8f93\u51fa\u7684\u5c42\u4f5c\u4e3a":107,"\u5c06cuda\u5e93\u548clinux\u8bbe\u5907\u6302\u8f7d\u5230docker\u5bb9\u5668\u5185":28,"\u5c06ip\u6392\u5e8f\u751f\u6210\u7684\u5e8f\u53f7\u4f5c\u4e3atrain":123,"\u5c06master\u5206\u652f\u7684\u5408\u5165commit\u6253\u4e0atag":88,"\u5c06node\u8282\u70b9\u7684ip\u5730\u5740\u4fdd\u5b58\u5230machines\u6587\u4ef6\u4e2d":124,"\u5c06paddlepaddle\u4fdd\u5b58\u7684\u6a21\u578b\u53c2\u6570\u8fd8\u539f\u56de\u660e\u6587\u65f6":109,"\u5c06recurr":108,"\u5c0f\u4e8e\u67d0\u4e2a\u6bd4\u8f83\u5c0f\u7684\u9608\u503c\u8ba4\u4e3a\u901a\u8fc7":68,"\u5c31\u4f1a\u5728\u5b8c\u6210\u7f16\u8bd1\u4e4b\u540e":27,"\u5c31\u53ef\u4ee5\u4e86\u89e3\u5230\u95ee\u9898\u4ee3\u7801\u5728\u54ea\u91cc":133,"\u5c31\u53ef\u4ee5\u4f7f\u7528\u4e0b\u9762\u7684\u547d\u4ee4\u5f00\u59cb\u6267\u884c\u8bad\u7ec3":28,"\u5c31\u53ef\u4ee5\u6309":26,"\u5c31\u5c06\u8fd9\u4e9b\u5c42\u52a0\u5165\u4e00\u4e2apython":116,"\u5c31\u5f88\u5bb9\u6613\u5bfc\u81f4\u5185\u5b58\u8d85\u9650":107,"\u5c31\u662f\u7528\u4e8e\u5c55\u793a\u4e0a\u8ff0\u5206\u6790\u5de5\u5177\u7684\u7528\u6cd5":134,"\u5c31\u662fpaddlepaddle\u4e2d\u6240\u6307\u7684":115,"\u5c31\u8fd9\u4e48\u7b80\u5355":28,"\u5c31\u901a\u5e38\u7684gpu\u6027\u80fd\u5206\u6790\u6765\u8bf4":134,"\u5c31\u9700\u8981\u5bf9\u8fd9\u4e2a\u7b2c\u4e09\u65b9\u8bed\u8a00\u589e\u52a0\u4e00\u4e9b\u5b9a\u4e49":71,"\u5c31\u9700\u8981\u9009\u62e9\u4f7f\u7528no":28,"\u5c3d\u65e9\u62a5\u9519":101,"\u5c42\u524d\u5411\u8ba1\u7b97\u7684\u7ed3\u679c":116,"\u5c42\u548c\u8f93\u5165\u7684\u914d\u7f6e":100,"\u5c42\u6b21\u5316\u7684rnn":139,"\u5c42\u7684\u540d\u79f0\u4e0e":140,"\u5c42\u7684\u5927\u5c0f":100,"\u5c42\u7684\u7c7b\u578b":100,"\u5c42\u7684\u8f93\u51fa\u88ab\u7528\u4f5c\u95e8\u63a7\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u7684":140,"\u5c55\u793a\u4e86\u4e00\u4e2a\u542b\u67094\u4e2a\u5e8f\u5217\u7684":115,"\u5c55\u793a\u7684\u8c03\u7528\u56fe\u4e5f\u53ef\u4ee5\u5e2e\u52a9\u6211\u4eec\u53d1\u73b0\u6027\u80fd\u4e2d\u7684\u95ee\u9898":133,"\u5c5e\u4e8e\u8fd9\u4e00\u7c7b\u7684\u5b9e\u73b0":108,"\u5c5e\u6027":101,"\u5de5\u4f5c\u6a21\u5f0f":129,"\u5de5\u4f5c\u7a7a\u95f4\u4e2d\u7684":119,"\u5de5\u4f5c\u7a7a\u95f4\u5e94\u5982\u4e0b\u6240\u793a":117,"\u5de5\u5177\u4e0a\u4f20\u5373\u53ef":88,"\u5de5\u5177\u5408\u5e76fat\u5e93":143,"\u5de5\u5177\u670d\u52a1\u5668\u5c06\u8bfb\u53d6\u73af\u5883\u53d8\u91cf":103,"\u5de5\u5177\u6765\u7ba1\u7406":98,"\u5de5\u5177\u6765\u7f16\u8bd1\u6587\u6863":103,"\u5de5\u5177\u94fe":142,"\u5de5\u5177\u94fe\u7684android":142,"\u5de6\u53f3\u7684\u8ba1\u7b97\u65f6\u95f4":133,"\u5df2\u6253\u5f00":98,"\u5df2\u7ecf\u5728\u96c6\u7fa4\u63d0\u4ea4\u73af\u5883\u4e2d\u5b8c\u6210\u8bbe\u7f6e":129,"\u5e02\u9762\u4e0a\u5df2\u7ecf\u6709nvidia\u6216\u7b2c\u4e09\u65b9\u63d0\u4f9b\u7684\u4f17\u591a\u5de5\u5177":134,"\u5e0c\u671b\u80fd\u591f\u5c06\u5e8f\u5217\u5316\u540e\u7684\u795e\u7ecf\u7f51\u7edc\u7ed3\u6784\u548c\u8bad\u7ec3\u597d\u7684\u6a21\u578b\u53c2\u6570\u6253\u5305\u8fdb\u4e00\u4e2a\u6587\u4ef6":116,"\u5e26\u6709\u4e0b\u9762\u4e24\u4e2a\u6a21\u677f\u53c2\u6570":101,"\u5e2e\u52a9\u6211\u4eec\u5b8c\u6210\u5bf9\u8f93\u5165\u5e8f\u5217\u7684\u62c6\u5206":139,"\u5e2e\u52a9\u6211\u4eec\u66f4\u597d\u5730\u63cf\u8ff0\u6bb5\u843d":139,"\u5e2e\u52a9\u6211\u4eec\u6784\u9020\u4e00\u4e9b\u590d\u6742\u7684\u8f93\u5165\u4fe1\u606f":136,"\u5e38\u5e38\u51fa\u73b0":104,"\u5e38\u7528\u4e8e\u81ea\u7136\u8bed\u8a00\u5904\u7406\u4efb\u52a1":115,"\u5e38\u7528\u7684cmake\u914d\u7f6e\u5982\u4e0b":[142,143],"\u5e38\u89c1\u7684\u5305\u62ec":133,"\u5e73\u5747\u6545\u969c\u4fee\u590d\u65f6\u95f4":37,"\u5e73\u5747\u6545\u969c\u7387":37,"\u5e76\u4e0d\u4fdd\u8bc1":100,"\u5e76\u4e0d\u662f\u4f7f\u7528\u53cc\u5c42rnn\u89e3\u51b3\u5b9e\u9645\u7684\u95ee\u9898":137,"\u5e76\u4e0d\u662fkubernetes\u4e2d\u7684node\u6982\u5ff5":123,"\u5e76\u4e0d\u771f\u6b63":[115,116],"\u5e76\u4e0d\u771f\u6b63\u7684\u548c":137,"\u5e76\u4e0d\u96be":26,"\u5e76\u4e14":140,"\u5e76\u4e14\u4e5f\u53ef\u4ee5\u5728windows\u7684docker\u4e2d\u8fd0\u884c":28,"\u5e76\u4e14\u4e66\u5199\u4e00\u4efd\u4ee3\u7801":102,"\u5e76\u4e14\u4f1a\u5199\u597d":68,"\u5e76\u4e14\u4f1a\u6839\u636e":142,"\u5e76\u4e14\u4f7f\u7528":72,"\u5e76\u4e14\u5185\u5c42\u7684\u5e8f\u5217\u64cd\u4f5c\u4e4b\u95f4\u72ec\u7acb\u65e0\u4f9d\u8d56":137,"\u5e76\u4e14\u52a0\u4e0a\u4e0b\u9762\u7684\u547d\u4ee4\u884c\u53c2\u6570":131,"\u5e76\u4e14\u5305\u62ecunit":98,"\u5e76\u4e14\u53ea\u9700\u8981\u5728\u5fc5\u8981\u7684\u65f6\u5019\u8f6c\u6362\u8fd9\u79cd\u683c\u5f0f":68,"\u5e76\u4e14\u53ef\u80fd\u4f1a\u52a0\u901f\u8bad\u7ec3\u8fc7\u7a0b":107,"\u5e76\u4e14\u542f\u52a8\u8bad\u7ec3":123,"\u5e76\u4e14\u5728\u5e38\u89c1\u7684\u5e73\u53f0\u4e0a":71,"\u5e76\u4e14\u5c55\u793a\u4e86\u5982\u4f55\u5229\u7528paddlepaddle\u6765\u89e3\u51b3\u4e00\u4e2a\u7ecf\u5178\u7684\u7ebf\u6027\u56de\u5f52\u95ee\u9898":110,"\u5e76\u4e14\u5f3a\u5236\u8bbe\u7f6e\u4e00\u4e9bpaddlepaddle\u53c2\u6570\u7684\u503c":143,"\u5e76\u4e14\u5f53\u7f16\u8bd1\u65f6":67,"\u5e76\u4e14\u628a\u5404\u79cd\u5f00\u53d1\u5de5\u5177\u5b89\u88c5\u8fdb\u53bb":26,"\u5e76\u4e14\u628a\u7cfb\u7edf\u751f\u6210\u7684ca":54,"\u5e76\u4e14\u628a\u7ed3\u679c\u8fd4\u56depfsclient\u7aef":54,"\u5e76\u4e14\u67e5\u8be2paddlepaddle\u5355\u5143\u6d4b\u8bd5\u7684\u65e5\u5fd7":104,"\u5e76\u4e14\u7f16\u8bd1\u65f6\u9700\u8981\u6253\u5f00":101,"\u5e76\u4e14\u7f16\u8bd1\u80fd\u901a\u8fc7\u4ee3\u7801\u6837\u5f0f\u68c0\u67e5":98,"\u5e76\u4e14\u8ba9\u63a5\u53e3\u8131\u79bb\u5b9e\u73b0\u7ec6\u8282":71,"\u5e76\u4e14\u8bbe\u7f6e\u9ed8\u8ba4\u503c\u4e3a1":101,"\u5e76\u4e14\u8f93\u5165\u8f93\u51fa\u90fd\u662f\u5171\u7528\u4e00\u5757\u5185\u5b58":68,"\u5e76\u4e14\u8f93\u51fa\u4e00\u4e2a":98,"\u5e76\u4e14\u8fd0\u884c":26,"\u5e76\u4e14\u9700\u8981\u91cd\u5199\u57fa\u7c7b\u4e2d\u7684\u4ee5\u4e0b\u51e0\u4e2a\u865a\u51fd\u6570":100,"\u5e76\u4e14cpu":101,"\u5e76\u4e14softmax\u5c42\u7684\u4e24\u4e2a\u8f93\u5165\u4e5f\u4f7f\u7528\u4e86\u540c\u6837\u7684\u53c2\u6570":109,"\u5e76\u4f7f\u7528":119,"\u5e76\u4fdd\u5b58\u8f93\u51fa\u5230\u4e00\u4e2a\u65e5\u5fd7\u6587\u4ef6":117,"\u5e76\u521b\u5efa\u4e86\u4e00\u4e2a\u65b0\u6587\u4ef6":98,"\u5e76\u521b\u5efaoptim":110,"\u5e76\u521d\u59cb\u5316":101,"\u5e76\u5220\u9664":88,"\u5e76\u5220\u9664\u66f4\u65e9\u7684\u5feb\u7167":37,"\u5e76\u52a0\u8f7d\u5176\u4e2d\u7684\u53c2\u6570":37,"\u5e76\u53d1\u5e03\u5230pypi":88,"\u5e76\u53ef\u4ee5\u5728\u5927\u591a\u6570\u4e3b\u6d41\u7684linux\u64cd\u4f5c\u7cfb\u7edf\u4ee5\u53camacos\u4e0a\u6267\u884c":30,"\u5e76\u548c\u53c2\u6570\u670d\u52a1\u5668\u901a\u4fe1":118,"\u5e76\u5728\u4e58\u79ef\u7ed3\u679c\u4e0a\u518d\u52a0\u4e0a\u7ef4\u5ea6\u4e3a":100,"\u5e76\u5728\u6700\u5f00\u59cb\u521d\u59cb\u5316\u4e3a\u8d77\u59cb\u8bcd":140,"\u5e76\u5728\u6bcf\u6b21\u6743\u91cd\u66f4\u65b0\u540e":67,"\u5e76\u5728\u7c7b\u6784\u5efa\u51fd\u6570\u4e2d\u628a\u5b83\u653e\u5165\u4e00\u4e2a\u7c7b\u6210\u5458\u53d8\u91cf\u91cc":100,"\u5e76\u5728\u8be5layer\u91cc\u91c7\u7528\u7b2c\u4e00\u79cd\u65b9\u5f0f\u8bbe\u7f6e":108,"\u5e76\u5728\u96c6\u7fa4\u4e2d\u8fd0\u884c\u591a\u4e2a\u5206\u5e03\u5f0f\u6570\u636e\u5904\u7406\u4efb\u52a1":38,"\u5e76\u5728python\u811a\u672c\u4e2d\u5b8c\u6210\u4e0eoperator\u540c\u6837\u7684\u8ba1\u7b97\u903b\u8f91":101,"\u5e76\u5904\u7406\u4e0e\u4e4b\u76f8\u5173\u7684\u6240\u6709\u7ec6\u8282":116,"\u5e76\u5b89\u88c5\u4e86python":104,"\u5e76\u5b89\u88c5\u6700\u65b0":30,"\u5e76\u5b89\u88c5\u6709python2":112,"\u5e76\u5b8c\u6210\u53c2\u6570\u4f18\u5316\u66f4\u65b0":118,"\u5e76\u5bf9\u6bd4\u662f\u5426\u548c\u6b63\u5728\u5b89\u88c5\u7684\u540e\u7f00\u4e00\u81f4":104,"\u5e76\u5bf9\u76f8\u5e94\u7684\u53c2\u6570\u8c03\u7528":100,"\u5e76\u5c06":88,"\u5e76\u5c06\u5176\u6295\u5c04\u5230":140,"\u5e76\u5c06\u8be5layer\u4e0a\u4e00\u65f6\u95f4\u6b65\u7684\u8f93\u51fa\u4f5c\u4e3a\u81ea\u8eab\u5f53\u524d\u65f6\u95f4\u6b65\u7684\u8f93\u51fa":108,"\u5e76\u5c06c":72,"\u5e76\u624b\u52a8\u751f\u6210download\u6210\u529f\u6807\u7b7e":104,"\u5e76\u6267\u884c\u4e0b\u9762\u7684\u547d\u4ee4":28,"\u5e76\u628a\u5feb\u7167\u4fdd\u5b58\u5230\u8fd9\u4e2a\u76ee\u5f55\u4e0b":37,"\u5e76\u628a\u7ed3\u679c\u653e\u5230\u5f53\u524d\u5c42\u7684":68,"\u5e76\u628a\u8fd9\u4e2a\u5305\u542b\u4e86\u8bad\u7ec3\u6570\u636e\u7684container\u4fdd\u5b58\u4e3a\u4e00\u4e2a\u65b0\u7684\u955c\u50cf":122,"\u5e76\u66f4\u6362job":105,"\u5e76\u6839\u636e\u5206\u5e03\u5f0f\u8bad\u7ec3\u5e76\u53d1\u6570":117,"\u5e76\u68c0\u67e5\u548c\u9700\u5b89\u88c5\u7684\u5305\u662f\u5426\u5339\u914d":30,"\u5e76\u6ca1\u6709paddle\u7279\u522b\u9700\u8981\u7684\u7279\u6027":71,"\u5e76\u6dfb\u52a0\u5934\u6587\u4ef6":67,"\u5e76\u6dfb\u52a0\u6ce8\u91ca":101,"\u5e76\u7279\u5316\u6a21\u677f\u53c2\u6570\u4e3a":101,"\u5e76\u7c98\u8d34\u6b64python\u4ee3\u7801":112,"\u5e76\u81ea\u52a8\u4e0b\u8f7d\u5b89\u88c5\u4f9d\u8d56\u8f6f\u4ef6":30,"\u5e76\u81ea\u52a8\u7f16\u8bd1\u5bbf\u4e3b\u673a\u7248protoc\u53ef\u6267\u884c\u6587\u4ef6":144,"\u5e76\u81ea\u52a8\u7f16\u8bd1paddlepaddle\u6240\u9700\u7684\u6240\u6709\u7b2c\u4e09\u65b9\u5e93":142,"\u5e76\u884c\u5730\u6267\u884c\u6a21\u578b\u7684\u8bad\u7ec3":118,"\u5e76\u884c\u5730\u63a5\u6536\u68af\u5ea6\u548c\u66f4\u65b0\u53c2\u6570":118,"\u5e76\u88ab\u5b58\u50a8\u5728\u8bf8\u5982hadoop":38,"\u5e76\u89c2\u5bdf\u7ed3\u679c":134,"\u5e76\u89e3\u91ca\u4e86\u5404\u81ea\u542b\u4e49":101,"\u5e76\u8bb0\u5f55\u5b83\u7684\u7f16\u53f7":98,"\u5e76\u8fdb\u884c\u521d\u59cb\u5316\u64cd\u4f5c":110,"\u5e76\u9002\u5e94github\u7684\u7279\u6027\u505a\u4e86\u4e00\u4e9b\u533a\u522b":88,"\u5e76\u91cd\u65b0\u6253\u5305wheel\u5305":88,"\u5e76\u94fe\u63a5\u5230\u751f\u6210\u7684lib\u5e93\u4e2d":101,"\u5e78\u800cpython\u7684\u4e00\u4e2a\u7b2c\u4e09\u65b9\u5e93":133,"\u5e8f\u5217\u4e2d\u542b\u6709\u5143\u7d20\u7684\u6570\u76ee\u540c":136,"\u5e8f\u5217\u4e2d\u7684\u4e00\u4e2a\u5143\u7d20":115,"\u5e8f\u5217\u4e2d\u7684\u5143\u7d20\u662f\u8bcd\u8bed":115,"\u5e8f\u5217\u4e2d\u7684\u6bcf\u4e00\u4e2a\u5143\u7d20\u53c8\u662f\u4e00\u4e2a\u5e8f\u5217":115,"\u5e8f\u5217\u4e2d\u7684\u6bcf\u4e00\u4e2a\u5143\u7d20\u662f\u975e\u5e8f\u5217":115,"\u5e8f\u5217\u4fe1\u606f":115,"\u5e8f\u5217\u5316\u795e\u7ecf\u7f51\u7edc\u6a21\u578b\u914d\u7f6e":116,"\u5e8f\u5217\u5316\u795e\u7ecf\u7f51\u7edc\u7ed3\u6784\u65f6":116,"\u5e8f\u5217\u5316\u7ed3\u679c\u4f1a\u5199\u5165\u5f53\u524d\u8fd0\u884c\u76ee\u5f55\u4e0b\u7684":116,"\u5e8f\u5217\u6570\u636e\u662f\u81ea\u7136\u8bed\u8a00\u5904\u7406\u4efb\u52a1\u9762\u5bf9\u7684\u4e00\u79cd\u4e3b\u8981\u8f93\u5165\u6570\u636e\u7c7b\u578b":139,"\u5e8f\u5217\u662f\u4e00\u79cd\u5e38\u89c1\u7684\u6570\u636e\u7c7b\u578b":136,"\u5e8f\u5217\u751f\u6210\u4efb\u52a1\u5927\u591a\u9075\u5faaencod":139,"\u5e8f\u5217\u751f\u6210\u4efb\u52a1\u7684\u8f93\u5165":139,"\u5e8f\u5217\u7684\u6bcf\u4e2a\u5143\u7d20\u662f\u539f\u6765\u53cc\u5c42\u5e8f\u5217\u6bcf\u4e2asubseq\u5143\u7d20\u7684\u5e73\u5747\u503c":136,"\u5e8f\u5217\u8f93\u5165":115,"\u5e8f\u5217\u8f93\u5165\u65f6\u7b49\u4e8e":107,"\u5e8f\u5217\u8f93\u5165\u793a\u610f\u56fe":115,"\u5e93\u6709\u81ea\u5df1\u72ec\u7acb\u7684\u52a8\u6001\u5e93\u6587\u4ef6":113,"\u5e94\u7528\u524d\u5411\u5faa\u73af\u795e\u7ecf\u7f51\u7edc":140,"\u5e94\u7528\u53cd\u5411\u9012\u5f52\u795e\u7ecf\u7f51\u7edc":140,"\u5e94\u80fd\u53cd\u6620\u5f53\u524dcommit\u7684\u5185\u5bb9":98,"\u5e94\u8be5\u4e0e\u5b83\u7684memory\u540d\u5b57\u76f8\u540c":140,"\u5e94\u8be5\u8bf4\u8c22\u8c22":98,"\u5e94\u8be5\u8bfb\u53d6\u5f53\u524d\u76ee\u5f55\u4e0b\u7684":26,"\u5e94\u8be5\u964d\u4f4e\u5b66\u4e60\u7387":109,"\u5e95\u5c42\u8fdb\u7a0b":119,"\u5efa\u7acb\u4e00\u4e2a":98,"\u5efa\u8bae":[29,88,98],"\u5efa\u8bae\u5c06\u8be5\u53c2\u6570\u8bbe\u4e3atrue":129,"\u5f00\u53d1\u4e86\u6a21\u578b\u9884\u6d4b\u7684\u6837\u4f8b\u4ee3\u7801":72,"\u5f00\u53d1\u4eba\u5458\u4f7f\u7528":98,"\u5f00\u53d1\u5206\u652f":30,"\u5f00\u53d1\u6807\u51c6":141,"\u5f00\u53d1\u8005\u4f7f\u7528":26,"\u5f00\u53d1\u8005\u4fee\u6539\u81ea\u5df1\u7684\u4ee3\u7801":88,"\u5f00\u53d1\u8005fork\u7684\u7248\u672c\u5e93\u4e2d":88,"\u5f00\u53d1\u8005fork\u7684\u7248\u672c\u5e93\u4f7f\u7528":88,"\u5f00\u53d1\u955c\u50cf":98,"\u5f00\u53d1\u9884\u6d4b\u5e8f":116,"\u5f00\u53d1\u9884\u6d4b\u7a0b\u5e8f\u94fe\u63a5":113,"\u5f00\u542f":27,"\u5f00\u5934":[67,68],"\u5f00\u5934\u7684\u90e8\u5206":117,"\u5f00\u5934\u90e8\u5206\u6307\u5b9a":117,"\u5f00\u59cb\u63d0\u4f9b\u670d\u52a1":37,"\u5f00\u59cb\u6807\u8bb0":140,"\u5f00\u59cb\u795e\u7ecf\u7f51\u7edc\u7684":118,"\u5f00\u59cb\u9636\u6bb5":134,"\u5f02\u6b65\u968f\u673a\u68af\u5ea6\u4e0b\u964d":128,"\u5f15\u5165\u4e86\u4ee5\u4e0b\u56db\u4e2aapi":67,"\u5f15\u5165\u4e86\u7c7b\u578b\u7684\u5934\u6587\u4ef6":72,"\u5f15\u53d1":9,"\u5f15\u5bfc\u5c42":140,"\u5f15\u7528memory\u5f97\u5230\u8fd9layer\u4e0a\u4e00\u65f6\u523b\u8f93\u51fa":139,"\u5f39\u51fa\u4e0b\u9762\u7684\u9009\u62e9\u6846":88,"\u5f52\u4e00\u5316\u6982\u7387\u5411\u91cf":140,"\u5f53":131,"\u5f53\u4e00\u4e2a":115,"\u5f53\u4e0a\u8ff0\u63a5\u53e3\u7b2c4\u4e2a\u53c2\u6570":115,"\u5f53\u4f60\u6267\u884c\u547d\u4ee4":100,"\u5f53\u4fdd\u5b58\u7684\u7f51\u7edc\u53c2\u6570\u4e3afloat\u7c7b\u578b\u65f6\u4e3a4":109,"\u5f53\u524d\u65f6\u95f4\u6b65\u5904\u7684memory\u7684\u8f93\u51fa\u4f5c\u4e3a\u4e0b\u4e00\u65f6\u95f4\u6b65memory\u7684\u8f93\u5165":140,"\u5f53\u524d\u7684\u5b66\u4e60\u7387\u4e3a\u6240\u8bbe\u7f6e":109,"\u5f53\u524d\u7684\u5b9e\u73b0\u65b9\u5f0f\u4e0b":100,"\u5f53\u524d\u7684\u8f93\u5165y\u548c\u4e0a\u4e00\u4e2a\u65f6\u95f4\u6b65\u7684\u8f93\u51farnn_state\u505a\u4e86\u4e00\u4e2a\u5168\u94fe\u63a5":137,"\u5f53\u524d\u8bad\u7ec3\u4efb\u52a1\u542f\u52a8\u7684pserver\u7684ip\u5217\u8868":117,"\u5f53\u524d\u8bad\u7ec3\u4efb\u52a1pserver\u603b\u6570":117,"\u5f53\u524d\u8bad\u7ec3\u4efb\u52a1trainer\u603b\u6570":117,"\u5f53\u524dtrainer\u7684\u7ebf\u7a0b\u6570\u76ee":117,"\u5f53\u529f\u80fd\u5206\u652f\u5f00\u53d1\u5b8c\u6bd5\u540e":88,"\u5f53\u53ea\u505a\u63a8\u65ad":67,"\u5f53\u5728\u7f51\u7edc\u5c42\u914d\u7f6e\u4e2d\u8bbe\u7f6e":129,"\u5f53\u5728\u8bad\u7ec3\u914d\u7f6e\u4e2d\u8bbe\u7f6e":129,"\u5f53\u5df2\u8bad\u7ec3\u6837\u672c\u6570\u5927\u4e8e1000\u5c0f\u4e8e\u7b49\u4e8e2000\u65f6":109,"\u5f53\u5df2\u8bad\u7ec3\u6837\u672c\u6570\u5927\u4e8e2000\u65f6":109,"\u5f53\u5df2\u8bad\u7ec3\u6837\u672c\u6570\u5c0f\u4e8e\u7b49\u4e8e1000\u65f6":109,"\u5f53\u5df2\u8bad\u7ec3pass\u6570\u5927\u4e8e1\u5c0f\u4e8e\u7b49\u4e8e2\u65f6":109,"\u5f53\u5df2\u8bad\u7ec3pass\u6570\u5927\u4e8e2\u65f6":109,"\u5f53\u5df2\u8bad\u7ec3pass\u6570\u5c0f\u4e8e\u7b49\u4e8e1\u65f6":109,"\u5f53\u5f00\u542f":68,"\u5f53\u6211\u4eec\u505a\u51fa\u6027\u80fd\u4fee\u6b63\u540e":133,"\u5f53\u6240\u6709pod\u90fd\u5904\u4e8erunning\u72b6\u6001":123,"\u5f53\u6253\u5f00":68,"\u5f53\u6570\u636e\u683c\u5f0f\u4e0epaddlepaddle\u9ed8\u8ba4\u7684":68,"\u5f53\u6a21\u578b\u53c2\u6570\u4e0d\u5b58\u5728\u65f6":129,"\u5f53\u6a21\u5f0f\u4e3a":129,"\u5f53\u7136":[28,134],"\u5f53\u7136\u53ef\u4ee5":26,"\u5f53\u7136\u8fd9\u4e24\u8005\u4e5f\u53ef\u4ee5\u76f8\u7b49":68,"\u5f53\u7528\u6237\u4f7f\u7528\u5b8c\u8fd9\u4e2a\u53c2\u6570\u540e":72,"\u5f53\u7528\u6237\u6ca1\u6709\u663e\u5f0f\u8bbe\u5b9a\u65f6":108,"\u5f53\u7f51\u7edc\u51fa\u73b0\u5206\u652f\u4e14\u5728":68,"\u5f53\u7f51\u7edc\u5c42\u7528\u4e00\u4e2a\u6279\u6b21\u505a\u8bad\u7ec3\u65f6":100,"\u5f53\u89e3\u8bfb\u6bcf\u4e00\u4e2a":140,"\u5f53\u8d85\u8fc7\u8be5\u9608\u503c\u65f6":129,"\u5f53\u8f93\u5165\u662f\u7ef4\u5ea6\u5f88\u9ad8\u7684\u7a00\u758f\u6570\u636e\u65f6":131,"\u5f53\u9700\u8981\u5b8c\u6210\u8ba1\u7b97\u65f6":102,"\u5f53\u975e\u5e8f\u5217\u8f93\u5165\u65f6":115,"\u5f53destination\u6587\u4ef6\u4e0d\u5b58\u5728\u6216\u8005\u5927\u5c0f\u548csource\u6587\u4ef6\u4e0d\u4e00\u81f4\u65f6":54,"\u5f53n1":107,"\u5f62\u6210recurr":139,"\u5f62\u6210recurrent\u8fde\u63a5":139,"\u5f88\u591a":26,"\u5f88\u6709\u53ef\u80fd\u5b9e\u9645\u5e94\u7528\u5c31\u662f\u6ca1\u6709\u6309\u7167\u60a8\u7684\u9884\u671f\u60c5\u51b5\u8fd0\u884c":134,"\u5f88\u6709\u53ef\u80fd\u662f\u975e\u72ec\u5360\u65b9\u5f0f\u6267\u884c\u5bfc\u81f4\u7684\u7aef\u53e3\u51b2\u7a81":105,"\u5f88\u96be\u4fdd\u8bc1\u591a\u8bed\u8a00\u4ee3\u7801\u98ce\u683c\u7684\u4e00\u81f4\u6027":71,"\u5f97\u4f7f\u7528":71,"\u5f97\u5230\u8f93\u51fa\u503c":101,"\u5faa\u73af\u5c55\u5f00\u7684\u6bcf\u4e2a\u65f6\u95f4\u6b65\u603b\u662f\u80fd\u591f\u5f15\u7528\u6240\u6709\u8f93\u5165":139,"\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u4e2d":140,"\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u4f5c\u4e3a\u4f7f\u7528":140,"\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u548c":140,"\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u5728\u6bcf\u4e2a\u65f6\u95f4\u6b65\u9aa4\u987a\u5e8f\u5730\u5904\u7406\u5e8f\u5217":140,"\u5faa\u73af\u7f51\u7edc\u4ece":140,"\u5fc5\u8981":72,"\u5fc5\u9009":117,"\u5fc5\u987b":100,"\u5fc5\u987b\u5206\u522b\u4e0e":68,"\u5fc5\u987b\u5c06\u524d\u4e00\u4e2a\u5b50\u53e5\u7684\u6700\u540e\u4e00\u4e2a\u5143\u7d20":137,"\u5fc5\u987b\u6307\u5411\u4e00\u4e2apaddlepaddle\u5b9a\u4e49\u7684lay":139,"\u5fc5\u987b\u6307\u5b9a\u4e3a":116,"\u5fc5\u987b\u662f\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":139,"\u5fc5\u987b\u662f\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217":136,"\u5fc5\u987b\u7531\u53ea\u8bfbmemory\u7684":140,"\u5fc5\u987b\u8bbe\u7f6e\u4e3a":[142,143],"\u5fc5\u987b\u8bbe\u7f6e\u4e3aon":143,"\u5fc5\u987b\u914d\u7f6e\u4e3a":[113,144],"\u5fc5\u987b\u914d\u7f6e\u9009\u9879":113,"\u5feb\u901f\u5f00\u59cb":111,"\u6027\u80fd\u4f18\u5316\u7684\u8fc7\u7a0b\u901a\u5e38\u662f\u4e0d\u65ad\u91cd\u590d\u5730":133,"\u6027\u80fd\u5206\u6790":134,"\u6027\u80fd\u5206\u6790\u5de5\u5177\u662f\u7528\u4e8e\u7ed9\u5e94\u7528\u7a0b\u5e8f\u7684\u6027\u80fd\u505a\u5b9a\u91cf\u5206\u6790\u7684":134,"\u6027\u80fd\u5206\u6790\u662f\u6027\u80fd\u4f18\u5316\u7684\u5173\u952e\u4e00\u6b65":134,"\u6027\u80fd\u548c\u628a\u7f16\u8bd1\u5de5\u5177\u5b89\u88c5\u5728\u672c\u673a\u8fd0\u884c\u4e00\u6837":26,"\u6027\u80fd\u8c03\u4f18":128,"\u6027\u80fdtip":[142,143],"\u60a8\u4e5f\u53ef\u4ee5\u8fdb\u5165\u5230docker\u5bb9\u5668\u4e2d":28,"\u60a8\u4f1a\u5728\u63a5\u4e0b\u6765\u7684\u90e8\u5206\u4e2d\u83b7\u5f97\u66f4\u591a\u7684\u7ec6\u8282\u4ecb\u7ecd":134,"\u60a8\u53ef\u4ee5\u4ece\u4e0b\u9762\u7684\u8868\u683c\u4e2d\u627e\u5230\u9700\u8981\u7684\u7248\u672c":30,"\u60a8\u53ef\u4ee5\u4efb\u610f\u4f7f\u7528\u4e00\u4e2a\u6216\u4e24\u4e2a\u6765\u5bf9\u611f\u5174\u8da3\u7684\u4ee3\u7801\u6bb5\u505a\u6027\u80fd\u5206\u6790":134,"\u60a8\u53ef\u4ee5\u5728":28,"\u60a8\u53ef\u4ee5\u5728\u5bb9\u5668\u4e2d\u6267\u884c":28,"\u60a8\u53ef\u4ee5\u5bfc\u5165":134,"\u60a8\u53ef\u4ee5\u6309\u7167\u4e0b\u9762\u7684\u6b65\u9aa4\u5728openmpi\u96c6\u7fa4\u4e2d\u63d0\u4ea4paddle\u8bad\u7ec3\u4efb\u52a1":124,"\u60a8\u53ef\u4ee5\u91c7\u7528\u4e0b\u9762\u4e94\u4e2a\u6b65\u9aa4":134,"\u60a8\u53ef\u80fd\u9700\u8981\u4fee\u6539":117,"\u60a8\u5c06\u4e86\u89e3\u5982\u4f55":140,"\u60a8\u5c31\u80fd\u83b7\u5f97\u5982\u4e0b\u7684\u5206\u6790\u7ed3\u679c":134,"\u60a8\u6309\u5982\u4e0b\u6b65\u9aa4\u64cd\u4f5c\u5373\u53ef":134,"\u60a8\u6700\u597d\u5148\u786e\u8ba4":134,"\u60a8\u9996\u5148\u9700\u8981\u5728\u76f8\u5173\u4ee3\u7801\u6bb5\u4e2d\u52a0\u5165":134,"\u60c5\u611f\u5206\u6790":88,"\u60f3\u4e86\u89e3\u66f4\u591apaddlepaddl":103,"\u610f\u5473\u7740\u4e0d\u540c\u65f6\u95f4\u6b65\u7684\u8f93\u5165\u90fd\u662f\u76f8\u540c\u7684\u503c":140,"\u610f\u601d\u662f\u4e0d\u4f7f\u7528\u5e73\u5747\u53c2\u6570\u6267\u884c\u6d4b\u8bd5":129,"\u610f\u601d\u662f\u4e0d\u4fdd\u5b58\u7ed3\u679c":129,"\u610f\u601d\u662f\u4f7f\u7528\u7b2ctest":129,"\u610f\u601d\u662f\u5728gpu\u6a21\u5f0f\u4e0b\u4f7f\u75284\u4e2agpu":129,"\u6210\u529f\u7f16\u8bd1\u540e":113,"\u6210\u529f\u8bad\u7ec3\u4e14\u9000\u51fa\u7684pod\u6570\u76ee\u4e3a3\u65f6":123,"\u6210\u5458":101,"\u6210\u719f\u7684\u9ad8\u6027\u80fd\u5e76\u884c\u8ba1\u7b97\u6846\u67b6":120,"\u6211\u4eec\u4e0d\u80fd\u901a\u8fc7\u5e38\u89c4\u7684\u68af\u5ea6\u68c0\u67e5\u7684\u65b9\u5f0f\u6765\u8ba1\u7b97\u68af\u5ea6":100,"\u6211\u4eec\u4e3b\u8981\u4f1a\u4ecb\u7ecdnvprof\u548cnvvp":134,"\u6211\u4eec\u4e5f\u53ef\u4ee5\u786e\u5b9a\u6bcf\u4e00\u4e2a\u53c2\u6570\u7684\u7c7b\u578b":72,"\u6211\u4eec\u4e5f\u5c06mklml\u5373":68,"\u6211\u4eec\u4ec5\u4ec5\u5bf9\u795e\u7ecf\u7f51\u7edc\u7684\u8f93\u5165\u8fdb\u884c\u4e86\u63cf\u8ff0":110,"\u6211\u4eec\u4ec5\u6709\u4e00\u4e2a\u8f93\u5165":100,"\u6211\u4eec\u4ecb\u7ecd\u5982\u4f55\u5728":122,"\u6211\u4eec\u4ecb\u7ecd\u5982\u4f55\u5728kubernetes\u96c6\u7fa4\u4e0a\u8fdb\u884c\u5206\u5e03\u5f0fpaddlepaddle\u8bad\u7ec3\u4f5c\u4e1a":123,"\u6211\u4eec\u4ee5\u624b\u5199\u6570\u5b57\u8bc6\u522b\u4efb\u52a1\u4e3a\u4f8b\u8fdb\u884c\u4ecb\u7ecd":116,"\u6211\u4eec\u4f1a\u4fdd\u8bc1":68,"\u6211\u4eec\u4f1a\u5728\u7f51\u7edc\u8bad\u7ec3\u4e4b\u524d\u628a\u683c\u5f0f\u8f6c\u6362\u4e3amkl":68,"\u6211\u4eec\u4f1a\u5bf9\u6bcf\u4e2a\u8bad\u7ec3\u4efb\u52a1\u90fd\u4f1a\u5728\u6bcf\u4e2a\u8282\u70b9\u4e0a\u521b\u5efa\u4e00\u4e2a\u5de5\u4f5c\u7a7a\u95f4":117,"\u6211\u4eec\u4f1a\u5bf9\u6bd4\u5982\u4e0b2\u4e2a\u65b9\u9762":67,"\u6211\u4eec\u4f1a\u628amkl":68,"\u6211\u4eec\u4f1a\u6dfb\u52a0":[67,68],"\u6211\u4eec\u4f1a\u7ee7\u7eed\u4f7f\u7528\u73b0\u6709\u7684\u5185\u5b58\u5757":100,"\u6211\u4eec\u4f1a\u91cd\u65b0\u5206\u914d\u5185\u5b58":100,"\u6211\u4eec\u4f7f\u7528":100,"\u6211\u4eec\u4f7f\u7528\u4e0d\u540c\u7684layer\u8fdb\u884c\u7ec4\u5408":110,"\u6211\u4eec\u4f7f\u7528\u4e86":137,"\u6211\u4eec\u4f7f\u7528\u52a8\u6001\u5e93\u6765\u5206\u53d1paddl":71,"\u6211\u4eec\u4f7f\u7528paddl":117,"\u6211\u4eec\u5047\u8bbe\u4e00\u53f0\u673a\u5668\u4e0a\u67094\u4e2agpu":131,"\u6211\u4eec\u5148\u8c03\u7528\u6bcf\u4e2a":102,"\u6211\u4eec\u51b3\u5b9a\u4f7f\u7528\u5df2\u6709\u7684":68,"\u6211\u4eec\u5373\u53ef\u5b8c\u6210\u795e\u7ecf\u7f51\u7edc\u7684\u642d\u5efa":110,"\u6211\u4eec\u53ea\u6f14\u793a\u4e00\u4e2a\u5355\u673a\u4f5c\u4e1a":122,"\u6211\u4eec\u53ea\u9700\u8981":26,"\u6211\u4eec\u53ea\u9700\u8981\u4f7f\u7528lstm":137,"\u6211\u4eec\u53ea\u9700\u8981\u8fd0\u884c\u4e0b\u9762\u547d\u4ee4\u628a\u7f16\u8bd1\u597d\u7684paddlepaddle\u6253\u5305\u6210\u4e00\u4e2a":98,"\u6211\u4eec\u53ea\u9700\u8981\u914d\u7f6e":26,"\u6211\u4eec\u53ef\u4ee5":26,"\u6211\u4eec\u53ef\u4ee5\u4f7f\u7528":133,"\u6211\u4eec\u53ef\u4ee5\u4f7f\u7528\u5176\u4ed6layer\u8fdb\u884c\u7ec4\u5408":110,"\u6211\u4eec\u53ef\u4ee5\u4f7f\u7528\u5b83\u6765\u751f\u6210\u5e8f\u5217":140,"\u6211\u4eec\u53ef\u4ee5\u5148\u5b8c\u6210\u5bf9\u539f\u6570\u636e\u7684packing\u64cd\u4f5c":67,"\u6211\u4eec\u53ef\u4ee5\u521b\u5efatrainer\u6765\u5bf9\u7f51\u7edc\u8fdb\u884c\u8bad\u7ec3":110,"\u6211\u4eec\u53ef\u4ee5\u53c2\u8003tensorflow\u7684":102,"\u6211\u4eec\u53ef\u4ee5\u5728":98,"\u6211\u4eec\u53ef\u4ee5\u5728\u547d\u4ee4\u884c\u4e2d\u7b80\u5355\u7684\u770b\u4e00\u4e0b\u751f\u6210\u6548\u679c":133,"\u6211\u4eec\u53ef\u4ee5\u5b9a\u4e49\u5982\u4e0b\u7684layer\u7ec4\u5408":110,"\u6211\u4eec\u53ef\u4ee5\u5b9a\u4e49\u5982\u4e0blayer\u6765\u63cf\u8ff0\u795e\u7ecf\u7f51\u7edc\u7684\u8f93\u5165":110,"\u6211\u4eec\u53ef\u4ee5\u6309\u7167\u5982\u4e0b\u5c42\u6b21\u5b9a\u4e49\u975e\u5e8f\u5217":136,"\u6211\u4eec\u53ef\u4ee5\u67e5\u770b\u6027\u80fd\u5206\u6790\u7684\u7ed3\u679c":133,"\u6211\u4eec\u53ef\u4ee5\u8bbe\u8ba1\u642d\u5efa\u4e00\u4e2a\u7075\u6d3b\u7684":139,"\u6211\u4eec\u53ef\u4ee5\u901a\u8fc7":133,"\u6211\u4eec\u53ef\u4ee5\u901a\u8fc7\u65e5\u5fd7\u67e5\u770b\u5bb9\u5668\u8bad\u7ec3\u7684\u60c5\u51b5":123,"\u6211\u4eec\u5728":102,"\u6211\u4eec\u5728\u51fd\u6570\u7684\u7ed3\u5c3e\u8fd4\u56de":140,"\u6211\u4eec\u5bf9\u6a21\u578b\u8fdb\u884c\u4e86\u4ee5\u4e0b\u66f4\u6539":140,"\u6211\u4eec\u5c06":123,"\u6211\u4eec\u5c06\u4e00\u6bb5\u8bdd\u770b\u6210\u53e5\u5b50\u7684\u6570\u7ec4":137,"\u6211\u4eec\u5c06\u4ecb\u7ecd\u5982\u4f55\u542f\u52a8\u5206\u5e03\u5f0f\u8bad\u7ec3\u4f5c\u4e1a":122,"\u6211\u4eec\u5c06\u4f7f\u7528":140,"\u6211\u4eec\u5c06\u4f7f\u7528\u7b80\u5355\u7684":140,"\u6211\u4eec\u5c06\u539f\u59cb\u6570\u636e\u7684\u6bcf\u4e00\u7ec4":137,"\u6211\u4eec\u5c06\u5b83\u4eec\u5212\u5206\u4e3a\u4e0d\u540c\u7684\u7c7b\u522b":128,"\u6211\u4eec\u5c06\u795e\u7ecf\u7f51\u7edc\u4e00\u6b21\u8ba1\u7b97\u63a5\u53d7\u7684\u6240\u6709\u8f93\u5165\u6837\u672c\u79f0\u4e4b\u4e3a\u4e00\u4e2a":115,"\u6211\u4eec\u5c06\u8bad\u7ec3\u7ed3\u675f\u540e\u5b58\u50a8\u4e0b\u6765\u7684\u6a21\u578b\u8f6c\u6362\u6210\u9884\u6d4b\u6a21\u578b":116,"\u6211\u4eec\u5c31\u5b8c\u6210\u4e86\u4e00\u6b21\u4ee3\u7801\u8d21\u732e\u7684\u8fc7\u7a0b":98,"\u6211\u4eec\u5df2\u7ecf\u5b9e\u73b0\u4e86\u5927\u591a\u6570\u5e38\u7528\u7684\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u67b6\u6784":140,"\u6211\u4eec\u5efa\u8bae\u4f60\u4e3a\u4f60\u7684python\u5c01\u88c5\u5b9e\u73b0\u4e00\u4e2a":100,"\u6211\u4eec\u5efa\u8bae\u4f60\u5728\u5199\u65b0\u7f51\u7edc\u5c42\u65f6\u628a\u6d4b\u8bd5\u4ee3\u7801\u653e\u5165\u65b0\u7684\u6587\u4ef6\u4e2d":100,"\u6211\u4eec\u5efa\u8bae\u4f7f\u7528\u7b2c\u4e8c\u7c7b\u5b9e\u73b0":108,"\u6211\u4eec\u603b\u7ed3\u51fa\u4e00\u4e9b\u7279\u522b\u9700\u8981\u6ce8\u610f\u7684\u70b9":68,"\u6211\u4eec\u628apaddlepaddle\u7684\u4ea4\u53c9\u7f16\u8bd1\u73af\u5883\u6253\u5305\u6210\u4e00\u4e2a\u955c\u50cf":142,"\u6211\u4eec\u63a8\u8350\u4f7f\u7528":[28,127],"\u6211\u4eec\u63a8\u8350\u4f7f\u7528\u6700\u65b0\u7248\u672c\u7684cudnn":27,"\u6211\u4eec\u63a8\u8350\u60a8\u4f7f\u7528paddlepaddl":27,"\u6211\u4eec\u63d0\u4f9b\u4e24\u4e2a\u8f6c\u6362\u65b9\u5f0f":38,"\u6211\u4eec\u63d0\u4f9b\u4e86\u52a0\u901f\u8bbf\u95ee\u7684\u955c\u50cf\u6e90":28,"\u6211\u4eec\u63d0\u4f9b\u53ef\u4ee5\u76f4\u63a5\u8fd0\u884cpaddlepaddl":28,"\u6211\u4eec\u63d0\u51fa\u4e86chunk\u7684\u6982\u5ff5":54,"\u6211\u4eec\u662f\u5bf9\u6bcf\u4e00\u4e2a\u5b50\u5e8f\u5217\u53d6\u6700\u540e\u4e00\u4e2a\u5143\u7d20":137,"\u6211\u4eec\u6700\u7ec8\u7684\u52a8\u6001\u5e93\u4e2d\u4e0d\u5d4c\u5165python\u6216\u8005\u5176\u4ed6\u4efb\u4f55\u8bed\u8a00\u7684\u89e3\u91ca\u5668":71,"\u6211\u4eec\u6709\u4e00\u4e2a\u5e8f\u5217\u4f5c\u4e3a\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u7684\u72b6\u6001":140,"\u6211\u4eec\u7684":26,"\u6211\u4eec\u7684\u6807\u51c6\u5f00\u53d1\u6d41\u7a0b\u662f\u628a\u8fd9\u4e9b\u5de5\u5177\u90fd\u88c5\u8fdb\u4e00\u4e2adocker":98,"\u6211\u4eec\u770b\u4e00\u4e0b\u5355\u5c42rnn\u7684\u914d\u7f6e":137,"\u6211\u4eec\u770b\u4e00\u4e0b\u8bed\u4e49\u76f8\u540c\u7684\u53cc\u5c42rnn\u7684\u7f51\u7edc\u914d\u7f6e":137,"\u6211\u4eec\u771f\u8bda\u5730\u611f\u8c22\u60a8\u7684\u8d21\u732e":98,"\u6211\u4eec\u79f0\u4e4b\u4e3a\u4e00\u4e2a0\u5c42\u7684\u5e8f\u5217":136,"\u6211\u4eec\u8ba1\u5212\u5c06":67,"\u6211\u4eec\u8ba1\u5212\u5c06\u82f1\u7279\u5c14\u6df1\u5ea6\u795e\u7ecf\u7f51\u7edc\u6570\u5b66\u5e93":68,"\u6211\u4eec\u8bbe\u8ba1\u8bf4\u660e\u4e86\u540d\u4e3afilemanager\u7cfb\u7edf":54,"\u6211\u4eec\u8c03\u7528\u4e86eigenvector\u7684flatten\u63a5\u53e3":102,"\u6211\u4eec\u8fd8\u53ef\u4ee5\u767b\u5f55\u5230\u5bbf\u4e3b\u673a\u4e0a\u67e5\u770b\u8bad\u7ec3\u7ed3\u679c":122,"\u6211\u4eec\u8fd8\u5c06\u7f16\u7801\u5411\u91cf\u6295\u5c04\u5230":140,"\u6211\u4eec\u9009\u53d6\u5355\u53cc\u5c42\u5e8f\u5217\u914d\u7f6e\u4e2d\u7684\u4e0d\u540c\u90e8\u5206":137,"\u6211\u4eec\u9009\u62e9":38,"\u6211\u4eec\u901a\u5e38\u501f\u52a9":101,"\u6211\u4eec\u901a\u5e38\u5c06\u4e00\u53e5\u8bdd\u7406\u89e3\u6210\u4e00\u4e2a\u65f6\u95f4\u5e8f\u5217":137,"\u6211\u4eec\u901a\u8fc7\u4f7f\u7528\u65b0\u5f15\u5165\u7684gemm":67,"\u6211\u4eec\u901a\u8fc7\u8bfb\u53d6":123,"\u6211\u4eec\u90fd\u63d0\u4f9bpython\u7684\u8f6c\u6362\u5e93":38,"\u6211\u4eec\u9700\u8981":26,"\u6211\u4eec\u9700\u8981\u5148\u628a\u8f93\u5165tensor\u548c\u8f93\u51fatensor\u8f6c\u6362\u4e3aeigen\u652f\u6301\u7684\u683c\u5f0f":102,"\u6211\u4eec\u9700\u8981\u5236\u4f5c\u4e00\u4e2a\u5305\u542b\u8bad\u7ec3\u6570\u636e\u7684paddlepaddle\u955c\u50cf":122,"\u6211\u4eec\u9700\u8981\u5728\u96c6\u7fa4\u7684\u6240\u6709\u8282\u70b9\u4e0a\u5b89\u88c5":127,"\u6211\u4eec\u9700\u8981\u7b49\u5f0f\u5de6\u8fb9\u7684eigentensor\u8c03\u7528device\u63a5\u53e3":102,"\u6211\u4eec\u9700\u8981\u8ba1\u7b97":100,"\u6211\u4eec\u9996\u5148\u9700\u8981\u6839\u636e\u795e\u7ecf\u7f51\u7edc\u7ed3\u6784\u6765\u521b\u5efa\u6240\u9700\u8981\u4f18\u5316\u7684paramet":110,"\u6211\u5220\u9664\u4e86":98,"\u6211\u53ef\u4ee5\u7528":26,"\u6211\u53ef\u4ee5\u9009\u62e9\u4e0d\u7528docker\u5417":26,"\u6216":[115,134,143],"\u6216\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":136,"\u6216\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217\u7ecf\u8fc7\u8fd0\u7b97\u53d8\u6210\u4e00\u4e2a0\u5c42\u5e8f\u5217":136,"\u6216\u4e00\u4e2a\u5411\u91cf":139,"\u6216\u5355\u5c42\u5e8f\u5217\u7ecf\u8fc7\u8fd0\u7b97\u53d8\u6210\u4e00\u4e2a0\u5c42\u5e8f\u5217":136,"\u6216\u662f\u5728\u81ea\u7136\u8bed\u8a00\u5904\u7406\u4efb\u52a1\u4e2d\u8868\u793a\u8bcd\u8bed\u5728\u5b57\u5178\u4e2d\u7684\u5e8f\u53f7":115,"\u6216\u6700\u5927\u503c":136,"\u6216\u79f0\u4f5cweight":107,"\u6216\u7b2c\u4e00\u4e2a":136,"\u6216\u7b2c\u4e00\u4e2a\u5143\u7d20":136,"\u6216\u7f16\u5199\u7a0b\u5e8f\u65f6":117,"\u6216\u8005":[26,68,71,72,98,101,107,115,133,134,136,137],"\u6216\u8005\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":139,"\u6216\u8005\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217":[136,139],"\u6216\u8005\u4ece\u5de5\u5177\u7684\u754c\u9762\u91cc\u8fd0\u884c\u60a8\u7684\u5e94\u7528":134,"\u6216\u8005\u5236\u4f5c\u548c\u5206\u4eab\u5e26\u6709\u4ee3\u7801":28,"\u6216\u8005\u53cd\u5411\u5730\u4ece":140,"\u6216\u8005\u53ef\u88abdns\u89e3\u6790\u7684\u4e3b\u673a\u540d":127,"\u6216\u8005\u5728cpu\u6a21\u5f0f\u4e0b\u4f7f\u75284\u4e2a\u7ebf\u7a0b":129,"\u6216\u8005\u5c06\u8fd9\u53f0\u8282\u70b9\u8fc1\u79fb\u5230\u53e6\u4e00\u4e2a\u8282\u70b9\u5e76\u542f\u52a8\u5373\u53ef\u6062\u590d\u8bad\u7ec3\u4efb\u52a1":37,"\u6216\u8005\u5df2\u7ecf\u5728\u96c6\u7fa4\u63d0\u4ea4\u73af\u5883\u4e2d\u81ea\u52a8\u8bbe\u7f6e":128,"\u6216\u8005\u5f15\u8d77\u884c\u65f6\u9519\u8bef":115,"\u6216\u8005\u6570\u7ec4\u7684\u6570\u7ec4\u8fd9\u4e2a\u6982\u5ff5":137,"\u6216\u8005\u662f\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217":136,"\u6216\u8005\u662f\u51fd\u6570\u8c03\u7528\u7684\u9891\u7387\u548c\u8017\u65f6\u7b49":134,"\u6216\u8005\u66f4\u65e9":109,"\u6216\u8005\u6bcf\u4e00\u4e2a\u7cfb\u5217\u91cc\u7684\u7279\u5f81\u6570\u636e":137,"\u6216\u8005\u7528tuple\u8868\u793a\u7684\u591a\u4e2a\u503c":38,"\u6216\u8005\u7531\u5b83\u4eec\u7ec4\u6210\u7684list":38,"\u6216\u8005\u76f4\u63a5\u6254\u6389\u975e\u5e38\u957f\u7684\u5e8f\u5217":107,"\u6216\u8005\u76f8\u5bf9\u4e8e\u6784\u5efa\u76ee\u5f55\u7684\u76f8\u5bf9\u8def\u5f84":[142,144],"\u6216\u8005\u8f93\u5165\u6570\u636e\u5c3a\u5ea6\u8fc7\u5927":107,"\u6216\u8005\u8fd0\u884c":104,"\u6216\u8005\u91c7\u7528\u5e76\u884c\u8ba1\u7b97\u6765\u52a0\u901f\u67d0\u4e9b\u5c42\u7684\u66f4\u65b0":131,"\u6216activ":68,"\u6216gpu":129,"\u622a\u65ad\u5bf9\u8c61\u4e0d\u540c":107,"\u6240\u4ee5":[28,68,88,107,133],"\u6240\u4ee5\u4e00\u4e2a\u7248\u672c\u53f7\u7684wheel\u5305\u53d1\u5e03\u4e4b\u540e":88,"\u6240\u4ee5\u4e0d\u5b58\u5728\u8fd9\u4e2a\u95ee\u9898":68,"\u6240\u4ee5\u4e0d\u80fd\u91c7\u7528\u7b2c\u4e00\u79cd\u65b9\u5f0f\u5728\u8fd9\u51e0\u4e2alayer\u91cc\u8bbe\u7f6e":108,"\u6240\u4ee5\u505a\u6cd5\u53ef\u4ee5\u6709\u4e24\u79cd":107,"\u6240\u4ee5\u53ef\u4ee5\u7b80\u5316\u5bf9\u73af\u5883\u7684\u8981\u6c42":122,"\u6240\u4ee5\u5728":68,"\u6240\u4ee5\u5728\u5199\u5165\u5feb\u7167\u7684\u8fc7\u7a0b\u4e2d":37,"\u6240\u4ee5\u5916\u5c42\u8f93\u51fa\u7684\u5e8f\u5217\u5f62\u72b6":137,"\u6240\u4ee5\u5bf9":137,"\u6240\u4ee5\u5f00\u53d1\u8005\u9700\u8981\u6839\u636e\u81ea\u5df1\u8bad\u7ec3\u4efb\u52a1\u7684\u5b9e\u9645\u573a\u666f\u5b8c\u6210\u8bad\u7ec3\u6570\u636e\u7684\u5206\u5272\u548c":117,"\u6240\u4ee5\u6027\u80fd\u4e5f\u5c31\u9010\u6b65\u53d8\u6210\u4e86\u6df1\u5ea6\u5b66\u4e60\u9886\u57df\u6700\u91cd\u8981\u7684\u6307\u6807":134,"\u6240\u4ee5\u6211\u4eec\u53ef\u4ee5\u5728\u8fd9\u4e2a\u57fa\u7840\u4e0a":123,"\u6240\u4ee5\u6211\u4eec\u5b9a\u4e49\u4e86\u4e00\u4e2a":68,"\u6240\u4ee5\u6211\u4eec\u786e\u4fdd\u53d1\u5e03\u7684\u4e8c\u8fdb\u5236\u5305\u53ef\u4ee5\u652f\u6301\u4e3b\u6d41\u7684linux\u64cd\u4f5c\u7cfb\u7edf":30,"\u6240\u4ee5\u6211\u4eec\u9700\u8981\u5c06\u8f93\u5165\u6570\u636e\u6807\u8bb0\u6210":137,"\u6240\u4ee5\u6211\u4eec\u9ed8\u8ba4\u4f7f\u7528cento":30,"\u6240\u4ee5\u6574\u4f53\u4e0a":68,"\u6240\u4ee5\u6dfb\u52a0\u4e86\u5bf9\u5e94\u7684":68,"\u6240\u4ee5\u7528\u6237\u9700\u8981\u9996\u5148\u5728":54,"\u6240\u4ee5\u76f8\u6bd4\u4e8erecurr":108,"\u6240\u4ee5\u8fd9\u4e00\u6b65\u662f\u5fc5\u8981\u7684":100,"\u6240\u4ee5\u9700\u8981\u5f15\u5165\u4e00\u4e2a\u8f6c\u6362\u65b9\u6cd5":68,"\u6240\u4f7f\u7528":143,"\u6240\u4f9d\u8d56\u7684\u7b2c\u4e09\u65b9\u5e93\u540c\u65f6\u4e5f\u88ab\u5b89\u88c5\u5230":142,"\u6240\u5bf9\u5e94\u7684\u8bcd\u8868index\u6570\u7ec4":137,"\u6240\u6709\u4e0e\u7c7b\u578b\u76f8\u5173\u7684\u51fd\u6570":72,"\u6240\u6709\u4ee3\u7801\u5fc5\u987b\u5177\u6709\u5355\u5143\u6d4b\u8bd5":98,"\u6240\u6709\u53c2\u6570\u7f6e\u4e3a\u96f6":129,"\u6240\u6709\u547d\u4ee4\u884c\u9009\u9879\u53ef\u4ee5\u8bbe\u7f6e\u4e3a":119,"\u6240\u6709\u5916\u90e8\u7684\u8f6c\u6362\u5de5\u4f5c\u90fd\u4f1a\u5728reset\u7cfb\u5217\u51fd\u6570\u4e2d\u90fd\u51c6\u5907\u597d":68,"\u6240\u6709\u67b6\u6784":142,"\u6240\u6709\u7684":[67,98,100],"\u6240\u6709\u7684\u5355\u6d4b\u90fd\u4f1a\u88ab\u6267\u884c\u4e00\u6b21":100,"\u6240\u6709\u7684\u63a5\u53e3\u5747\u4e3ac\u63a5\u53e3":72,"\u6240\u6709\u7684\u64cd\u4f5c\u90fd\u662f\u9488\u5bf9\u6bcf\u4e00\u4e2a\u65f6\u95f4\u6b65\u6765\u8fdb\u884c\u7684":137,"\u6240\u6709\u7684python\u5c01\u88c5\u90fd\u4f7f\u7528":100,"\u6240\u6709\u7684python\u5c01\u88c5\u90fd\u5728":100,"\u6240\u6709\u76f8\u5173\u7684":67,"\u6240\u6709\u7c7b\u578b\u540d\u4e3a":72,"\u6240\u6709\u7f51\u7edc\u5c42\u7684\u68af\u5ea6\u68c0\u67e5\u5355\u6d4b\u90fd\u4f4d\u4e8e":100,"\u6240\u6709\u8f93\u5165\u5e8f\u5217\u5e94\u8be5\u6709\u76f8\u540c\u7684\u957f\u5ea6":140,"\u6240\u6709mkl":68,"\u6240\u9700\u652f\u6301\u7684\u6700\u4f4eandroid":142,"\u6240\u9700\u7684\u5f00\u53d1\u5de5\u5177\u548c\u7b2c\u4e09\u65b9\u5e93\u53ef\u4ee5\u53c2\u8003":144,"\u624b\u5199\u591a\u8bed\u8a00\u7ed1\u5b9a":71,"\u624b\u5199\u6570\u5b57\u8bc6\u522b":116,"\u624b\u5199\u6570\u5b57\u8bc6\u522b\u4efb\u52a1\u5b9a\u4e49\u4e86\u4e00\u4e2a\u542b\u6709":116,"\u624b\u52a8\u4e0b\u8f7d\u4e14\u89e3\u538b\u7f29":104,"\u624b\u52a8\u4e0b\u8f7d\u5e76\u5b89\u88c5":104,"\u624d\u53ef\u4ee5\u5b89\u88c5":30,"\u624d\u80fd\u4fdd\u8bc1\u548c\u5355\u5c42\u5e8f\u5217\u7684\u914d\u7f6e\u4e2d":137,"\u624d\u80fd\u53d1\u6325\u5176\u5168\u90e8\u80fd\u529b":134,"\u624d\u80fd\u66f4\u597d\u7684\u53d1\u6325mkl":68,"\u6253\u5f00":134,"\u6253\u5f00\u6d4f\u89c8\u5668\u8bbf\u95ee\u5bf9\u5e94\u76ee\u5f55\u4e0b\u7684index":103,"\u6253\u5f00\u8fd9\u4e2a\u7f16\u8bd1\u9009\u9879":72,"\u6267\u884c":[88,112,113,119],"\u6267\u884c\u4e0a\u8ff0":142,"\u6267\u884c\u4e0a\u8ff0\u4ee3\u7801\u751f\u6210makefile\u6587\u4ef6\u540e":113,"\u6267\u884c\u4e0b\u9762\u7684\u547d\u4ee4":27,"\u6267\u884c\u4e0b\u9762\u7684\u547d\u4ee4\u4ee5\u542f\u52a83\u4e2a\u8282\u70b9\u7684openmpi\u96c6\u7fa4\u548c\u4e00\u4e2a":124,"\u6267\u884c\u4e0b\u9762\u7684\u547d\u4ee4\u5373\u53ef\u5728\u5f53\u524d\u673a\u5668\u4e0a\u5b89\u88c5paddlepaddle\u7684\u8fd0\u884c\u65f6\u73af\u5883":30,"\u6267\u884c\u4e0b\u9762\u7684\u547d\u4ee4\u53ef\u4ee5\u67e5\u770b\u5df2\u7ecf\u5b89\u88c5\u7684\u7248\u672c":127,"\u6267\u884c\u4e0b\u9762\u7684\u547d\u4ee4\u5b8c\u6210\u5feb\u901f\u5b89\u88c5":112,"\u6267\u884c\u4e0b\u9762\u7684\u547d\u4ee4\u6765\u8fd0\u884c\u5355\u5143\u6d4b\u8bd5":101,"\u6267\u884c\u4e0b\u9762\u7684\u547d\u4ee4\u7f16\u8bd1cpu":27,"\u6267\u884c\u4e0b\u9762\u7684\u547d\u4ee4\u83b7\u53d6\u6700\u65b0\u7684paddlepaddl":28,"\u6267\u884c\u4ee5\u4e0b\u547d\u4ee4":[142,143,144],"\u6267\u884c\u4ee5\u4e0b\u547d\u4ee4\u542f\u52a8\u4f7f\u7528python\u7f16\u5199\u7684trainer\u7a0b\u5e8f":117,"\u6267\u884c\u4ee5\u4e0b\u64cd\u4f5c":140,"\u6267\u884c\u4ee5\u4e0b\u7684\u547d\u4ee4\u542f\u52a8\u4e00\u4e2a\u53c2\u6570\u670d\u52a1\u5668\u5e76\u7b49\u5f85\u548c\u8ba1\u7b97\u8282\u70b9\u7684\u6570\u636e\u4ea4\u4e92":117,"\u6267\u884c\u5b8c\u5b89\u88c5\u547d\u4ee4\u540e":[142,143,144],"\u6267\u884c\u60a8\u7684\u4ee3\u7801":134,"\u627e\u5230":[27,120,140],"\u627e\u5230\u6700\u65e9\u62a5\u9519\u7684\u5730\u65b9":105,"\u627e\u5230\u8fd0\u884c\u6162\u7684\u539f\u56e0":134,"\u627e\u5230\u8fd0\u884c\u6162\u7684\u90e8\u5206":134,"\u628a":[38,100],"\u628a\u4e4b\u524d\u793a\u4f8b\u4e2d\u8f6c\u6362\u5b8c\u6bd5\u7684random":38,"\u628a\u4efb\u610f\u7ef4\u5ea6\u7684tensor\u8f6c\u4e3a\u4e86\u4e00\u7ef4\u7684eigenvector":102,"\u628a\u5de5\u5177\u548c\u914d\u7f6e\u90fd\u5b89\u88c5\u5728\u4e00\u4e2a":26,"\u628a\u8bad\u7ec3\u6570\u636e\u76f4\u63a5\u653e\u5728":122,"\u628a\u8fd9\u4e9b\u5de5\u5177\u5b89\u88c5\u5230\u672c\u673a":26,"\u6295\u5c04\u53cd\u5411rnn\u7684\u7b2c\u4e00\u4e2a\u5b9e\u4f8b\u5230":140,"\u6295\u5c04\u7f16\u7801\u5411\u91cf\u5230":140,"\u62c6\u6210\u4ee5\u4e0a\u4e24\u4e2a\u9759\u6001\u94fe\u63a5\u5e93":113,"\u62c6\u89e3":139,"\u62c6\u89e3\u6210\u7684\u6bcf\u4e00\u53e5\u8bdd\u518d\u901a\u8fc7\u4e00\u4e2alstm\u7f51\u7edc":137,"\u62f7\u8d1d\u5230numpi":107,"\u62f7\u8d1d\u5fc5\u8981\u7684\u6587\u4ef6\u5230head\u8282\u70b9":124,"\u62f7\u8d1d\u8bad\u7ec3\u6570\u636e\u5230\u5404\u81ea\u7684\u8282\u70b9":124,"\u62f7\u8d1d\u8bad\u7ec3\u6587\u4ef6\u5230\u5bb9\u5668\u5185":123,"\u62f7\u8d1d\u8bad\u7ec3\u7a0b\u5e8f\u548c\u5b57\u5178\u6587\u4ef6\u5230\u6bcf\u53f0mpi\u8282\u70b9":124,"\u62fc\u63a5":107,"\u6302\u8f7d\u5230\u5bb9\u5668\u5185\u90e8\u7684":28,"\u6302\u8f7d\u6216\u4e0b\u8f7d\u7684\u8bad\u7ec3\u6570\u636e\u5206\u7247":117,"\u6307\u53d1\u73b0\u6027\u80fd\u74f6\u9888":133,"\u6307\u5411\u4e00\u4e2alayer":139,"\u6307\u5b9a":[107,108,139,140],"\u6307\u5b9a\u4e00\u53f0\u673a\u5668\u4e0a\u4f7f\u7528\u7684\u7ebf\u7a0b\u6570":129,"\u6307\u5b9a\u4e3a":115,"\u6307\u5b9a\u4f7f\u75282":107,"\u6307\u5b9a\u524d\u5411\u7f51\u7edc\u6700\u7ec8\u7684\u8f93\u51fa\u76ee\u6807\u53d8\u91cf":101,"\u6307\u5b9a\u52a0\u8f7d\u7684\u65b9\u5f0f":129,"\u6307\u5b9a\u5728\u751f\u6210\u6027\u80fd\u5206\u6790\u6587\u4ef6\u4e4b\u540e":133,"\u6307\u5b9a\u5bf9\u8f93\u5165\u53d8\u91cf":101,"\u6307\u5b9a\u5c06\u5f53\u524d\u8def\u5f84":28,"\u6307\u5b9a\u6267\u884c\u5176\u4e2d\u4e00\u4e2a\u5355\u5143\u6d4b\u8bd5":27,"\u6307\u5b9a\u68c0\u6d4b\u68af\u5ea6\u65f6\u80fd\u5bb9\u5fcd\u7684\u6700\u5927\u9519\u8bef\u503c":101,"\u6307\u5b9a\u7684\u5185\u5bb9\u5b58\u50a8\u5e93\u8fd0\u884c\u547d\u4ee4":103,"\u6307\u5b9a\u7684\u8f93\u5165\u4e0d\u4f1a\u88ab":139,"\u6307\u5b9a\u8981\u8f93\u51fa\u7684\u5b57\u6bb5\u8fdb\u884c\u8f93\u51fa":107,"\u6307\u5b9a\u9700\u8981\u4f7f\u7528\u7684\u5bb9\u5668":28,"\u6307\u5b9acudnn\u7684\u6700\u5927\u5de5\u4f5c\u7a7a\u95f4\u5bb9\u9650":129,"\u6307\u5bf9\u4e8e\u4e00\u4e2a\u65f6\u95f4\u5e8f\u5217\u8f93\u5165\u6570\u636e":137,"\u6307\u5f00\u542fhttp\u670d\u52a1":133,"\u6307\u6d88\u9664\u74f6\u9888":133,"\u6307\u6df1\u5ea6\u5b66\u4e60\u8bad\u7ec3\u4e4b\u540e\u5f97\u5230\u7684\u6240\u6709\u53c2\u6570":37,"\u6307\u793a\u4f7f\u7528\u54ea\u4e2agpu\u6838":129,"\u6307\u793a\u5728\u7b80\u5355\u7684recurrentlayer\u5c42\u7684\u8ba1\u7b97\u4e2d\u662f\u5426\u4f7f\u7528\u6279\u5904\u7406\u65b9\u6cd5":129,"\u6307\u793a\u5f53\u6307\u5b9a\u8f6e\u7684\u6d4b\u8bd5\u6a21\u578b\u4e0d\u5b58\u5728\u65f6":129,"\u6307\u793a\u662f\u5426\u4f7f\u7528\u591a\u7ebf\u7a0b\u6765\u8ba1\u7b97\u4e00\u4e2a\u795e\u7ecf\u7f51\u7edc":129,"\u6307\u793a\u662f\u5426\u5f00\u542f\u53c2\u6570\u670d\u52a1\u5668":129,"\u6307\u793a\u662f\u5426\u663e\u793a\u53c2\u6570\u670d\u52a1\u5668\u4e0a\u7684\u7a00\u758f\u53c2\u6570\u5206\u5e03\u7684\u65e5\u5fd7\u7ec6\u8282":129,"\u6307\u793a\u662f\u5426\u68c0\u67e5\u6240\u6709\u53c2\u6570\u670d\u52a1\u5668\u4e0a\u7684\u7a00\u758f\u53c2\u6570\u7684\u5206\u5e03\u662f\u5747\u5300\u7684":129,"\u6309\u542f\u53d1\u5f0f\u635f\u5931\u7684\u5927\u5c0f\u9012\u589e\u6392\u5e8f":129,"\u6309\u7167\u4e0b\u9762\u6b65\u9aa4\u5373\u53ef":123,"\u6309\u7167\u5176\u5185\u5bb9\u521b\u5efa\u4e00\u4e2a\u540d\u4e3a":26,"\u6309\u7167\u5177\u4f53\u5b9e\u73b0\u65b9\u5f0f\u53ef\u4ee5\u5f52\u7eb3\u4e3a2\u7c7b":108,"\u6309\u7167\u57fa\u672c\u6570\u636e\u7c7b\u578b\u5728paddlepaddle\u5185\u90e8\u7684\u5b9a\u4e49\u548c\u5b9e\u73b0":115,"\u6309\u94ae":[88,98],"\u635f\u5931\u51fd\u6570\u5c42":116,"\u6392\u6210\u4e00\u5217\u7684\u591a\u4e2a\u5143\u7d20":136,"\u63a5\u4e0a\u4e00\u4e2a\u5168\u8fde\u63a5\u5c42":110,"\u63a5\u4e0a\u5e73\u65b9\u8bef\u5dee\u5c42":110,"\u63a5\u4e0b\u6765":101,"\u63a5\u4e0b\u6765\u53ef\u4ee5\u8003\u8651\u4e0b\u65f6\u95f4\u7ebf\u7684\u5206\u6790":134,"\u63a5\u4e0b\u6765\u5c31\u53ef\u4ee5\u4f7f\u7528":134,"\u63a5\u4e0b\u6765\u6211\u4eec\u521b\u5efa\u4e00\u4e2a\u539f\u59cb":98,"\u63a5\u4e0b\u6765\u6211\u4eec\u53d6\u6d88\u5bf9":98,"\u63a5\u4e0b\u6765\u7b49\u5f85":98,"\u63a5\u53d7\u4e00\u4e2a\u8f93\u5165\u53c2\u6570":101,"\u63a5\u53e3":[71,72,101,102,116],"\u63a5\u53e3\u4f1a\u88ab\u8c03\u7528":102,"\u63a5\u53e3\u5b8c\u6210\u795e\u7ecf\u7f51\u7edc\u7684\u524d\u5411\u8ba1\u7b97":116,"\u63a5\u53e3\u5bf9\u795e\u7ecf\u7f51\u7edc\u7ed3\u6784\u548c\u8bad\u7ec3\u597d\u7684\u53c2\u6570\u8fdb\u884c\u5e8f\u5217\u5316":116,"\u63a5\u53e3\u5c42\u505a\u8fc7\u591a\u5c01\u88c5":72,"\u63a5\u53e3\u662f":38,"\u63a5\u53e3\u6700\u7ec8\u4f1a\u8c03\u7528\u5bf9\u5e94":102,"\u63a5\u53e3\u6709\u4e00\u4e2a":107,"\u63a5\u53e3\u7684":107,"\u63a5\u53e3\u8bf4\u660e\u8bf7\u67e5\u770b":115,"\u63a5\u6536\u5904\u7406pfsclient\u7aef\u7684\u6587\u4ef6\u7ba1\u7406\u8bf7\u6c42":54,"\u63a5\u7740\u7f16\u8bd1\u5373\u53ef":104,"\u63a7\u5236":129,"\u63a7\u5236\u662f\u5426\u4f7f\u7528mkl":68,"\u63a7\u5236\u662f\u5426\u4f7f\u7528mklml\u5e93":68,"\u63a7\u5236\u7528\u6237\u6743\u9650":38,"\u63a8\u5bfc\u8be5\u5c42\u524d\u5411\u548c\u540e\u5411\u4f20\u9012\u7684\u65b9\u7a0b":100,"\u63a8\u8350\u4f7f\u7528\u6b64\u65b9\u5f0f":113,"\u63a8\u8350\u4f7f\u7528centos\u7684devtools2":27,"\u63a8\u8350\u6e05\u7406\u6574\u4e2a\u7f16\u8bd1\u76ee\u5f55":27,"\u63a8\u8350\u8bbe\u7f6e\u4e3a":113,"\u63a8\u8350\u914d\u7f6e\u4e3a":113,"\u63a8\u8350\u914d\u7f6e\u9009\u9879":113,"\u63a8\u9001\u5230\u8fdc\u7a0b\u4ed3\u5e93":98,"\u63cf\u8ff0\u7684\u9ed8\u8ba4\u5165\u53e3\u7a0b\u5e8f":26,"\u63cf\u8ff0\u8be5op\u7684\u8f93\u5165":101,"\u63cf\u8ff0\u95ee\u9898":98,"\u63d0\u4ea4\u65b9\u5f0f\u53c2\u89c1":103,"\u63d0\u4ea4pull":98,"\u63d0\u4f9b":119,"\u63d0\u4f9b\u4e03\u5c42\u534f\u8bae\u7684\u53cd\u5411\u4ee3\u7406":54,"\u63d0\u4f9b\u4e86\u4e00\u4e2a\u542f\u52a8\u811a\u672c":123,"\u63d0\u4f9b\u4e86\u547d\u4ee4\u6837\u4f8b\u6765\u8fd0\u884c":119,"\u63d0\u4f9b\u4e86\u65b9\u4fbf\u7684\u548c":133,"\u63d0\u4f9b\u4e86\u81ea\u52a8\u5316\u811a\u672c\u6765\u542f\u52a8\u4e0d\u540c\u8282\u70b9\u4e2d\u7684\u6240\u6709":119,"\u63d0\u4f9b\u51e0\u4e4e\u6240\u6709\u8bad\u7ec3\u7684\u5185\u90e8\u8f93\u51fa\u65e5\u5fd7":119,"\u63d0\u4f9b\u5e38\u7528\u7684\u547d\u4ee4\u884c\u7ba1\u7406\u547d\u4ee4\u7ba1\u7406\u6587\u4ef6\u548c\u76ee\u5f55":54,"\u63d0\u4f9b\u6269\u5c55\u7684\u957f\u5ea6\u4fe1\u606f":136,"\u63d0\u4f9b\u7528\u6237\u7ba1\u7406\u6587\u4ef6\u7684\u547d\u4ee4":54,"\u63d0\u4f9b\u7ed9paddle\u4f5c\u4e3a\u8bad\u7ec3\u6570\u636e":38,"\u63d0\u4f9b\u8bad\u7ec3\u8fc7\u7a0b\u7684":119,"\u63d0\u793a":104,"\u641c\u7d22\u4ee3\u7801\u5e93":103,"\u642d\u5efa\u795e\u7ecf\u7f51\u7edc\u5c31\u50cf\u4f7f\u7528\u79ef\u6728\u642d\u5efa\u5b9d\u5854\u4e00\u6837":110,"\u64cd\u4f5c":137,"\u64cd\u4f5c\u7cfb\u7edf":[26,30],"\u652f\u6301\u4e24\u79cd\u5e8f\u5217\u7c7b\u578b":115,"\u652f\u6301\u4ea4\u53c9\u7f16\u8bd1":144,"\u652f\u6301\u53cc\u5c42\u5e8f\u5217\u4f5c\u4e3a\u8f93\u5165\u7684layer":[138,139],"\u652f\u6301\u5927\u6587\u4ef6\u7684\u65ad\u70b9\u4e0a\u4f20":54,"\u652f\u6301\u5927\u89c4\u6a21\u96c6\u7fa4\u751f\u4ea7\u73af\u5883\u7684\u5b8c\u6574\u96c6\u7fa4\u65b9\u6848":120,"\u652f\u6301\u7684\u6700\u5c0f\u7684android":142,"\u652f\u6301\u7684\u6700\u5c0fandroid":142,"\u652f\u6301\u7ef4\u6570\u53ef\u53d8\u7684\u6570\u636e\u8f93\u5165":108,"\u652f\u6301\u7f16\u8bd1\u5668":142,"\u6539\u53d8\u7ef4\u5ea6\u987a\u5e8f":108,"\u653e\u5728\u8fd9\u4e2a\u76ee\u5f55\u91cc\u7684\u6587\u4ef6\u5176\u5b9e\u662f\u4fdd\u5b58\u5230\u4e86mfs\u4e0a":123,"\u6545\u800c\u662f\u4e00\u4e2a\u5355\u5c42\u65f6\u95f4\u5e8f\u5217":137,"\u6548\u679c\u5982\u4e0b":133,"\u6559\u7a0b":28,"\u6570":139,"\u6570\u5b66\u5e93":113,"\u6570\u5fc5\u987b\u4e25\u683c\u76f8\u7b49":139,"\u6570\u636e":[54,115,116],"\u6570\u636e\u4e2d0":109,"\u6570\u636e\u5206\u7247":118,"\u6570\u636e\u63d0\u4f9b\u5668":128,"\u6570\u636e\u8bbf\u95ee":0,"\u6570\u636e\u8bfb\u53d6\u5747\u4ea4\u7531\u5176\u4ed6\u8bed\u8a00\u5b8c\u6210":71,"\u6570\u636e\u8f93\u5165":[115,139],"\u6570\u636e\u957f\u5ea6\u53ca\u6821\u9a8c\u503c\u7ec4\u6210":54,"\u6570\u636e\u96c6":116,"\u6570\u636e\u96c6\u9700\u8981\u9884\u5148\u88ab\u8f6c\u6362\u6210paddlepaddle\u5206\u5e03\u5f0f\u8bad\u7ec3\u4f7f\u7528\u7684\u5b58\u50a8\u683c":38,"\u6570\u636e\u9884\u5904\u7406\u4efb\u52a1":38,"\u6570\u76ee":131,"\u6574\u4f53\u4f7f\u7528\u6d41\u7a0b":116,"\u6574\u4f53\u6570\u636e\u548c\u539f\u59cb\u6570\u636e\u5b8c\u5168\u4e00\u6837":137,"\u6574\u4f53\u7684\u7ed3\u6784\u56fe\u5982\u4e0b":123,"\u6574\u578b\u6570\u7ec4":115,"\u6574\u6570":100,"\u6574\u6570\u6807\u7b7e":110,"\u6587\u4ef6":[26,71,98,101,115,122],"\u6587\u4ef6\u4e2d":[101,116,123],"\u6587\u4ef6\u4e2d\u6ce8\u518c\u524d\u5411":101,"\u6587\u4ef6\u4e2d\u6ce8\u518c\u8be5op\u548ckernel":101,"\u6587\u4ef6\u4e2d\u6ce8\u518ccuda":101,"\u6587\u4ef6\u4e3a":107,"\u6587\u4ef6\u4e4b\u5916":98,"\u6587\u4ef6\u4f20\u8f93\u7684\u7684\u5173\u952e\u5728\u4e8e\u9700\u8981pfsclient\u7aef\u5bf9\u6bd4source\u548cdestination\u7684\u6587\u4ef6chunks\u7684checksum\u662f\u5426\u4fdd\u6301\u4e00\u81f4":54,"\u6587\u4ef6\u5185\u5bb9\u4e3a":71,"\u6587\u4ef6\u540d":133,"\u6587\u4ef6\u540d\u4e3a\u4efb\u610f\u6587\u4ef6\u540d":117,"\u6587\u4ef6\u540d\u4e3a\u6b64uuid":37,"\u6587\u4ef6\u547d\u540d\u4ee5":101,"\u6587\u4ef6\u59390":123,"\u6587\u4ef6\u5bf9\u5e94\u7684data":38,"\u6587\u4ef6\u5de5\u5177\u662f\u4f7f\u7528docker":103,"\u6587\u4ef6\u7684\u4e0a\u4f20\u548c\u4e0b\u8f7d\u90fd\u662f\u901a\u8fc7\u5bf9chunk\u7684\u64cd\u4f5c\u6765\u5b9e\u73b0\u7684":54,"\u6587\u4ef6\u7684\u6539\u53d8":98,"\u6587\u4ef6\u7684\u8def\u5f84\u6765\u52a0\u8f7d\u9884\u6d4b\u6a21\u578b":116,"\u6587\u4ef6model":131,"\u6587\u5b57\u7684\u4ea4\u4e92\u5f0f\u6587\u6863":28,"\u6587\u6863":104,"\u6587\u68631":102,"\u6587\u68632":102,"\u6587\u6863\u8f83\u5c11":102,"\u6587\u6863\u90fd\u662f\u901a\u8fc7":103,"\u6587\u7ae0":123,"\u65b0\u5efa\u4e00\u4e2a\u6743\u91cd":100,"\u65b0\u624b\u5165\u95e8":141,"\u65b0\u624b\u5165\u95e8\u7ae0\u8282":88,"\u65b0\u7248\u672c":68,"\u65b9\u4fbf\u5feb\u901f\u5b89\u88c5":29,"\u65b9\u4fbf\u6392\u67e5\u4ee5\u53ca\u5feb\u901f\u5b9a\u4f4d\u95ee\u9898":107,"\u65b9\u4fbf\u6d4b\u8bd5\u4eba\u5458\u6d4b\u8bd5paddlepaddle\u7684\u884c\u4e3a":88,"\u65b9\u4fbf\u7528\u6237\u4e0a\u4f20\u81ea\u5df1\u7684\u8bad\u7ec3\u6570\u636e\u4ee5\u8fdb\u884c\u5206\u5e03\u5f0f\u8bad\u7ec3":54,"\u65b9\u4fbf\u7528\u6237\u5728python\u7aef\u9009\u62e9\u662f\u5426\u542f\u7528\u8fd9\u4e2a\u529f\u80fd":67,"\u65b9\u4fbf\u7528\u6237\u9009\u62e9\u4f7f\u7528mkl":68,"\u65b9\u5f0f1":107,"\u65b9\u5f0f2":107,"\u65b9\u5f0f\u5c06\u795e\u7ecf\u7f51\u7edc\u7ed3\u6784\u548c\u8bad\u7ec3\u597d\u7684\u53c2\u6570\u5e8f\u5217\u5316\u5230\u4e00\u4e2a\u6587\u4ef6":116,"\u65b9\u5f0f\u7c7b\u4f3c\u4e8e":68,"\u65b9\u6cd5\u4e00":131,"\u65b9\u6cd5\u4e09":131,"\u65b9\u6cd5\u4e8c":131,"\u65e0\u5ef6\u8fdf":129,"\u65e0\u6cd5\u505a\u5230\u5bf9\u4e8e\u5404\u79cd\u8bed\u8a00\u9519\u8bef\u5904\u7406\u65b9\u5f0f\u7684\u9002\u914d":71,"\u65e0\u8bba\u5728\u672c\u5730\u8fd8\u662f\u5728\u4e91\u7aef":38,"\u65e0\u8bba\u662f\u4ece":38,"\u65e0\u8bba\u662f\u5728\u672c\u5730\u6216\u662f\u4e91\u7aef\u8f6c\u6362":38,"\u65e0\u8bba\u662f\u91cd\u6784\u524d\u7684layer\u8fd8\u662f\u91cd\u6784\u540e\u7684op":68,"\u65e0\u9700\u5173\u5fc3\u548c\u5904\u7406\u5e8f\u5217\u4fe1\u606f":115,"\u65e0\u9700\u63d0\u4f9b\u975e\u96f6\u5143\u7684\u503c":115,"\u65e0\u9700\u9644\u52a0\u5e8f\u5217\u4fe1\u606f":115,"\u65e0\u9ed8\u8ba4\u503c":[142,144],"\u65e5\u5fd7\u62a5\u9519\u4e3a\u7f51\u7edc\u901a\u4fe1\u7c7b\u9519\u8bef":105,"\u65f6":[37,67,68,100,107,109,113,115,123,129,136,140,142],"\u65f6\u4e00\u8d77\u66f4\u65b0":68,"\u65f6\u4f7f\u7528openblas\u6570\u5b66\u5e93":113,"\u65f6\u5982\u4f55\u7ec4\u7ec7\u8f93\u5165\u6570\u636e":115,"\u65f6\u6709\u6548":143,"\u65f6\u88ab\u8bad\u7ec3\u7684":100,"\u65f6\u8bbe\u5907id\u53f7\u7684\u5206\u914d":131,"\u65f6\u95f4":137,"\u65f6\u95f4\u6b65\u7684\u6982\u5ff5":137,"\u65f6\u987b\u4ece\u7b2c17\u5b57\u8282\u5f00\u59cb":109,"\u6620\u5c04\u4e3a":26,"\u6620\u5c04\u5230\u4e00\u4e2a\u7ef4\u5ea6\u4e3a":100,"\u662f":[30,54,68,104],"\u662f\u4e00\u4e2a\u51681\u7684\u5411\u91cf":100,"\u662f\u4e00\u4e2a\u5185\u7f6e\u7684\u5b9a\u65f6\u5668\u5c01\u88c5":134,"\u662f\u4e00\u4e2a\u52a8\u6001\u7a0b\u5e8f\u5206\u6790\u7684\u672f\u8bed":134,"\u662f\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":136,"\u662f\u4e00\u4e2a\u53cc\u5c42\u7684\u5e8f\u5217":136,"\u662f\u4e00\u4e2a\u591a\u8bed\u8a00\u63a5\u53e3\u7684\u4ee3\u7801\u751f\u6210\u5668":71,"\u662f\u4e00\u4e2a\u5c01\u88c5\u5bf9\u8c61":134,"\u662f\u4e00\u4e2a\u5f88\u6709\u7528\u7684\u53c2\u6570":131,"\u662f\u4e00\u4e2a\u7c7b\u578b\u7684\u6807\u5fd7":72,"\u662f\u4e00\u4e2a\u975e\u7ebf\u6027\u7684":100,"\u662f\u4e00\u4e2apython\u7684\u7b2c\u4e09\u65b9\u5e93":133,"\u662f\u4e00\u4e2aunbound":139,"\u662f\u4e00\u6761\u65f6\u95f4\u5e8f\u5217":110,"\u662f\u4e00\u6b21\u9884\u6d4b\u63a5\u53d7\u7684\u6837\u672c\u6570\u76ee":115,"\u662f\u4e00\u79cd\u4efb\u610f\u590d\u6742\u7684rnn\u5355\u5143":139,"\u662f\u4e0d\u5305\u62ec\u6e90\u7801\u7684":122,"\u662f\u4e0d\u5e38\u89c1\u7684\u505a\u6cd5":71,"\u662f\u4f7f\u5f97\u8981\u5171\u4eab\u7684\u53c2\u6570\u4f7f\u7528\u540c\u6837\u7684":109,"\u662f\u4f7f\u7528mkl\u6570\u5b66\u5e93":113,"\u662f\u504f\u5dee":140,"\u662f\u5404\u4e2a\u5b9e\u73b0\u4e2d\u5171\u4eab\u7684\u5934\u6587\u4ef6":72,"\u662f\u5411\u91cf":100,"\u662f\u5426\u4ec5\u7f16\u8bd1capi":27,"\u662f\u5426\u4ee5\u9006\u5e8f\u5904\u7406\u8f93\u5165\u5e8f\u5217":139,"\u662f\u5426\u4f7f\u7528":143,"\u662f\u5426\u4f7f\u7528\u53cc\u7cbe\u5ea6\u6d6e\u70b9\u6570":27,"\u662f\u5426\u4f7f\u7528\u65e7\u7684remoteparameterupdat":129,"\u662f\u5426\u4f7f\u7528\u6743\u91cd":100,"\u662f\u5426\u4f7f\u7528arm\u6a21\u5f0f":142,"\u662f\u5426\u4f7f\u7528eigen\u5e93\u8fdb\u884c\u77e9\u9635\u8ba1\u7b97":[142,143],"\u662f\u5426\u4f7f\u7528mkl\u6570\u5b66\u5e93":27,"\u662f\u5426\u4f7f\u7528neon\u6307\u4ee4":[142,144],"\u662f\u5426\u4f7f\u80fd":143,"\u662f\u5426\u5185\u5d4cpython\u89e3\u91ca\u5668":27,"\u662f\u5426\u5219\u5171\u4eab\u540c\u4e00\u4e2a":101,"\u662f\u5426\u542f\u7528gpu\u8bad\u7ec3":117,"\u662f\u5426\u5c06\u5168\u5c40\u79cd\u5b50\u5e94\u7528\u4e8e\u672c\u5730\u7ebf\u7a0b\u7684\u968f\u673a\u6570":129,"\u662f\u5426\u5f00\u542f\u5355\u5143\u6d4b\u8bd5":27,"\u662f\u5426\u6253\u5370\u7248\u672c\u4fe1\u606f":129,"\u662f\u5426\u6253\u5f00":67,"\u662f\u5426\u652f\u6301gpu":27,"\u662f\u5426\u663e\u793a":129,"\u662f\u5426\u7a00\u758f":100,"\u662f\u5426\u7f16\u8bd1\u4e2d\u82f1\u6587\u6587\u6863":27,"\u662f\u5426\u7f16\u8bd1\u542b\u6709avx\u6307\u4ee4\u96c6\u7684paddlepaddle\u4e8c\u8fdb\u5236\u6587\u4ef6":27,"\u662f\u5426\u7f16\u8bd1\u65f6\u8fdb\u884c\u4ee3\u7801\u98ce\u683c\u68c0\u67e5":27,"\u662f\u5426\u7f16\u8bd1c":143,"\u662f\u5426\u7f16\u8bd1go\u8bed\u8a00\u7684\u53ef\u5bb9\u9519paramet":27,"\u662f\u5426\u7f16\u8bd1python\u7684swig\u63a5\u53e3":27,"\u662f\u5426\u8fd0\u884c\u65f6\u52a8\u6001\u52a0\u8f7dcuda\u52a8\u6001\u5e93":27,"\u662f\u5426\u9700\u8981\u7b49\u5f85\u8be5\u8f6e\u6a21\u578b\u53c2\u6570":129,"\u662f\u56e0\u4e3a\u8fd9\u4e2a\u6d41\u7a0b\u6bd4\u5176\u4ed6\u65b9\u6cd5\u90fd\u66f4\u7b80\u4fbf":26,"\u662f\u56e0\u4e3ac99\u652f\u6301":71,"\u662f\u5728paddlepaddle\u4e2d\u6784\u9020\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u65f6\u6700\u91cd\u8981\u7684\u6982\u5ff5":140,"\u662f\u5b58\u6709\u4e00\u7cfb\u5217\u53d8\u6362\u77e9\u9635\u7684\u6743\u91cd":100,"\u662f\u5b58\u6709\u504f\u7f6e\u5411\u91cf\u7684\u6743\u91cd":100,"\u662f\u5bf9\u7528\u6237\u6587\u4ef6\u5b58\u50a8\u7a7a\u95f4\u7684\u62bd\u8c61":54,"\u662f\u5bfb\u627e\u74f6\u9888\u7684\u5173\u952e\u6307\u6807":133,"\u662f\u5f00\u542favx\u7f16\u8bd1\u7684":28,"\u662f\u5f85\u6269\u5c55\u7684\u6570\u636e":136,"\u662f\u6211\u4eec":98,"\u662f\u6211\u4eec\u8981\u5206\u6790\u7684\u7a0b\u5e8f":133,"\u662f\u6307":72,"\u662f\u6307\u4e00\u7cfb\u5217\u7684\u7279\u5f81\u6570\u636e":137,"\u662f\u6307recurrent_group\u7684\u591a\u4e2a\u8f93\u5165\u5e8f\u5217":137,"\u662f\u6570\u636e\u8f93\u5165":140,"\u662f\u6709\u610f\u4e49\u7684":137,"\u662f\u6784\u5efa\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u7684\u6700\u91cd\u8981\u7684\u5de5\u5177":140,"\u662f\u6ca1\u6709\u540d\u5b57\u7684":26,"\u662f\u7528\u6237\u4f7f\u7528c":72,"\u662f\u7684":26,"\u662f\u77e9\u9635":100,"\u662f\u795e\u7ecf\u7f51\u7edc\u5b9a\u4e49\u65f6":115,"\u662f\u7f51\u7edc\u5c42\u5b9e\u4f8b\u7684\u540d\u5b57\u6807\u8bc6\u7b26":100,"\u662f\u7f51\u7edc\u5c42\u7684\u6807\u8bc6\u7b26":100,"\u662f\u7f51\u7edc\u5c42\u7684\u7c7b\u578b":100,"\u662f\u7f51\u7edc\u5c42\u8f93\u51fa\u7684\u5927\u5c0f":100,"\u662f\u8be5\u5c42\u7684\u6807\u8bc6\u7b26":100,"\u662f\u8be5\u5c42\u7684\u7c7b\u540d":100,"\u662f\u8be5\u7f51\u7edc\u5c42\u7684":100,"\u662f\u8f93\u5165":140,"\u662f\u8fd9\u4e00\u7c7b\u7684":108,"\u662f\u8fdb\u884c\u8ba1\u7b97\u7684\u57fa\u672c\u5355\u4f4d":115,"\u662f\u9700\u8981\u4e86\u89e3\u54ea\u4e9b\u6b65\u9aa4\u62d6\u6162\u4e86\u6574\u4f53":134,"\u662fc":72,"\u662fdecoder\u7684\u6570\u636e\u8f93\u5165":139,"\u662fnvidia\u6027\u80fd\u5206\u6790\u5de5\u5177":134,"\u662fpaddlepaddle\u4e2d\u5355\u5c42\u5e8f\u5217\u548c\u53cc\u5c42\u5e8f\u5217\u5b58\u50a8\u793a\u610f\u56fe":115,"\u662fpaddlepaddle\u652f\u6301\u7684\u4e00\u79cd\u4efb\u610f\u590d\u6742\u7684rnn\u5355\u5143":139,"\u662fpython\u5c01\u88c5\u7684\u7c7b\u540d":100,"\u662frnn\u72b6\u6001":140,"\u663e\u5f97\u76f8\u5bf9\u6765\u8bf4\u8f83\u4e3a\u8017\u65f6":67,"\u663e\u7136":133,"\u6682\u4e0d\u8003\u8651\u5728\u5185":107,"\u6682\u65e0":30,"\u6682\u65f6\u4e0d\u652f\u6301python3":30,"\u6682\u65f6\u4e0d\u8003\u8651\u591a\u4e2aparamet":37,"\u66b4\u9732\u8fd9\u4e2a\u6982\u5ff5\u5fc5\u8981\u51fd\u6570":72,"\u66f4\u522b\u63d0\u7b80\u5316\u95ee\u9898\u590d\u73b0\u5e26\u6765\u7684\u597d\u5904\u4e86":26,"\u66f4\u591a\u5173\u4e8edocker\u7684\u5b89\u88c5\u4e0e\u4f7f\u7528":104,"\u66f4\u591a\u7684\u8f6c\u6362\u65b9\u6cd5\u8bf7\u53c2\u8003eigen":102,"\u66f4\u597d\u5730\u5b8c\u6210\u4e00\u4e9b\u590d\u6742\u7684\u8bed\u8a00\u7406\u89e3\u4efb\u52a1":139,"\u66f4\u5feb":140,"\u66f4\u65b0":104,"\u66f4\u65b0\u53ef\u80fd\u5bfc\u81f4\u9700\u8981\u65b0\u7684\u5f00\u53d1\u5de5\u5177":26,"\u66f4\u65b0\u6a21\u5f0f":107,"\u66f4\u65b0\u7684\u6587\u6863\u4ee5pr\u7684\u5f62\u5f0f\u63d0\u4ea4\u5230github\u4e2d":103,"\u66f4\u65b0\u7f51\u7edc\u53c2\u6570\u65f6\u5e94\u7528":107,"\u66f4\u65b9\u4fbf\u7684\u8bbe\u7f6e\u65b9\u5f0f":109,"\u66f4\u8be6\u7ec6\u7684\u5b89\u88c5\u548c\u7f16\u8bd1\u65b9\u6cd5\u53c2\u8003":112,"\u66f4\u8fdb\u4e00\u6b65":139,"\u66f4\u9ad8":140,"\u66ff\u6211\u4eec\u5b8c\u6210\u4e86\u539f\u59cb\u8f93\u5165\u6570\u636e\u7684\u62c6\u5206":139,"\u6700\u4e3b\u8981\u7684\u5de5\u4f5c\u5c31\u662f\u89e3\u6790\u51fa":123,"\u6700\u540e":[28,98,100,117],"\u6700\u540e\u4e00\u4e2a":136,"\u6700\u540e\u4e00\u5c42cost\u4e2d\u8bb0\u5f55\u4e86\u795e\u7ecf\u7f51\u7edc\u7684\u6240\u6709\u62d3\u6251\u7ed3\u6784":110,"\u6700\u540e\u518d\u8c03\u7528mutabl":102,"\u6700\u540e\u5220\u9664":88,"\u6700\u540e\u6211\u4eec\u4f7f\u7528\u94fe\u5f0f\u6cd5\u5219\u8ba1\u7b97":100,"\u6700\u540e\u8ba1\u7b97softmax":108,"\u6700\u5c0f\u7684ios\u90e8\u7f72\u7248\u672c":143,"\u6700\u5c11\u663e\u793a\u591a\u5c11\u4e2a\u8282\u70b9":129,"\u6700\u5e38\u89c1\u7684\u9519\u8bef\u5904\u7406\u65b9\u5f0f\u662fexcept":71,"\u6700\u65b0\u7684\u4ee3\u7801":98,"\u6700\u65b0\u7684paddlepaddl":[28,104],"\u6700\u7ec8":100,"\u6700\u7ec8\u5b9e\u73b0\u4e00\u4e2a\u5c42\u6b21\u5316\u7684\u590d\u6742rnn":139,"\u6700\u7ec8\u6211\u4eec\u53ef\u4ee5\u8c03\u7528trainer\u7684train\u65b9\u6cd5\u542f\u52a8\u8bad\u7ec3":110,"\u6700\u7ec8\u7684\u8f93\u51fa\u7ed3\u679c":139,"\u6709\u4e00\u4e9b\u5fc5\u987b\u914d\u7f6e\u7684\u53c2\u6570":[142,143,144],"\u6709\u4e24\u79cd\u65b9\u6cd5":27,"\u6709\u4e9b\u5c42\u53ef\u80fd\u9700\u8981\u9ad8\u7cbe\u5ea6\u6765\u4fdd\u8bc1\u68af\u5ea6\u68c0\u67e5\u5355\u6d4b\u6b63\u786e\u6267\u884c":100,"\u6709\u4e9b\u5c42\u6216\u8005\u6fc0\u6d3b\u9700\u8981\u505a\u5f52\u4e00\u5316\u4ee5\u4fdd\u8bc1\u5b83\u4eec\u7684\u8f93\u51fa\u7684\u548c\u662f\u4e00\u4e2a\u5e38\u6570":100,"\u6709\u4e9b\u7279\u5f81\u7684\u53d6\u503c\u8fbe\u5230\u6570\u767e\u4e07":107,"\u6709\u4eba\u7528\u865a\u62df\u673a\u6765\u7c7b\u6bd4":26,"\u6709\u4ee5\u4e0b\u5efa\u8bae":[142,143],"\u6709\u5173":137,"\u6709\u5173\u53c2\u6570\u914d\u7f6e\u7684\u8be6\u7ec6\u8bf4\u660e\u89c1":142,"\u6709\u5173\u7ebf\u6027\u56de\u5f52\u7684\u5b9e\u9645\u5e94\u7528":110,"\u6709\u52a9\u4e8e\u5728\u8bad\u7ec3\u65f6\u89c2\u5bdf\u5177\u4f53\u6570\u503c":107,"\u6709\u52a9\u4e8e\u8bca\u65ad\u5206\u5e03\u5f0f\u9519\u8bef":119,"\u6709\u591a\u96be":26,"\u6709\u6548\u63d0\u5347paddlepaddle\u5728\u82f1\u7279\u5c14\u67b6\u6784\u4e0a\u7684\u6027\u80fd":[67,68],"\u6709\u65f6\u5019\u6211\u4eec\u4f1a\u5e0c\u671b\u6e05\u7406\u6389\u5df2\u7ecf\u4e0b\u8f7d\u7684\u7b2c\u4e09\u65b9\u4f9d\u8d56\u4ee5\u53ca\u5df2\u7ecf\u7f16\u8bd1\u7684\u4e8c\u8fdb\u5236\u6587\u4ef6":26,"\u6709\u65f6\u5019\u6211\u4eec\u53ea\u60f3\u8fd0\u884c\u4e00\u4e2a\u7279\u5b9a\u7684\u5355\u5143\u6d4b\u8bd5":26,"\u6709\u6807\u51c6\u7684":71,"\u6709\u7684\u65f6\u5019":71,"\u6709\u7684\u65f6\u5019\u7b80\u7b80\u5355\u5355\u7684\u6539\u53d8\u5c31\u80fd\u5728\u6027\u80fd\u4e0a\u4ea7\u751f\u660e\u663e\u7684\u4f18\u5316\u6548\u679c":134,"\u6709\u7684\u8bdd\u9700\u8981\u5148\u5378\u8f7d":104,"\u6709\u975e\u5e38\u5927\u7684\u5dee\u522b":133,"\u670d\u52a1\u5668\u4e4b\u95f4\u53ef\u4ee5\u901a\u8fc7\u5c40\u57df\u7f51":127,"\u672a\u6307\u5b9a\u6309\u7167double\u7cbe\u5ea6\u7f16\u8bd1":109,"\u672a\u8bbe\u7f6e":143,"\u672c\u4f8b\u4e2d\u7684\u539f\u59cb\u6570\u636e\u4e00\u5171\u670910\u4e2a\u6837\u672c":137,"\u672c\u5217\u8868\u8bf4\u660epaddlepaddle\u53d1\u7248\u4e4b\u524d\u9700\u8981\u6d4b\u8bd5\u7684\u529f\u80fd\u70b9":88,"\u672c\u5730":[30,104],"\u672c\u5730\u6d4b\u8bd5":128,"\u672c\u5730\u8bad\u7ec3":[115,128],"\u672c\u5730\u8bad\u7ec3\u4e0e\u9884\u6d4b":106,"\u672c\u5730\u8bad\u7ec3\u7684\u5b9e\u9a8c":131,"\u672c\u6559\u7a0b\u4e3b\u8981\u4ecb\u7ecd\u5e26kernel\u7684op\u5982\u4f55\u5199":101,"\u672c\u6559\u7a0b\u5c06\u6307\u5bfc\u4f60\u5982\u4f55\u5728":140,"\u672c\u6587\u4e2d\u6240\u6709\u7684\u4f8b\u5b50":137,"\u672c\u6587\u4e2d\u7684\u4f8b\u5b50\u91cc":26,"\u672c\u6587\u4e2d\u793a\u4f8b\u6240\u4f7f\u7528\u7684\u5355\u5143\u6d4b\u8bd5\u6587\u4ef6\u662f":137,"\u672c\u6587\u4ee5paddlepaddle\u7684\u53cc\u5c42rnn\u5355\u5143\u6d4b\u8bd5\u4e3a\u793a\u4f8b":137,"\u672c\u6587\u5c06\u4ecb\u7ecd\u5728kubernetes\u5bb9\u5668\u7ba1\u7406\u5e73\u53f0\u4e0a\u5feb\u901f\u6784\u5efapaddlepaddle\u5bb9\u5668\u96c6\u7fa4":123,"\u672c\u6587\u6863\u5c06\u4ee5linux":142,"\u672c\u6587\u6863\u63cf\u8ff0paddl":72,"\u672c\u6587\u7684\u5c06\u4ecb\u7ecd\u5728macos\u4e0a":143,"\u672c\u6b21\u8bad\u7ec3\u6587\u4ef6\u6240\u5728\u76ee\u5f55":123,"\u672c\u6b21\u8bad\u7ec3\u7684yaml\u6587\u4ef6\u53ef\u4ee5\u5199\u6210":123,"\u672c\u6b21\u8bad\u7ec3\u8981\u6c42\u67093\u4e2apaddlepaddle\u8282\u70b9":123,"\u672c\u793a\u4f8b\u4e2d\u4f7f\u7528\u7684\u539f\u59cb\u6570\u636e\u5982\u4e0b":137,"\u672c\u793a\u4f8b\u610f\u56fe\u4f7f\u7528\u5355\u5c42rnn\u548c\u53cc\u5c42rnn\u5b9e\u73b0\u4e24\u4e2a\u5b8c\u5168\u7b49\u4ef7\u7684\u5168\u8fde\u63a5rnn":137,"\u672c\u8282\u5c06\u4ecb\u7ecd\u5982\u4f55\u4f7f\u7528paddlepaddle\u5728\u4e0d\u540c\u7684\u96c6\u7fa4\u6846\u67b6\u4e0b\u5b8c\u6210\u5206\u5e03\u5f0f\u8bad\u7ec3":118,"\u673a\u5668\u4e0a\u4ee5\u53ca":144,"\u673a\u5668\u7684\u8bbe\u5907":131,"\u673a\u5668\u7ffb\u8bd1":88,"\u6743\u91cd\u66f4\u65b0\u7684\u68af\u5ea6":129,"\u6765\u4e3a\u4e00\u4e2a":115,"\u6765\u4ee3\u66ff":98,"\u6765\u4f20\u8f93\u7f51\u7edc\u914d\u7f6e\u6587\u4ef6\u4e2d\u5b9a\u4e49\u7684\u7f51\u7edc\u7ed3\u6784\u548c\u76f8\u5173\u53c2\u6570":116,"\u6765\u4f7f\u7528dropout":108,"\u6765\u4f7f\u7528dropout\u7684":108,"\u6765\u4fdd\u8bc1\u8bad\u7ec3\u8fc7\u7a0b\u53ef\u4ee5\u4ece\u4e2d\u95f4\u72b6\u6001\u91cd\u65b0\u542f\u52a8":37,"\u6765\u505a\u68af\u5ea6\u68c0\u67e5":100,"\u6765\u51b3\u5b9a\u662f\u5426\u5f00\u542fmkl":67,"\u6765\u5206\u6790\u6267\u884c\u6587\u4ef6":134,"\u6765\u521d\u59cb\u5316\u53c2\u6570":109,"\u6765\u542f\u52a8\u548c":26,"\u6765\u5b58\u50a8":115,"\u6765\u5b58\u50a8\u6570\u636e":[115,116],"\u6765\u5b8c\u6210\u524d\u5411\u548c\u53cd\u5411\u8ba1\u7b97":116,"\u6765\u5b8c\u6210\u7f51\u7edc\u7684\u8bad\u7ec3":110,"\u6765\u5b9a\u4e49\u5faa\u73af\u795e\u7ecf\u7f51\u7edc":140,"\u6765\u5b9e\u73b0":68,"\u6765\u5b9e\u9645\u5b58\u50a8\u6570\u636e":[115,116],"\u6765\u5bf9\u6bd4\u5206\u6790\u4e24\u8005\u8bed\u4e49\u76f8\u540c\u7684\u539f\u56e0":137,"\u6765\u5f71\u54cdpaddlepaddle\u7684\u7f16\u8bd1\u8fc7\u7a0b":[142,143],"\u6765\u5f97\u5230\u67d0\u4e2a\u7279\u5b9a\u53c2\u6570\u7684\u68af\u5ea6\u77e9\u9635":100,"\u6765\u6267\u884c":26,"\u6765\u63cf\u8ff0\u7684":102,"\u6765\u63cf\u8ff0\u8be5op\u7684\u8f93\u5165":101,"\u6765\u63cf\u8ff0\u8f93\u5165":115,"\u6765\u642d\u5efa\u795e\u7ecf\u7f51\u7edc":110,"\u6765\u663e\u793a\u6027\u80fd\u5206\u6790\u7ed3\u679c":133,"\u6765\u67e5\u770b\u6027\u80fd\u5206\u6790\u7ed3\u679c":133,"\u6765\u6ce8\u518c\u8be5\u5c42":100,"\u6765\u6df7\u5408\u4f7f\u7528gpu\u548ccpu\u8ba1\u7b97\u7f51\u7edc\u5c42\u7684\u53c2\u6570":131,"\u6765\u6e05\u7406\u8fd9\u4e9b\u5185\u5bb9":26,"\u6765\u7279\u6307":115,"\u6765\u7279\u6307\u8c03\u7528paddlepaddl":116,"\u6765\u7279\u6307paddlepaddl":116,"\u6765\u7279\u6307paddlepaddle\u4e2d\u7684\u4e00\u7ef4\u6574\u578b\u6570\u7ec4":115,"\u6765\u7279\u6307paddlepaddle\u4e2d\u7684\u4e8c\u7ef4\u6d6e\u70b9\u578b\u77e9\u9635":115,"\u6765\u7279\u6307paddlepaddle\u4e2d\u795e\u7ecf\u7f51\u7edc\u8ba1\u7b97\u5c42\u4e00\u4e2a\u8f93\u5165":115,"\u6765\u786e\u4fdd\u628a":71,"\u6765\u786e\u5b9a\u7a00\u758f\u77e9\u9635\u7684\u5185\u5bb9":115,"\u6765\u7f16\u8bd1":26,"\u6765\u83b7\u5f97\u8f93\u51fa\u7684\u68af\u5ea6":100,"\u6765\u8868\u793a":140,"\u6765\u8868\u793a\u95e8\u63a7\u5faa\u73af\u795e\u7ecf\u7f51\u7edc":140,"\u6765\u8868\u793apaddle\u5185\u90e8\u7c7b":71,"\u6765\u89e3\u51b3\u4e0a\u9762\u7684\u95ee\u9898":107,"\u6765\u8ba1\u7b97\u68af\u5ea6":100,"\u6765\u8bb0\u5f55\u8f93\u5165":115,"\u6765\u8bb2\u89e3\u5982\u4f55\u4f7f\u7528\u53cc\u5c42rnn":137,"\u6765\u8bbe\u7f6e":109,"\u6765\u8bbf\u95ee\u7528\u6237\u81ea\u5df1\u7684\u6570\u636e":38,"\u6765\u8bfb\u53d6\u4e00\u4e2a":115,"\u6765\u8c03\u6574":98,"\u6765\u8c03\u7528":26,"\u6765\u8fd0\u884c\u5305\u62ec":26,"\u6765\u8fd0\u884c\u5355\u5143\u6d4b\u8bd5\u4e86":26,"\u6765\u8fd0\u884c\u6027\u80fd\u5206\u6790\u548c\u8c03\u4f18":134,"\u6765\u8fd0\u884c\u955c\u50cf":28,"\u6765\u8fdb\u884c\u8ba8\u8bba":72,"\u6765\u9884\u6d4b\u8fd9\u4e2a\u4e2d\u95f4\u7684\u8bcd":107,"\u6784\u5efa":142,"\u6784\u5efa\u597d\u5f00\u53d1\u955c\u50cf\u540e":142,"\u6784\u5efa\u76ee\u6807\u4e3a":143,"\u6784\u6210\u4e00\u4e2a\u5e8f\u5217":115,"\u6784\u6210\u4e86\u8f93\u51fa\u53cc\u5c42\u5e8f\u5217\u7684\u7b2ci\u4e2a":136,"\u6784\u9020":123,"\u6784\u9020\u51fd\u6570\u542b\u67092\u4e2a\u53c2\u6570":101,"\u6784\u9020\u51fd\u6570\u91cc\u901a\u8fc7":101,"\u67b6\u6784\u7684\u6a21\u62df\u5668\u5e73\u53f0":143,"\u67b6\u6784\u7684iphone\u6216\u8005ipad\u7b49\u7269\u7406\u8bbe\u5907":143,"\u67d0\u4e00\u4e2a\u795e\u7ecf\u5143\u7684\u4e00\u4e2a\u8f93\u5165\u4e3a\u4e0a\u4e00\u4e2a\u65f6\u95f4\u6b65\u7f51\u7edc\u4e2d\u67d0\u4e00\u4e2a\u795e\u7ecf\u5143\u7684\u8f93\u51fa":137,"\u67d0\u4e9b\u53c2\u6570\u53ea\u53ef\u7528\u4e8e\u7279\u5b9a\u7684\u5c42\u4e2d":128,"\u67e5\u770b":98,"\u67e5\u770b\u5305\u7684\u5927\u5c0f":104,"\u67e5\u770b\u5f53\u524d\u72b6\u6001":98,"\u67e5\u770b\u5f53\u524d\u8fdc\u7a0b\u4ed3\u5e93\u7684\u540d\u5b57":98,"\u67e5\u770b\u6587\u4ef6\u5177\u4f53\u88ab\u4fee\u6539\u7684\u5185\u5bb9":98,"\u67e5\u770b\u662f\u5426\u662f\u5176\u4ed6\u9519\u8bef\u5f15\u53d1\u7684\u62a5\u9519":105,"\u67e5\u770bjob\u7684\u8be6\u7ec6\u60c5\u51b5":122,"\u67e5\u770blatest":88,"\u6807\u51c6":30,"\u6807\u51c6\u5dee\u4e3a":109,"\u6807\u51c6\u8868\u793apaddlepaddle\u7248\u672c\u53f7":88,"\u6807\u8bc6\u4e86\u4e00\u4e2a\u8f93\u51fa\u7684\u6587\u4ef6\u540d":133,"\u6807\u8bc6\u6027\u80fd\u5206\u6790\u7684\u7ed3\u679c\u6587\u4ef6":133,"\u6807\u8bc6\u662f\u5426\u4e3a\u8fde\u7eed\u7684batch\u8ba1\u7b97":129,"\u6807\u8bc6\u88ab\u6027\u80fd\u5206\u6790\u7684\u6e90\u6587\u4ef6":133,"\u6807\u8bc6http\u670d\u52a1\u7684\u7aef\u53e3":133,"\u6807\u8bc6http\u670d\u52a1\u7ed1\u5b9a\u7684ip":133,"\u6838\u4e00\u6837\u591a\u7684\u8fdb\u7a0b\u6765\u5e76\u884c\u7f16\u8bd1":26,"\u6838\u5fc3\u4ee3\u7801\u7f16\u8bd1\u6210\u94fe\u63a5\u5e93":113,"\u6839\u636e\u4e2a\u4eba\u7684\u9700\u6c42\u4fee\u6539\u5b9a\u5236docker\u5bb9\u5668\u6240\u6267\u884c\u7684\u811a\u672c":142,"\u6839\u636e\u4f60\u7684\u4efb\u52a1":131,"\u6839\u636e\u524d\u6587\u7684\u63cf\u8ff0":123,"\u6839\u636e\u7f51\u7edc\u914d\u7f6e\u4e2d\u7684":129,"\u6839\u636e\u8f93\u5165tensor\u7684\u5927\u5c0f\u6765\u8bbe\u7f6e\u8f93\u51fatensor\u7684\u5927\u5c0f":102,"\u6839\u636e\u8fd9\u4e9b\u53c2\u6570\u7684\u4f7f\u7528\u573a\u5408":128,"\u6839\u636e\u9ed8\u8ba4\u503c\u9012\u589e":129,"\u6839\u636e\u9ed8\u8ba4\u7aef\u53e3\u53f7\u9012\u589e":129,"\u6839\u636ejob\u5bf9\u5e94\u7684pod\u4fe1\u606f":122,"\u6839\u636eport":117,"\u683c\u5f0f":129,"\u683c\u5f0f\u4e0d\u5339\u914d\u65f6":68,"\u683c\u5f0f\u5b58\u50a8":115,"\u683c\u5f0f\u7684\u6587\u4ef6\u6765\u5b58\u653e":101,"\u6846\u67b6\u63d0\u4f9b\u7684blas\u51fd\u6570\u8fdb\u884c\u77e9\u9635\u8ba1\u7b97":143,"\u6846\u67b6\u8fdb\u884cblas\u77e9\u9635\u8ba1\u7b97":143,"\u68af\u5ea6\u4f1a\u5c31\u5730":100,"\u68af\u5ea6\u4f1a\u6709\u566a\u58f0":118,"\u68af\u5ea6\u53c2\u6570\u7684\u5206\u5757\u6570\u76ee":129,"\u68af\u5ea6\u5c31\u53ef\u4ee5\u901a\u8fc7\u8fd9\u4e2a\u65b9\u7a0b\u8ba1\u7b97\u5f97\u5230":100,"\u68af\u5ea6\u670d\u52a1\u5668\u7684\u6570\u91cf":129,"\u68af\u5ea6\u68c0\u67e5\u5355\u5143\u6d4b\u8bd5\u901a\u8fc7\u6709\u9650\u5dee\u5206\u6cd5\u6765\u9a8c\u8bc1\u4e00\u4e2a\u5c42\u7684\u68af\u5ea6":100,"\u68af\u5ea6\u68c0\u67e5\u7684\u8f93\u5165\u6570\u636e\u7684\u6279\u6b21\u5927\u5c0f":100,"\u68c0\u67e5\u70b9\u4fdd\u5b58\u7a0b\u5e8f\u6d41\u7a0b":37,"\u68c0\u67e5\u8f93\u5165\u6570\u636e\u7ef4\u5ea6":101,"\u6982\u5ff5\u4e0a":116,"\u6982\u5ff5\u4e0a\u53ef\u4ee5\u5c06":115,"\u6a21\u5757\u4e0b\u7684\u76f8\u5173":102,"\u6a21\u578b\u4e00\u76f4\u4e0d\u6536\u655b":107,"\u6a21\u578b\u4e2d\u6240\u6709\u53ef\u5b66\u4e60\u53c2\u6570\u4f1a\u88ab\u5b58\u4e3a\u4e00\u4e2a\u538b\u7f29\u6587\u4ef6":116,"\u6a21\u578b\u53c2\u6570\u68c0\u67e5\u70b9\u901a\u8fc7\u5b9a\u671f\u5411\u78c1\u76d8\u4e0a\u4fdd\u5b58\u4e00\u4efd\u5b58\u50a8\u5728paramet":37,"\u6a21\u578b\u6570\u636e\u68c0\u67e5\u70b9\u7684\u5b9e\u73b0":37,"\u6a21\u578b\u6587\u4ef6\u5c06\u88ab\u5199\u5165\u8282\u70b9":119,"\u6a21\u578b\u6765\u6307\u5bfc\u4f60\u5b8c\u6210\u8fd9\u4e9b\u6b65\u9aa4":140,"\u6a21\u578b\u6f14\u793a\u5982\u4f55\u914d\u7f6e\u590d\u6742\u7684\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u6a21\u578b":140,"\u6a21\u578b\u7684\u4ee3\u7801\u53ef\u4ee5\u5728":140,"\u6a21\u578b\u7684\u7f16\u7801\u5668\u90e8\u5206\u5982\u4e0b\u6240\u793a":140,"\u6a21\u578b\u8bad\u7ec3\u7b49\u4efb\u52a1":110,"\u6a21\u578b\u914d\u7f6e":[0,106],"\u6a21\u578b\u914d\u7f6e\u89e3\u6790":71,"\u6a21\u5f0f\u4e0b\u7684\u6027\u80fd\u6d4b\u8bd5\u662f\u6ca1\u6709\u610f\u4e49\u7684":133,"\u6a2a\u5411\u62fc\u63a5":107,"\u6b21\u8fed\u4ee3\u6267\u884c\u7684\u8f6c\u6362\u6b21\u6570\u4e3a":67,"\u6b22\u8fce\u901a\u8fc7":98,"\u6b63\u5728\u7b49\u5f85\u672a\u5b8c\u6210\u7684\u4efb\u52a1":104,"\u6b63\u5e38\u60c5\u51b5\u4e0b\u662f75m":104,"\u6b63\u786e\u7684\u89e3\u51b3\u65b9\u6cd5\u662f":104,"\u6b63\u8d1f\u5bf9\u9a8c\u8bc1":128,"\u6b64\u547d\u4ee4\u5c06\u5728":142,"\u6b64\u5904\u90fd\u4e3a2":137,"\u6b64\u5916":[26,98,108,142],"\u6b64\u6559\u7a0b\u4f1a\u4ecb\u7ecd\u5982\u4f55\u4f7f\u7528python\u7684cprofile\u5305":133,"\u6b64\u6559\u7a0b\u5c06\u5411\u60a8\u5206\u6b65\u4ecb\u7ecd\u5982\u4f55\u4f7f\u7528\u5185\u7f6e\u7684\u5b9a\u65f6\u5de5\u5177":134,"\u6b64\u65b9\u6cd5\u4e0d\u80fd\u83b7\u53d6":107,"\u6b64\u65f6\u53ea\u9700\u8981":26,"\u6b64\u65f6\u53ef\u4ee5\u5728\u8c03\u7528infer\u63a5\u53e3\u65f6\u901a\u8fc7\u8bbe\u7f6e":107,"\u6b64\u65f6\u53ef\u4ee5\u8df3\u8fc7paddlepaddle\u6a21\u578b\u53c2\u6570\u6587\u4ef6\u7684\u5934\u4fe1\u606f":109,"\u6b64\u65f6\u6bcf\u4e2a\u5c0f\u5206\u652f\u7684":68,"\u6b64\u65f6master\u5c06\u8d1f\u8d23\u542f\u52a8\u4e00\u4e2a\u65b0\u7684train":37,"\u6b64\u76ee\u5f55":116,"\u6b64\u793a\u4f8b":116,"\u6b64\u7c7b\u62a5\u9519\u901a\u5e38\u662f\u7531\u4e8e\u67d0\u4e00\u4e2a\u8282\u70b9\u7684\u9519\u8bef\u5bfc\u81f4\u8fd9\u4e2a\u8282\u70b9\u7684\u8bad\u7ec3\u8fdb\u7a0b\u9000\u51fa":105,"\u6b65\u9aa4":107,"\u6bb5\u843d\u53ef\u4ee5\u770b\u4f5c\u662f\u4e00\u4e2a\u5d4c\u5957\u7684\u53cc\u5c42\u7684\u5e8f\u5217":139,"\u6bb5\u843d\u662f\u7531\u53e5\u5b50\u6784\u6210\u7684\u5e8f\u5217":115,"\u6bcf\u4e00\u4e2a":[88,116],"\u6bcf\u4e00\u4e2a\u5916\u5c42\u5e8f\u5217\u53c8\u542b\u6709\u82e5\u5e72\u4e2a\u5185\u5c42\u5e8f\u5217":115,"\u6bcf\u4e00\u4e2a\u5e8f\u5217\u5728\u6574\u4e2a":115,"\u6bcf\u4e00\u4e2a\u6587\u4ef6\u662f\u6570\u636e\u96c6\u7684\u4e00\u4e2ashard":38,"\u6bcf\u4e00\u4e2a\u65f6\u95f4\u6b65":137,"\u6bcf\u4e00\u4e2a\u65f6\u95f4\u6b65\u4e4b\u95f4\u7684\u795e\u7ecf\u7f51\u7edc\u5177\u6709\u4e00\u5b9a\u7684\u76f8\u5173\u6027":137,"\u6bcf\u4e00\u4e2a\u8282\u70b9\u90fd\u6709\u76f8\u540c\u7684\u65e5\u5fd7\u7ed3\u6784":119,"\u6bcf\u4e00\u4e2a\u8f93\u5165":[115,116],"\u6bcf\u4e00\u4e2alayer\u8f93\u51fa\u77e9\u9635\u7684\u9ad8\u5ea6":107,"\u6bcf\u4e00\u5217\u7684\u542b\u4e49\u662f":133,"\u6bcf\u4e00\u7ec4\u5185\u7684\u6240\u6709\u53e5\u5b50\u548clabel":137,"\u6bcf\u4e00\u884c\u5143\u7d20\u5728":115,"\u6bcf\u4e2a":68,"\u6bcf\u4e2a\u503c\u7684\u7c7b\u578b\u53ef\u4ee5\u662f\u6574\u5f62":38,"\u6bcf\u4e2a\u5143\u7d20\u662f\u4e00\u4e2a0\u5c42\u5e8f\u5217":136,"\u6bcf\u4e2a\u5143\u7d20\u662f\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":136,"\u6bcf\u4e2a\u5355\u5c42rnn":139,"\u6bcf\u4e2a\u53c2\u6570\u670d\u52a1\u5668\u53ea\u4fdd\u5b58\u6574\u4e2a\u795e\u7ecf\u7f51\u7edc\u6240\u6709\u53c2\u6570\u7684\u4e00\u90e8\u5206":118,"\u6bcf\u4e2a\u53e5\u5b50\u53c8\u662f\u5355\u8bcd\u7684\u6570\u7ec4":137,"\u6bcf\u4e2a\u53e5\u5b50\u90fd\u4ee5\u5f00\u59cb\u6807\u8bb0\u5f00\u5934":140,"\u6bcf\u4e2a\u53e5\u5b50\u90fd\u4ee5\u7ed3\u675f\u6807\u8bb0\u7ed3\u5c3e":140,"\u6bcf\u4e2a\u5b50\u5e8f\u5217\u957f\u5ea6\u53ef\u4ee5\u4e0d\u4e00\u81f4":137,"\u6bcf\u4e2a\u5c42\u5728\u5176":100,"\u6bcf\u4e2a\u6279\u6b21\u6570\u636e":129,"\u6bcf\u4e2a\u65f6\u95f4\u6b65\u4e4b\u5185\u7684\u8fd0\u7b97\u662f\u72ec\u7acb\u7684":139,"\u6bcf\u4e2a\u65f6\u95f4\u6b65\u90fd\u7528\u4e86\u4e0a\u4e00\u4e2a\u65f6\u95f4\u6b65\u7684\u8f93\u51fa\u7ed3\u679c":137,"\u6bcf\u4e2a\u6743\u91cd\u5bf9\u5e94\u4e00\u4e2a\u8f93\u5165":100,"\u6bcf\u4e2a\u6837\u672c\u7531\u4e24\u90e8\u5206\u7ec4\u6210":137,"\u6bcf\u4e2a\u6837\u672c\u95f4\u7528\u7a7a\u884c\u5206\u5f00":137,"\u6bcf\u4e2a\u6d4b\u8bd5\u4f1a\u5bf9\u6bd4paddlepaddle\u4e2dcpu\u7b97\u51fa\u7684\u7ed3\u679c\u4e0emkl":68,"\u6bcf\u4e2a\u72b6\u6001":139,"\u6bcf\u4e2a\u7ebf\u7a0b":129,"\u6bcf\u4e2a\u7ebf\u7a0b\u5206\u914d\u5230128\u4e2a\u6837\u672c\u7528\u4e8e\u8bad\u7ec3":129,"\u6bcf\u4e2a\u8bad\u7ec3\u8282\u70b9\u5fc5\u987b\u6307\u5b9a\u4e00\u4e2a\u552f\u4e00\u7684id\u53f7":129,"\u6bcf\u4e2a\u8f93\u5165\u90fd\u662f\u4e00\u4e2a":100,"\u6bcf\u4e2a\u8f93\u51fa\u8282\u70b9\u90fd\u8fde\u63a5\u5230\u6240\u6709\u7684\u8f93\u5165\u8282\u70b9\u4e0a":100,"\u6bcf\u4e2a\u90e8\u5206\u5206\u522b\u7ed9\u6bcf\u4e2atrainer\u4f7f\u7528":118,"\u6bcf\u4e2acommit\u53ea\u505a\u4e86\u5c11\u91cf\u7684\u4fee\u6539":98,"\u6bcf\u4e2adata":38,"\u6bcf\u4e2amkldnnlayer\u90fd\u5305\u542b\u7528\u4e8e\u5185\u90e8\u5b58\u50a8\u548c\u5916\u90e8\u5b58\u50a8\u7684\u4e00\u7cfb\u5217mkldnnmatrix":68,"\u6bcf\u4e2aparamet":37,"\u6bcf\u4e2apod\u5305\u542b\u4e00\u4e2apaddlepaddle\u5bb9\u5668":123,"\u6bcf\u4e2ashard\u5206\u522b\u5b58\u50a8\u5728\u5176\u4e2d\u4e00\u53f0paramet":37,"\u6bcf\u4e2atrainer\u542f\u52a8\u540e\u8bfb\u53d6\u5207\u5206\u597d\u7684\u4e00\u90e8\u5206\u6570\u636e":118,"\u6bcf\u4e2atrainer\u7684\u552f\u4e00id":117,"\u6bcf\u4e2atrainer\u8fdb\u7a0b\u9700\u8981\u80fd\u591f\u8bfb\u53d6\u5c5e\u4e8e\u81ea\u5df1\u7684\u4e00\u4efd\u6570\u636e":117,"\u6bcf\u53f0\u670d\u52a1\u5668\u5177\u6709\u96c6\u7fa4\u4e2d\u552f\u4e00\u7684ip\u5730\u5740":127,"\u6bcf\u5c42\u4e0a\u53ea\u80fd\u4fdd\u5b58\u56fa\u5b9a\u6570\u76ee\u4e2a\u6700\u597d\u7684\u72b6\u6001":129,"\u6bcf\u5c42\u4f7f\u7528\u7684gpu\u53f7\u4f9d\u8d56\u4e8e\u53c2\u6570train":131,"\u6bcf\u6279\u6b21":129,"\u6bcf\u6b21\u63d0\u4ea4\u4ee3\u7801":98,"\u6bcf\u6b21\u63d0\u4ea4\u65f6":98,"\u6bcf\u6b21\u8c03\u7528\u65f6\u5bf9\u539f\u6570\u636e\u7684\u91cd\u590dpacking\u4fbf\u6210\u4e3a\u4e86\u5197\u4f59":67,"\u6bcf\u6b21\u8c03\u7528\u7684\u8017\u65f6\u4e5f\u5f88\u957f":133,"\u6bcf\u6b21\u8f93\u51fa\u4e00\u4e2adata":38,"\u6bcf\u884c\u8868\u793a\u4e00\u4e2a\u6279\u6b21\u4e2d\u7684\u5355\u4e2a\u8f93\u5165":100,"\u6bcf\u8f6e\u4f1a\u5c06\u6570\u636e\u96c6\u4e2d\u7684\u6240\u6709\u8bad\u7ec3\u6837\u672c\u4f7f\u7528\u4e00\u6b21":129,"\u6bcf\u8f6e\u7ed3\u675f\u65f6\u5bf9\u6240\u6709\u6d4b\u8bd5\u6570\u636e\u8fdb\u884c\u6d4b\u8bd5":129,"\u6bcf\u8f6e\u90fd\u4f1a\u4fdd\u5b58\u9884\u6d4b\u7ed3\u679c":129,"\u6bcf\u8fd0\u884c\u591a\u5c11\u4e2a\u6279\u6b21\u6267\u884c\u4e00\u6b21\u7a00\u758f\u53c2\u6570\u5206\u5e03\u7684\u68c0\u67e5":129,"\u6bcf\u969410\u5206\u949f":37,"\u6bcfdot":129,"\u6bcflog":129,"\u6bcfsave":129,"\u6bcftest":129,"\u6bd4\u5982":[26,28,38,68,98,105,107],"\u6bd4\u5982\u4e00\u53e5\u8bdd\u4e2d\u7684\u6bcf\u4e00\u4e2a\u5355\u8bcd":137,"\u6bd4\u5982\u53ef\u80fd\u4f1a\u7528openmp\u6539\u8fdbsgd\u7684\u66f4\u65b0\u6027\u80fd":68,"\u6bd4\u5982\u5728":28,"\u6bd4\u5982\u5982\u679c\u8981build\u4e00\u4e2a\u4e0d\u4f9d\u8d56gpu":98,"\u6bd4\u5982\u5c06":88,"\u6bd4\u5982\u5e0c\u671b\u6700\u5c0f\u5316\u751f\u6210\u5e93\u7684\u5927\u5c0f":143,"\u6bd4\u5982\u5e0c\u671b\u6700\u5c0f\u5316\u751f\u6210\u7684\u5e93\u7684\u5927\u5c0f":[142,144],"\u6bd4\u5982\u6bcf\u969410\u5206\u949f\u6700\u65b0\u7684\u5feb\u7167":37,"\u6bd4\u5982\u6d41\u5f0f\u6570\u636e\u5904\u7406":38,"\u6bd4\u5982\u8282\u70b9\u7684id":120,"\u6bd4\u5982\u8bbe\u7f6e\u4e00\u4e2a\u5168\u8fde\u63a5\u5c42\u7684\u53c2\u6570\u521d\u59cb\u5316\u65b9\u5f0f\u548cbias\u521d\u59cb\u5316\u65b9\u5f0f":109,"\u6bd4\u5982cento":30,"\u6bd4\u5982fpe":105,"\u6bd4\u5982ide\u914d\u7f6e\u91cc":98,"\u6bd4\u5982imagenet\u8fd9\u4e2a\u6570\u636e\u96c6\u53ef\u80fd\u88ab\u5206\u62101000\u4e2ashard":38,"\u6bd4\u5982pil\u5e93\u7b49":117,"\u6bd5\u7adf\u5355\u7ebf\u7a0b\u8c03\u8bd5\u66f4\u5bb9\u6613":133,"\u6ca1\u6709\u5fc5\u8981\u5728\u6bcf\u6b21\u524d\u5411\u4e2d\u6bcf\u4e2a\u65f6\u95f4\u6b65\u7684\u8ba1\u7b97\u65f6\u5bf9\u6743\u91cd\u8fdb\u884c\u91cd\u590d\u7684packing\u64cd\u4f5c":67,"\u6ca1\u6709\u627e\u5230\u548c\u5f53\u524d\u7cfb\u7edf\u5339\u914d\u7684paddlepaddle\u5b89\u88c5\u5305":[30,104],"\u6ca1\u6709\u8bbe\u7f6e":[142,144],"\u6ce8":[28,37,88,115],"\u6ce8\u518c":101,"\u6ce8\u518ccpu":101,"\u6ce8\u518clayer\u7684\u65f6\u5019\u4fdd\u8bc1":[67,68],"\u6ce8\u518cop":101,"\u6ce8\u518cop\u65f6\u7684\u7c7b\u578b\u540d":101,"\u6ce8\u610f":[27,68,100,103,107,110,116,117,123,133,140,142,143,144],"\u6ce8\u610f\u4e0a\u8ff0\u547d\u4ee4\u4e2d":123,"\u6ce8\u610f\u4e8b\u9879":115,"\u6ce8\u610f\u5230\u6211\u4eec\u5df2\u7ecf\u5047\u8bbe\u673a\u5668\u4e0a\u67094\u4e2agpu":131,"\u6ce8\u610fnode":123,"\u6ce8\u91ca":101,"\u6d41\u7a0b\u6765\u63d0\u4ea4\u4ee3\u7801":98,"\u6d4b\u8bd5":98,"\u6d4b\u8bd5\u5206\u4e3a\u6bcf\u4e2alayer":68,"\u6d4b\u8bd5\u65f6\u6307\u5b9a\u7684\u5b58\u50a8\u6a21\u578b\u5217\u8868\u7684\u6587\u4ef6":129,"\u6d4b\u8bd5\u662f":98,"\u6d4b\u8bd5\u672c\u6b21release\u7684\u6b63\u786e\u6027":88,"\u6d4b\u8bd5\u7684\u6027\u80fd\u5bf9\u6bd4\u7ed3\u679c\u4f1a\u5728":68,"\u6d4b\u8bd5\u7684\u6a21\u578b\u5305\u62ec\u4ece\u7b2cm\u8f6e\u5230\u7b2cn":131,"\u6d4b\u8bd5model_list":128,"\u6d4b\u8bd5oper":101,"\u6d4b\u8bd5save_dir":128,"\u6d6e\u70b9\u578b\u6570\u636e":38,"\u6d6e\u70b9\u578b\u7a00\u758f\u77e9\u9635":115,"\u6d6e\u70b9\u578b\u7a20\u5bc6\u77e9\u9635":115,"\u6d6e\u70b9\u5f02\u5e38\u901a\u5e38\u7684\u539f\u56e0\u662f\u6d6e\u70b9\u6570\u6ea2\u51fa":107,"\u6d6e\u70b9\u6570":115,"\u6d6e\u70b9\u6570\u5411\u91cf\u7b49":115,"\u6d6e\u70b9\u7a00\u758f\u6570\u636e":100,"\u6df1\u5165paddlepaddl":68,"\u6df7\u5408\u4ee3\u7801\u7684\u6027\u80fd\u5206\u6790\u6765\u8fdb\u884c\u8c03\u4f18":133,"\u6df7\u5408\u4ee3\u7801\u7684\u6027\u80fd\u74f6\u9888\u4e5f\u662f\u8981\u770b":133,"\u6df7\u5408\u5f53\u524d\u8bcd\u5411\u91cf\u548cattention\u52a0\u6743\u7f16\u7801\u5411\u91cf":140,"\u6dfb\u52a0":67,"\u6dfb\u52a0\u4e86\u4e00\u4e2a\u8f93\u51fa":101,"\u6dfb\u52a0\u542f\u52a8\u811a\u672c":123,"\u6dfb\u52a0\u5e8f\u5217\u4fe1\u606f":115,"\u6dfb\u52a0\u7684\u76f8\u5173\u6587\u4ef6\u548c\u76ee\u5f55\u7ed3\u6784\u5982\u4e0b":[67,68],"\u6dfb\u52a0\u8f93\u5165\u53c2\u6570":101,"\u6dfb\u52a0\u8f93\u51fa\u53c2\u6570":101,"\u6dfb\u52a0op\u7684\u6ce8\u91ca":101,"\u6e05\u7406":26,"\u6e05\u7406\u548c\u7ed3\u675f":116,"\u6e05\u7406\u6389\u8001\u65e7\u7684paddlepaddle\u5b89\u88c5\u5305":104,"\u6e90\u4ee3\u7801\u683c\u5f0f":98,"\u6e90\u5e8f\u5217":140,"\u6e90\u7801\u6811\u6839\u76ee\u5f55":26,"\u6f5c\u5728\u4f1a\u5f15\u8d77\u672a\u5b9a\u4e49\u884c\u4e3a":115,"\u6fc0\u6d3b":100,"\u6fc0\u6d3b\u51fd\u6570\u662f\u72ec\u7acb\u4e8e":68,"\u6fc0\u6d3b\u65b9\u7a0b":100,"\u6fc0\u6d3b\u7684\u7c7b\u578b":100,"\u70b9\u51fb":[30,88],"\u70b9\u51fb\u8fd9\u91cc":103,"\u7136\u540e":[119,134],"\u7136\u540e\u4e0b\u8f7d\u4f18\u5316\u66f4\u65b0\u540e\u7684\u795e\u7ecf\u7f51\u7edc\u53c2\u6570":118,"\u7136\u540e\u4ea4\u7ed9step\u51fd\u6570":139,"\u7136\u540e\u4f7f\u7528":143,"\u7136\u540e\u4f7f\u7528resize\u63a5\u53e3\u8bbe\u7f6etensor\u7684\u5927\u5c0f":102,"\u7136\u540e\u5355\u51fb":98,"\u7136\u540e\u53ef\u4ee5\u4ecehead\u8282\u70b9ssh\u65e0\u5bc6\u7801\u767b\u5f55\u5230openmpi\u7684\u6bcf\u4e2a\u8282\u70b9\u4e0a":124,"\u7136\u540e\u53ef\u4ee5\u4f7f\u7528\u547d\u4ee4\u884c\u5de5\u5177\u521b\u5efajob":123,"\u7136\u540e\u5728\u4e0b\u4e00\u4e2a\u65f6\u95f4\u6b65\u8f93\u5165\u7ed9\u53e6\u4e00\u4e2a\u795e\u7ecf\u5143":137,"\u7136\u540e\u5728\u524d\u5411":67,"\u7136\u540e\u5728\u6d4f\u89c8\u5668\u4e2d\u8f93\u5165\u4ee5\u4e0b\u7f51\u5740":28,"\u7136\u540e\u5728dataprovider\u91cc\u9762\u6839\u636e\u8be5\u5730\u5740\u52a0\u8f7d\u5b57\u5178":109,"\u7136\u540e\u5728etcd\u7684":37,"\u7136\u540e\u5b89\u88c5paddle\u7684python\u73af\u5883":104,"\u7136\u540e\u5b9a\u4e49":140,"\u7136\u540e\u5c06\u6784\u5efa\u6210\u529f\u7684\u955c\u50cf\u4e0a\u4f20\u5230\u955c\u50cf\u4ed3\u5e93":123,"\u7136\u540e\u5c06\u8fd9\u4e9blayer\u7684\u53c2\u6570":108,"\u7136\u540e\u5c31\u53ef\u4ee5\u5e76\u53d1\u5199\u5165\u591a\u4e2achunk":54,"\u7136\u540e\u6240\u6709\u7528":98,"\u7136\u540e\u624d\u80fd\u4f7f\u7528pfsclient":54,"\u7136\u540e\u6253\u5370\u8f93\u51fa":110,"\u7136\u540e\u6309\u7167\u4e0a\u8ff0\u7684\u65b9\u6cd5":88,"\u7136\u540e\u63d0\u4ea4\u65b0\u6dfb\u52a0\u7684":98,"\u7136\u540e\u70b9\u51fb":[88,98],"\u7136\u540e\u7533\u660e\u4e00\u4e2a\u5b58\u50a8\u5377":123,"\u7136\u540e\u89c2\u5bdf\u5230\u8f93\u51fa\u7684\u53d8\u5316\u4e3a":100,"\u7136\u540e\u901a\u8fc7\u51fd\u6570":123,"\u7136\u540e\u901a\u8fc7\u81ea\u8eab\u7684ip\u5730\u5740\u5728":123,"\u7136\u540e\u91cd\u65b0cmake\u5373\u53ef":104,"\u7136\u800c":[129,140],"\u7248\u672c":[26,27,30,143],"\u7248\u672c\u4e3acpu_avx_mkl":28,"\u7248\u672c\u4e3acpu_avx_openbla":[30,112],"\u7248\u672c\u5206\u652f":88,"\u7248\u672c\u53f7":88,"\u7248\u672c\u53f7\u5bf9\u5e94\u7684tag\u5373\u53ef":88,"\u7248\u672c\u53f7rc":88,"\u7248\u672c\u5728":98,"\u7248\u672c\u8bf4\u660e":30,"\u7248\u672cfork\u51fa\u81ea\u5df1\u7684\u529f\u80fd\u5206\u652f":88,"\u7279\u522b\u662f\u5728lstm\u7b49rnn\u4e2d":107,"\u7279\u6307":116,"\u7279\u6709\u7684\u8bbe\u5907id":68,"\u72ec\u7acb\u5b9a\u5236\u7684\u4e8c\u8fdb\u5236\u65f6\u624d\u9700\u8981\u7f16\u8bd1":29,"\u72ec\u7acb\u5de5\u5177\u94fe":142,"\u72ec\u7acb\u5de5\u5177\u94fe\u6240\u5728\u7684\u7edd\u5bf9\u8def\u5f84":142,"\u73af\u5883\u51c6\u5907":118,"\u73af\u5883\u53d8\u91cf":117,"\u73af\u5883\u53d8\u91cf\u4e2d":113,"\u73af\u5883\u53d8\u91cf\u6765\u6307\u5b9a\u7279\u5b9a\u7684gpu":107,"\u73b0\u9636\u6bb5\u7684\u4f18\u5316\u4e3b\u8981\u9488\u5bf9":67,"\u73b0\u9636\u6bb5paddle\u6709\u4e00\u4e2a\u95ee\u9898\u662f":71,"\u7406\u89e3":26,"\u7406\u89e3\u4e3a\u4e00\u4e2a\u4e00\u7ef4\u7684\u6574\u578b\u6570\u7ec4":115,"\u751a\u81f3\u80fd\u89e3\u91ca\u4e3a\u4ec0\u4e48\u67d0\u4e2a\u64cd\u4f5c\u82b1\u4e86\u5f88\u957f\u65f6\u95f4":134,"\u751f\u4ea7\u73af\u5883\u4e2d\u7684\u8bad\u7ec3\u6570\u636e\u96c6\u901a\u5e38\u4f53\u79ef\u5f88\u5927":38,"\u751f\u4ea7\u73af\u5883\u7684\u65e5\u5fd7\u6570\u636e\u4f1a\u901a\u8fc7\u5b9e\u65f6\u6d41\u7684\u65b9\u5f0f":38,"\u751f\u4ea7\u955c\u50cf":98,"\u751f\u6210":123,"\u751f\u6210\u5404\u79cd\u8bed\u8a00\u7684\u7ed1\u5b9a\u4ee3\u7801":71,"\u751f\u6210\u540e\u7684\u6587\u6863\u5206\u522b\u5b58\u50a8\u5728\u7f16\u8bd1\u76ee\u5f55\u7684":103,"\u751f\u6210\u5e8f\u5217\u7684\u6700\u5927\u957f\u5ea6":140,"\u751f\u6210\u6587\u6863":71,"\u751f\u6210\u7684":38,"\u751f\u6210\u7684\u6027\u80fd\u5206\u6790\u6587\u4ef6\u4e3a":133,"\u751f\u6210\u7684\u6570\u636e\u5c06\u4f1a\u5b58\u50a8\u5728\u8fd9\u4e2avolume\u4e0b":123,"\u751f\u6210\u7684\u6570\u636e\u7f13\u5b58\u5728\u5185\u5b58\u91cc":107,"\u751f\u6210\u7ed9\u5b9a":38,"\u751f\u6210\u7f51\u7edc\u5c42\u914d\u7f6e":100,"\u751f\u6210\u81ea\u5df1\u76ee\u5f55\u4e0b\u7684\u4ed3\u5e93":98,"\u751f\u6210\u8c03\u8bd5\u4fe1\u606f":133,"\u751f\u6210\u968f\u673a\u7684\u8f93\u5165\u6570\u636e":101,"\u751f\u6210api\u6587\u6863":71,"\u751f\u6210pfsclient\u548cpfsserver\u7684\u6846\u67b6\u90e8\u5206":54,"\u751f\u6210python\u6027\u80fd\u5206\u6790\u7684\u547d\u4ee4\u5982\u4e0b":133,"\u7528":54,"\u7528\u4e8e\u521d\u59cb\u5316\u53c2\u6570\u548c\u8bbe\u7f6e":100,"\u7528\u4e8e\u5c06\u53c2\u6570\u4f20\u9012\u7ed9\u7f51\u7edc\u914d\u7f6e":131,"\u7528\u4e8e\u6307\u5b9a\u5176\u8981\u5173\u8054\u7684layer":108,"\u7528\u4e8e\u6307\u5b9a\u7f51\u7edc\u914d\u7f6e\u6587\u4ef6":129,"\u7528\u4e8e\u6ce8\u518c\u6ca1\u6709\u53cd\u5411\u7684op":101,"\u7528\u4e8e\u6d4b\u8bd5\u548c\u5bf9\u6bd4\u5728\u4f7f\u7528mkl":68,"\u7528\u4e8e\u7a00\u758f\u7c7b\u578b\u53c2\u6570\u901a\u4fe1\u7684\u7aef\u53e3\u4e2a\u6570":117,"\u7528\u4e8e\u7a00\u758f\u8bad\u7ec3\u4e2d":129,"\u7528\u4e8e\u7ba1\u7406mkl":68,"\u7528\u4e8e\u83b7\u53d6\u7279\u5b9alayer\u4e0a\u4e00\u65f6\u95f4\u6b65\u7684\u8f93\u51fa":108,"\u7528\u4e8e\u8ba1\u7b97\u7f16\u7801\u5411\u91cf\u7684\u52a0\u6743\u548c":140,"\u7528\u4e8e\u8bad\u7ec3\u795e\u7ecf\u7f51\u7edc\u7684\u6570\u636e":118,"\u7528\u4e8e\u9009\u62e9\u662f\u5426\u4f7f\u7528\u76f8\u5173\u529f\u80fd":67,"\u7528\u4e8e\u9009\u62e9\u662f\u5426\u4f7f\u7528mkl":68,"\u7528\u4e8emkl":[67,68],"\u7528\u53cc\u5411\u95e8\u63a7\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u7f16\u7801":140,"\u7528\u591a\u5bf9\u6548\u679c\u5b8c\u5168\u76f8\u540c\u7684":137,"\u7528\u6237\u4e00\u822c\u901a\u8fc7\u8c03\u7528":133,"\u7528\u6237\u4e0a\u4f20\u6570\u636e\u540e":38,"\u7528\u6237\u4e5f\u53ef\u4ee5\u4e0a\u4f20label":38,"\u7528\u6237\u4e5f\u53ef\u4ee5\u4f7f\u7528paddlepaddle\u63d0\u4f9b\u7684\u5b98\u65b9\u5f00\u53d1\u955c\u50cf":142,"\u7528\u6237\u4eceapp":143,"\u7528\u6237\u53ea\u9700\u5b9a\u4e49rnn\u5728\u4e00\u4e2a\u65f6\u95f4\u6b65\u5185\u5b8c\u6210\u7684\u8ba1\u7b97":139,"\u7528\u6237\u53ef\u4ee5\u5206\u522b\u67e5\u770b\u6700\u65b0\u7684":103,"\u7528\u6237\u53ef\u4ee5\u53c2\u8003\u4e0b\u6587":142,"\u7528\u6237\u53ef\u4ee5\u53c2\u8003sphinx\u6559\u7a0b\u8fdb\u884c\u4e66\u5199":103,"\u7528\u6237\u53ef\u4ee5\u5b89\u5168\u7684\u91ca\u653e\u67d0\u4e2ac":72,"\u7528\u6237\u53ef\u4ee5\u628a\u81ea\u5df1\u7684\u6570\u636e\u5206\u4eab\u7ed9\u522b\u4eba":38,"\u7528\u6237\u53ef\u4ee5\u76f4\u63a5\u4f7f\u7528\u8fd9\u4e2a\u52a8\u6001\u5e93\u6765\u5f15\u5165paddl":72,"\u7528\u6237\u53ef\u4ee5\u81ea\u5b9a\u4e49beam":129,"\u7528\u6237\u53ef\u4ee5\u8bbe\u7f6e":131,"\u7528\u6237\u53ef\u5728\u81ea\u5df1\u719f\u6089\u7684\u5f00\u53d1\u5e73\u53f0\u4e0a\u7f16\u8bd1android\u5e73\u53f0\u4e0a\u9002\u7528\u7684paddlepaddle\u5e93":142,"\u7528\u6237\u53ef\u5728\u8c03\u7528cmake\u7684\u65f6\u5019\u8bbe\u7f6e\u5b83\u4eec":27,"\u7528\u6237\u53ef\u5c06":142,"\u7528\u6237\u53ef\u5c06\u5408\u6210\u7684fat\u5e93\u7528\u4e8e\u6df1\u5ea6\u5b66\u4e60\u76f8\u5173\u7684io":143,"\u7528\u6237\u53ef\u6839\u636e\u81ea\u5df1\u7684\u7f16\u8bd1\u76ee\u6807\u67b6\u6784":142,"\u7528\u6237\u53ef\u81ea\u884c\u524d\u5f80\u4e0b\u8f7d\u9884\u7f16\u8bd1\u597d\u7684\u7248\u672c":142,"\u7528\u6237\u53ef\u901a\u8fc7\u5982\u4e0b\u4e24\u79cd\u65b9\u5f0f":142,"\u7528\u6237\u5728\u4f7f\u7528\u8fd9\u4e00\u7c7brecurr":108,"\u7528\u6237\u5728\u4f7f\u7528paddlepaddl":104,"\u7528\u6237\u5728\u672c\u5730\u8f6c\u6362\u597d\u518d\u4e0a\u4f20":38,"\u7528\u6237\u5c06\u53c2\u6570\u8f7d\u5165":109,"\u7528\u6237\u5c06\u914d\u7f6e\u4e0e\u8bad\u7ec3\u6570\u636e\u5207\u5206\u597d\u653e\u5728\u5206\u5e03\u5f0f\u6587\u4ef6\u7cfb\u7edf\u9884\u5148\u5206\u914d\u597d\u7684\u76ee\u5f55\u4e2d":123,"\u7528\u6237\u5f3a\u5236\u6307\u5b9a\u7279\u5b9a\u7684python\u7248\u672c":104,"\u7528\u6237\u6587\u4ef6\u53ef\u80fd\u662f\u6bd4\u8f83\u5927\u7684":54,"\u7528\u6237\u8fd8\u53ef\u6839\u636e\u81ea\u5df1\u7684\u9700\u6c42\u8bbe\u7f6e\u5176\u4ed6\u7f16\u8bd1\u53c2\u6570":[142,143,144],"\u7528\u6237\u901a\u8fc7\u53c2\u6570":[108,109],"\u7528\u6237\u901a\u8fc7c":72,"\u7528\u6237\u9700\u8981\u5728\u7f51\u7edc\u914d\u7f6e\u4e2d\u6307\u5b9a":131,"\u7528\u6237\u9700\u8981\u5728cmake\u65f6\u624b\u52a8\u8bbe\u7f6e\u8fd9\u4e9b\u503c":[142,144],"\u7528\u6237\u9700\u8981\u6307\u5b9a\u672c\u673a\u4e0apython\u7684\u8def\u5f84":104,"\u7528\u6237\u9700\u8981\u63d0\u524d\u51c6\u5907\u597d\u4ea4\u53c9\u7f16\u8bd1\u73af\u5883":142,"\u7528\u672c\u673a\u7684\u7b2c\u4e00\u4e2a":26,"\u7528\u6765\u4ece\u53c2\u6570\u670d\u52a1\u5668\u9884\u53d6\u53c2\u6570\u77e9\u9635\u76f8\u5e94\u7684\u884c":100,"\u7528\u6765\u5b58\u50a8\u672c\u6b21\u6027\u80fd\u5206\u6790\u7684\u7ed3\u679c":133,"\u7528\u8fd9\u4e2a\u955c\u50cf\u521b\u5efa\u7684\u5bb9\u5668\u9700\u8981\u6709\u4ee5\u4e0b\u4e24\u4e2a\u529f\u80fd":123,"\u7528docker\u7f16\u8bd1\u548c\u6d4b\u8bd5paddlepaddl":29,"\u7528web\u6d4f\u89c8\u5668\u8bbf\u95ee\u5bf9\u5e94\u7f51\u5740":133,"\u7531":[108,115,139],"\u7531\u4e8e":113,"\u7531\u4e8e\u5728\u73b0\u6709\u7684\u67d0\u4e9b\u60c5\u51b5\u4e0b":67,"\u7531\u4e8e\u5b83\u5185\u90e8\u5305\u542b\u4e86\u6bcf\u7ec4\u6570\u636e\u4e2d\u7684\u6240\u6709\u53e5\u5b50":137,"\u7531\u4e8e\u5bf9parameters\u7684\u66f4\u65b0\u9700\u8981\u83b7\u53d6parameters\u5185\u5b58\u7684":37,"\u7531\u4e8e\u6211\u4eec\u60f3\u8981\u7684\u53d8\u6362\u662f\u53cc\u5c42\u65f6\u95f4\u5e8f\u5217":137,"\u7531\u4e8e\u6211\u4eec\u652f\u6301\u8bad\u7ec3\u6570\u636e\u6709\u4e0d\u540c\u7684\u6279\u6b21\u5927\u5c0f":100,"\u7531\u4e8e\u96c6\u7fa4\u4e2d\u540c\u65f6\u5b58\u5728\u4e24\u53f0\u673a\u5668\u6545\u969c\u7684\u6982\u7387\u6781\u4f4e":37,"\u7531\u4e8earm64\u67b6\u6784\u8981\u6c42android":142,"\u7531\u4e8ec":71,"\u7531\u4e8echunk\u6bd4\u8f83\u5c0f":54,"\u7531\u4e8eeigen":102,"\u7531\u4e8emkl":68,"\u7531\u4e8epypi":88,"\u7531\u4e8estep":139,"\u7531\u4e8etensor\u7684rank\u662f\u6a21\u677f\u53c2\u6570":102,"\u7531\u5206\u652f\u5904\u7684layer\u8d1f\u8d23\u6c42\u548c":68,"\u7531\u8bcd\u8bed\u6784\u6210\u7684\u53e5\u5b50":136,"\u7531\u94fe\u63a5\u65b9\u5f0f\u51b3\u5b9a":113,"\u7533\u8bf7\u7528\u6237\u7a7a\u95f4":54,"\u767b\u5f55\u5230head\u8282\u70b9":124,"\u7684":[26,30,98,102,115,116,119,123,143],"\u7684\u4e00\u4e2a\u5b50\u96c6":68,"\u7684\u4e00\u4e2a\u7b80\u5355\u8c03\u7528\u5982\u4e0b":139,"\u7684\u4e3a0":129,"\u7684\u4efb\u4e00\u4e00\u79cd":107,"\u7684\u4f5c\u7528\u662f\u5ef6\u8fdf\u5206\u914d\u5185\u5b58":102,"\u7684\u4f7f\u7528\u793a\u4f8b\u5982\u4e0b":136,"\u7684\u4fe1\u606f":68,"\u7684\u503c":[142,143,144],"\u7684\u503c\u81ea\u52a8\u63a8\u5bfc\u5f97\u5230":142,"\u7684\u504f\u7f6e\u5411\u91cf":100,"\u7684\u5171\u4eab\u5df2\u7ecf\u52a0\u8f7d\u7684\u9884\u6d4b\u6a21\u578b":116,"\u7684\u5177\u4f53\u8ba1\u7b97\u903b\u8f91":101,"\u7684\u5185\u5b58":107,"\u7684\u5185\u5bb9\u6765\u5b9a\u5236imag":123,"\u7684\u5185\u6838block\u4f7f\u7528\u60c5\u51b5":134,"\u7684\u522b\u540d":[1,2,4,16,20,23],"\u7684\u5355\u5143\u6d4b\u8bd5":101,"\u7684\u5355\u5143\u6d4b\u8bd5\u548c\u7b80\u5355\u7f51\u7edc\u7684\u6574\u4f53\u6d4b\u8bd5":68,"\u7684\u53cd\u5411\u4f20\u64ad\u5c06\u4f1a\u6253\u5370\u65e5\u5fd7\u4fe1\u606f":129,"\u7684\u53d8\u6362\u77e9\u9635":100,"\u7684\u540d\u79f0\u76f8\u540c":140,"\u7684\u5411\u91cf":100,"\u7684\u542f\u52a8\u53c2\u6570":123,"\u7684\u542f\u52a8\u53c2\u6570\u5e76\u6267\u884c\u8fdb\u7a0b":123,"\u7684\u547d\u4ee4\u548c\u4e00\u822c\u7684":133,"\u7684\u547d\u540d\u98ce\u683c\u5e76\u4e0d\u80fd\u9002\u5e94\u5176\u4ed6\u7b2c\u4e09\u65b9\u8bed\u8a00":71,"\u7684\u5730\u65b9":98,"\u7684\u5747\u5300\u5206\u5e03":109,"\u7684\u57fa\u672c\u903b\u8f91":68,"\u7684\u591a\u79cd\u5b89\u88c5\u65b9\u5f0f":127,"\u7684\u5934\u6587\u4ef6":71,"\u7684\u5b50\u7c7b\u53ea\u9700\u8981\u4f7f\u7528\u5185\u90e8\u5b58\u50a8\u5c31\u53ef\u4ee5\u4e86":68,"\u7684\u5b9e\u73b0":101,"\u7684\u5de5\u4f5c\u6d41\u7a0b\u5982\u56fe1\u6240\u793a":116,"\u7684\u5e73\u5747\u503c":136,"\u7684\u5e8f\u5217":115,"\u7684\u5e8f\u5217\u5f62\u72b6\u4e00\u81f4":137,"\u7684\u5f00\u53d1\u5de5\u4f5c\u90fd\u5e94\u8be5\u5728\u4e00\u4e2a\u65b0\u7684\u5206\u652f\u4e0a\u5b8c\u6210":98,"\u7684\u5f00\u53d1\u6d41\u7a0b":26,"\u7684\u5f00\u59cb\u8bf7\u52a0\u4e0a\u5b8f\u5b9a\u4e49":101,"\u7684\u6027\u80fd\u5206\u6790\u4e0e\u8c03\u4f18\u5206\u4e3a\u4e24\u4e2a\u90e8\u5206":133,"\u7684\u6027\u80fd\u5206\u6790\u5de5\u5177\u975e\u5e38\u591a":133,"\u7684\u6027\u80fd\u6709\u95ee\u9898":133,"\u7684\u60c5\u51b5\u4e0b":67,"\u7684\u63a5\u53e3\u6837\u5f0f":71,"\u7684\u63a5\u53e3\u8bf7\u67e5\u770b":115,"\u7684\u63cf\u8ff0\u8bf4\u660e\u4e2d":98,"\u7684\u64cd\u4f5c":102,"\u7684\u6570\u636e\u6d41\u56fe":38,"\u7684\u6570\u76ee\u4e00\u81f4":136,"\u7684\u6587\u4ef6\u4e5f\u5e26\u5230\u65b0\u5206\u652f\u4e0a":98,"\u7684\u65b9\u7a0b":100,"\u7684\u65f6\u5019":68,"\u7684\u65f6\u95f4\u6b65\u4fe1\u606f\u6210\u6b63\u6bd4":107,"\u7684\u66f4\u8be6\u7ec6\u51c6\u786e\u7684\u5b9a\u4e49":137,"\u7684\u6700\u5c0f\u503c":129,"\u7684\u6700\u65b0\u4ee3\u7801\u5e76\u66f4\u65b0\u5f53\u524d\u5206\u652f":98,"\u7684\u6784\u9020\u51fd\u6570":101,"\u7684\u67b6\u6784\u7684\u793a\u4f8b":140,"\u7684\u6837\u5f0f":98,"\u7684\u6838\u5fc3\u662f\u8bbe\u8ba1step\u51fd\u6570\u7684\u8ba1\u7b97\u903b\u8f91":139,"\u7684\u6839\u76ee\u5f55":143,"\u7684\u683c\u5f0f\u59cb\u7ec8\u662f":68,"\u7684\u683c\u5f0f\u5b58\u50a8":68,"\u7684\u6982\u5ff5":68,"\u7684\u6bb5\u843d\u5b9a\u4e49\u4e3a\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217":139,"\u7684\u6bcf\u4e2a\u8fdb\u7a0b\u90fd\u53ef\u4ee5\u4ececeph\u8bfb\u53d6\u6570\u636e":122,"\u7684\u6e90\u7801\u4ee5\u53ca\u751f\u6210\u6587\u6863\u9700\u8981\u591a\u79cd\u5f00\u53d1\u5de5\u5177":98,"\u7684\u6e90\u7801\u91cc\u4f7f\u7528\u4e86":71,"\u7684\u7248\u672c":[26,88,144],"\u7684\u72b6\u6001":139,"\u7684\u72ec\u7acb\u5de5\u5177\u94fe":142,"\u7684\u77e9\u9635":[100,107],"\u7684\u7a20\u5bc6\u5411\u91cf\u4f5c\u4e3a\u8f93\u5165":100,"\u7684\u7a20\u5bc6\u77e9\u9635":115,"\u7684\u7a20\u5bc6\u77e9\u9635\u662f\u4e00\u4e2a\u7531":115,"\u7684\u7b2c\u4e00\u4e2a\u53c2\u6570":116,"\u7684\u7b2ci\u4e2a\u503c":100,"\u7684\u7b2cj\u4e2a\u503c":100,"\u7684\u7cfb\u7edf":26,"\u7684\u7ed3\u679c":67,"\u7684\u7f16\u5199":117,"\u7684\u7f16\u8bd1\u5de5\u5177\u94fe":142,"\u7684\u7f29\u5199":54,"\u7684\u7f51\u7edc\u6a21\u578b":67,"\u7684\u89c4\u8303":71,"\u7684\u89d2\u5ea6":38,"\u7684\u8ba1\u7b97\u4ee3\u7801":102,"\u7684\u8ba1\u7b97\u8fc7\u7a0b\u4e66\u5199\u66f4\u52a0\u7b80\u5355":101,"\u7684\u8bdd":107,"\u7684\u8be6\u7ec6\u4fe1\u606f":133,"\u7684\u8f93\u5165":139,"\u7684\u8f93\u51fa":[107,134],"\u7684\u8f93\u51fa\u4fe1\u606f\u5165\u624b\u662f\u4e2a\u4e0d\u9519\u7684\u9009\u62e9":134,"\u7684\u8f93\u51fa\u51fd\u6570\u8fd4\u56de\u7684\u662f\u4e0b\u4e00\u4e2a\u65f6\u523b\u8f93\u51fa\u8bcd\u7684":140,"\u7684\u8f93\u51fa\u683c\u5f0f":137,"\u7684\u8f93\u51fa\u88ab\u7528\u4f5c":140,"\u7684\u8f93\u51fab\u662f\u4e00\u4e2a":107,"\u7684\u8fd0\u884c\u73af\u5883":26,"\u7684\u8fdc\u7a0b\u4ed3\u5e93\u7684\u540d\u5b57":98,"\u7684\u914d\u7f6e\u5199\u5230\u914d\u7f6e\u6587\u4ef6\u4e2d":38,"\u7684\u96c6\u88c5\u7bb1\u6280\u672f":26,"\u7684\u9875\u9762\u5220\u9664\u8fdc\u7a0b\u4ed3\u5e93\u7684\u5206\u652f":98,"\u7684cpu":101,"\u7684docker\u955c\u50cf":28,"\u7684flag":[67,68],"\u7684linux\u670d\u52a1\u5668\u7ec4\u6210":127,"\u7684paddlepaddle\u5e93":142,"\u7684vanilla":67,"\u76d1\u542c\u7684\u7aef\u53e3\u4e2a\u6570":117,"\u76ee\u524d":139,"\u76ee\u524d\u4f7f\u7528":98,"\u76ee\u524d\u53ea\u8003\u8651":68,"\u76ee\u524d\u53ea\u8003\u8651\u52a8\u6001\u6269\u5bb9trainer\u6570\u91cf":37,"\u76ee\u524d\u5728paddlepaddle\u4e2d":68,"\u76ee\u524d\u5728paddlepaddle\u4e2d\u6570\u636e\u90fd\u662f\u4ee5":68,"\u76ee\u524d\u5d4c\u5165python\u89e3\u91ca\u5668":71,"\u76ee\u524d\u5fc5\u987b\u8bbe\u7f6e\u6210":144,"\u76ee\u524d\u6211\u4eec\u7528cephfs\u6765\u642d\u5efa":54,"\u76ee\u524d\u63d0\u4f9b\u4e09\u79cd\u94fe\u63a5\u65b9\u5f0f":113,"\u76ee\u524d\u652f\u6301":142,"\u76ee\u524d\u652f\u6301\u4e24\u79cd":136,"\u76ee\u524d\u652f\u6301cento":112,"\u76ee\u524d\u652f\u6301fail":129,"\u76ee\u524d\u7684\u4f18\u5316":68,"\u76ee\u524d\u8be5\u53c2\u6570\u4ec5\u7528\u4e8eaucvalidationlayer\u548cpnpairvalidationlayer\u5c42":129,"\u76ee\u524d\u8fd8\u672a\u652f\u6301":139,"\u76ee\u524dpaddle\u7684\u8fdb\u7a0b\u6a21\u578b\u662fc":71,"\u76ee\u524dpaddlepaddle\u7684develop\u5206\u652f\u7684\u6587\u6863\u662f\u81ea\u52a8\u89e6\u53d1\u66f4\u65b0\u7684":103,"\u76ee\u524dpaddlepaddle\u91c7\u7528\u4e86":67,"\u76ee\u5f55":[26,28,119,122,123,142,143,144],"\u76ee\u5f55\u4e0b":[72,100,119],"\u76ee\u5f55\u4e0b\u5bf9\u5e94\u7684\u5730\u65b9":68,"\u76ee\u5f55\u4e0b\u65b0\u589e\u7684":101,"\u76ee\u5f55\u4e0b\u6700\u65b0\u7684":143,"\u76ee\u5f55\u4e0b\u7684\u4ee3\u7801\u793a\u4f8b":116,"\u76ee\u5f55\u4e0b\u7684\u751f\u6210\u6587\u4ef6\u7528\u4e8e\u6df1\u5ea6\u5b66\u4e60\u76f8\u5173android":142,"\u76ee\u5f55\u4e0b\u7684python\u5305":104,"\u76ee\u5f55\u4e2d":[113,116,119],"\u76ee\u5f55\u4e2d\u4f1a\u5305\u542b":[142,144],"\u76ee\u5f55\u4e2d\u4f1a\u5305\u542b\u4ee5\u4e0b\u5185\u5bb9":143,"\u76ee\u5f55\u4e2d\u7684":134,"\u76ee\u5f55\u4e2dpaddl":123,"\u76ee\u5f55\u548c":[142,143,144],"\u76ee\u5f55\u5c31\u6210\u4e3a\u4e86\u5171\u4eab\u5b58\u50a8":123,"\u76ee\u5f55\u751f\u6210\u4e00\u5957\u72ec\u7acb\u7f16\u8bd1\u5de5\u5177\u94fe":142,"\u76ee\u5f55\u91cc\u627e\u5230\u4ea4\u53c9\u7f16\u8bd1\u5668":144,"\u76ee\u6807\u5411\u91cf":140,"\u76ee\u6807\u5de5\u5177\u94fe":142,"\u76ee\u6807\u673a\u7248protobuf\u5e93":144,"\u76ee\u6807\u67b6\u6784":143,"\u76ee\u6807\u67b6\u6784abi":142,"\u76f4\u5230\u8bad\u7ec3\u6536\u655b\u4e3a\u6b62":109,"\u76f4\u63a5\u4f7f\u7528\u4e0a\u8ff0\u5b89\u88c5\u6d41\u7a0b":29,"\u76f4\u63a5\u4f7f\u7528c\u8bed\u8a00\u7684":71,"\u76f4\u63a5\u5220\u9664\u8fd9\u4e2a\u53c2\u6570\u5373\u53ef":72,"\u76f4\u63a5\u5347\u7ea7\u5230\u66f4\u65b0\u7684\u7248\u672c":27,"\u76f4\u63a5\u5bfc\u51fa\u5230c\u7684\u63a5\u53e3\u6bd4\u8f83\u56f0\u96be":71,"\u76f4\u63a5\u8c03\u7528\u76f8\u5e94\u63a5\u53e3\u5373\u53ef":101,"\u76f4\u63a5\u8fd0\u884c":28,"\u76f8\u5173\u5c42":67,"\u76f8\u540c\u540d\u5b57\u7684\u53c2\u6570":109,"\u76f8\u6bd4":101,"\u770b\u5f53\u524dmpi\u96c6\u7fa4\u662f\u5426\u652f\u6301resourc":105,"\u77a7":112,"\u77e9\u9635":128,"\u77e9\u9635\u4e2d\u6bcf\u4e2a\u5143\u7d20\u7684\u503c\u968f\u673a\u751f\u6210":115,"\u77e9\u9635\u4e58\u6cd5\u7684\u516c\u5f0f":101,"\u77e9\u9635\u5927\u5c0f\u662f":67,"\u77e9\u9635\u662f\u5426\u662f\u4e00\u4e2a\u5e8f\u5217":115,"\u77e9\u9635\u7684\u9ad8\u5ea6":115,"\u77e9\u9635\u91cc\u7684\u5143\u7d20\u662f\u6d6e\u70b9\u6570":115,"\u786e\u4fdd\u7f16\u8bd1\u5668\u9009\u9879":98,"\u78c1\u76d8\u4e0d\u591f":26,"\u78c1\u76d8\u7a7a\u95f4\u4e0d\u8db3\u7b49":105,"\u793a\u4f8b":[107,109,116],"\u793a\u4f8b3\u5bf9\u4e8e\u5355\u5c42rnn\u548c\u53cc\u5c42rnn\u6570\u636e\u5b8c\u5168\u76f8\u540c":137,"\u793a\u4f8b3\u7684\u914d\u7f6e\u4f7f\u7528\u4e86\u5355\u5c42rnn\u548c\u53cc\u5c42rnn":137,"\u793a\u4f8b3\u7684\u914d\u7f6e\u5206\u522b\u4e3a":137,"\u793a\u4f8b\u4ee3\u7801\u5982\u4e0b":[107,116],"\u793a\u4f8b\u5982\u4e0b":109,"\u793a\u4f8b\u7a0b\u5e8f":117,"\u793e\u533a\u53c2\u4e0e\u56f0\u96be":71,"\u793e\u533a\u8d21\u732e\u4ee3\u7801\u5b66\u4e60\u6210\u672c\u9ad8":71,"\u795e\u7ecf\u7f51\u7edc\u4e2d\u4e00\u4e2a\u8ba1\u7b97\u5c42\u7684\u8f93\u5165":115,"\u795e\u7ecf\u7f51\u7edc\u4e2d\u4e00\u4e2a\u8ba1\u7b97\u5c42\u7684\u8f93\u5165\u8f93\u51fa\u88ab\u7ec4\u7ec7\u4e3a\u4e00\u4e2a":116,"\u795e\u7ecf\u7f51\u7edc\u4e2d\u7684\u53c2\u6570":37,"\u795e\u7ecf\u7f51\u7edc\u4e5f\u9700\u8981\u4e00\u4e9b\u7279\u5b9a\u7684layer\u4f5c\u4e3a\u8f93\u5165\u63a5\u53e3":110,"\u795e\u7ecf\u7f51\u7edc\u53c2\u6570\u4ee5\u53ca\u8fed\u4ee3\u65b9\u7a0b":110,"\u795e\u7ecf\u7f51\u7edc\u5728\u8bad\u7ec3\u7684\u65f6\u5019":107,"\u795e\u7ecf\u7f51\u7edc\u672c\u8d28\u4e0a\u662f\u4e00\u4e2a\u8ba1\u7b97\u56fe":102,"\u795e\u7ecf\u7f51\u7edc\u6a21\u578b\u7ed3\u6784\u548c\u8bad\u7ec3\u597d\u7684\u6a21\u578b\u5c06\u88ab\u5e8f\u5217\u5316\u5408\u5e76\u5165\u4e00\u4e2a\u6587\u4ef6":116,"\u795e\u7ecf\u7f51\u7edc\u7684\u7f51\u7edc\u7ed3\u6784\u4e2d\u5177\u6709\u6709\u5411\u73af\u7ed3\u6784":137,"\u795e\u7ecf\u7f51\u7edc\u7684\u8bad\u7ec3\u672c\u8eab\u662f\u4e00\u4e2a\u975e\u5e38\u6d88\u8017\u5185\u5b58\u548c\u663e\u5b58\u7684\u5de5\u4f5c":107,"\u79bb\u7ebf\u6279\u5904\u7406":38,"\u79f0\u4e3a":[98,140],"\u79f0\u4e3a\u5f00\u53d1\u955c\u50cf":142,"\u79f0\u4e4b\u4e3a":115,"\u79f0\u4e4b\u4e3a\u53cc\u5c42\u5e8f\u5217\u7684\u4e00\u4e2a\u5b50\u5e8f\u5217":136,"\u79f0\u4e4b\u4e3a\u96c6\u675f\u5927\u5c0f":129,"\u79f0\u4f5c\u6709kernel":101,"\u79f0\u4f5ckernel":101,"\u79fb\u52a8\u7aef\u9884\u6d4b":115,"\u7a00\u758f\u6570\u636e\u7684\u683c\u5f0f":100,"\u7a00\u758f\u66f4\u65b0\u7684\u7aef\u53e3\u6570\u91cf":123,"\u7a00\u758f\u768401\u5411\u91cf":110,"\u7a00\u758f\u7684\u5411\u91cf":110,"\u7a00\u758f\u77e9\u9635":115,"\u7a00\u758f\u77e9\u9635\u4f7f\u7528":115,"\u7a00\u758f\u77e9\u9635\u53ca\u76f8\u5173\u7684\u63a5\u53e3":115,"\u7a00\u758f\u77e9\u9635\u5b58\u50a8\u793a\u610f\u56fe":115,"\u7a00\u758f\u77e9\u9635\u7684\u4e58\u79ef\u5e94\u7528\u4e8e\u524d\u5411\u4f20\u64ad\u8fc7\u7a0b":131,"\u7a0b\u5e8f\u4ece\u6b64\u76ee\u5f55\u62f7\u8d1d\u6587\u4ef6\u5230\u5bb9\u5668\u5185\u8fdb\u884c\u8bad\u7ec3":123,"\u7a0b\u5e8f\u4f9d\u8d56":117,"\u7a0b\u5e8f\u505c\u6b62":129,"\u7a0b\u5e8f\u662f\u4e00\u6837\u7684":133,"\u7a0b\u5e8f\u76f4\u63a5\u9000\u51fa":129,"\u7a20\u5bc6\u5411\u91cf":100,"\u7a20\u5bc6\u66f4\u65b0\u7684\u7aef\u53e3\u6570\u91cf":123,"\u7a20\u5bc6\u7684\u6d6e\u70b9\u6570\u5411\u91cf":110,"\u7a20\u5bc6\u77e9\u9635":115,"\u7acb\u523b\u9000\u51fa":107,"\u7acb\u5373\u6267\u884c\u5355\u5143\u6d4b\u8bd5":27,"\u7ae0\u8282":142,"\u7aef\u53e3":105,"\u7aef\u6570\u636e\u7c7b\u578b":115,"\u7aef\u7684":133,"\u7aef\u8bfb\u53d6\u6570\u636e":107,"\u7b2c\u4e00\u4e2a":98,"\u7b2c\u4e00\u4e2a\u53c2\u6570":101,"\u7b2c\u4e00\u4e2a\u6837\u672c\u540c\u65f6encode\u4e24\u6761\u6570\u636e\u6210\u4e24\u4e2a\u5411\u91cf":137,"\u7b2c\u4e00\u4e2atag\u4e3a":88,"\u7b2c\u4e00\u6b65\u9700\u8c03\u7528":116,"\u7b2c\u4e00\u7ae0\u8282":110,"\u7b2c\u4e09\u4e2a\u53c2\u6570":101,"\u7b2c\u4e09\u65b9\u4f9d\u8d56\u5e93\u9700\u8981\u6309\u7167\u4e0e\u65b9\u5f0f2\u540c\u6837\u65b9\u6cd5\u663e\u793a\u5730\u8fdb\u884c\u94fe\u63a5":113,"\u7b2c\u4e09\u65b9\u94fe\u63a5\u5e93\u548c\u5934\u6587\u4ef6":113,"\u7b2c\u4e09\u6b65\u5b8c\u6210\u540e":88,"\u7b2c\u4e8c\u4e2a":107,"\u7b2c\u4e8c\u4e2a\u4e3a":88,"\u7b2c\u4e8c\u4e2a\u53c2\u6570":101,"\u7b2c\u4e8c\u7c7b":108,"\u7b2ci\u884c\u7b2cj\u5217\u7684\u6570\u503c":100,"\u7b49":[68,72,101,105,116],"\u7b49\u4e8e\u6837\u672c\u6570":107,"\u7b49\u5168\u90e8\u9759\u6001\u5e93\u4e2d\u7684\u76ee\u6807\u6587\u4ef6\u5168\u90e8\u6253\u5305\u540e\u4ea7\u751f\u7684\u6587\u4ef6":72,"\u7b49\u53c2\u6570":123,"\u7b49\u5f85\u7f16\u8bd1\u5b8c\u6210\u540e":88,"\u7b49\u6587\u4ef6":72,"\u7b49\u7b2c\u4e09\u65b9\u5e93":113,"\u7b80\u5199":101,"\u7b80\u5355\u4ecb\u7ecd\u9700\u8981\u7528\u5230\u57fa\u7c7b":101,"\u7b80\u5355\u603b\u7ed3op\u9700\u8981\u5305\u542b\u7684\u5185\u5bb9\u5982\u4e0b":101,"\u7b80\u5355\u6765\u8bf4":134,"\u7b80\u5355\u7684\u5168\u8fde\u63a5\u7f51\u7edc":109,"\u7b80\u5355\u7684\u6027\u80fd\u5206\u6790":134,"\u7b80\u5355\u7684yaml\u6587\u4ef6\u5982\u4e0b":122,"\u7b97\u6cd5":[107,140],"\u7b97\u6cd5\u4e2d\u7684beam\u5927\u5c0f":140,"\u7ba1\u7406\u4e86\u6bcf\u4e2a\u8ba1\u7b97\u5c42\u8f93\u51fa\u7684\u5b58\u50a8\u7a7a\u95f4":116,"\u7c7b\u4f3c":[72,136],"\u7c7b\u4f5c\u4e3a\u53c2\u6570\u7684\u62bd\u8c61":100,"\u7c7b\u522b\u4e2d\u7684\u53c2\u6570\u53ef\u7528\u4e8e\u6240\u6709\u573a\u5408":128,"\u7c7b\u522b\u6807\u7b7e\u4e4b\u4e00":116,"\u7c7b\u522b\u6807\u7b7e\u5c42":116,"\u7c7b\u540d\u548cc":71,"\u7c7b\u578b":[71,101,115,129],"\u7c7b\u578b\u4e3a":101,"\u7c7b\u578b\u4ecd\u7136\u4e3aeigenvector":102,"\u7c7b\u578b\u53ef\u4ee5\u662fpaddlepaddle\u652f\u6301\u7684\u4efb\u610f\u8f93\u5165\u6570\u636e\u7c7b\u578b":136,"\u7c7b\u578b\u540d\u4e3a":101,"\u7c7b\u578b\u662fnumpy\u7684ndarrai":107,"\u7c7b\u578b\u662fsparse_binary_vector":110,"\u7c7b\u578b\u662fsparse_float_vector":110,"\u7c7b\u578b\u7684":137,"\u7c7b\u578b\u7b49\u662f\u5426\u5408\u6cd5":101,"\u7c7b\u578b\u8fd8\u662f":115,"\u7c7b\u7684\u5b9a\u4e49\u5199\u5728":101,"\u7c7b\u7684\u5bf9\u8c61":116,"\u7c7b\u7684\u6784\u9020\u51fd\u6570\u548c\u6790\u6784\u51fd\u6570":100,"\u7c7b\u91cd\u5199":101,"\u7c7b\u9700\u8981\u5b9e\u73b0\u521d\u59cb\u5316":100,"\u7cfb\u6570":101,"\u7cfb\u7edf\u4e2d\u7684\u74f6\u9888\u53ef\u80fd\u548c\u7a0b\u5e8f\u5458\u5f00\u53d1\u8fc7\u7a0b\u4e2d\u60f3\u8c61\u7684\u74f6\u9888\u76f8\u53bb\u751a\u8fdc":133,"\u7cfb\u7edf\u4f1a\u5bf9\u65b0\u589e\u7684op\u81ea\u52a8\u7ed1\u5b9apython":101,"\u7cfb\u7edf\u4f1a\u63d0\u4f9b\u4e00\u4e2a\u5206\u5e03\u5f0f\u5b58\u50a8\u670d\u52a1":117,"\u7cfb\u7edf\u4f1a\u6839\u636e\u6587\u4ef6\u540d\u81ea\u52a8\u6784\u5efaop\u548c\u5176\u5bf9\u5e94\u7684python\u6269\u5c55":101,"\u7ebf\u7a0bid\u53f7":131,"\u7ec6\u8282\u63cf\u8ff0":130,"\u7ecf\u5e38\u4f1a\u6d88\u8017\u657010gb\u7684\u5185\u5b58\u548c\u6570gb\u7684\u663e\u5b58":107,"\u7ed3\u5c3e":101,"\u7ed3\u675f\u6807\u8bb0":140,"\u7ed3\u675f\u9884\u6d4b\u4e4b\u540e":116,"\u7ed3\u6784\u4f53":[115,116],"\u7ed3\u679c\u4f1a\u5199\u5165\u5f53\u524d\u8fd0\u884c\u76ee\u5f55\u4e0b\u7684":116,"\u7ed3\u679c\u5982\u4e0b\u56fe\u6240\u793a":133,"\u7ed3\u679c\u8f93\u51fa\u5230":26,"\u7ed3\u8bba":71,"\u7ed9\u4e2a\u7b80\u5355\u7684":98,"\u7ed9\u5b9aencoder\u8f93\u51fa\u548c\u5f53\u524d\u8bcd":139,"\u7edf\u4e00\u7528":38,"\u7ee7\u627f\u81ea":101,"\u7ee7\u627f\u81eaoperatorbas":101,"\u7ef4\u57fa\u767e\u79d1\u4e2d\u6587\u9875\u9762":137,"\u7ef4\u57fa\u767e\u79d1\u9875\u9762":137,"\u7ef4\u7a7a\u95f4":140,"\u7ef4\u7a7a\u95f4\u5b8c\u6210":140,"\u7f13\u5b58\u6c60\u7684\u51cf\u5c0f":107,"\u7f16\u5199":28,"\u7f16\u5199\u4e86\u4e00\u4e2apaddlepaddle\u7684\u7a0b\u5e8f":28,"\u7f16\u5199\u5b8cyaml\u6587\u4ef6\u540e":123,"\u7f16\u5199\u672c\u6b21\u8bad\u7ec3\u7684yaml\u6587\u4ef6":123,"\u7f16\u5199\u6df1\u5ea6\u5b66\u4e60\u7a0b\u5e8f":133,"\u7f16\u5199\u7684\u90e8\u5206":30,"\u7f16\u5199\u96c6\u7fa4\u4efb\u52a1\u63d0\u4ea4\u548c\u7ba1\u7406\u811a\u672c":120,"\u7f16\u53f7\u4ece0\u5f00\u59cb":107,"\u7f16\u7801\u5411\u91cf":140,"\u7f16\u7801\u5668\u8f93\u51fa":140,"\u7f16\u7801\u6e90\u5e8f\u5217":140,"\u7f16\u8bd1":[26,28,98,142],"\u7f16\u8bd1\u51fa\u7684paddlepaddle\u9884\u6d4b\u5e93\u548c\u5934\u6587\u4ef6":113,"\u7f16\u8bd1\u540e\u7684\u6587\u4ef6\u5c06\u88ab\u5b58\u50a8\u5728\u5de5\u4f5c\u76ee\u5f55":103,"\u7f16\u8bd1\u548c\u5b89\u88c5paddlepaddl":144,"\u7f16\u8bd1\u548c\u5b89\u88c5paddlepaddle\u9884\u6d4b\u5e93":[142,143],"\u7f16\u8bd1\u5668":[142,143,144],"\u7f16\u8bd1\u5668\u6ca1\u6709":71,"\u7f16\u8bd1\u5668\u8981\u6c42\u7cfb\u7edf\u652f\u6301":142,"\u7f16\u8bd1\u578b\u8bed\u8a00":71,"\u7f16\u8bd1\u5b89\u88c5\u4e0e\u5355\u5143\u6d4b\u8bd5":106,"\u7f16\u8bd1\u5b89\u88c5\u7ed3\u675f\u4e4b\u540e":142,"\u7f16\u8bd1\u5b8c\u6210\u4e4b\u540e":103,"\u7f16\u8bd1\u5b8c\u6210\u540e\u4f1a\u5728build":27,"\u7f16\u8bd1\u5de5\u5177\u94fe":142,"\u7f16\u8bd1\u5de5\u5177\u94fe\u6240\u5728\u7684\u7edd\u5bf9\u8def\u5f84":144,"\u7f16\u8bd1\u6027\u80fd\u4f1a\u548c":133,"\u7f16\u8bd1\u6210\u529f\u540e":101,"\u7f16\u8bd1\u6210\u529f\u540e\u5728":113,"\u7f16\u8bd1\u6210\u52a8\u6001\u5e93":129,"\u7f16\u8bd1\u65f6\u4e00\u5b9a\u8981\u5f00\u542f\u4f18\u5316":133,"\u7f16\u8bd1\u65f6\u4f1a\u628a\u5bf9\u5e94\u7684\u5934\u6587\u4ef6\u548c\u5e93\u653e\u5728":68,"\u7f16\u8bd1\u65f6\u53ef\u80fd\u4f1a\u53bb\u6389\u8c03\u8bd5\u4fe1\u606f":133,"\u7f16\u8bd1\u65f6\u6307\u5b9a":133,"\u7f16\u8bd1\u751f\u6210":103,"\u7f16\u8bd1\u8fd9\u4e2a\u7248\u672c\u7684docker\u53d1\u884c\u955c\u50cf":88,"\u7f16\u8bd1\u8fd9\u4e2a\u7248\u672c\u7684python":88,"\u7f16\u8bd1c":72,"\u7f16\u8bd1paddlepaddl":27,"\u7f51\u7edc\u5c42\u53ef\u4ee5\u6709\u591a\u4e2a\u8f93\u5165":100,"\u7f51\u7edc\u5c42\u7684\u6807\u8bc6\u7b26\u4e3a":100,"\u7f51\u7edc\u5c42\u7684\u7c7b\u578b":100,"\u7f51\u7edc\u5c42\u7684\u7ec6\u8282\u53ef\u4ee5\u901a\u8fc7\u4e0b\u9762\u8fd9\u4e9b\u4ee3\u7801\u7247\u6bb5\u6765\u6307\u5b9a":100,"\u7f51\u7edc\u5c42\u7684\u8f93\u51fa\u662f\u7ecf\u8fc7\u6fc0\u6d3b\u51fd\u6570\u4e4b\u540e\u7684\u503c":129,"\u7f51\u7edc\u5c42\u914d\u7f6e\u5305\u542b\u4ee5\u4e0b\u51e0\u9879":100,"\u7f51\u7edc\u63a5\u53d7\u4e00\u5e45\u56fe\u7247\u4f5c\u4e3a\u8f93\u5165":116,"\u7f51\u7edc\u7ed3\u6784\u7684\u5e8f\u5217\u5316\u7ed3\u679c\u548c\u6a21\u578b\u53c2\u6570\u5b58\u50a8\u76ee\u5f55":116,"\u7f51\u7edc\u901a\u4fe1":100,"\u7f51\u901f\u6216ssl\u94fe\u63a5\u539f\u56e0":104,"\u800c":[108,133,140],"\u800c\u4e0d\u4f1a\u6539\u53d8\u539f\u6709tensor\u7684shape\u4fe1\u606f":102,"\u800c\u4e0d\u5fc5\u5728\u610fpaddl":72,"\u800c\u4e0d\u652f\u6301pypy\u89e3\u91ca\u5668":71,"\u800c\u4e0d\u662f\u5728layer\u91cc\u5b9e\u73b0":108,"\u800c\u4e0d\u662f\u6e90\u7801\u76ee\u5f55\u91cc":104,"\u800c\u4e0d\u662f\u7279\u5f81\u7684\u96c6\u5408":137,"\u800c\u4e0d\u662f\u76f8\u5bf9":115,"\u800c\u4e0d\u662fc":115,"\u800c\u4e0d\u66b4\u9732\u6982\u5ff5\u7684\u5b9e\u73b0":72,"\u800c\u4e14\u4e2a\u6570\u5e76\u4e0d\u786e\u5b9a":117,"\u800c\u4e14\u5305\u542b\u4e86c":30,"\u800c\u4e14\u5728\u4f20\u8f93\u7684\u8fc7\u7a0b\u4e2d\u4e5f\u53ef\u80fd\u51fa\u73b0\u7f51\u7edc\u4e0d\u7a33\u5b9a\u7684\u60c5\u51b5":54,"\u800c\u4e14cento":30,"\u800c\u4e4b\u524d\u7684\u53c2\u6570\u5c06\u4f1a\u88ab\u5220\u9664":129,"\u800c\u4ece\u5e94\u7528\u7684\u89d2\u5ea6":134,"\u800c\u4f18\u5316\u6027\u80fd\u7684\u9996\u8981\u4efb\u52a1":134,"\u800c\u5176\u4ed6\u5c42\u4f7f\u7528cpu\u8ba1\u7b97":131,"\u800c\u51fa\u73b0\u9636\u6bb5\u6027\u7684\u8fd0\u884c\u505c\u6ede":37,"\u800c\u53cc\u5c42rnn\u662f\u53ef\u4ee5\u5904\u7406\u8fd9\u79cd\u8f93\u5165\u6570\u636e\u7684\u7f51\u7edc\u7ed3\u6784":137,"\u800c\u53cd\u5411\u6d4b\u8bd5\u4e2d":101,"\u800c\u53ea\u9700\u8981\u83b7\u5f97recurr":108,"\u800c\u5728\u8ba1\u7b97\u7ed3\u675f\u4e4b\u540e":102,"\u800c\u5728cpp\u91cc\u9762\u5b9e\u73b0\u8fd9\u4e2ac\u7684\u63a5\u53e3":71,"\u800c\u591a\u8bed\u8a00\u63a5\u53e3\u9700\u8981\u76f4\u63a5\u8bfb\u53d6\u751f\u6210\u7684\u4e8c\u8fdb\u5236":71,"\u800c\u5b89\u88c5\u5305":[30,104],"\u800c\u5b89\u88c5\u5305\u662f":[30,104],"\u800c\u5bf9\u4e8e\u53cc\u5c42\u5e8f\u5217":137,"\u800c\u5bf9\u4e8e\u6bcf\u4e00\u4e2a\u5185\u5c42\u7279\u5f81\u6570\u636e\u800c\u8a00":137,"\u800c\u5bf9\u4e8egolang":71,"\u800c\u5bf9\u4e8egolang\u9519\u8bef\u5904\u7406\u5e94\u8be5\u4f7f\u7528\u8fd4\u56de\u503c":71,"\u800c\u5c06\u8fd9\u4e2a\u6bb5\u843d\u7684\u6bcf\u4e00\u53e5\u8bdd\u7528lstm\u7f16\u7801\u6210\u4e00\u4e2a\u5411\u91cf":137,"\u800c\u5f53\u524d\u5df2\u7ecf\u67095":134,"\u800c\u662f\u5c06\u8f93\u5165":[115,116],"\u800c\u662f\u76f4\u63a5\u4ece\u5185\u5b58\u7684\u7f13\u5b58\u91cc\u8bfb\u53d6\u6570\u636e":107,"\u800c\u662f\u76f4\u63a5\u4fee\u6539paddl":72,"\u800c\u662f\u76f4\u63a5\u7528api\u7684\u63a5\u53e3\u8fdc\u7a0b\u8bbf\u95ee":38,"\u800c\u66f4\u6df1\u5165\u7684\u5206\u6790":134,"\u800c\u6709\u4e9b\u53c2\u6570\u9700\u8981\u5728\u96c6\u7fa4\u591a\u673a\u8bad\u7ec3\u4e2d\u4f7f\u7528\u7b49":128,"\u800c\u6e90\u5e8f\u5217\u7684\u7f16\u7801\u5411\u91cf\u53ef\u4ee5\u88ab\u65e0\u8fb9\u754c\u7684memory\u8bbf\u95ee":140,"\u800c\u795e\u7ecf\u7f51\u7edc\u662f\u6211\u4eec\u8981\u642d\u5efa\u7684\u5b9d\u5854":110,"\u800c\u7a00\u758f\u66f4\u65b0\u5728\u53cd\u5411\u4f20\u64ad\u4e4b\u540e\u7684\u6743\u91cd\u66f4\u65b0\u65f6\u8fdb\u884c":131,"\u800c\u8ba1\u7b97\u8fc7\u7a0b\u662f\u7531":102,"\u800c\u8fd9\u4e00\u53e5\u8bdd\u5c31\u53ef\u4ee5\u8868\u793a\u6210\u8fd9\u4e9b\u4f4d\u7f6e\u7684\u6570\u7ec4":137,"\u800c\u8fd9\u6bcf\u4e00\u4e2a\u6570\u7ec4\u5143\u7d20":137,"\u800c\u975e\u76f4\u63a5\u56de\u590d\u7684\u65b9\u5f0f":98,"\u800c\u975e\u9759\u6001\u52a0\u8f7dcuda\u52a8\u6001\u5e93":27,"\u800ceigenvector":102,"\u800crnn\u662f\u6700\u6d41\u884c\u7684\u9009\u62e9":139,"\u800cswig\u53ea\u80fd\u7b80\u5355\u7684\u66b4\u9732c":71,"\u800ctrainer\u9700\u8981\u8bfb\u53d6\u8bad\u7ec3\u6570\u636e\u8fdb\u884c\u8bad\u7ec3":110,"\u800cy_predict\u662f\u63a5\u6536x\u4f5c\u4e3a\u8f93\u5165":110,"\u8054\u901a":127,"\u80fd\u591f\u5904\u7406\u53cc\u5c42\u5e8f\u5217":139,"\u80fd\u591f\u5bf9\u53cc\u5411\u5e8f\u5217\u8fdb\u884c\u5904\u7406\u7684\u6709":139,"\u80fd\u591f\u8bb0\u5f55\u4e0a\u4e00\u4e2asubseq":139,"\u80fd\u591f\u9488\u5bf9cpu\u548cgpu\u7684\u8ba1\u7b97\u505a\u66f4\u591a\u4f18\u5316":108,"\u80fd\u83b7\u53d6":119,"\u811a\u672c":[26,116,142],"\u811a\u672c\u5f00\u59cb\u65f6":123,"\u811a\u672c\u96c6\u6210\u4e86\u5e8f\u5217\u5316\u795e\u7ecf\u7f51\u7edc\u7ed3\u6784\u7684\u8fc7\u7a0b":116,"\u81ea\u52a8\u5173\u95ed\u5bf9\u5e94\u7684":98,"\u81ea\u52a8\u5730\u5c06\u8fd9\u4e9b\u9009\u9879\u5e94\u7528\u5230":119,"\u81ea\u52a8\u5b8c\u6210\u8fd9\u4e00\u8fc7\u7a0b":139,"\u81ea\u52a8\u6302\u8f7d\u5206\u5e03\u5f0f\u5b58\u50a8\u76ee\u5f55":37,"\u81ea\u52a8\u6784\u5efa\u72ec\u7acb\u5de5\u5177\u94fe":142,"\u81ea\u52a8\u751f\u6210":103,"\u81ea\u52a8\u83b7\u53d6\u4e0a\u4e00\u4e2a\u751f\u6210\u7684\u8bcd":140,"\u81ea\u52a8\u9009\u62e9":143,"\u81ea\u6b64":[142,143],"\u81ea\u7136\u4e5f\u5c31\u6709\u7ba1\u7406\u5458\u6743\u9650":26,"\u81ea\u7136\u8bed\u8a00\u4e2d\u7684\u53e5\u5b50\u662f\u4e00\u4e2a\u5e8f\u5217":115,"\u81ea\u7136\u8bed\u8a00\u4e2d\u7684\u6bb5\u843d\u662f\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217":115,"\u81ea\u7136\u8bed\u8a00\u5904\u7406\u7b49":131,"\u81f3\u4e8e\u4e3a\u4ec0\u4e48\u9700\u8981c":72,"\u81f3\u5c11\u5305\u542bgcc_3":30,"\u81f3\u5c11\u5305\u542bglibcxx_3":30,"\u81f3\u6b64":[98,137],"\u826f\u597d\u7684\u6587\u6863":71,"\u8282\u70b9":[124,127],"\u8282\u7701\u4e86\u4e0d\u5fc5\u8981\u7684\u64cd\u4f5c":68,"\u82e5":100,"\u82e5\u5728paddlepaddle\u7f16\u8bd1\u65f6":109,"\u82e5\u5e0c\u671b\u5f97\u5230\u6700\u5feb\u7684\u6267\u884c\u901f\u5ea6":143,"\u82e5\u5e0c\u671b\u6700\u5feb\u7684\u6267\u884c\u901f\u5ea6":[142,144],"\u82e5\u5e72\u4e2a\u53e5\u5b50\u6784\u6210\u4e00\u4e2a\u6bb5\u843d":136,"\u82e5\u6709\u4e0d\u4e00\u81f4\u4e4b\u5904":134,"\u82e5\u6709\u5fc5\u8981":100,"\u82e5\u672a\u663e\u5f0f\u6307\u5b9a":143,"\u82e5\u6ca1\u6709\u663e\u5f0f\u8bbe\u7f6e":142,"\u82e5\u73af\u5883\u53d8\u91cf":[142,143,144],"\u82e5\u8981\u5bf9\u8fd9\u51e0\u4e2alayer\u4f7f\u7528dropout":108,"\u82e5\u8f93\u51fa\u662f\u5355\u5c42\u5e8f\u5217":136,"\u82e5\u8f93\u51fa\u662f\u53cc\u5c42\u5e8f\u5217":136,"\u82f1\u6587\u6587\u6863":103,"\u82f1\u6587\u6587\u6863\u76ee\u5f55":103,"\u8303\u56f4":131,"\u83b7\u53d6":98,"\u83b7\u53d6\u53ef\u9009\u7684tag":28,"\u83b7\u53d6\u5f53\u524d\u7cfb\u7edf\u652f\u6301\u7684\u5b89\u88c5\u5305\u683c\u5f0f":30,"\u83b7\u53d6\u5f53\u524d\u7cfb\u7edf\u652f\u6301\u7684python\u5305\u7684\u540e\u7f00":104,"\u83b7\u53d6\u6700\u65b0\u7684\u68c0\u67e5\u70b9\u7684\u6587\u4ef6uuid":37,"\u83b7\u53d6\u6e90\u7801":26,"\u83b7\u53d6\u8f93\u51fa\u65f6":116,"\u83b7\u53d6trainer":123,"\u83b7\u5f97\u53c2\u6570\u5c3a\u5bf8":100,"\u83b7\u5f97\u5728\u6a21\u578b\u914d\u7f6e\u4e2d\u67d0\u4e00\u5c42\u7684name":107,"\u83b7\u5f97\u57fa\u672c\u7684docker\u5b89\u88c5\u548c\u4f7f\u7528\u65b9\u6cd5":28,"\u83b7\u5f97\u5f53\u524dmini":107,"\u83b7\u5f97\u7684\u503c\u7c7b\u578b\u5747\u4e3a":107,"\u83b7\u5f97\u8ba1\u7b97\u7ed3\u679c":116,"\u83b7\u5f97\u8fd9\u4e9b\u8282\u70b9\u7684ip\u5730\u5740":119,"\u83b7\u5f97head\u548cnode\u8282\u70b9\u7684ip\u5730\u5740":124,"\u865a\u62df\u673a\u4e0a":26,"\u867d\u7136\u4e0d\u9f13\u52b1\u8fd9\u6837":72,"\u867d\u7136\u5f02\u6b65sgd\u65b9\u5f0f\u4f1a\u63d0\u9ad8\u53c2\u6570\u66f4\u65b0\u5e76\u884c\u5ea6":118,"\u867d\u7136paddle\u770b\u8d77\u6765\u5305\u542b\u4e86\u4f17\u591a\u53c2\u6570":128,"\u884c":115,"\u884c\u504f\u79fb":115,"\u884c\u53f7":133,"\u8865\u5145\u4e0a\u6b21\u7684commit":98,"\u8868\u660e\u4e86\u8fd9\u4e9b\u884c\u7684\u6807\u53f7":100,"\u8868\u660e\u8fd9\u4e2a\u5c42\u7684\u4e00\u4e2a\u5b9e\u4f8b\u662f\u5426\u9700\u8981\u504f\u7f6e":100,"\u8868\u793a":101,"\u8868\u793a\u4e3adeviceid":131,"\u8868\u793a\u5bf9\u8f93\u5165\u6570\u636e":68,"\u8868\u793a\u5c06\u5916\u5c42\u7684outer_mem\u4f5c\u4e3a\u5185\u5c42memory\u7684\u521d\u59cb\u72b6\u6001":137,"\u8868\u793a\u5f53\u524d\u96c6\u7fa4\u4f5c\u4e1a\u7684\u8282\u70b9":119,"\u8868\u793a\u6570\u636e\u7c7b\u578b":101,"\u8868\u793a\u7684\u504f\u79fb\u662f\u4ee5":115,"\u8868\u793a\u8bbe\u5907\u7c7b\u578b":101,"\u8868\u793a\u8bcd\u8bed\u5728\u8bcd\u5178\u4e2d\u7684\u5e8f\u53f7":115,"\u8868\u793a\u8bfb\u8005\u6240\u4f7f\u7528\u7684docker\u955c\u50cf\u4ed3\u5e93\u5730\u5740":123,"\u8868\u793a\u8fd9\u4e2ajob\u7684\u540d\u5b57":123,"\u8868\u793a\u9700\u8981\u6784\u5efa\u63a8\u7406\u5e93":144,"\u88ab":98,"\u88ab\u5207\u5206\u6210\u591a\u4e2a\u90e8\u5206":118,"\u88ab\u6269\u5c55\u4e3a\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":136,"\u88ab\u653e\u5728":100,"\u88ab\u79f0\u4e3a":140,"\u8981\u4f7f\u7528\u547d\u4ee4\u884c\u5206\u6790\u5de5\u5177":134,"\u8981\u5728\u5df2\u6709\u7684kubernetes\u96c6\u7fa4\u4e0a\u8fdb\u884cpaddlepaddle\u7684\u5206\u5e03\u5f0f\u8bad\u7ec3":123,"\u8981\u6c42\u5355\u5c42\u5e8f\u5217\u542b\u6709\u5143\u7d20\u7684\u6570\u76ee":136,"\u8981\u751f\u6210\u7684\u76ee\u6807\u5e8f\u5217":139,"\u8981\u8c03\u7528":100,"\u89c6\u9891\u7b49":115,"\u89e3\u51b3\u529e\u6cd5\u662f":104,"\u89e3\u51b3\u65b9\u6848\u662f":109,"\u89e3\u6790\u73af\u5883\u53d8\u91cf\u5f97\u5230":123,"\u89e3\u7801\u5668\u4f7f\u7528":140,"\u89e3\u7801\u5668\u57fa\u4e8e\u7f16\u7801\u6e90\u5e8f\u5217\u548c\u6700\u540e\u751f\u6210\u7684\u76ee\u6807\u8bcd\u9884\u6d4b\u4e0b\u4e00\u76ee\u6807\u8bcd":140,"\u89e3\u7801\u5668\u662f\u95e8\u63a7\u5faa\u73af\u795e\u7ecf\u7f51\u7edc":140,"\u89e3\u91ca\u578b\u8bed\u8a00\u53ea\u80fd\u8c03\u7528\u52a8\u6001\u5e93":71,"\u89e3\u91ca\u6027\u8bed\u8a00\u5b9e\u9645\u8fd0\u884c\u7684\u4e8c\u8fdb\u5236\u662f\u89e3\u91ca\u5668\u672c\u8eab":71,"\u8ba1\u5212\u5728":[67,68],"\u8ba1\u7b97":[118,140],"\u8ba1\u7b97\u504f\u7f6e\u7684\u68af\u5ea6":100,"\u8ba1\u7b97\u53cd\u5411rnn\u7684\u7b2c\u4e00\u4e2a\u5b9e\u4f8b":140,"\u8ba1\u7b97\u53d8\u6362\u77e9\u9635\u7684\u5927\u5c0f\u548c\u683c\u5f0f":100,"\u8ba1\u7b97\u5f53\u524d\u5c42\u6743\u91cd\u7684\u68af\u5ea6":100,"\u8ba1\u7b97\u6548\u7387\u66f4\u9ad8":108,"\u8ba1\u7b97\u6bcf\u4e2a\u8bcd\u7684\u8bcd\u5411\u91cf":140,"\u8ba1\u7b97\u6fc0\u6d3b\u51fd\u6570\u7684\u68af\u5ea6":100,"\u8ba1\u7b97\u7684\u7ec6\u8282\u5c06\u5728\u4e0b\u9762\u7684\u5c0f\u8282\u7ed9\u51fa":100,"\u8ba1\u7b97\u8282\u70b9":118,"\u8ba1\u7b97\u8282\u70b9\u4e4b\u95f4\u4e5f\u4e0d\u4f1a\u76f8\u4e92\u4f9d\u8d56":118,"\u8ba1\u7b97\u8f6c\u6362\u77e9\u9635\u548c\u8f93\u5165\u7684\u68af\u5ea6":100,"\u8ba1\u7b97\u8f93\u5165\u548c\u53c2\u6570\u7684\u68af\u5ea6":100,"\u8ba1\u7b97\u8f93\u5165\u5c42\u7684\u504f\u5dee":100,"\u8ba1\u7b97\u8f93\u51fa":100,"\u8ba1\u7b97\u8fd9\u4e2a\u6587\u4ef6\u7684md5":37,"\u8ba1\u7b97\u96c6\u7fa4\u901a\u5e38\u7531\u4e00\u7ec4":127,"\u8ba1\u7b97\u9700\u8981\u7684\u6570\u636e\u5b58\u653e\u5728":102,"\u8ba9paddle\u6838\u5fc3\u4e2d":72,"\u8bad\u7ec3":128,"\u8bad\u7ec3\u4e0e\u5e94\u7528":0,"\u8bad\u7ec3\u4efb\u52a1\u7684\u8fd0\u884c\u53ef\u80fd\u4f1a\u5360\u6ee1trainer\u548cparamet":37,"\u8bad\u7ec3\u548c\u7eaf\u4f7f\u7528":88,"\u8bad\u7ec3\u5931\u8d25\u65f6\u53ef\u4ee5\u68c0\u67e5\u9519\u8bef\u65e5\u5fd7":119,"\u8bad\u7ec3\u597d\u4e00\u4e2a\u6df1\u5c42\u795e\u7ecf\u7f51\u7edc\u901a\u5e38\u8981\u8017\u8d39\u975e\u5e38\u957f\u7684\u65f6\u95f4":134,"\u8bad\u7ec3\u597d\u7684\u6a21\u578b\u9ed8\u8ba4\u4fdd\u5b58\u5728\u5f53\u524d\u8fd0\u884c\u76ee\u5f55\u4e0b\u7684":116,"\u8bad\u7ec3\u6570\u636e\u6709\u95ee\u9898":107,"\u8bad\u7ec3\u6570\u636e\u683c\u5f0f\u548c\u8bad\u7ec3\u7a0b\u5e8f\u7684":117,"\u8bad\u7ec3\u65f6":123,"\u8bad\u7ec3\u6a21\u578b\u540e":140,"\u8bad\u7ec3\u6a21\u578b\u6b63\u786e\u6027":88,"\u8bad\u7ec3\u7a0b\u5e8f":117,"\u8bad\u7ec3\u7ed3\u675f\u540e\u67e5\u770b\u8f93\u51fa\u7ed3\u679c":123,"\u8bad\u7ec3\u8282\u70b9\u6570\u91cf":123,"\u8bad\u7ec3\u8bed\u8a00\u6a21\u578b\u8ddd\u79bb":107,"\u8bad\u7ec3\u8fc7\u7a0b\u4e2d\u53c2\u6570\u6216\u8005\u8bad\u7ec3\u8fc7\u7a0b\u4e2d\u7684\u68af\u5ea6\u5c3a\u5ea6\u8fc7\u5927":107,"\u8bad\u7ec3\u8fc7\u7a0b\u4e2d\u6d4b\u8bd5test_period":128,"\u8bad\u7ec3\u8fc7\u7a0b\u662f\u5426\u4e3a\u672c\u5730\u6a21\u5f0f":129,"\u8bad\u7ec3\u8fc7\u7a0b\u662f\u5426\u4f7f\u7528gpu":129,"\u8bad\u7ec3\u914d\u7f6e\u4e2d\u7684\u8bbe\u5907\u5c5e\u6027\u5c06\u4f1a\u65e0\u6548":129,"\u8bad\u7ec3dot_period":128,"\u8bb0\u5f55\u4e0b\u6240\u6709\u5931\u8d25\u7684\u4f8b\u5b50":88,"\u8bb0\u5fc6\u6a21\u5757":140,"\u8bbe\u4e3a\u5df2\u90e8\u7f72\u7684\u5de5\u4f5c\u7a7a\u95f4\u76ee\u5f55":119,"\u8bbe\u4e3a\u672c\u5730":119,"\u8bbe\u5b9a":108,"\u8bbe\u7f6e":[27,72,107,108,142,143],"\u8bbe\u7f6e\u4e3a":100,"\u8bbe\u7f6e\u4e3a\u4e0d\u540c\u7684\u503c":108,"\u8bbe\u7f6e\u4e3atrue\u4f7f\u7528\u672c\u5730\u8bad\u7ec3\u6216\u8005\u4f7f\u7528\u96c6\u7fa4\u4e0a\u7684\u4e00\u4e2a\u8282\u70b9":129,"\u8bbe\u7f6e\u4e3atrue\u4f7f\u7528gpu\u6a21\u5f0f":129,"\u8bbe\u7f6e\u4e86\u76f8\u540c\u7684\u53d6\u503c":108,"\u8bbe\u7f6e\u5176\u53c2\u6570\u5c5e\u6027":109,"\u8bbe\u7f6e\u53c2\u6570\u7684\u540d\u5b57":109,"\u8bbe\u7f6e\u547d\u4ee4\u884c\u53c2\u6570":107,"\u8bbe\u7f6e\u5b66\u4e60\u7387\u8870\u51cf\u56e0\u5b50\u5206\u6bb5\u51fd\u6570":109,"\u8bbe\u7f6e\u5e8f\u5217\u4fe1\u606f\u7684\u63a5\u53e3":115,"\u8bbe\u7f6e\u6210":109,"\u8bbe\u7f6e\u6210\u4e00\u4e2a\u5c0f\u4e00\u4e9b\u7684\u503c":107,"\u8bbe\u7f6e\u8f93\u51fa\u7684\u5c3a\u5bf8":100,"\u8bbe\u7f6e\u8f93\u51fatensor\u7684\u5f62\u72b6":101,"\u8bbe\u7f6e\u9ed8\u8ba4\u8bbe\u5907\u53f7\u4e3a0":131,"\u8bbe\u7f6egpu":129,"\u8bbf\u95ee\u5bf9\u5e94\u7684\u7f51\u5740":133,"\u8bbf\u95eekubernetes\u7684\u63a5\u53e3\u6765\u67e5\u8be2\u6b64job\u5bf9\u5e94\u7684\u6240\u6709pod\u4fe1\u606f":123,"\u8bc4\u5ba1\u4eba\u4e00\u822c\u4e0d\u505a\u8bc4\u5ba1":98,"\u8bc4\u5ba1\u4eba\u7684\u6bcf\u4e2a\u610f\u89c1\u90fd\u5fc5\u987b\u56de\u590d":98,"\u8bc4\u5ba1\u4eba\u9700\u8981\u9010\u4e00\u67e5\u770b\u6bcf\u4e2acommit\u624d\u80fd\u77e5\u9053\u505a\u4e86\u54ea\u4e9b\u4fee\u6539":98,"\u8bc4\u8bba\u6846\u4e2d\u52a0\u4e0a":98,"\u8bc6\u522b\u6570\u5b57":88,"\u8bcd\u5411\u91cf":88,"\u8bd5\u7740\u8ba9\u8f93\u51fa\u7684\u5206\u6790\u6570\u636e\u548c\u7406\u8bba\u503c\u5bf9\u5e94":134,"\u8be5\u53c2\u6570\u5728\u7f51\u7edc\u914d\u7f6e\u7684output":129,"\u8be5\u53c2\u6570\u5728\u96c6\u7fa4\u63d0\u4ea4\u73af\u5883\u4e2d\u81ea\u52a8\u8bbe\u7f6e":129,"\u8be5\u53c2\u6570\u5df2\u7ecf\u5728\u96c6\u7fa4\u63d0\u4ea4\u73af\u5883\u4e2d\u5b8c\u6210\u8bbe\u7f6e":129,"\u8be5\u53c2\u6570\u5fc5\u987b\u80fd\u88abflag":129,"\u8be5\u53c2\u6570\u6307\u793a\u662f\u5426\u6253\u5370\u65e5\u5fd7\u622a\u65ad\u4fe1\u606f":129,"\u8be5\u53c2\u6570\u6307\u793a\u662f\u5426\u6253\u5370\u9519\u8bef\u622a\u65ad\u65e5\u5fd7":129,"\u8be5\u53c2\u6570\u7528\u4e8e\u6307\u5b9a\u52a8\u6001\u5e93\u8def\u5f84":129,"\u8be5\u53c2\u6570\u7684\u610f\u601d\u662f\u8bad\u7ec3num":129,"\u8be5\u53c2\u6570\u9ed8\u8ba4\u4e3anull":129,"\u8be5\u5c42\u4ec5\u9700\u8981\u8fd9\u4e9b\u975e\u96f6\u6837\u672c\u4f4d\u7f6e\u6240\u5bf9\u5e94\u7684\u53d8\u6362\u77e9\u9635\u7684\u90a3\u4e9b\u884c":100,"\u8be5\u622a\u65ad\u4f1a\u5f71\u54cd":129,"\u8be5\u6279\u6b21\u7684\u8f93\u5165\u4e2d\u4ec5\u6709\u4e00\u4e2a\u5b50\u96c6\u662f\u975e\u96f6\u7684":100,"\u8be5\u63a5\u53e3\u53ef\u7528\u4e8e\u9884\u6d4b\u548c\u5b9a\u5236\u5316\u8bad\u7ec3":27,"\u8be5\u63a5\u53e3\u63a5\u53d7\u4e24\u4e2a\u53c2\u6570":116,"\u8be5\u6570\u76ee\u662f\u63d0\u524d\u5b9a\u4e49\u597d\u7684":129,"\u8be5\u6587\u4ef6\u5bf9\u76f8\u5173gemm":67,"\u8be5\u65f6\u95f4\u53bb\u9664\u6389\u672c\u51fd\u6570\u8c03\u7528\u5176\u4ed6\u51fd\u6570\u7684\u65f6\u95f4":133,"\u8be5\u6a21\u578b\u7684\u8bf4\u660e\u5982\u4e0b\u56fe\u6240\u793a":140,"\u8be5\u7c7b\u7684":101,"\u8be5\u7c7b\u7684\u5b9e\u73b0\u7ec6\u8282\u5728":100,"\u8be5\u7c7b\u7ee7\u627f\u4e8epaddlepaddle\u7684\u57fa\u7c7b":68,"\u8be5\u811a\u672c\u4e2d\u8bb0\u5f55\u4e86\u4ea4\u53c9\u7f16\u8bd1android\u7248paddlepaddle\u5e93\u5e38\u7528\u7684cmake\u914d\u7f6e":142,"\u8be5\u8bed\u53e5\u4f1a\u4e3a\u6bcf\u4e2a\u5c42\u521d\u59cb\u5316\u5176\u6240\u9700\u8981\u7684\u53d8\u91cf\u548c\u8fde\u63a5":100,"\u8be5layer\u662f\u901a\u8fc7\u53c2\u6570":108,"\u8be6\u7ec6\u4ecb\u7ecd\u53ef\u4ee5\u53c2\u8003":137,"\u8be6\u7ec6\u4ecb\u7ecd\u8bf7\u53c2\u8003\u8bbe\u8ba1\u6587\u6863":101,"\u8be6\u7ec6\u4fe1\u606f\u8bf7\u68c0\u67e5":119,"\u8be6\u7ec6\u53c2\u8003":27,"\u8be6\u7ec6\u53ef\u53c2\u8003":98,"\u8be6\u7ec6\u6587\u6863\u53c2\u8003":107,"\u8be6\u7ec6\u7684cmake\u4f7f\u7528\u65b9\u6cd5\u53ef\u4ee5\u53c2\u8003":27,"\u8be6\u7ec6\u89c1":136,"\u8be6\u7ec6\u8bbe\u8ba1":54,"\u8bed\u610f\u89d2\u8272\u6807\u6ce8":88,"\u8bed\u8a00\u91cd\u6784\u540e\u7684":133,"\u8bf4\u660e":[27,30,37,115],"\u8bf4\u660e\u63d0\u4ea4\u7684\u4ee3\u7801\u5b58\u5728\u95ee\u9898":98,"\u8bf4\u660e\u8fd9\u4e2a\u5c42\u7684\u8f93\u5165":100,"\u8bf7\u4e0d\u8981\u521b\u5efa\u7a7a\u7684":101,"\u8bf7\u4e0d\u8981\u5fd8\u8bb0\u63d0\u524d\u5728\u7269\u7406\u673a\u4e0a\u5b89\u88c5gpu\u6700\u65b0\u9a71\u52a8":28,"\u8bf7\u4fdd\u8bc1travi":98,"\u8bf7\u5148\u4f7f\u7528":[142,143,144],"\u8bf7\u53c2\u7167\u7f51\u7edc\u914d\u7f6e\u7684\u6587\u6863\u4e86\u89e3\u66f4\u8be6\u7ec6\u7684\u4fe1\u606f":131,"\u8bf7\u53c2\u8003":[72,100,101,104,107,110,116,137],"\u8bf7\u53c2\u8003\u6b64":116,"\u8bf7\u53c2\u89c1":98,"\u8bf7\u53c2\u9605":140,"\u8bf7\u5728\u8be5pull":98,"\u8bf7\u5728\u8f93\u5165\u65f6\u8fdb\u884c\u5408\u6cd5\u6027\u68c0\u67e5":115,"\u8bf7\u60a8\u6bcf\u6b21\u63d0\u4ea4\u4ee3\u7801\u65f6":98,"\u8bf7\u60a8\u9075\u5b88\u4ee5\u4e0b\u7ea6\u5b9a":98,"\u8bf7\u6307\u5b9a\u7684paddlepaddle\u5de5\u4f5c\u76ee\u5f55\u7ed9\u73af\u5883\u53d8\u91cf":103,"\u8bf7\u6307\u5b9a\u8be5\u76ee\u5f55":129,"\u8bf7\u663e\u793a\u5730\u8c03\u7528":101,"\u8bf7\u68c0\u67e5python\u7248\u672c\u662f\u5426\u4e3a2":30,"\u8bf7\u6ce8\u610f":[101,122,140],"\u8bf7\u6ce8\u610f\u662f\u5426\u9700\u8981\u4fee\u6539\u7f51\u7edc\u7ed3\u6784":116,"\u8bf7\u6ce8\u610f\u6bcf\u4e2acommit\u7684\u540d\u79f0":98,"\u8bf7\u6ce8\u610f\u8fd9\u4e2a\u547d\u4ee4\u7ed3\u5c3e\u5904\u7684":26,"\u8bf7\u6ce8\u610fcommit\u7684\u6570\u91cf":98,"\u8bf7\u76f4\u63a5\u586b\u51450":109,"\u8bf7\u770b\u4e0b\u9762\u7684\u4f8b\u5b50":131,"\u8bf7\u786e\u4fdd":98,"\u8bf7\u7ed9\u51fa\u603b\u4f53\u7684\u4fee\u6539\u60c5\u51b5":98,"\u8bf7\u7ed9\u51fa\u60a8\u81ea\u5df1\u7684\u53cd\u9a73\u7406\u7531":98,"\u8bf7\u9009\u62e9\u5408\u9002\u7684\u8bcd\u6c47":98,"\u8bf7\u9009\u62e9\u6b63\u786e\u7684\u7248\u672c":104,"\u8bf7\u9075\u5b88":98,"\u8bf7\u91c7\u7528":98,"\u8bf8\u5982\u56fe\u50cf\u5206\u7c7b":131,"\u8bfb\u53d6\u9700\u8981\u7684\u7ed3\u679c\u5373\u53ef":115,"\u8bfb\u53d6volume\u4e2d\u7684\u6570\u636e\u8fdb\u884c\u8fd9\u6b21\u5206\u5e03\u5f0f\u8bad\u7ec3":123,"\u8bfb\u8005\u53ef\u4ee5\u67e5\u770b":123,"\u8bfb\u8005\u9700\u8981\u66ff\u6362\u6210\u81ea\u5df1\u4f7f\u7528\u7684\u4ed3\u5e93\u5730\u5740":123,"\u8c03\u7528":[100,116,143],"\u8c03\u7528\u5bf9\u5e94":102,"\u8c03\u7528\u65b9\u6cd5\u89c1c":[142,143],"\u8c03\u7528\u7528":133,"\u8c03\u7528\u7684\u4e00\u4e9b\u7528\u6237\u5b9a\u4e49\u7684\u5e93\u51fd\u6570":117,"\u8c03\u7528\u7684\u51fd\u6570\u662f\u5426\u652f\u6301\u4e0d\u540c\u8bbe\u5907":101,"\u8c03\u7528\u8be5\u51fd\u6570\u540e":100,"\u8c03\u7528c":[115,116],"\u8d21\u732e\u6587\u6863":103,"\u8d77\u59cb\u5b58\u50a8\u5730\u5740\u4ee5\u6570\u636e\u7684\u5b58\u50a8\u5927\u5c0f\u4e3a\u5355\u4f4d\u7684\u504f\u79fb":115,"\u8df3\u8f6c\u5230":98,"\u8df3\u8fc7":107,"\u8f6c\u5316\u65b9\u6cd5\u5728\u76f8\u5e94\u7684\u9886\u57df\u90fd\u6709\u901a\u7528\u89e3\u51b3\u65b9\u6848":115,"\u8f6c\u6362\u5185\u5b58\u7684\u5de5\u4f5c":68,"\u8f6c\u6362\u5197\u4f59":67,"\u8f6c\u6362\u51fd\u6570":68,"\u8f6c\u6362\u751f\u6210\u7684\u6587\u4ef6\u540d\u4f1a\u662f\u4ee5\u4e0b\u683c\u5f0f":38,"\u8f6c\u6362\u8017\u65f6":67,"\u8f93\u5165":[114,116,136,140],"\u8f93\u5165\u4e86\u6027\u80fd\u5206\u6790\u7ed3\u679c":133,"\u8f93\u5165\u548c\u8f93\u51fa\u90fd\u662f\u5355\u5c42\u5e8f\u5217":139,"\u8f93\u5165\u548c\u8f93\u51fa\u90fd\u662f\u53cc\u5c42\u5e8f\u5217":139,"\u8f93\u5165\u5e8f\u5217\u4e2d\u5143\u7d20\u7684\u603b\u6570":107,"\u8f93\u5165\u6570\u636e\u4e3a\u4e00\u4e2a\u5b8c\u6574\u7684\u65f6\u95f4\u5e8f\u5217":137,"\u8f93\u5165\u6570\u636e\u4e3a\u5728\u5355\u5c42rnn\u6570\u636e\u91cc\u9762":137,"\u8f93\u5165\u6570\u636e\u53ef\u5206\u4e3a":115,"\u8f93\u5165\u6570\u636e\u6574\u4f53\u4e0a\u662f\u4e00\u4e2a\u65f6\u95f4\u5e8f\u5217":137,"\u8f93\u5165\u6570\u636e\u7684\u5b57\u5178\u7ef4\u6570\u662f1\u767e\u4e07":131,"\u8f93\u5165\u6570\u636e\u7c7b\u578b":115,"\u8f93\u5165\u662f\u5426\u662f\u8f6c\u7f6e\u7684":100,"\u8f93\u5165\u662f\u7531\u4e00\u4e2alist\u4e2d\u7684\u7f51\u7edc\u5c42\u5b9e\u4f8b\u7684\u540d\u5b57\u7ec4\u6210\u7684":100,"\u8f93\u5165\u68af\u5ea6":68,"\u8f93\u5165\u7684\u540d\u5b57":100,"\u8f93\u5165\u7684\u5927\u5c0f":100,"\u8f93\u5165\u7684\u7c7b\u578b":100,"\u8f93\u5165\u9700\u8981\u9884\u6d4b\u7684\u5411\u91cf\u7ec4":110,"\u8f93\u51fa":[101,116,136,140],"\u8f93\u51fa\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":139,"\u8f93\u51fa\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217":139,"\u8f93\u51fa\u4fe1\u606f\u6709\u673a\u5730\u7ec4\u7ec7\u5728\u4e00\u8d77":115,"\u8f93\u51fa\u51fd\u6570":140,"\u8f93\u51fa\u521b\u5efa":[115,116],"\u8f93\u51fa\u5e8f\u5217\u7684\u7c7b\u578b":136,"\u8f93\u51fa\u5e8f\u5217\u7684\u8bcd\u8bed\u6570\u548c\u8f93\u5165\u5e8f\u5217\u4e00\u81f4":139,"\u8f93\u51fa\u6240\u643a\u5e26\u7684\u5e8f\u5217\u4fe1\u606f":115,"\u8f93\u51fa\u6570\u636e\u548c\u8f93\u51fa\u68af\u5ea6":68,"\u8f93\u51fa\u6570\u636e\u548c\u8f93\u51fa\u68af\u5ea6\u7684\u8f6c\u6362":68,"\u8f93\u51fa\u6570\u636e\u662f\u5728\u4e0a\u6587\u4ecb\u7ecd\u7684":115,"\u8f93\u51fa\u6570\u636e\u6709\u673a\u5730\u7ec4\u7ec7\u5728\u4e00\u8d77":116,"\u8f93\u51fa\u6570\u636e\u7ec4\u7ec7":[114,116],"\u8f93\u51fa\u7531":115,"\u8f93\u51fa\u7684\u5e8f\u5217\u4fe1\u606f":115,"\u8f93\u51fa\u7684\u68af\u5ea6":129,"\u8f93\u51fa\u7ed3\u679c\u53ef\u80fd\u4f1a\u968f\u7740\u5bb9\u5668\u7684\u6d88\u8017\u800c\u88ab\u5220\u9664":122,"\u8f93\u51fa\u88ab\u7ec4\u7ec7\u4e3a":115,"\u8f93\u51fa\u88ab\u7ec4\u7ec7\u4e3a\u4e00\u4e2a":115,"\u8f93\u51fa\u90fd\u4f1a\u5bf9\u5e94\u6709\u81ea\u5df1\u7684":[115,116],"\u8fbe\u5230\u5bb9\u707e\u7684\u76ee\u7684":37,"\u8fc7\u4e86\u4e00\u4e2a\u5f88\u7b80\u5355\u7684recurrent_group":137,"\u8fc7\u5b8c\u6240\u6709\u8bad\u7ec3\u6570\u636e\u5373\u4e3a\u4e00\u4e2apass":107,"\u8fc7\u7a0b\u4e2d\u6240\u6709\u65f6\u95f4\u6b65":67,"\u8fd0\u884c":116,"\u8fd0\u884c\u4e00\u4e2a":26,"\u8fd0\u884c\u4e0b\u9762\u547d\u4ee4\u53ef\u4ee5\u8fdb\u884c\u7f16\u8bd1":101,"\u8fd0\u884c\u5355\u5143\u6d4b\u8bd5":26,"\u8fd0\u884c\u5355\u5143\u6d4b\u8bd5\u6d4b\u65f6\u9700\u8981\u7f16\u8bd1\u6574\u4e2a\u5de5\u7a0b":101,"\u8fd0\u884c\u5931\u8d25":131,"\u8fd0\u884c\u5b8c\u6210\u540e":119,"\u8fd0\u884c\u5b8c\u6bd5\u540e\u8f93\u51fa":133,"\u8fd0\u884c\u6027\u80fd\u5206\u6790\u7684\u65f6\u5019":133,"\u8fd0\u884c\u65e5\u5fd7":119,"\u8fd0\u884c\u65f6\u4e5f\u53ef\u80fd\u56e0\u4e3a\u591a\u7ebf\u7a0b\u4ea7\u751f\u6df7\u4e71\u4e0d\u53ef\u8bfb\u7684\u6027\u80fd\u5206\u6790\u7ed3\u679c":133,"\u8fd0\u884c\u65f6\u4f1a\u81ea\u52a8\u627e\u5230\u7cfb\u7edf\u4e2d\u5b89\u88c5\u7684cuda\u548ccudnn\u5e93\u8fdb\u884c\u7f16\u8bd1\u548c\u6267\u884c":27,"\u8fd0\u884c\u65f6c":116,"\u8fd0\u884c\u7684\u4e00\u4e9b\u53c2\u6570\u901a\u8fc7\u8fd9\u79cd\u65b9\u5f0f\u4f20\u9012\u5230\u5bb9\u5668\u5185":123,"\u8fd0\u884c\u8be5\u7f16\u8bd1\u5de5\u5177\u94fe\u9700\u8981\u4e00\u53f0":144,"\u8fd1\u671f\u76ee\u6807":68,"\u8fd4\u56de":[3,4,5,9,10,11,17,18,19,23,25],"\u8fd4\u56de\u7684\u662f":110,"\u8fd4\u56de\u7b2c\u4e8c\u6b65":88,"\u8fd4\u56de\u7b2ci\u4e2a\u8f93\u5165\u77e9\u9635":100,"\u8fd4\u56de\u7c7b\u578b":[3,4,5,9,10,11,18,19,25],"\u8fd4\u56depython\u7aef\u7684\u8ba1\u7b97\u7ed3\u679c":101,"\u8fd8\u4f1a\u4e0b\u8f7dmkl":27,"\u8fd8\u4f1a\u5f3a\u5236\u8bbe\u7f6e\u4e00\u4e9bpaddlepaddle\u53c2\u6570\u7684\u503c":142,"\u8fd8\u4f1a\u8f93\u51fa\u4e00\u4e2a":98,"\u8fd8\u53ef\u4ee5\u901a\u8fc7\u51cf\u5c0f\u5b66\u4e60\u7387\u6216\u8005\u5bf9\u6570\u636e\u8fdb\u884c\u5f52\u4e00\u5316\u5904\u7406\u6765\u89e3\u51b3\u8fd9\u7c7b\u95ee\u9898":107,"\u8fd8\u662f\u4ece":38,"\u8fd8\u662f\u865a\u62df\u673a":26,"\u8fd8\u9700\u8981\u5728\u8282\u70b9\u4e0a\u5b89\u88c5\u5bf9\u5e94\u7684gpu\u9a71\u52a8\u4ee5\u53cacuda":127,"\u8fd8\u9700\u8981\u91cd\u5199":101,"\u8fd9":107,"\u8fd98\u79cdlearning_rate_schedule\u53ca\u5176\u5bf9\u5e94\u5b66\u4e60\u7387\u8ba1\u7b97\u65b9\u5f0f\u5982\u4e0b":109,"\u8fd9\u4e00\u4e2a\u5e93":113,"\u8fd9\u4e00\u5757\u7684\u8017\u65f6\u6bd4\u4f8b\u771f\u7684\u592a\u9ad8":134,"\u8fd9\u4e00\u5c42\u8fdb\u884c\u5c01\u88c5":72,"\u8fd9\u4e00\u6570\u636e\u683c\u5f0f\u7684\u8f6c\u6362\u64cd\u4f5c":67,"\u8fd9\u4e00\u6982\u5ff5\u4e0d\u518d\u7410\u788e":72,"\u8fd9\u4e00\u8282\u5bf9\u56fe1\u4e2d\u9884\u6d4b\u4ee3\u7801\u7f16\u5199\u76845\u4e2a\u6b65\u9aa4\u8fdb\u884c\u4ecb\u7ecd\u548c\u8bf4\u660e":116,"\u8fd9\u4e00\u8ba1\u7b97\u5355\u5143":108,"\u8fd9\u4e00\u8fc7\u7a0b\u5bf9\u7528\u6237\u662f\u5b8c\u5168\u900f\u660e\u7684":139,"\u8fd9\u4e09\u4e2a\u5206\u652f":88,"\u8fd9\u4e24\u4e2a\u6307\u6807\u4ee3\u8868\u4e86\u67d0\u4e00\u4e2a\u51fd\u6570\u771f\u5b9e\u7684\u8fd0\u884c\u65f6\u95f4":133,"\u8fd9\u4e2a":[26,30],"\u8fd9\u4e2a\u4efb\u52a1\u7684\u914d\u7f6e\u4e3a":107,"\u8fd9\u4e2a\u4efb\u52a1\u7684dataprovider\u4e3a":107,"\u8fd9\u4e2a\u4f8b\u5b50\u6709\u4e24\u5904\u4e0d\u540c":101,"\u8fd9\u4e2a\u51fd\u6570\u672c\u8eab\u4f1a\u5728\u8ba1\u7b97\u524d\u5c06\u539f\u6570\u636e\u8f6c\u6362\u4e3a\u66f4\u9002\u5408\u82f1\u7279\u5c14\u5e73\u53f0\u7684\u5185\u90e8\u683c\u5f0f":67,"\u8fd9\u4e2a\u51fd\u6570\u7684":140,"\u8fd9\u4e2a\u51fd\u6570\u8fdb\u884c\u53d8\u6362":137,"\u8fd9\u4e2a\u51fd\u6570\u9700\u8981\u8bbe\u7f6e":140,"\u8fd9\u4e2a\u52a8\u6001\u5e93\u7684\u8fde\u63a5\u53c2\u6570\u4e0epaddle\u7684\u5176\u4ed6\u4e8c\u8fdb\u5236":72,"\u8fd9\u4e2a\u53c2\u6570\u4e5f\u4e0d\u4f1a\u4e00\u5e76\u5220\u9664":72,"\u8fd9\u4e2a\u5730\u5740\u6765\u8868\u793a\u6b64\u6b65\u9aa4\u6240\u6784\u5efa\u51fa\u7684\u955c\u50cf":123,"\u8fd9\u4e2a\u57fa\u7c7b":100,"\u8fd9\u4e2a\u5934\u6587\u4ef6\u4e0d\u5047\u8bbe\u5176\u4ed6\u6587\u4ef6\u7684\u5f15\u7528\u987a\u5e8f":72,"\u8fd9\u4e2a\u5e8f\u5217\u7684\u6bcf\u4e2a\u5143\u7d20\u53c8\u662f\u4e00\u4e2a\u5e8f\u5217":139,"\u8fd9\u4e2a\u60c5\u51b5\u4e0b\u6240\u6709\u7684\u6587\u4ef6\u4f1a\u5b58\u5728\u6574\u7406\u8fc7\u7684\u7684\u6587\u4ef6\u76ee\u5f55":103,"\u8fd9\u4e2a\u63a5\u53e3\u9700\u8981\u505a\u5230":71,"\u8fd9\u4e2a\u6570\u636e\u4e5f\u88ab\u5355\u5c42rnn\u7f51\u7edc\u76f4\u63a5\u4f7f\u7528":137,"\u8fd9\u4e2a\u6587\u4ef6\u5177\u6709\u72ec\u7279\u7684\u8bed\u6cd5":71,"\u8fd9\u4e2a\u662f\u76ee\u524d\u63a8\u8350\u7684\u4f7f\u7528\u65b9\u6cd5":103,"\u8fd9\u4e2a\u73af\u5883\u53d8\u91cf\u5173\u95edopenmp\u4f18\u5316":133,"\u8fd9\u4e2a\u76ee\u5f55\u4e2d\u9664\u4e86":72,"\u8fd9\u4e2a\u793a\u4f8b":116,"\u8fd9\u4e2a\u795e\u7ecf\u7f51\u7edc\u5355\u5143\u5c31\u53ebmemori":137,"\u8fd9\u4e2a\u7c7b\u7684\u53c2\u6570\u5305\u62ec":100,"\u8fd9\u4e2a\u7c7b\u9700\u8981\u7ee7\u627f":100,"\u8fd9\u4e2a\u7ed3\u6784\u4f53\u4e2d\u7684\u53e6\u4e00\u4e2a\u9879\u76ee\u662f":72,"\u8fd9\u4e2a\u7ed3\u6784\u4f53\u5305\u542b\u4e24\u4e2a\u9879\u76ee":72,"\u8fd9\u4e2a\u811a\u672c\u8c03\u7528":26,"\u8fd9\u4e2a\u8f93\u5165\u4e0d\u53c2\u4e0e":101,"\u8fd9\u4e2a\u8fc7\u7a0b\u5bf9\u7528\u6237\u4e5f\u662f\u900f\u660e\u7684":139,"\u8fd9\u4e2a\u8fc7\u7a0b\u9664\u4e86\u7f16\u8bd1paddlepaddle\u4e3a":98,"\u8fd9\u4e2a\u9009\u62e9":[67,68],"\u8fd9\u4e2a\u95e8\u63a7\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u751f\u6210\u4e00\u7cfb\u5217\u6743\u91cd":140,"\u8fd9\u4e2a\u9759\u6001\u5e93\u5305\u542b\u4e86paddle\u7684\u5168\u90e8\u7b26\u53f7":72,"\u8fd9\u4e2ainstance\u53ef\u4ee5\u662f\u5355\u4e2a\u503c":38,"\u8fd9\u4e2aissu":26,"\u8fd9\u4e2ajob\u624d\u7b97\u6210\u529f\u7ed3\u675f":123,"\u8fd9\u4e2alayer\u7684\u8f93\u51fa\u4f1a\u4f5c\u4e3a\u6574\u4e2a":139,"\u8fd9\u4e5f\u4f1a\u6781\u5927\u51cf\u5c11\u6570\u636e\u8bfb\u5165\u7684\u8017\u65f6":107,"\u8fd9\u4e9b\u4f1a\u5728":[67,68],"\u8fd9\u4e9b\u4f8b\u5b50\u90fd\u53ef\u4ee5\u5728":120,"\u8fd9\u4e9b\u51fd\u6570\u4f1a\u5c06\u5bf9\u5e94\u5185\u5bb9\u6dfb\u52a0\u5230":101,"\u8fd9\u4e9b\u51fd\u6570\u4f1a\u6839\u636e\u8f93\u5165\u53c2\u6570\u91cd\u65b0\u8bbe\u7f6e\u5185\u90e8\u548c\u5916\u90e8\u5b58\u50a8":68,"\u8fd9\u4e9b\u5206\u5e03\u5f0f\u5b58\u50a8\u670d\u52a1\u901a\u5e38\u4f1a\u628a\u6570\u636e\u5207\u5272\u6210\u591a\u4e2a\u5206\u7247\u5206\u5e03\u5f0f\u7684\u5b58\u50a8\u5728\u591a\u4e2a\u8282\u70b9\u4e4b\u4e0a":38,"\u8fd9\u4e9b\u53c2\u6570\u53ef\u4ee5\u901a\u8fc7":117,"\u8fd9\u4e9b\u53c2\u6570\u7684\u5177\u4f53\u63cf\u8ff0":123,"\u8fd9\u4e9b\u540d\u5b57\u5fc5\u987b\u8981\u5199\u5bf9":100,"\u8fd9\u4e9b\u6570\u636e\u4f1a\u88ab\u7528\u6765\u66f4\u65b0\u53c2\u6570":107,"\u8fd9\u4e9b\u6570\u636e\u4f7f\u7528\u7684\u5185\u5b58\u4e3b\u8981\u548c\u4e24\u4e2a\u53c2\u6570\u6709\u5173\u7cfb":107,"\u8fd9\u4e9b\u7279\u5f81\u6570\u636e\u4e4b\u95f4\u7684\u987a\u5e8f\u662f\u6709\u610f\u4e49\u7684":137,"\u8fd9\u4e9b\u955c\u50cf\u4e5f\u53ef\u4ee5\u4ece":88,"\u8fd9\u4efd\u6559\u7a0b\u5c55\u793a\u4e86\u5982\u4f55\u5728paddlepaddle\u4e2d\u5b9e\u73b0\u4e00\u4e2a\u81ea\u5b9a\u4e49\u7684\u7f51\u7edc\u5c42":100,"\u8fd9\u4f1a\u63d0\u793a\u5f53\u524d\u76ee\u5f55\u7684\u4e00\u4e9b\u53d8\u5316":98,"\u8fd9\u4f1a\u7ed9\u8bc4\u5ba1\u4eba\u5e26\u6765\u5f88\u5927\u56f0\u6270":98,"\u8fd9\u4f1a\u81ea\u52a8\u8fdb\u884c\u7f51\u7edc\u914d\u7f6e\u4e2d\u58f0\u660e\u7684\u6fc0\u6d3b\u64cd\u4f5c":100,"\u8fd9\u4fbf\u662f\u4e00\u79cd\u53cc\u5c42rnn\u7684\u8f93\u5165\u6570\u636e":137,"\u8fd9\u51e0\u4e2a\u7f16\u8bd1\u9009\u9879\u7684\u8bbe\u7f6e":27,"\u8fd9\u53e5\u8868\u793a\u4f7f\u7528\u57fa\u7c7b":101,"\u8fd9\u53ef\u4ee5\u5e2e\u60a8\u7701\u6389\u82b1\u4e00\u5c0f\u65f6\u5b89\u88c5\u548c\u914d\u7f6e\u5404\u79cd\u5f00\u53d1\u5de5\u5177":26,"\u8fd9\u53ef\u4ee5\u8ba9\u5176\u4ed6\u4eba\u77e5\u9053\u8fd9\u6b21\u63d0\u4ea4\u505a\u4e86\u54ea\u4e9b\u6539\u53d8":98,"\u8fd9\u53ef\u4ee5\u901a\u8fc7":98,"\u8fd9\u548c\u5355\u5c42rnn\u7684\u914d\u7f6e\u662f\u7b49\u4ef7\u7684":137,"\u8fd9\u56db\u4e2a\u5e8f\u5217\u53c8\u5206\u522b\u542b\u67093":115,"\u8fd9\u56db\u6761\u6570\u636e\u540c\u65f6\u5904\u7406\u7684\u53e5\u5b50\u6570\u91cf\u4e3a":137,"\u8fd9\u5728\u6784\u9020\u975e\u5e38\u590d\u6742\u7684\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u65f6\u662f\u6709\u7528\u7684":140,"\u8fd9\u5bf9\u4e8e\u901a\u5e38\u7684java\u7684\u5f00\u53d1\u8005\u6765\u8bf4":71,"\u8fd9\u5c06\u4f1a\u5bfc\u81f4\u5355\u5143\u6d4b\u8bd5\u51fa\u9519":101,"\u8fd9\u5c06\u4f1a\u5bfc\u81f4\u7f16\u8bd1\u51fa\u9519":101,"\u8fd9\u610f\u5473\u7740":140,"\u8fd9\u610f\u5473\u7740\u9664\u4e86\u6307\u5b9adevic":131,"\u8fd9\u65f6":[107,116],"\u8fd9\u65f6\u5728\u4f7f\u7528":109,"\u8fd9\u65f6\u7684":115,"\u8fd9\u65f6\u7684\u9700\u8981\u540c\u65f6\u63d0\u4f9b":115,"\u8fd9\u65f6\u884c\u504f\u79fb\u548c\u5217\u53f7\u6307\u5b9a\u7684\u5143\u7d20\u9ed8\u8ba4\u5176\u503c\u4e3a1":115,"\u8fd9\u65f6\u8fdb\u884c\u77e9\u9635\u4e58\u6cd5\u8fd0\u7b97\u5c31\u53ef\u80fd\u5bfc\u81f4\u6d6e\u70b9\u6570\u6ea2\u51fa":107,"\u8fd9\u65f6\u9700\u8981\u8c03\u7528\u521b\u5efa\u5e8f\u5217\u4fe1\u606f\u548c\u4e3a":115,"\u8fd9\u662f\u4e00\u79cd\u6309\u5df2\u8bad\u7ec3\u6837\u672c\u6570\u5206\u6bb5\u53d6\u503c\u7684\u5b66\u4e60\u7387\u9000\u706b\u65b9\u6cd5":109,"\u8fd9\u662f\u4e00\u79cd\u6309\u5df2\u8bad\u7ec3pass\u6570\u5206\u6bb5\u53d6\u503c\u7684\u5b66\u4e60\u7387\u9000\u706b\u65b9\u6cd5":109,"\u8fd9\u662f\u4e00\u79cd\u975e\u5e38\u7075\u6d3b\u7684\u6570\u636e\u7ec4\u7ec7\u65b9\u5f0f":136,"\u8fd9\u662f\u56e0\u4e3a":71,"\u8fd9\u662f\u5f00\u6e90\u793e\u533a\u7684\u57fa\u672c\u793c\u8c8c":98,"\u8fd9\u662f\u666e\u901a\u7684\u5355\u5c42\u65f6\u95f4\u5e8f\u5217\u7684dataprovider\u4ee3\u7801":137,"\u8fd9\u662f\u76ee\u524dcmake\u5bfb\u627epython\u7684\u903b\u8f91\u5b58\u5728\u7f3a\u9677":104,"\u8fd9\u6837":[72,118],"\u8fd9\u6837\u4e0b\u4e00\u4e2acpu":68,"\u8fd9\u6837\u4fdd\u5b58\u5728\u5206\u5e03\u5f0f\u5b58\u50a8\u4e2d\u7684\u6570\u636e\u53ef\u4ee5\u88ab\u96c6\u7fa4\u4e2d\u7684\u6bcf\u4e2a\u8282\u70b9\u8bfb\u53d6\u5230":117,"\u8fd9\u6837\u4fdd\u8bc1":88,"\u8fd9\u6837\u4fdd\u8bc1\u8fd0\u884c\u7ed3\u675f\u4e4b\u540e\u7684":26,"\u8fd9\u6837\u505a\u53ef\u4ee5\u6781\u5927\u7684\u51cf\u5c11\u5185\u5b58\u5360\u7528":107,"\u8fd9\u6837\u53ef\u4ee5\u514d\u53bb\u5355\u72ec\u5b89\u88c5\u7f16\u8bd1\u4f9d\u8d56\u7684\u6b65\u9aa4":27,"\u8fd9\u6837\u53ef\u4ee5\u51cf\u5c0fgpu\u5185\u5b58":131,"\u8fd9\u6837\u5982\u679c\u9047\u5230\u95ee\u9898":26,"\u8fd9\u6837\u5bb9\u5668\u7684":123,"\u8fd9\u6837\u5c31\u53ef\u4ee5\u5728\u4e91\u7aef\u6267\u884c\u591a\u79cd\u6570\u636e\u7c7b\u8ba1\u7b97\u4efb\u52a1":38,"\u8fd9\u6837\u5df2\u7ecf\u4f20\u8f93\u6210\u529f\u7684\u90e8\u5206\u5c31\u4e0d\u7528\u91cd\u65b0\u4f20\u8f93\u4e86":54,"\u8fd9\u6837\u5e26\u6765\u7684\u597d\u5904\u5c31\u662f\u4e0d\u9700\u8981\u4e00\u76f4\u6e05\u7a7amemori":68,"\u8fd9\u6837\u5f53\u8be5pull":98,"\u8fd9\u6837\u65e2\u4f7f\u5f97\u6700\u7ec8\u4fdd\u5b58\u7684\u53c2\u6570\u683c\u5f0f\u4e0epaddlepaddle\u4e00\u81f4":68,"\u8fd9\u6837\u6781\u5927\u5730\u63d0\u9ad8\u4e86\u8ba1\u7b97\u7684\u5e76\u884c\u6027":118,"\u8fd9\u6837\u7684\u88c5\u9970\u5668":100,"\u8fd9\u6837\u7684\u8bdd":122,"\u8fd9\u6837\u8bad\u7ec3\u6587\u4ef6\u7684\u4e2a\u6570\u4f1a\u6bd4\u8f83\u591a":117,"\u8fd9\u6b63\u662f\u5b83\u4eec\u901f\u5ea6\u5feb\u7684\u539f\u56e0":134,"\u8fd9\u7528\u4e8e\u5728\u591a\u7ebf\u7a0b\u548c\u591a\u673a\u4e0a\u66f4\u65b0\u53c2\u6570":100,"\u8fd9\u79cd\u521d\u59cb\u5316\u65b9\u5f0f\u5728\u4e00\u822c\u60c5\u51b5\u4e0b\u4e0d\u4f1a\u4ea7\u751f\u5f88\u5dee\u7684\u7ed3\u679c":109,"\u8fd9\u79cd\u60c5\u51b5\u4e0b\u4e0d\u9700\u8981\u91cd\u5199\u8be5\u51fd\u6570":100,"\u8fd9\u79cd\u60c5\u51b5\u591a\u51fa\u73b0\u5728\u4f7f\u7528\u591a\u7ebf\u7a0b\u9884\u6d4b\u65f6":116,"\u8fd9\u79cd\u60c5\u51b5\u5e38\u5e38\u53d1\u751f\u5728":107,"\u8fd9\u79cd\u65b9\u5f0f\u5bf9\u5185\u5b58\u6d88\u8017\u8f83\u5927":108,"\u8fd9\u79cd\u65b9\u5f0f\u5fc5\u987b\u4f7f\u7528paddle\u5b58\u50a8\u7684\u6a21\u578b\u8def\u5f84\u683c\u5f0f":131,"\u8fd9\u79cd\u65b9\u5f0f\u6700\u4e3a\u7b80\u4fbf":113,"\u8fd9\u79cd\u751f\u6210\u6280\u672f\u53ea\u7528\u4e8e\u7c7b\u4f3c\u89e3\u7801\u5668\u7684\u751f\u6210\u8fc7\u7a0b":140,"\u8fd9\u79cd\u7c7b\u578b\u7684\u8f93\u5165\u5fc5\u987b\u901a\u8fc7":139,"\u8fd9\u79cd\u94fe\u63a5\u65b9\u5f0f\u4e3b\u8981\u7528\u4e8e\u79fb\u52a8\u7aef\u9884\u6d4b":113,"\u8fd9\u79cd\u96c6\u7fa4\u8282\u70b9\u7ba1\u7406\u65b9\u5f0f\u4f1a\u5728\u5c06\u6765\u4f7f\u7528":123,"\u8fd9\u7bc7":28,"\u8fd9\u7bc7\u6587\u6863":98,"\u8fd9\u7bc7\u6587\u6863\u4e4b\u540e\u90e8\u5206\u4f1a\u4f7f\u7528":116,"\u8fd9\u7bc7\u6587\u6863\u4e4b\u540e\u90e8\u5206\u4f1a\u7edf\u4e00\u4f7f\u7528":115,"\u8fd9\u7bc7\u6587\u6863\u4e4b\u540e\u90e8\u5206\u5c06\u4f1a\u7edf\u4e00\u4f7f\u7528":115,"\u8fd9\u7bc7\u6587\u6863\u4ecb\u7ecd":116,"\u8fd9\u7bc7\u6587\u6863\u4ecb\u7ecd\u5728":144,"\u8fd9\u7bc7\u6587\u6863\u4ecb\u7ecd\u5728\u4f7f\u7528":115,"\u8fd9\u7bc7\u6587\u6863\u4ecb\u7ecd\u57fa\u4e8e":26,"\u8fd9\u7bc7\u6587\u6863\u7684\u4e4b\u540e\u90e8\u5206\u4f1a\u4f7f\u7528":116,"\u8fd9\u7bc7\u6587\u7ae0":26,"\u8fd9\u7ec4\u8bed\u4e49\u76f8\u540c\u7684\u793a\u4f8b\u914d\u7f6e\u5982\u4e0b":137,"\u8fd9\u884c\u547d\u4ee4\u4e2d":133,"\u8fd9\u901a\u8fc7\u83b7\u5f97\u53cd\u5411\u5faa\u73af\u7f51\u7edc\u7684\u7b2c\u4e00\u4e2a\u5b9e\u4f8b":140,"\u8fd9\u90fd\u9700\u8981\u8fd9\u4e2a\u63a5\u53e3\u6309\u7167\u7ea6\u5b9a\u4fd7\u6210\u7684\u89c4\u5219\u6765\u6ce8\u91ca\u5b8c\u5907":71,"\u8fd9\u91cc":[27,68,98,109,123,140],"\u8fd9\u91cc\u4e0d\u518d\u8d58\u8ff0":101,"\u8fd9\u91cc\u4ecb\u7ecdc":116,"\u8fd9\u91cc\u4f7f\u7528\u4e86\u7528":133,"\u8fd9\u91cc\u4f7f\u7528\u4e86paddlepaddle\u9884\u5b9a\u4e49\u597d\u7684rnn\u5904\u7406\u51fd\u6570":137,"\u8fd9\u91cc\u4f7f\u7528\u7b80\u5355\u7684":107,"\u8fd9\u91cc\u5c06\u4ecb\u7ecdpaddlepaddle\u7684\u57fa\u672c\u4f7f\u7528\u6982\u5ff5":110,"\u8fd9\u91cc\u6211\u4eec\u5c55\u793a\u4e00\u4efd\u7b80\u5316\u8fc7\u7684\u4ee3\u7801":100,"\u8fd9\u91cc\u6211\u4eec\u901a\u8fc7\u5728kubernetes\u96c6\u7fa4\u4e0a\u542f\u52a8\u4e00\u4e2ajob\u6765\u4e0b\u8f7d\u5e76\u5207\u5272\u6570\u636e":123,"\u8fd9\u91cc\u6709\u4e24\u79cd\u6709\u6548\u7684\u89e3\u51b3\u65b9\u6cd5":107,"\u8fd9\u91cc\u68c0\u9a8c\u8fd0\u884c\u65f6\u95f4\u6a21\u578b\u7684\u6536\u655b":119,"\u8fd9\u91cc\u7684dockerimage\u4f5c\u4e3a\u7f16\u8bd1\u73af\u5883\u4ee5\u652f\u6301\u66f4\u591a\u7684linux":88,"\u8fd9\u91cc\u7684eigentensor\u4e4b\u95f4\u7684\u8fd0\u7b97\u53ea\u662f\u6539\u53d8\u4e86\u539f\u6709tensor\u4e2d\u7684\u6570\u636e":102,"\u8fd9\u91cc\u9009\u62e90":88,"\u8fd9\u91cc\u9700\u8981\u7528\u6237\u989d\u5916\u6ce8\u610f":37,"\u8fd9\u9700\u8981\u8054\u5408\u6211\u4eec\u7b2c\u4e8c\u8282":133,"\u8fdb\u4e00\u6b65\u4f18\u5316":68,"\u8fdb\u4e3b\u4ed3\u5e93\u540e":98,"\u8fdb\u5165":88,"\u8fdb\u5165\u5bb9\u5668":122,"\u8fdb\u5165\u5bf9\u5e94\u7684\u76ee\u5f55":104,"\u8fdb\u7a0b\u542f\u52a8\u7684\u5fc5\u8981\u53c2\u6570":123,"\u8fdb\u7a0b\u7684":119,"\u8fdb\u7a0b\u7684\u542f\u52a8\u53c2\u6570":123,"\u8fdb\u7a0b\u7684\u8fd0\u884c\u73af\u5883":123,"\u8fdb\u7a0b\u9700\u8981\u7684":123,"\u8fdb\u800c\u591a\u673a":133,"\u8fdb\u800c\u6211\u4eec\u53ef\u4ee5\u4f7f\u7528\u5982\u4e0b\u547d\u4ee4\u5f00\u542f\u4e00\u4e2ahttp\u670d\u52a1":133,"\u8fdb\u800c\u6307\u5b9a\u4e86python\u53ef\u6267\u884c\u6587\u4ef6\u7684\u8def\u5f84":133,"\u8fdb\u800c\u8fdb\u884c\u4ee3\u7801\u8bc4\u5ba1":88,"\u8fdb\u884c\u4e86":137,"\u8fdb\u884c\u5206\u5e03\u5f0f\u8bad\u7ec3\u7684\u65b9\u6848":123,"\u8fdb\u884c\u5206\u5e03\u5f0f\u8bad\u7ec3\u7684\u65b9\u6cd5":123,"\u8fdb\u884c\u524d\u5411\u8ba1\u7b97":116,"\u8fdb\u884c\u56de\u590d":98,"\u8fdb\u884c\u5e8f\u5217\u5316":116,"\u8fdb\u884c\u5f00\u53d1":98,"\u8fdb\u884c\u62c6\u89e3":137,"\u8fdb\u884c\u6fc0\u6d3b\u64cd\u4f5c":100,"\u8fdb\u884c\u7f16\u8bd1\u548c\u5b89\u88c5":142,"\u8fdb\u884c\u8bad\u7ec3":116,"\u8fdb\u884c\u8bbe\u7f6e":101,"\u8fdb\u884c\u94fe\u63a5":113,"\u8fdb\u884c\u9884\u6d4b\u4f9d\u8d56\u4e8e\u5c06":113,"\u8fdb\u884c\u9884\u6d4b\u65f6":116,"\u8fdb\u884cpython\u4e0ec":133,"\u8fdb\u9636\u4f7f\u7528":141,"\u8fdb\u9636\u6307\u5357":110,"\u8fde\u63a5":139,"\u8fde\u63a5\u5230pserver\u7684\u7aef\u53e3":117,"\u8fde\u63a5\u5230pserver\u7684\u7aef\u53e3\u4e2a\u6570":117,"\u9000\u51fa\u5bb9\u5668":122,"\u9009\u62e9\u4e0b\u8f7d\u4f7f\u7528\u4e0d\u540c\u7684blas\u5e93\u7684docker\u955c\u50cf":28,"\u9009\u62e9\u662f\u5426\u7f16\u8bd1mkl":68,"\u9009\u62e9\u76ee\u6807\u5206\u652f":98,"\u9009\u62e9\u8def\u5f84\u6765\u52a8\u6001\u52a0\u8f7dnvidia":129,"\u9009\u62e9\u9700\u8981\u53d1\u5e03\u7684\u7248\u672c":88,"\u9009\u9879":[26,27],"\u900f\u4f20\u7528\u6237\u8eab\u4efd\u7684\u529e\u6cd5":54,"\u9012\u5f52\u795e\u7ecf\u7f51\u7edc":128,"\u901a\u5e38":[72,101,133],"\u901a\u5e38\u4f1a\u4f7f\u7528\u73af\u5883\u53d8\u91cf\u914d\u7f6ejob\u7684\u914d\u7f6e\u4fe1\u606f":123,"\u901a\u5e38\u4f1a\u4f7f\u7528mapreduce\u4efb\u52a1\u7684\u8f93\u51fa\u7ed3\u679c\u4f5c\u4e3a\u8bad\u7ec3\u7ed3\u679c":117,"\u901a\u5e38\u4f7f\u7528\u7a00\u758f\u8bad\u7ec3\u6765\u52a0\u901f\u8ba1\u7b97\u8fc7\u7a0b":131,"\u901a\u5e38\u4f7f\u7528cento":30,"\u901a\u5e38\u505a\u6cd5\u662f\u4ece\u4e00\u4e2a\u6bd4\u8f83\u5927\u7684learning_rate\u5f00\u59cb\u8bd5":109,"\u901a\u5e38\u5305\u542b\u4e00\u4e2acpu\u7248\u672c\u548c\u4e00\u4e2agpu\u7248\u672c":88,"\u901a\u5e38\u540d\u5b57\u662f":98,"\u901a\u5e38\u60c5\u51b5\u4e0b":134,"\u901a\u5e38\u6211\u4eec\u4f1a\u5b89\u88c5ceph\u7b49\u5206\u5e03\u5f0f\u6587\u4ef6\u7cfb\u7edf\u6765\u5b58\u50a8\u8bad\u7ec3\u6570\u636e":122,"\u901a\u5e38\u6307\u5c06\u4e00\u4e2a\u6574\u4f53\u62c6\u5206\u6210\u591a\u4efd\u7684\u5176\u4e2d\u7684\u4e00\u4efd":37,"\u901a\u5e38\u6709\u4e24\u4e2a\u65b9\u6cd5\u6765\u6784\u5efa\u57fa\u4e8e":144,"\u901a\u5e38\u7528\u4e8e\u8868\u793a\u79bb\u6563\u7684\u7c7b\u522b\u6807\u7b7e":115,"\u901a\u5e38\u7684\u505a\u6cd5\u662f\u4f7f\u7528":140,"\u901a\u5e38\u7684\u505a\u6cd5\u662f\u5c06\u914d\u7f6e\u5b58\u4e8e":100,"\u901a\u5e38\u8981\u6c42\u65f6\u95f4\u6b65\u4e4b\u95f4\u5177\u6709\u4e00\u4e9b\u4f9d\u8d56\u6027":137,"\u901a\u5e38\u89c2\u5bdf\u70ed\u70b9\u51fd\u6570\u95f4\u7684\u8c03\u7528\u5173\u7cfb":133,"\u901a\u5e38\u90fd\u4f1a\u4f7f\u7528\u4e0b\u9762\u8fd9\u4e9b\u547d\u4ee4\u884c\u53c2\u6570":131,"\u901a\u5e38\u9700\u8981\u53bb\u6389\u7f51\u7edc\u4e2d\u7684":116,"\u901a\u7528":128,"\u901a\u8fc7":[98,100,101,107,115,137],"\u901a\u8fc7\u4e24\u4e2a\u5d4c\u5957\u7684":139,"\u901a\u8fc7\u4f7f\u7528":27,"\u901a\u8fc7\u4f7f\u7528\u8fd9\u4e9bapi":67,"\u901a\u8fc7\u51fd\u6570":123,"\u901a\u8fc7\u547d\u4ee4\u884c\u53c2\u6570":107,"\u901a\u8fc7\u591a\u4e2a\u7ebf\u7a0b\u5171\u4eab\u540c\u4e00\u4e2a\u6a21\u578b\u6765\u51cf\u5c11\u5185\u5b58\u5f00\u9500":116,"\u901a\u8fc7\u5f15\u7528memory\u5f97\u5230\u8fd9\u4e2alayer\u4e0a\u4e00\u4e2a\u65f6\u523b\u7684\u8f93\u51fa":139,"\u901a\u8fc7\u5f15\u7528memory\u5f97\u5230\u8fd9\u4e2alayer\u4e0a\u4e00\u4e2a\u65f6\u523b\u8f93\u51fa":139,"\u901a\u8fc7\u6240\u6709\u5355\u5143\u6d4b\u8bd5":98,"\u901a\u8fc7\u6a21\u578b\u63a8\u65adapi\u7684\u5b9e\u73b0\u4f5c\u4e3a\u4e00\u4e2a\u6837\u4f8b":72,"\u901a\u8fc7\u7075\u6d3b\u4f7f\u7528\u4ee5\u4e0a\u4e24\u4e2a\u63a5\u53e3":116,"\u901a\u8fc7\u7ec4\u5408\u4e0d\u540c\u7684layer":110,"\u901a\u8fc7\u7f51\u7edc\u5c42\u7684\u6807\u8bc6\u7b26\u6765\u6307\u5b9a":100,"\u901a\u8fc7\u8ba1\u7b97\u8282\u70b9\u548c\u53c2\u6570\u670d\u52a1\u5668\u7684\u5206\u5e03\u5f0f\u534f\u4f5c":118,"\u901a\u8fc7\u8be5\u53c2\u6570\u53ef\u83b7\u53d6\u5230\u8f93\u5165\u8f93\u51fa\u4ee5\u53ca\u5c5e\u6027":101,"\u901a\u8fc7\u8c03\u7528":[115,116],"\u901a\u8fc7\u8c03\u7528\u4ee5\u4e0b\u63a5\u53e3\u521b\u5efa\u7a00\u758f\u77e9\u9635":115,"\u901a\u8fc7data":139,"\u901a\u8fc7ssh\u7b49\u65b9\u5f0f\u767b\u5f55\u5230raspberri":144,"\u903b\u8f91\u4e0a\u9ad8\u4e8e\u4e8c\u7ef4\u7684\u6570\u636e":115,"\u903b\u8f91\u5212\u4e0a\u6587\u4ef6\u5206\u5757\u7684\u5355\u4f4d":54,"\u9047\u5230\u8be5\u9519\u8bef\u65f6":108,"\u9075\u5b88\u4ee5\u4e0b\u7ea6\u5b9a":98,"\u9075\u5faa\u4ee5\u4e0b\u6d41\u7a0b":88,"\u90a3\u4e48":[72,100,139],"\u90a3\u4e480\u5c42\u5e8f\u5217\u5373\u4e3a\u4e00\u4e2a\u8bcd\u8bed":139,"\u90a3\u4e48\u4f1a\u643a\u5e26\u6709":115,"\u90a3\u4e48\u53ef\u4ee5\u8ba4\u4e3a\u8bad\u7ec3\u4e0d\u6536\u655b":109,"\u90a3\u4e48\u5728":101,"\u90a3\u4e48\u5982\u4f55\u5224\u65ad\u8bad\u7ec3\u4e0d\u6536\u655b\u5462":109,"\u90a3\u4e48\u5bf9\u5e94\u7684\u5185\u90e8\u5b58\u50a8\u4e5f\u4f1a\u4e0e\u5b83\u4eec\u5171\u4eab\u5185\u5b58":68,"\u90a3\u4e48\u5c31\u4f1a\u4f7f":68,"\u90a3\u4e48\u5e38\u6570\u8f93\u51fa\u6240\u80fd\u8fbe\u5230\u7684\u6700\u5c0fcost\u662f":109,"\u90a3\u4e48\u6211\u4eec\u4e5f\u5c31\u4e0d\u9700\u8981":26,"\u90a3\u4e48\u6211\u4eec\u53ef\u4ee5\u5224\u65ad\u4e3a\u8bad\u7ec3\u4e0d\u6536\u655b":109,"\u90a3\u4e48\u63a8\u8350\u4f7f\u7528":140,"\u90a3\u4e48\u63a8\u8350\u4f7f\u7528\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u7684\u65b9\u6cd5":140,"\u90a3\u4e48\u6536\u655b\u53ef\u80fd\u5f88\u6162":109,"\u90a3\u4e48\u6700\u597d\u5c06\u6570\u636e\u6587\u4ef6\u5728\u6bcf\u6b21\u8bfb\u53d6\u4e4b\u524d\u505a\u4e00\u6b21shuffl":107,"\u90a3\u4e48\u7528\u6237\u9700\u8981\u62c9\u53d6\u6240\u6709\u7684\u8fdc\u7a0b\u5206\u652f\u5230\u672c\u673a":104,"\u90a3\u4e48\u7f16\u8bd1\u8fc7\u7a0b\u53ea\u4f1a\u4ea7\u751f":26,"\u90a3\u4e48\u8bad\u7ec3\u6709\u53ef\u80fd\u4e0d\u6536\u655b":109,"\u90a3\u4e48\u8be5\u4f18\u5316\u7b97\u6cd5\u81f3\u5c11\u9700\u8981":107,"\u90a3\u4e48fc1\u548cfc2\u5c42\u5c06\u4f1a\u4f7f\u7528\u7b2c1\u4e2agpu\u6765\u8ba1\u7b97":131,"\u90a3\u4e5f\u5c31\u4e0d\u9700\u8981\u6025\u7740\u4f18\u5316\u6027\u80fd\u5566":134,"\u90a3\u4f30\u8ba1\u8fd9\u91cc\u7684\u6f5c\u529b\u5c31\u6ca1\u5565\u597d\u6316\u7684\u4e86":134,"\u90a3\u51cf\u5c11\u5b66\u4e60\u738710\u500d\u7ee7\u7eed\u8bd5\u9a8c":109,"\u90a3\u6211\u4f1a\u671f\u671b\u5206\u6790\u5de5\u5177\u7edf\u8ba1\u5230\u901f\u5ea6\u662f100gb":134,"\u90a3\u7a0b\u5e8f\u5206\u6790\u5de5\u5177\u662f\u5fc5\u4e0d\u53ef\u5c11\u7684\u5229\u5668":134,"\u90fd\u4e0d\u4f1a\u60f3\u8981\u77e5\u9053next":68,"\u90fd\u4e0d\u9700\u8981":26,"\u90fd\u4f1a\u4ea7\u751f\u5f53\u524d\u5c42\u72b6\u6001\u7684\u6240\u6709\u7ee7\u627f\u7ed3\u679c":129,"\u90fd\u4f1a\u7ba1\u7406\u7ef4\u62a4\u4e00\u4efd\u8bad\u7ec3\u597d\u7684\u6a21\u578b":116,"\u90fd\u4f1a\u9020\u6210\u8bad\u7ec3\u4e2d\u7684\u6570\u636e\u4ecec":107,"\u90fd\u4f7f\u7528":115,"\u90fd\u53ea\u662f\u4ecb\u7ecd\u53cc\u5c42rnn\u7684api\u63a5\u53e3":137,"\u90fd\u53ef\u4ee5\u8fd0\u884c":26,"\u90fd\u53ef\u4ee5\u901a\u8fc7\u8c03\u7528\u4e0b\u9762\u7684\u63a5\u53e3\u4e3a\u539f\u6709\u7684\u6570\u636e\u8f93\u5165\u9644\u52a0\u4e0a\u5e8f\u5217\u4fe1\u606f":115,"\u90fd\u5e94\u4f7f\u7528c":115,"\u90fd\u662f\u4e94\u4f4d\u7684\u6570\u5b57":38,"\u90fd\u662f\u4ee5ext\u5f00\u5934":68,"\u90fd\u662f\u5bf9layer1\u5143\u7d20\u7684\u62f7\u8d1d":136,"\u90fd\u662f\u5c06\u6bcf\u4e00\u53e5\u5206\u597d\u8bcd\u540e\u7684\u53e5\u5b50":137,"\u90fd\u662fabi\u8c03\u7528\u6807\u51c6\u7684":71,"\u90fd\u7528":98,"\u90fd\u7ee7\u627f\u4e8epaddlepaddle\u7684\u57fa\u7c7b":67,"\u90fd\u9700\u8981\u5199\u63d0\u4ea4\u8bf4\u660e":98,"\u90fd\u9700\u8981\u8c03\u7528\u4e00\u6b21":100,"\u914d\u5236\u7f16\u8bd1\u9009\u9879":113,"\u914d\u7f6e\u6253\u5f00":134,"\u914d\u7f6e\u6587\u4ef6\u63a5\u53e3\u662ffc_layer":100,"\u914d\u7f6e\u6587\u4ef6\u91cc\u52a0\u4e24\u884c":26,"\u914d\u7f6e\u7684\u65b9\u6cd5\u53c2\u8003":54,"\u914d\u7f6e\u7b80\u5355\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u7684\u4f8b\u5b50":140,"\u914d\u7f6e\u7f51\u7edc\u5c42\u7684\u8f93\u5165":100,"\u914d\u7f6eapi":136,"\u91c7\u7528\u5747\u5300\u5206\u5e03\u6216\u8005\u9ad8\u65af\u5206\u5e03\u521d\u59cb\u5316":129,"\u91c7\u7528multi":109,"\u91ca\u653e\u5bf9paramters\u5185\u5b58\u7684\u9501\u5b9a":37,"\u91cc":26,"\u91cc\u53ef\u4ee5\u6807\u51c6\u5316\u7f16\u8bd1\u73af\u5883":26,"\u91cc\u5b8c\u6210":101,"\u91cc\u6240\u6709\u7684\u7b26\u53f7\u90fd\u5199\u5165\u81ea\u5df1\u7684\u7a0b\u5e8f\u7684\u4e8c\u8fdb\u5236\u6587\u4ef6\u91cc":71,"\u91cc\u7684":26,"\u91cc\u7684\u65e5\u5fd7":119,"\u91cc\u7684\u6e90\u7801":26,"\u91cc\u8fd0\u884c\u7684\u7f16\u8bd1\u5de5\u5177\u5b9e\u9645\u4e0a\u90fd\u662f\u5728\u672c\u673a\u7684":26,"\u91cc\u9009\u62e9\u9700\u8981\u53d1\u5e03\u7684\u5206\u652f":88,"\u91cc\u9762":101,"\u91cc\u9762\u6db5\u76d6\u4e86\u4ea4\u53c9\u7f16\u8bd1android\u7248paddlepaddle\u5e93\u9700\u8981\u7684\u6240\u6709\u7f16\u8bd1\u5de5\u5177":142,"\u91cc\u9762\u6dfb\u52a0":68,"\u91ccstep\u7684\u5185\u5bb9":107,"\u91cd\u5199\u7236\u7c7blayer\u7684":68,"\u91cd\u547d\u540d\u6210":71,"\u91cd\u65b0\u7f16\u8bd1paddlepaddl":134,"\u9488\u5bf9\u4e0d\u540c\u7684":143,"\u9488\u5bf9\u4efb\u52a1\u8fd0\u884c\u5b8c\u6210\u540e\u5bb9\u5668\u81ea\u52a8\u9000\u51fa\u7684\u573a\u666f":122,"\u9488\u5bf9\u5185\u5b58\u548c\u663e\u5b58":107,"\u94fe\u63a5":113,"\u94fe\u63a5\u4e2d\u627e\u5230":30,"\u94fe\u63a5\u4f55\u79cdblas\u5e93\u7b49":27,"\u94fe\u63a5\u5230\u81ea\u5df1\u7684\u7a0b\u5e8f\u91cc":71,"\u94fe\u63a5\u76f8\u5bf9\u5bb9\u6613":113,"\u94fe\u63a5\u9009\u9879":113,"\u94fe\u63a5\u9759\u6001\u5e93":113,"\u9519\u8bef":104,"\u9519\u8bef\u5904\u7406":71,"\u9519\u8bef\u5904\u7406\u65b9\u5f0f\u662f\u8fd4\u56de\u503c":71,"\u9519\u8bef\u5904\u7406\u7684\u65b9\u5f0f\u4e5f\u4e0d\u5c3d\u76f8\u540c":71,"\u9519\u8bef\u7684define_py_data_sources2\u7c7b\u4f3c":109,"\u952e\u6765\u542f\u52a8\u7f16\u8bd1\u4e86":26,"\u955c\u50cf\u91cc\u6709paddlepaddle\u7684\u6e90\u7801\u4e0edemo":122,"\u957f\u5ea6":107,"\u95e8\u63a7\u5faa\u73af\u5355\u5143\u5355\u6b65\u51fd\u6570\u548c\u8f93\u51fa\u51fd\u6570":140,"\u95e8\u63a7\u5faa\u73af\u5355\u5143\u7684\u8f93\u51fa\u88ab\u7528\u4f5c\u8f93\u51famemori":140,"\u9644\u52a0\u4e0a\u5e8f\u5217\u4fe1\u606f":115,"\u9650\u5236\u5957\u63a5\u5b57\u53d1\u9001\u7f13\u51b2\u533a\u7684\u5927\u5c0f":129,"\u9650\u5236\u5957\u63a5\u5b57\u63a5\u6536\u7f13\u51b2\u533a\u7684\u5927\u5c0f":129,"\u9664\u4e86\u53ef\u4ee5\u81ea\u52a8\u7f16\u8bd1\u6587\u6863":103,"\u9664\u4e86boot_lay":137,"\u9664\u6784\u9020\u67d0\u79cd\u7c7b\u578b\u7684\u51fd\u6570":72,"\u9664\u6b64\u4e4b\u5916":107,"\u9664\u96f6\u7b49\u95ee\u9898":107,"\u968f\u540e\u53ef\u4ee5\u7528\u8fd9\u4e2a\u5f00\u53d1\u955c\u50cf\u5f00\u59cbbuild":98,"\u968f\u673a\u6570\u7684\u79cd\u5b50":129,"\u968f\u673a\u6570seed":128,"\u9694\u5f00":117,"\u96c6\u6210\u5230":67,"\u96c6\u6210\u5230paddlepaddl":68,"\u96c6\u675f\u641c\u7d22\u4f7f\u7528\u5e7f\u5ea6\u4f18\u5148\u641c\u7d22\u7684\u65b9\u5f0f\u6784\u5efa\u67e5\u627e\u6811":129,"\u96c6\u7fa4\u4e0a\u542f\u52a8\u4e00\u4e2a\u5355\u673a\u4f7f\u7528cpu\u7684paddlepaddle\u8bad\u7ec3\u4f5c\u4e1a":122,"\u96c6\u7fa4\u4e2d\u7684\u6bcf\u53f0\u8ba1\u7b97\u673a\u901a\u5e38\u88ab\u6210\u4e3a\u4e00\u4e2a":127,"\u96c6\u7fa4\u4efb\u52a1":119,"\u96c6\u7fa4\u4f5c\u4e1a\u5c06\u4f1a\u5728\u51e0\u79d2\u540e\u542f\u52a8":119,"\u96c6\u7fa4\u6d4b\u8bd5":128,"\u96c6\u7fa4\u7ba1\u7406\u5de5\u5177":120,"\u96c6\u7fa4\u8bad\u7ec3":128,"\u96c6\u7fa4\u8bad\u7ec3\u4e0e\u9884\u6d4b":106,"\u96c6\u7fa4\u8fdb\u7a0b":119,"\u9700\u52a0\u8be5\u6a21\u677f\u53c2\u6570":101,"\u9700\u5728nvvp\u754c\u9762\u4e2d\u9009\u4e0a\u624d\u80fd\u5f00\u542f":134,"\u9700\u6307\u5b9a":113,"\u9700\u63d0\u4f9b\u975e\u96f6\u5143\u7684\u503c":115,"\u9700\u6ce8\u610f":113,"\u9700\u8981":[26,38,101,116],"\u9700\u8981\u4e3a":101,"\u9700\u8981\u4f7f\u7528":107,"\u9700\u8981\u4f7f\u7528\u5176\u5236\u5b9a\u7684\u65b9\u5f0f\u6302\u8f7d\u540e\u5e76\u5bfc\u5165\u6570\u636e":123,"\u9700\u8981\u4f7f\u7528\u6700\u65b0\u7684pip":30,"\u9700\u8981\u4f7f\u7528\u8005\u81ea\u5df1\u4e86\u89e3\u5e76\u5b8c\u6210\u8f6c\u5316":115,"\u9700\u8981\u4fdd\u6301\u5f53\u524d\u5206\u652f\u76ee\u5f55":98,"\u9700\u8981\u4fee\u6539build":88,"\u9700\u8981\u521b\u5efa\u5e76\u586b\u5199":115,"\u9700\u8981\u5347\u7ea7pip\u7248\u672c\u5230\u6700\u65b0":[30,104],"\u9700\u8981\u5355\u72ec":28,"\u9700\u8981\u53ef\u4ee5\u8de8\u5e73\u53f0\u6267\u884c":54,"\u9700\u8981\u540c\u65f6\u63d0\u4f9b\u6bcf\u4e00\u4e2a\u5185\u5c42\u5e8f\u5217\u5728\u6574\u4e2a":115,"\u9700\u8981\u540c\u6b65\u539f\u4ed3\u5e93":98,"\u9700\u8981\u542f\u52a8\u7684\u8282\u70b9\u4e2a\u6570\u4ee5\u53ca":123,"\u9700\u8981\u548c\u8be5op\u7684\u540d\u5b57\u4e00\u6837":101,"\u9700\u8981\u54ea\u4e9b\u5c42\u7684\u8ba1\u7b97\u7ed3\u679c\u4f5c\u4e3a\u8f93\u51fa":116,"\u9700\u8981\u5728":101,"\u9700\u8981\u5728\u521b\u5efa\u5bb9\u5668\u524d\u6302\u8f7d\u5377\u4ee5\u4fbf\u6211\u4eec\u4fdd\u5b58\u8bad\u7ec3\u7ed3\u679c":122,"\u9700\u8981\u5728\u7cfb\u7edf\u91cc\u5148\u5b89\u88c5\u597ddocker\u5de5\u5177\u5305":103,"\u9700\u8981\u5728cmake\u7684\u65f6\u5019":72,"\u9700\u8981\u5728macos\u7cfb\u7edf\u4e0a\u8fdb\u884c":143,"\u9700\u8981\u5c06\u5176parameter\u8bbe\u7f6e\u6210":107,"\u9700\u8981\u5c06\u7f51\u7edc\u7ed3\u6784\u4f7f\u7528":116,"\u9700\u8981\u5c06bugfix\u7684\u5206\u652f\u540c\u65f6merge\u5230":88,"\u9700\u8981\u5c06cuda\u76f8\u5173\u7684\u5e93\u8bbe\u7f6e\u5230":113,"\u9700\u8981\u5c06paddl":113,"\u9700\u8981\u5f15\u7528":72,"\u9700\u8981\u5f3a\u8c03\u7684\u662f":26,"\u9700\u8981\u601d\u8003\u5b8c\u6210\u4ee5\u4e0b\u5de5\u4f5c":[115,116],"\u9700\u8981\u624b\u52a8\u8fdb\u884c\u89e3\u538b":116,"\u9700\u8981\u6267\u884c":[27,30,112],"\u9700\u8981\u6307\u5b9a":113,"\u9700\u8981\u6307\u5b9a\u4e0e\u67d0\u4e00\u4e2a\u8f93\u5165\u7684\u5e8f\u5217\u4fe1\u606f\u662f\u4e00\u81f4\u7684":137,"\u9700\u8981\u6307\u5b9alayer\u7684\u8f93\u5165\u6765\u6e90":110,"\u9700\u8981\u660e\u786e\u6307\u5b9a":129,"\u9700\u8981\u663e\u5f0f\u5730\u94fe\u63a5":113,"\u9700\u8981\u663e\u793a\u5730\u94fe\u63a5":113,"\u9700\u8981\u663e\u793a\u5730\u94fe\u63a5mkl\u7684\u52a8\u6001\u5e93":113,"\u9700\u8981\u6709\u7a33\u5b9a\u7684\u5bfc\u51fa\u7b26\u53f7":71,"\u9700\u8981\u6839\u636e\u4e0d\u540c\u7684\u5206\u5e03\u5f0f\u5b58\u50a8\u6765\u7ed1\u5b9a\u4e00\u4e2a":123,"\u9700\u8981\u6ce8\u610f":101,"\u9700\u8981\u6ce8\u610f\u7684\u662f":[68,88,107,129],"\u9700\u8981\u6ce8\u610f\u7684\u662f\u68af\u5ea6\u68c0\u67e5\u4ec5\u4ec5\u9a8c\u8bc1\u4e86\u68af\u5ea6\u7684\u8ba1\u7b97":100,"\u9700\u8981\u6ce8\u610f\u7684\u662fpaddlepaddle\u76ee\u524d\u53ea\u652f\u6301\u5b50\u5e8f\u5217\u6570\u76ee\u4e00\u6837\u7684\u591a\u8f93\u5165\u53cc\u5c42rnn":137,"\u9700\u8981\u7528\u5230\u7684\u7f16\u8bd1\u5de5\u5177\u548c\u7cfb\u7edf\u5e93":142,"\u9700\u8981\u7528\u6237\u663e\u5f0f\u8bbe\u5b9a":108,"\u9700\u8981\u7d2f\u52a0\u4e0d\u540clayer\u4f20\u8fc7\u6765\u7684\u68af\u5ea6":68,"\u9700\u8981\u81ea\u5df1\u94fe\u63a5mkl\u94fe\u63a5\u5e93":113,"\u9700\u8981\u88ab\u66b4\u9732\u5230\u5176\u4ed6\u8bed\u8a00":72,"\u9700\u8981\u8bf7\u7ba1\u7406\u5458\u5b89\u88c5\u548c\u914d\u7f6e\u597d":26,"\u9700\u8981\u9075\u5faa\u4ee5\u4e0b\u7ea6\u5b9a":139,"\u9700\u8981\u91cd\u547d\u540dwheel\u5305\u4e2dplatform\u76f8\u5173\u7684\u540e\u7f00":88,"\u9700\u8981\u989d\u5916\u6ce8\u610f\u7684\u662f":102,"\u9700\u9644\u52a0\u53cc\u5c42\u5e8f\u5217\u4fe1\u606f":115,"\u9700\u9644\u52a0\u5e8f\u5217\u4fe1\u606f":115,"\u975e\u5e38\u6570":100,"\u975e\u5e8f\u5217\u8f93\u5165\u4e0d\u643a\u5e26":115,"\u975e\u5e8f\u5217\u8f93\u5165\u65e0\u9700\u6784\u9020":115,"\u975e\u96f6\u5143\u4e2a\u6570":115,"\u975e\u96f6\u5143\u7d20\u7684\u503c":115,"\u975e\u96f6\u5143\u7d20\u7684\u5217\u53f7":115,"\u975e\u96f6\u6570\u5b57\u7684\u4e2a\u6570":100,"\u9762\u5411\u67b6\u6784\u4e3a32\u4f4darm\u67b6\u6784":142,"\u9762\u5411\u67b6\u6784\u4e3a64\u4f4darm64\u67b6\u6784":142,"\u9879\u76ee\u5728\u52aa\u529b\u5f00\u59cb\u652f\u6301\u5176\u4ed6\u4e0d\u9700\u8981":26,"\u987a\u5e8f":137,"\u9884\u63d0\u4ea4\u94a9\u5b50":98,"\u9884\u6d4b\u4ee3\u7801\u66f4\u591a\u8be6\u7ec6\u793a\u4f8b\u4ee3\u7801\u8bf7\u53c2\u8003":116,"\u9884\u6d4b\u4f7f\u7528\u7684\u7f51\u7edc\u7ed3\u6784\u5f80\u5f80\u4e0d\u540c\u4e8e\u8bad\u7ec3":116,"\u9884\u6d4b\u65f6":116,"\u9884\u6d4b\u65f6\u53ea\u9700\u52a0\u8f7d\u4e00\u4e2a\u6587\u4ef6\u4fbf\u4e8e\u53d1\u5e03":116,"\u9884\u6d4b\u7a0b\u5e8f\u5f00\u53d1\u4e24\u5927\u90e8\u5206":116,"\u9996\u5148":[100,137,140],"\u9996\u5148\u5728\u7cfb\u7edf\u8def\u5f84":27,"\u9996\u5148\u5b89\u88c5\u5e76\u5728\u5f53\u524d\u76ee\u5f55\u8fd0\u884c\u5b83":98,"\u9996\u5148\u5b9a\u4e49":101,"\u9996\u5148\u5bf9\u8f93\u5165\u505a\u4e00\u4e2a\u5c0f\u7684\u6270\u52a8":100,"\u9996\u5148\u6211\u4eec\u9700\u8981\u63a8\u5bfc\u8be5\u7f51\u7edc\u5c42\u7684":100,"\u9996\u5148\u6784\u9020\u5934\u4fe1\u606f":109,"\u9996\u5148\u901a\u8fc7":98,"\u9996\u5148\u9700\u8981\u52a0\u8f7d\u76f8\u5e94\u7684python\u5e93":110,"\u9a71\u52a8":103,"\u9ad8\u4eae\u90e8\u5206":137,"\u9ad8\u5ea6":115,"\u9ad8\u5ea6\u652f\u6301\u7075\u6d3b\u548c\u9ad8\u6548\u7684\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u914d\u7f6e":140,"\u9ad8\u65af\u5206\u5e03":109,"\u9ed8\u8ba4":129,"\u9ed8\u8ba40":117,"\u9ed8\u8ba41":117,"\u9ed8\u8ba4127":117,"\u9ed8\u8ba4256k":54,"\u9ed8\u8ba47164":117,"\u9ed8\u8ba4\u4e0d\u663e\u793a":129,"\u9ed8\u8ba4\u4e0d\u8bbe\u7f6e":139,"\u9ed8\u8ba4\u4e3a0":[129,131],"\u9ed8\u8ba4\u4e3a1":[115,131],"\u9ed8\u8ba4\u4e3a100":131,"\u9ed8\u8ba4\u4e3a4096mb":129,"\u9ed8\u8ba4\u4e3a\u7b2c\u4e00\u4e2a\u8f93\u5165":139,"\u9ed8\u8ba4\u4e3anull":129,"\u9ed8\u8ba4\u4f1a\u5c06a\u548cb":107,"\u9ed8\u8ba4\u4f7f\u7528concurrentremoteparameterupdat":129,"\u9ed8\u8ba4\u4f7f\u7528mkl":27,"\u9ed8\u8ba4\u503c":[27,131,136,143],"\u9ed8\u8ba4\u503c\u4e3a":[142,143,144],"\u9ed8\u8ba4\u503c\u4e3a\u73af\u5883\u53d8\u91cf":143,"\u9ed8\u8ba4\u521d\u59cb\u72b6\u4e3a0":139,"\u9ed8\u8ba4\u60c5\u51b5\u4e0b":[109,119],"\u9ed8\u8ba4\u60c5\u51b5\u4e0b\u6309\u7167float\u7cbe\u5ea6\u8ba1\u7b97":109,"\u9ed8\u8ba4\u6307\u5b9a\u7b2c\u4e00\u4e2a\u8f93\u5165":137,"\u9ed8\u8ba4\u662f\u4f7f\u7528mkl\u7684\u955c\u50cf":28,"\u9ed8\u8ba4\u6ca1\u6709\u5b89\u88c5vim":28,"\u9ed8\u8ba4\u7684paddlepaddle\u751f\u4ea7\u73af\u5883\u955c\u50cf":122,"\u9ed8\u8ba4\u7f16\u8bd1\u6240\u6709\u67b6\u6784":143,"\u9ed8\u8ba4\u8bbe\u7f6e\u4e3a":67,"\u9ed8\u8ba4\u8bbe\u7f6e\u4e3a\u771f":131,"\u9ed8\u8ba4\u8bbe\u7f6e\u6210\u73af\u5883\u53d8\u91cf":[142,144],"\u9ed8\u8ba4\u8c03\u7528":26,"\u9ed8\u8ba4fals":117,"abi\u7684paddlepaddle\u5e93":142,"abstract":[45,46,53,57,78,87,89],"android\u5b98\u65b9\u63d0\u4f9b\u7684":142,"android\u5e73\u53f0\u4e0a\u4f7f\u7528\u7684c":142,"android\u5e73\u53f0\u53ef\u9009\u914d\u7f6e\u53c2\u6570":142,"android\u7684docker\u5f00\u53d1\u955c\u50cf\u5411\u7528\u6237\u63d0\u4f9b\u4e24\u4e2a\u53ef\u914d\u7f6e\u7684\u53c2\u6570":142,"api\u4e0d\u4f1a\u76f4\u63a5\u52a0\u8f7d":116,"api\u4e0d\u5c0f\u4e8e21":142,"api\u4e2d":115,"api\u4e2d\u4f7f\u7528":71,"api\u4e2d\u7684\u4e00\u7ef4\u6570\u7ec4":115,"api\u4e2d\u7684\u77e9\u9635\u6765\u8868\u793a":115,"api\u4e2d\u795e\u7ecf\u7f51\u7edc\u7684\u4e00\u4e2a\u8f93\u5165":116,"api\u4f7f\u7528\u4e2d\u7684\u4e00\u4e2a\u91cd\u8981\u6982\u5ff5":116,"api\u4f7f\u7528\u6d41\u7a0b":114,"api\u4f7f\u7528\u6d41\u7a0b\u793a\u610f\u56fe":116,"api\u4f7f\u7528\u793a\u4f8b":116,"api\u521b\u5efa\u7684gradientmachine\u7c7b\u7684\u5bf9\u8c61":116,"api\u53ef\u4ee5\u901a\u8fc7\u5206\u522b\u6307\u5b9a\u5e8f\u5217\u5316\u540e\u7684\u7f51\u7edc\u7ed3\u6784\u6587\u4ef6\u548c\u53c2\u6570\u76ee\u5f55\u6765\u52a0\u8f7d\u8bad\u7ec3\u597d\u7684\u6a21\u578b":116,"api\u53ef\u4ee5\u901a\u8fc7\u6307\u5b9a":116,"api\u5b8c\u6210\u5206\u5e03\u5f0f\u8bad\u7ec3":117,"api\u5bf9\u6bd4\u4ecb\u7ecd":138,"api\u5bfc\u51fa\u7684\u52a8\u6001\u5e93":72,"api\u5bfc\u51fa\u7684\u9759\u6001\u5e93":72,"api\u5e93\u5c06\u88ab\u5b89\u88c5\u5230":142,"api\u5f00\u53d1\u5305\u5e76\u5b89\u88c5":30,"api\u5f00\u53d1\u9884\u6d4b\u7a0b\u5e8f\u65f6":113,"api\u5f00\u53d1\u9884\u6d4b\u7a0b\u5e8f\u9700\u8981\u4e00\u4e2a\u8bad\u7ec3\u597d\u7684\u6a21\u578b":116,"api\u6240\u9700\u7684\u4f9d\u8d56":113,"api\u63a5\u53d7\u7684\u7c7b\u578b\u5168\u662f":72,"api\u63a5\u53e3":54,"api\u63a5\u53e3\u751f\u6210":101,"api\u63a5\u53e3\u7684\u53c2\u6570\u8f6c\u53d1\u7ed9":72,"api\u63a5\u53e3\u7684\u751f\u6210":101,"api\u63d0\u4f9b\u7684":116,"api\u652f\u6301\u7684\u6240\u6709\u8f93\u5165\u6570\u636e\u7c7b\u578b\u548c\u4ed6\u4eec\u7684\u7ec4\u7ec7\u65b9\u5f0f":116,"api\u6587\u6863":[142,143],"api\u65f6":72,"api\u65f6\u4e3a\u8f93\u51fa":116,"api\u65f6\u6240\u552f\u4e00\u9700\u8981\u5f15\u5165\u7684\u5934\u6587\u4ef6":72,"api\u662f\u591a\u8bed\u8a00api\u7684\u57fa\u7840\u90e8\u5206":72,"api\u66b4\u9732\u7684\u7c7b\u578b":72,"api\u6765\u9884\u6d4b":[142,143],"api\u751f\u6210\u7684\u4e8c\u8fdb\u5236\u6587\u4ef6\u4f1a\u88ab\u5b89\u88c5\u5230":72,"api\u7684\u5934\u6587\u4ef6":[142,143,144],"api\u7684\u5b9e\u4f8b":72,"api\u7684\u5b9e\u73b0\u7ec6\u8282":72,"api\u7684\u63a5\u53e3":72,"api\u7684\u65f6\u5019\u63a8\u8350paddle\u4e0d\u5d4c\u5165python\u89e3\u91ca\u5668":72,"api\u7684\u7f16\u8bd1\u9009\u9879\u9ed8\u8ba4\u5173\u95ed":72,"api\u76ee\u5f55\u7ed3\u6784\u5982\u4e0a\u56fe\u8868\u6240\u793a":72,"api\u76f8\u5173\u63a5\u53e3":115,"api\u7ea7\u522b":142,"api\u7ea7\u522b\u4e3a21":142,"api\u83b7\u5f97\u4e86\u795e\u7ecf\u7f51\u7edc\u7684\u53c2\u6570\u5b9e\u4f8b":72,"api\u8bad\u7ec3":116,"api\u9700\u8981\u521b\u5efa\u7684\u6570\u636e\u7c7b\u578b":115,"api\u9759\u6001\u5e93":143,"api\u9884\u6d4b\u5e93":[132,143],"api\u9884\u6d4b\u65f6":116,"apis\u505a\u4e86\u5c01\u88c5":67,"app\u4e2d":[142,143],"apple\u5b98\u65b9\u4e3aios\u5f00\u53d1\u63d0\u4f9b\u4e86\u5b8c\u6574\u7684\u4ea4\u53c9\u7f16\u8bd1\u5de5\u5177\u548c\u96c6\u6210\u5f00\u53d1\u73af\u5883":143,"async_sgd\u8fdb\u884c\u8bad\u7ec3\u65f6":109,"avx\u662f\u4e00\u79cdcpu\u6307\u4ee4\u96c6":28,"avx\u7248\u672c":28,"avx\u7684\u955c\u50cf":28,"batch\u4e2d\u5305\u542b":107,"batch\u7684\u6743\u91cd":107,"batches\u4e2a\u6279\u6b21\u4fdd\u5b58\u4e00\u6b21\u53c2\u6570":129,"batches\u6b21":129,"block\u6784\u6210\u4e00\u4e2amodel":37,"book\u4e00\u5b9a\u662f\u60a8\u6700\u597d\u7684\u9009\u62e9":28,"book\u4e2d\u6240\u6709\u7ae0\u8282\u529f\u80fd\u7684\u6b63\u786e\u6027":88,"book\u662f\u4e3a\u7528\u6237\u548c\u5f00\u53d1\u8005\u5236\u4f5c\u7684\u4e00\u4e2a\u4ea4\u4e92\u5f0f\u7684jupyt":28,"book\u7684":110,"book\u7684docker\u955c\u50cf":28,"boolean":[18,53,55,63,71,94],"break":[9,35,92,94,96,97],"bugfix\u5206\u652f\u4e5f\u662f\u5728\u5f00\u53d1\u8005\u81ea\u5df1\u7684fork\u7248\u672c\u5e93\u7ef4\u62a4":88,"bugfix\u5206\u652f\u9700\u8981\u5206\u522b\u7ed9\u4e3b\u7248\u672c\u5e93\u7684":88,"byte":[9,11,54,70,109],"c99\u662f\u76ee\u524dc\u6700\u5e7f\u6cdb\u7684\u4f7f\u7528\u6807\u51c6":71,"c\u6709\u6807\u51c6\u7684abi":71,"c\u8bed\u8a00\u662f\u6709\u5bfc\u51fa\u7b26\u53f7\u7684\u6807\u51c6\u7684":71,"case":[4,18,39,45,47,48,53,57,66,72,78,82,84,85,94,121,134,145],"cc\u4e2d\u7684":102,"cells\u7b49":108,"char":41,"ci\u73af\u5883\u4f7f\u7528":88,"ci\u7f16\u8bd1wheel\u5b8c\u6210\u540e\u4f1a\u81ea\u52a8\u5c06docker\u955c\u50cfpush\u5230dockerhub":88,"class":[1,2,3,4,5,6,7,9,10,13,14,15,18,21,25,31,34,45,46,47,48,51,52,56,57,58,59,61,62,64,66,71,75,76,80,81,85,86,87,89,90,91,93,96,100,101,102,109,135],"cmake\u4e2d\u5c06":134,"cmake\u5b98\u65b9\u5bf9android\u5e73\u53f0\u7684\u4ea4\u53c9\u7f16\u8bd1\u63d0\u4f9b\u4e86\u901a\u7528\u7684\u652f\u6301":142,"cmake\u627e\u5230\u7684python\u5e93\u548cpython\u89e3\u91ca\u5668\u7248\u672c\u53ef\u80fd\u6709\u4e0d\u4e00\u81f4\u73b0\u8c61":104,"cmake\u7cfb\u7edf\u5bf9\u4ea4\u53c9\u7f16\u8bd1\u63d0\u4f9b\u4e86\u652f\u6301":142,"cmake\u7f16\u8bd1\u65f6":27,"cmake\u7f16\u8bd1\u7684\u76ee\u6807\u5e73\u53f0":[142,143,144],"cmake\u914d\u7f6e\u4e2d\u5c06":134,"cmake\u914d\u7f6e\u5b8c\u6210\u540e":[142,143,144],"compute\u51fd\u6570":67,"const":[34,39,41,46,56,58,64,65,79,80,82,86,89,91,93,95,96,100,101,102],"container\u4e2d":122,"core\u4e2d\u7684\u6a21\u578b\u8fd8\u5728\u4f7f\u7528\u8fd9\u4e2a\u53c2\u6570":72,"core\u4e2d\u8fd9\u4e00\u7c7b\u578b\u63a5\u53e3\u7684\u667a\u80fd\u6307\u9488":72,"core\u662f\u5426\u8fd8\u5728\u4f7f\u7528\u8fd9\u4e2a\u5b9e\u4f8b":72,"core\u6982\u5ff5":72,"cost\u63a5\u6536y_predict\u4e0ey\u4f5c\u4e3a\u8f93\u5165":110,"cost\u8fd8\u5927\u4e8e\u8fd9\u4e2a\u6570":109,"count\u4e2agpu\u4e0a\u4f7f\u7528\u6570\u636e\u5e76\u884c\u6765\u8ba1\u7b97\u67d0\u4e00\u5c42":131,"count\u548cgpu":131,"csr\u5b58\u50a8\u683c\u5f0f\u901a\u8fc7":115,"cuda\u5171\u4eabkernel\u5b9e\u73b0\u5728":101,"cuda\u5b9e\u73b0\u5171\u4eab\u540c\u4e00\u4e2a":101,"cuda\u5b9e\u73b0\u5728":101,"cuda\u5e93":129,"cuda\u7684\u4ee3\u7801\u53ef\u4ee5\u590d\u7528":101,"cuda\u76f8\u5173\u5e93\u4f1a\u5728\u9884\u6d4b\u7a0b\u5e8f\u8fd0\u884c\u65f6\u52a8\u6001\u88c5\u8f7d":113,"cudnn\u5e93":[27,129],"cumtime\u7684\u6bcf\u6b21\u8c03\u7528\u5e73\u5747\u65f6\u95f4":133,"data\u5230\u5206\u5e03\u5f0f\u5b58\u50a8\u8865\u5145\u8bad\u7ec3\u6570\u636e":38,"data\u63a5\u53e3\u5206\u914d\u5b9e\u9645\u7684\u5185\u5b58":102,"data\u76ee\u5f55\u4e2d\u5b58\u653e\u5207\u5206\u597d\u7684\u6570\u636e":123,"dataprovider\u5171\u8fd4\u56de\u4e24\u4e2a\u6570\u636e":137,"dataprovider\u5171\u8fd4\u56de\u4e24\u7ec4\u6570\u636e":137,"dataprovider\u7f13\u51b2\u6c60\u5185\u5b58":107,"decoder\u5faa\u73af\u5c55\u5f00\u7684\u6bcf\u4e00\u4e2a\u65f6\u95f4\u6b65\u4f1a\u5f15\u7528\u5168\u90e8\u7ed3\u679c":139,"decoder\u63a5\u53d7\u4e24\u4e2a\u8f93\u5165":139,"decoder\u6bcf\u6b21\u9884\u6d4b\u4ea7\u751f\u4e0b\u4e00\u4e2a\u6700\u53ef\u80fd\u7684\u8bcd\u8bed":139,"decoer\u67b6\u6784":139,"default":[2,3,4,5,6,7,9,10,11,17,18,19,22,25,31,34,35,45,47,51,60,64,70,73,74,82,83,89,90,91,94,97,121,122,123,131,142,145],"device\u5c31\u80fd\u62ff\u5230\u6b63\u786e\u7684\u6570\u636e":68,"dist\u76ee\u5f55\u4e0b\u751f\u6210\u8f93\u51fa\u7684whl\u5305":27,"dnn\u4e09\u8005\u5173\u7cfb\u5982\u4e0b\u8868":68,"dnn\u4e2d\u7684":68,"dnn\u4e2d\u7684\u6392\u5217\u65b9\u5f0f\u4e0d\u6b62\u8fd9\u4e00\u79cd":68,"dnn\u4f1a\u4f5c\u4e3a\u7b2c\u4e09\u65b9\u5e93\u96c6\u6210\u8fdbpaddlepaddl":68,"dnn\u4f1a\u7528\u5230":68,"dnn\u5171\u540c\u4f7f\u7528":68,"dnn\u524d\u540e\u7684cnn\u7f51\u7edc\u6027\u80fd":68,"dnn\u5728\u53d1\u5e03":68,"dnn\u5b9e\u73b0":68,"dnn\u5e0c\u671b\u7684\u683c\u5f0f":68,"dnn\u6570\u5b66\u5e93":27,"dnn\u6570\u636e\u7684\u4e0d\u540c\u683c\u5f0f\u4ee5\u53ca\u76f8\u4e92\u4e4b\u95f4\u7684\u8f6c\u6362":68,"dnn\u7684":68,"dnn\u7684\u5e93\u76ee\u524d\u53ea\u6709\u52a8\u6001\u5e93":68,"dnn\u7684\u6027\u80fd":68,"dnn\u7684\u60c5\u51b5\u4e0b":68,"dnn\u7684\u64cd\u4f5c\u90fd\u662f\u76f4\u63a5\u8986\u76d6\u7684\u5f62\u5f0f":68,"dnn\u7684\u6d4b\u8bd5":68,"dnn\u7684\u73af\u5883\u4e0b":68,"dnn\u7684\u76f8\u5173\u529f\u80fd":68,"dnn\u7684\u7ed3\u679c":68,"dnn\u7684\u9ad8\u6027\u80fd\u683c\u5f0f\u4e0epaddlepaddle\u539f\u6709\u7684":68,"dnn\u7684layer":68,"dnn\u7684layers\u90fd\u4f1a\u7ee7\u627f\u4e8e":68,"docker\u5b89\u88c5\u65b9\u5f0f\u53ef\u4ee5\u8fdb\u5165docker\u5bb9\u5668\u6267\u884c":127,"docker\u5b89\u88c5\u8bf7\u53c2\u8003":103,"docker\u5b89\u88c5\u8bf7\u53c2\u8003docker\u7684\u5b98\u7f51":103,"docker\u5b98\u7f51":28,"docker\u5bb9\u5668\u4e2d\u5c06\u9ed8\u8ba4\u4f7f\u7528":142,"docker\u7684\u5b98\u7f51":103,"docker\u7f16\u8bd1\u73af\u5883\u955c\u50cf\u5b8c\u6210\u7f16\u8bd1":27,"docker\u80fd\u5728\u6240\u6709\u4e3b\u8981\u64cd\u4f5c\u7cfb\u7edf":142,"docker\u955c\u50cf":28,"docker\u955c\u50cf\u4e3a\u4e86\u51cf\u5c0f\u4f53\u79ef":28,"docker\u955c\u50cf\u9ed8\u8ba4":28,"dockerhub\u7f51\u7ad9":28,"double\u7c7b\u578b\u65f6\u4e3a8":109,"dropout\u7684\u6bd4\u4f8b":100,"eigenscalar\u7684\u8f6c\u6362":102,"encode\u6210\u7684\u6700\u540e\u4e00\u4e2a\u5411\u91cf":137,"encoder\u548cdecoder\u53ef\u4ee5\u662f\u80fd\u591f\u5904\u7406\u5e8f\u5217\u7684\u4efb\u610f\u795e\u7ecf\u7f51\u7edc\u5355\u5143":139,"encoder\u8f93\u51fa":139,"entropy\u4f5c\u4e3acost":109,"enum":[39,41,47,73,80,81,90,91,97],"export":[28,57,62,103,104,117],"f\u4ee3\u8868\u4e00\u4e2a\u6d6e\u70b9\u6570":110,"fc1\u548cfc2\u5c42\u5728gpu\u4e0a\u8ba1\u7b97":131,"fc3\u5c42\u4f7f\u7528cpu\u8ba1\u7b97":131,"final":[4,5,18,32,33,48,62,74,75,92,96],"flatten\u65b9\u6cd5\u662f\u628apaddle\u4e2d\u7684\u4e00\u4e2atensor\u8fdb\u884creshape\u64cd\u4f5c":102,"float":[2,3,4,6,9,18,19,51,56,64,91,93,95,101,102,115,134],"float\u7b49":131,"forward\u7684output\u7684\u503c":107,"from\u65b9\u6cd5\u662f\u628apaddle\u4e2d\u7684\u4e00\u7ef4tensor\u8f6c\u4e3aeigen\u7684\u4e00\u7ef4tensor":102,"from\u662feigentensor\u6a21\u677f\u63d0\u4f9b\u7684\u4e00\u4e2a\u63a5\u53e3":102,"full\u53c2\u6570\u63d0\u4ea4":105,"function":[4,5,9,10,18,19,23,31,33,34,36,40,41,42,44,45,46,47,48,51,52,56,58,61,64,69,74,75,78,79,80,81,82,84,85,86,87,89,91,96,133,140,145],"function\u4f7f\u7528":108,"git\u6d41\u5206\u652f\u6a21\u578b":98,"github\u9996\u9875":98,"glibc\u81f3\u5c11\u5305\u542bglibc_2":30,"golang\u53ef\u4ee5\u4f7f\u7528":71,"golang\u7684":71,"google\u5f00\u6e90\u7684\u5bb9\u5668\u96c6\u7fa4\u7684\u8c03\u5ea6\u6846\u67b6":120,"gpu\u4e8c\u8fdb\u5236\u6587\u4ef6":27,"gpu\u5219\u8fd8\u9700\u8981\u9ad8\u5e76\u884c\u6027":134,"gpu\u6027\u80fd\u8c03\u4f18":132,"gpu\u6267\u884c":102,"gpu\u6838\u5728\u8bad\u7ec3\u914d\u7f6e\u4e2d\u6307\u5b9a":129,"gpu\u7684docker\u955c\u50cf\u7684\u65f6\u5019":104,"gpu\u7b49":88,"group\u6559\u7a0b":138,"group\u7684\u5b9e\u73b0\u65b9\u5f0f":108,"gru\u6216lstm":140,"h\u5e76\u4e0d\u56f0\u96be":71,"html\u5373\u53ef\u8bbf\u95ee\u672c\u5730\u6587\u6863":103,"i\u4ee3\u8868\u4e00\u4e2a\u6574\u6570":110,"id\u6307\u5b9a\u4f7f\u7528\u54ea\u4e2agpu\u6838":129,"id\u6307\u5b9a\u7684gpu":131,"id\u65e0\u6548":129,"image\u91cc":122,"images\u6570\u636e\u96c6\u4e0a\u4f20\u5230\u4e91\u7aef\u7684":38,"imikolov\u6570\u636e\u96c6":117,"import":[3,4,30,31,34,35,45,47,50,58,60,62,63,69,74,75,81,89,92,101,110,112,116,117,121],"infer\u63a5\u53e3\u7684\u8fd4\u56de\u503c\u662f\u4e00\u4e2apython":107,"ingress\u9700\u8981\u628apfsclient\u7684\u8eab\u4efd\u4fe1\u606f\u4f20\u7ed9pfsserv":54,"instance\u4e0e\u751f\u6210\u6570\u636e\u96c6\u65f6":38,"instance\u5305\u6db5\u4e24\u4e2a\u503c":38,"instance\u662f\u4e00\u6a21\u4e00\u6837\u7684":38,"int":[2,3,4,5,9,10,11,18,19,33,34,39,40,41,44,45,47,49,63,64,67,68,69,71,72,80,81,83,84,90,91,93,96,97,100,102,115,117,131],"interface\u6587\u4ef6\u7684\u5199\u6cd5\u975e\u5e38":71,"ios\u5e73\u53f0\u53ef\u9009\u914d\u7f6e\u53c2\u6570":143,"ip\u548c\u4efb\u52a1\u8282\u70b9\u4e2a\u6570\u7b49":120,"issue\u7f16\u53f7":98,"job\u662f\u672c\u6b21\u8bad\u7ec3\u5bf9\u5e94\u7684job":123,"job\u7684\u540d\u5b57":123,"kernel\u5b9e\u73b0":101,"kernel\u6ce8\u518ccpu\u5b9e\u73b0\u5728":101,"kernel\u7684\u5b9e\u73b0\u57fa\u4e8eeigen":101,"kubernetes\u4e3a\u8fd9\u6b21\u8bad\u7ec3\u521b\u5efa\u4e863\u4e2apod\u5e76\u4e14\u8c03\u5ea6\u5230\u4e863\u4e2anode\u4e0a\u8fd0\u884c":123,"kubernetes\u5206\u5e03\u5f0f\u8bad\u7ec3":120,"kubernetes\u5355\u673a\u8bad\u7ec3":120,"kubernetes\u53ef\u4ee5\u901a\u8fc7yaml\u6587\u4ef6\u6765\u521b\u5efa\u76f8\u5173\u5bf9\u8c61":123,"kubernetes\u5c31\u4f1a\u521b\u5efa3\u4e2apod\u4f5c\u4e3apaddlepaddle\u8282\u70b9\u7136\u540e\u62c9\u53d6\u955c\u50cf":123,"kubernetes\u6709job\u7c7b\u578b\u7684\u8d44\u6e90\u6765\u652f\u6301":122,"label\u662f\u539f\u59cb\u6570\u636e\u4e2d\u5bf9\u4e8e\u6bcf\u4e00\u53e5\u8bdd\u7684\u5206\u7c7b\u6807\u7b7e":137,"labels\u662f\u6bcf\u7ec4\u5185\u6bcf\u4e2a\u53e5\u5b50\u7684\u6807\u7b7e":137,"layer1\u5fc5\u987b\u662f\u4e00\u4e2a0\u5c42\u5e8f\u5217":136,"layer1\u5fc5\u987b\u662f\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":136,"layer\u4f5c\u4e3a\u4e00\u4e2a\u6574\u4f53\u6765\u5b9e\u73b0":108,"layer\u62ff\u5230\u7684\u7528\u6237\u8f93\u5165":139,"layer\u65f6":[68,108],"layer\u662f\u6211\u4eec\u7684\u79ef\u6728":110,"layer\u7684\u540e\u9762\u63a5\u6709cpu":68,"layer\u7c7b\u53ef\u4ee5\u81ea\u52a8\u8ba1\u7b97\u4e0a\u9762\u7684\u5bfc\u6570":100,"layer\u8ba1\u7b97\u7684\u8f93\u51fa":108,"linux\u4e2d":28,"list\u4e2d":116,"list\u4f5c\u4e3a\u68c0\u67e5\u5217\u8868":88,"list\u5982\u4e0b\u6240\u793a":131,"list\u6307\u5b9a\u6d4b\u8bd5\u7684\u6a21\u578b\u5217\u8868":131,"long":[4,5,9,18,47],"memory\u4e0d\u80fd\u72ec\u7acb\u5b58\u5728":139,"memory\u4e5f\u53ef\u4ee5\u5177\u6709":140,"memory\u4e5f\u53ef\u4ee5\u662f\u5e8f\u5217":140,"memory\u53ea\u80fd\u5728":139,"memory\u53ef\u4ee5\u7f13\u5b58\u4e0a\u4e00\u4e2a\u65f6\u523b\u67d0\u4e00\u4e2a\u795e\u7ecf\u5143\u7684\u8f93\u51fa":137,"memory\u6307\u5411\u4e00\u4e2alay":139,"memory\u662f\u5728\u5355\u6b65\u51fd\u6570\u4e2d\u5faa\u73af\u4f7f\u7528\u7684\u72b6\u6001":140,"memory\u662fpaddlepaddle\u5b9e\u73b0rnn\u65f6\u5019\u4f7f\u7528\u7684\u4e00\u4e2a\u6982\u5ff5":137,"memory\u7684":140,"memory\u7684\u521d\u59cb\u72b6\u6001":139,"memory\u7684\u65f6\u95f4\u5e8f\u5217\u957f\u5ea6\u4e00\u81f4\u7684\u60c5\u51b5":137,"memory\u7684\u66f4\u591a\u8ba8\u8bba\u8bf7\u53c2\u8003\u8bba\u6587":139,"memory\u7684\u8f93\u51fa\u5b9a\u4e49\u5728":140,"memory\u7684i":139,"memory\u9ed8\u8ba4\u521d\u59cb\u5316\u4e3a0":139,"mkl\u5e93\u7684":67,"mklml\u4ee5\u53camkl":68,"mklml\u53ef\u4ee5\u4e0emkl":68,"mklml\u7684\u5e93\u76ee\u524d\u90fd\u662f\u52a8\u6001\u5e93":68,"mnist\u624b\u5199\u6570\u5b57\u8bc6\u522b\u76ee\u5f55":116,"mode\u4e0b\u7684\u7ed3\u679c":67,"model\u505a\u5206\u652f\u7ba1\u7406":88,"name\u7ec4\u5408\u53ef\u4ee5\u627e\u5230\u672c\u6b21\u8bad\u7ec3\u9700\u8981\u7684\u6587\u4ef6\u8def\u5f84":123,"ndarray\u7c7b\u578b\u7684\u503c\u548c\u6574\u578b\u7684\u503c":38,"ndk\u4e2d\u5305\u542b\u4e86\u6240\u6709android":142,"new":[4,9,18,32,33,34,35,36,39,40,41,42,43,46,47,48,51,56,57,66,67,69,73,75,78,83,84,85,87,91,92,96,98,100,121,145],"note\u7684\u4e66\u5199":88,"null":[62,100,115,129],"num\u51b3\u5b9a\u603b\u7aef\u53e3\u4e2a\u6570":117,"num_gradient_servers\u53c2\u6570":123,"num_samples_processed\u4e3a\u5df2\u8bad\u7ec3\u6837\u672c\u6570":109,"only\u7684\u4e8c\u8fdb\u5236":27,"op\u4e0d\u9700\u8981\u5b9a\u4e49opprotomak":101,"op\u5355\u5143\u6d4b\u8bd5\u7ee7\u627f\u81ea":101,"op\u5b9a\u4e49":101,"op\u6709\u8ba1\u7b97\u51fd\u6570":101,"op\u6ce8\u518c\u5b9e\u73b0\u5728":101,"op\u7684\u4fe1\u606f":68,"op\u8ba1\u7b97\u51fd\u6570\u7684\u57fa\u7c7b":101,"openmp\u7528\u4e8e\u63d0\u9ad8mklml\u7684\u6027\u80fd":68,"opprotomake\u5b9a\u4e49":101,"org\u5de5\u5177\u7684\u8be6\u7ec6\u4fe1\u606f":103,"org\u76ee\u524d\u9075\u5faa":88,"outer_mem\u662f\u4e00\u4e2a\u5b50\u53e5\u7684\u6700\u540e\u4e00\u4e2a\u5411\u91cf":137,"output\u53ef\u4ee5\u662f\u4efb\u610f\u7ef4\u5ea6\u7684tensor":102,"output\u6587\u4ef6\u5939\u5b58\u653e\u8bad\u7ec3\u7ed3\u679c\u4e0e\u65e5\u5fd7":123,"output\u7684\u539f\u6709shape\u4fe1\u606f\u4e0d\u53d8":102,"packages\u91cc\u9762":104,"packages\u91cc\u9762\u7684python\u5305":104,"packed\u4f18\u5316\u540elayer\u7684\u6d4b\u8bd5":67,"packed\u76f8\u5173\u529f\u80fd":67,"paddepaddle\u901a\u8fc7\u7f16\u8bd1\u65f6\u6307\u5b9a\u8def\u5f84\u6765\u5b9e\u73b0\u5f15\u7528\u5404\u79cdbla":27,"paddle\u4e00\u4e2a\u52a8\u6001\u5e93\u53ef\u4ee5\u5728\u4efb\u4f55linux\u7cfb\u7edf\u4e0a\u8fd0\u884c":71,"paddle\u4e2d\u7ecf\u5e38\u4f1a\u5c06\u65f6\u95f4\u5e8f\u5217\u6210\u4e3a":137,"paddle\u4e8c\u8fdb\u5236\u5728\u8fd0\u884c\u65f6\u6355\u83b7\u4e86\u6d6e\u70b9\u6570\u5f02\u5e38":107,"paddle\u5185\u5d4c\u7684python\u89e3\u91ca\u5668\u548c\u5916\u90e8\u4f7f\u7528\u7684python\u5982\u679c\u7248\u672c\u4e0d\u540c":71,"paddle\u5185\u90e8\u7684\u7c7b\u4e3ac":71,"paddle\u7684\u591a\u8bed\u8a00\u63a5\u53e3\u5b9e\u73b0\u5305\u62ec\u4e00\u4e0b\u51e0\u4e2a\u65b9\u9762":71,"paddle\u7684\u7c7b\u578b\u5168\u90e8\u9000\u5316\u6210":72,"paddle\u7684\u94fe\u63a5\u65b9\u5f0f\u6bd4\u8f83\u590d\u6742":71,"paddle\u7684c":72,"paddle\u8bad\u7ec3\u4efb\u52a1":38,"paddle\u8def\u5f84\u4e0b":72,"paddle\u9700\u8981\u4e00\u4e2a\u591a\u8bed\u8a00\u63a5\u53e3":71,"paddle\u9700\u8981\u66b4\u9732\u7684api\u5f88\u591a":72,"paddle\u9759\u6001\u5e93\u94fe\u63a5\u590d\u6742":71,"paddle_\u7c7b\u578b\u540d":72,"paddle_\u7c7b\u578b\u540d_\u51fd\u6570\u540d":72,"paddlepaddle\u4e2d":[136,139],"paddlepaddle\u4e2d\u4e00\u4e2a\u8ba1\u7b97\u5c42\u7684\u8f93\u51fa\u6570\u636e\u7ec4\u7ec7\u65b9\u5f0f\u548c\u8f93\u5165\u6570\u636e\u7ec4\u7ec7\u65b9\u5f0f\u5b8c\u5168\u76f8\u540c":115,"paddlepaddle\u4e2d\u7684\u8bb8\u591alayer\u5e76\u4e0d\u5728\u610f\u8f93\u5165\u662f\u5426\u662f\u65f6\u95f4\u5e8f\u5217":137,"paddlepaddle\u4e2d\u7684cudnn\u90e8\u5206\u4f7f\u7528\u7684\u4e5f\u662f":68,"paddlepaddle\u4e2d\u795e\u7ecf\u7f51\u7edc\u8ba1\u7b97\u5c42\u8f93\u5165":115,"paddlepaddle\u4e2d\u8fd8\u5305\u542b":108,"paddlepaddle\u4e2d\u901a\u8fc7reader\u6765\u52a0\u8f7d\u6570\u636e":110,"paddlepaddle\u4e3a\u4ea4\u53c9\u7f16\u8bd1\u63d0\u4f9b\u4e86\u5de5\u5177\u94fe\u914d\u7f6e\u6587\u6863":[142,143],"paddlepaddle\u4e3a\u6df1\u5ea6\u5b66\u4e60\u7814\u7a76\u4eba\u5458\u63d0\u4f9b\u4e86\u4e30\u5bcc\u7684api":110,"paddlepaddle\u4e3ano":28,"paddlepaddle\u4e3b\u8981\u4f7f\u7528":27,"paddlepaddle\u4f1a\u81ea\u52a8\u8bbe\u5b9a":108,"paddlepaddle\u4f7f\u7528\u540c\u6b65\u5c4f\u969c":118,"paddlepaddle\u4f7f\u7528\u5747\u503c0":109,"paddlepaddle\u4f7f\u7528avx":104,"paddlepaddle\u4f7f\u7528git":88,"paddlepaddle\u4fdd\u5b58\u7684\u6a21\u578b\u53c2\u6570\u6587\u4ef6\u5185\u5bb9\u753116\u5b57\u8282\u5934\u4fe1\u606f\u548c\u7f51\u7edc\u53c2\u6570\u4e24\u90e8\u5206\u7ec4\u6210":109,"paddlepaddle\u4fdd\u5b58\u7684\u6a21\u578b\u53c2\u6570\u6587\u4ef6\u524d16\u5b57\u8282\u4e3a\u5934\u4fe1\u606f":109,"paddlepaddle\u53d1\u5e03\u7684\u5b89\u88c5\u5305\u4f1a\u5c3d\u91cf\u5bf9\u9f50":30,"paddlepaddle\u53ef\u4ee5\u4f7f\u7528\u591a\u79cd\u5206\u5e03\u5f0f\u8ba1\u7b97\u5e73\u53f0\u6784\u5efa\u5206\u5e03\u5f0f\u8ba1\u7b97\u4efb\u52a1":120,"paddlepaddle\u53ef\u4ee5\u4f7f\u7528\u5e38\u7528\u7684python\u5305\u7ba1\u7406\u5de5\u5177":30,"paddlepaddle\u53ef\u4ee5\u4f7f\u7528cudnn":27,"paddlepaddle\u53ef\u4ee5\u540c\u65f6\u652f\u6301\u540c\u6b65\u968f\u673a\u68af\u5ea6\u4e0b\u964d":118,"paddlepaddle\u53ef\u4ee5\u6bd4\u8f83\u7b80\u5355\u7684\u5224\u65ad\u54ea\u4e9b\u8f93\u51fa\u662f\u5e94\u8be5\u8de8\u8d8a\u65f6\u95f4\u6b65\u7684":137,"paddlepaddle\u53ef\u4ee5\u901a\u8fc7\u8be5\u673a\u5236\u5224\u65ad\u662f\u5426\u5df2\u7ecf\u6536\u96c6\u9f50\u6240\u6709\u7684\u68af\u5ea6":100,"paddlepaddle\u5728\u5b9e\u73b0rnn\u7684\u65f6\u5019":137,"paddlepaddle\u5728\u6fc0\u6d3b\u51fd\u6570\u91cc\u5b9e\u73b0dropout":108,"paddlepaddle\u5728\u7f16\u8bd1\u65f6":27,"paddlepaddle\u5b58\u7684\u662f\u6709\u503c\u4f4d\u7f6e\u7684\u7d22\u5f15":110,"paddlepaddle\u5b89\u88c5\u5305\u7531\u4e8e\u4e0d\u4ec5\u4ec5\u5305\u542b":30,"paddlepaddle\u5c06\u4f1a\u6839\u636e":143,"paddlepaddle\u5c06\u4f1a\u81ea\u52a8\u9009\u62e9":143,"paddlepaddle\u5c06\u6839\u636e":142,"paddlepaddle\u5c06\u81ea\u52a8\u4e0b\u8f7d\u548c\u7f16\u8bd1\u6240\u6709\u7b2c\u4e09\u65b9\u4f9d\u8d56\u5e93":[142,143,144],"paddlepaddle\u5e93\u5df2\u7ecf\u5b89\u88c5\u5b8c\u6210":143,"paddlepaddle\u5f00\u53d1\u8fc7\u7a0b\u4f7f\u7528":88,"paddlepaddle\u63d0\u4f9b":29,"paddlepaddle\u63d0\u4f9b\u4e13\u7528\u7684":38,"paddlepaddle\u63d0\u4f9b\u7684":108,"paddlepaddle\u652f\u6301":27,"paddlepaddle\u652f\u6301\u4e0d\u540c\u7c7b\u578b\u7684\u8f93\u5165\u6570\u636e":110,"paddlepaddle\u652f\u6301\u4f7f\u7528pip\u5feb\u901f\u5b89\u88c5":112,"paddlepaddle\u652f\u6301\u975e\u5e38\u591a\u7684\u4f18\u5316\u7b97\u6cd5":107,"paddlepaddle\u652f\u6301sparse\u7684\u8bad\u7ec3":107,"paddlepaddle\u6587\u6863\u4f7f\u7528":103,"paddlepaddle\u662f\u6e90\u4e8e\u767e\u5ea6\u7684\u4e00\u4e2a\u6df1\u5ea6\u5b66\u4e60\u5e73\u53f0":110,"paddlepaddle\u6bcf\u6b21\u53d1\u65b0\u7684\u7248\u672c":88,"paddlepaddle\u6bcf\u6b21\u53d1\u7248\u672c\u9996\u5148\u8981\u4fdd\u8bc1paddlepaddl":88,"paddlepaddle\u7684":122,"paddlepaddle\u7684\u4e3b\u7248\u672c\u5e93\u9075\u5faa":88,"paddlepaddle\u7684\u5185\u5b58\u5360\u7528\u4e3b\u8981\u5206\u4e3a\u5982\u4e0b\u51e0\u4e2a\u65b9\u9762":107,"paddlepaddle\u7684\u53c2\u6570\u4f7f\u7528\u540d\u5b57":109,"paddlepaddle\u7684\u5404\u7248\u672c\u955c\u50cf\u53ef\u4ee5\u53c2\u8003":122,"paddlepaddle\u7684\u5b89\u88c5\u53ef\u4ee5\u53c2\u8003":127,"paddlepaddle\u7684\u5df2\u7ecf\u5b89\u88c5\u5b8c\u6210":142,"paddlepaddle\u7684\u6240\u6709layer\u90fd\u6709\u552f\u4e00\u7684nam":108,"paddlepaddle\u7684\u6587\u6863\u5305\u62ec\u82f1\u6587\u6587\u6863":103,"paddlepaddle\u7684\u6587\u6863\u6784\u5efa\u6709\u4e09\u79cd\u65b9\u5f0f":103,"paddlepaddle\u7684\u6e90\u7801":98,"paddlepaddle\u7684\u7f16\u8bd1\u9009\u9879":27,"paddlepaddle\u7684activation\u4f1a\u76f4\u63a5\u4f7f\u7528":68,"paddlepaddle\u7684bas":100,"paddlepaddle\u7684c":142,"paddlepaddle\u7684cmake\u7cfb\u7edf\u4f1a\u81ea\u52a8\u7f16\u8bd1\u6240\u6709\u7684\u7b2c\u4e09\u65b9\u4f9d\u8d56\u5e93":143,"paddlepaddle\u7684cmake\u7cfb\u7edf\u5c06\u6839\u636e\u8be5\u503c\u81ea\u52a8\u63a8\u5bfc\u548c\u8bbe\u7f6e\u9700\u8981\u4f7f\u7528\u7684\u4ea4\u53c9\u7f16\u8bd1\u5668":142,"paddlepaddle\u7684cmake\u7cfb\u7edf\u5c06\u6839\u636e\u8be5\u503c\u81ea\u52a8\u8bbe\u7f6e\u9700\u8981\u4f7f\u7528\u7684\u4ea4\u53c9\u7f16\u8bd1\u5668":144,"paddlepaddle\u7684cmake\u7cfb\u7edf\u624d\u8ba4\u4e3a\u5728\u662f\u5728\u4ea4\u53c9\u7f16\u8bd1raspberri":144,"paddlepaddle\u7684cmake\u7cfb\u7edf\u624d\u8ba4\u4e3a\u662f\u5728\u4ea4\u53c9\u7f16\u8bd1android\u7cfb\u7edf\u7684\u7248\u672c":142,"paddlepaddle\u7684dock":122,"paddlepaddle\u7684softmax\u4e0d\u80fd\u6307\u5b9a\u8ba1\u7b97\u7ef4\u5ea6":108,"paddlepaddle\u76ee\u524d\u53ea\u652f\u6301\u5728\u6bcf\u4e2a\u65f6\u95f4\u6b65\u4e2d":137,"paddlepaddle\u76ee\u524d\u63d0\u4f9b\u4e24\u79cd\u53c2\u6570\u521d\u59cb\u5316\u7684\u65b9\u5f0f":109,"paddlepaddle\u76ee\u524d\u652f\u63018\u79cdlearning_rate_schedul":109,"paddlepaddle\u7f16\u8bd1\u9700\u8981\u4f7f\u7528\u5230\u4e0b\u9762\u7684\u4f9d\u8d56":27,"paddlepaddle\u82e5\u68c0\u6d4b\u5230\u7528\u6237\u4f7f\u7528\u7684cmake\u7248\u672c\u4e0d\u4f4e\u4e8e3":142,"paddlepaddle\u8d1f\u8d23\u5b8c\u6210\u4fe1\u606f\u548c\u68af\u5ea6\u5728\u65f6\u95f4\u5e8f\u5217\u4e0a\u7684\u4f20\u64ad":139,"paddlepaddle\u8d1f\u8d23\u5b8c\u6210\u4fe1\u606f\u548c\u8bef\u5dee\u5728\u65f6\u95f4\u5e8f\u5217\u4e0a\u7684\u4f20\u64ad":139,"paddlepaddle\u955c\u50cf\u9700\u8981\u63d0\u4f9b":123,"pass\u4e2a\u6a21\u578b\u5230\u7b2c":129,"pass\u5c06\u4e0d\u8d77\u4f5c\u7528":129,"pass\u8f6e\u5f00\u59cb\u8bad\u7ec3":129,"pass\u8f6e\u7684\u6a21\u578b\u7528\u4e8e\u6d4b\u8bd5":129,"passes\u8f6e":129,"patch\u53f7":88,"patch\u53f7\u52a0\u4e00":88,"path\u6307\u5b9a\u6d4b\u8bd5\u7684\u6a21\u578b":131,"perftools\u6765\u8fdb\u884c\u6027\u80fd\u5206\u6790":133,"period\u4e2a\u6279\u6b21\u5bf9\u6240\u6709\u6d4b\u8bd5\u6570\u636e\u8fdb\u884c\u6d4b\u8bd5":129,"period\u4e2a\u6279\u6b21\u6253\u5370\u65e5\u5fd7\u8fdb\u5ea6":129,"period\u4e2a\u6279\u6b21\u8f93\u51fa\u53c2\u6570\u7edf\u8ba1":129,"period\u4e2a\u6279\u6b21\u8f93\u51fa\u7b26\u53f7":129,"period\u6574\u9664":129,"period\u8f6e\u4fdd\u5b58\u8bad\u7ec3\u53c2\u6570":129,"pfsclient\u9700\u8981\u548cingress\u4e4b\u95f4\u505a\u53cc\u5411\u9a8c\u8bc1":54,"pfsclient\u9700\u8981\u5728\u4f20\u8f93\u5b8c\u6bd5\u6700\u540e\u4e00\u4e2achunk\u7684\u65f6\u5019\u68c0\u67e5destination\u6587\u4ef6\u7684md5\u503c\u662f\u5426\u548csource\u6587\u4ef6\u4e00\u81f4":54,"pfsserver\u63d0\u4f9brest":54,"pi\u5e73\u53f0\u4e0a\u9002\u7528\u7684paddlepaddle\u7684\u65b9\u6cd5\u548c\u6b65\u9aa4":144,"pi\u7248\u672c\u7684\u5e93":144,"pi\u7248\u672cpaddlepaddle\u5e93\u65f6":144,"pi\u7684\u914d\u7f6e\u4fe1\u606f\u5728":144,"pi\u7cfb\u7edf\u4e0a\u6765\u6784\u5efa":144,"pi\u7cfb\u7edf\u7684\u7248\u672c":144,"pip\u548cdocker\u7684\u5b89\u88c5\u65b9\u5f0f":29,"pserver\u5730\u5740\u7b49\u53c2\u6570\u4f7ftrainer\u53ef\u4ee5\u6b63\u786e\u8fde\u63a5\u5230pserv":117,"pserver\u76d1\u542c\u7684\u8d77\u59cb\u7aef\u53e3":117,"public":[10,18,34,46,56,59,64,80,86,89,91,92,93,96,100,101,102,121,122],"pwd\u53d8\u91cf\u4f1a\u5c55\u5f00\u4e3a\u5f53\u524d\u8def\u5f84\u7684\u7edd\u5bf9\u8def\u5f84":28,"py\u4e2d":88,"py\u7a0b\u5e8f":30,"pydataprovider\u4f7f\u7528\u7684\u662f\u5f02\u6b65\u52a0\u8f7d":107,"pypi\u4e0a\u7684package\u540d\u79f0\u4e3apaddlepaddle\u548cpaddlepaddl":88,"pypi\u4e0d\u652f\u6301\u8986\u76d6\u4e0a\u4f20":88,"pypi\u5b89\u88c5\u5305\u53ef\u4ee5\u5728":30,"python\u5b89\u88c5\u5305\u652f\u6301linux":104,"python\u5c01\u88c5\u7684\u5b9e\u73b0\u4f7f\u5f97\u6211\u4eec\u53ef\u4ee5\u5728\u914d\u7f6e\u6587\u4ef6\u4e2d\u4f7f\u7528\u65b0\u5b9e\u73b0\u7684\u7f51\u7edc\u5c42":100,"python\u5e93yep":133,"python\u6807\u51c6\u5e93\u4e2d\u63d0\u4f9b\u4e86\u6027\u80fd\u5206\u6790\u7684\u5de5\u5177\u5305":133,"reader\u7684\u4f7f\u7528\u65b9\u5f0f\u90fd\u662f\u4e00\u81f4\u7684":38,"reader\u8f93\u51fa\u7684data":38,"recommendation\u6587\u4ef6\u5939\u5185\u5b58\u653e\u8bad\u7ec3\u6587\u4ef6":123,"request\u524d":98,"request\u7684":98,"request\u88ab\u5408\u5e76\u540e":98,"resnet\u7684mkl":68,"return":[2,4,5,7,9,10,11,17,18,23,25,31,32,33,34,38,39,41,44,45,46,47,52,56,58,59,60,62,64,65,66,69,74,75,76,80,81,82,86,89,91,93,96,100,102,107,109,110,121,123,140],"rnn\u5373\u65f6\u95f4\u9012\u5f52\u795e\u7ecf\u7f51\u7edc":137,"rnn\u5bf9\u4e8e\u6bcf\u4e00\u4e2a\u65f6\u95f4\u6b65\u901a\u8fc7\u4e86\u4e00\u4e2alstm\u7f51\u7edc":137,"rnn\u603b\u662f\u5f15\u7528\u4e0a\u4e00\u65f6\u523b\u9884\u6d4b\u51fa\u7684\u8bcd\u7684\u8bcd\u5411\u91cf":139,"rnn\u6a21\u578b":132,"rnn\u90e8\u5206\u4e2d":67,"rnn\u914d\u7f6e":138,"root\u66ff\u6362\u4e3apaddlepaddle\u9884\u6d4b\u5e93\u7684\u5b89\u88c5\u8def\u5f84":113,"s3\u4e4b\u7c7b\u7684\u5206\u5e03\u5f0f\u5b58\u50a8\u4e4b\u4e0a":38,"search\u7684\u65b9\u6cd5":129,"sentences\u662f\u53cc\u5c42\u65f6\u95f4\u5e8f\u5217\u7684\u6570\u636e":137,"seq\u53c2\u6570\u5fc5\u987b\u4e3afals":139,"server\u4e2a\u6279\u6b21\u6253\u5370\u65e5\u5fd7\u8fdb\u5ea6":129,"server\u4e4b\u4e0a":37,"server\u4e4b\u95f4\u7684\u7f51\u7edc\u5e26\u5bbd":37,"server\u4f1a\u6682\u505c\u53c2\u6570\u66f4\u65b0\u5e76\u7b49\u5f85":37,"server\u4f1a\u83b7\u53d6parameters\u5185\u5b58\u7684":37,"server\u5185\u5b58\u4e2d\u7684\u6a21\u578b\u6570\u636e\u7684\u5b8c\u6574\u955c\u50cf":37,"server\u540c\u6b65\u7684\u4fdd\u5b58\u4e00\u4e2a\u7279\u5b9a\u65f6\u95f4\u70b9\u7684\u5168\u5c40\u68c0\u67e5\u70b9":37,"server\u5728\u96c6\u7fa4\u4e2d\u542f\u52a8\u540e":37,"server\u6545\u969c\u540e\u88abkubernetes\u91cd\u65b0\u542f\u52a8":37,"server\u6b64\u65f6\u8fd8\u9700\u8981\u901a\u8fc7\u7f51\u7edc\u8bbf\u95ee\u5206\u5e03\u5f0f\u5b58\u50a8\u4ee5\u4fdd\u5b58\u5feb\u7167":37,"server\u751f\u6210\u4e00\u4e2auuid":37,"server\u7684\u5355\u70b9\u6216\u591a\u70b9\u540c\u65f6\u6545\u969c":37,"server\u7684\u6570\u636e\u5feb\u7167":37,"server\u7684\u68c0\u67e5\u70b9\u5404\u81ea\u72ec\u7acb\u4fdd\u5b58":37,"server\u7b2c\u4e00\u6b21\u542f\u52a8\u6216\u4efb\u610f\u65f6\u95f4paramet":37,"short":[4,5,56,60,83,89,92,96],"simd\u6307\u4ee4\u63d0\u9ad8cpu\u6267\u884c\u6548\u7387":104,"size\u4e3a512":129,"size\u53ef\u80fd\u4f1a\u5bf9\u8bad\u7ec3\u7ed3\u679c\u4ea7\u751f\u5f71\u54cd":107,"size\u672c\u8eab\u662f\u795e\u7ecf\u7f51\u7edc\u7684\u8d85\u53c2\u6570":107,"softmax\u6fc0\u6d3b\u7684\u8f93\u51fa\u7684\u548c\u603b\u662f1":100,"sparse\u8bad\u7ec3\u9700\u8981\u8bad\u7ec3\u7279\u5f81\u662f":107,"static":[25,41,72,89,91,121,145],"step\u51fd\u6570\u4e2d\u7684memori":139,"step\u51fd\u6570\u5185\u90e8\u53ef\u4ee5\u81ea\u7531\u7ec4\u5408paddlepaddle\u652f\u6301\u7684\u5404\u79cdlay":139,"store\u4e0b\u8f7d\u5b89\u88c5xcode\u5373\u53ef":143,"subseq\u7684\u6bcf\u4e2a\u5143\u7d20\u662f\u4e00\u4e2a0\u5c42\u5e8f\u5217":136,"super":[83,100],"swig\u652f\u6301\u7684\u8bed\u8a00\u6216\u8005\u89e3\u91ca\u5668\u6709\u5c40\u9650":71,"swig\u66b4\u9732\u7684\u63a5\u53e3\u4fdd\u7559\u4e86c":71,"swig\u751f\u6210\u7684\u4ee3\u7801\u4e0d\u80fd\u4fdd\u8bc1\u591a\u8bed\u8a00\u4ee3\u7801\u98ce\u683c\u7684\u4e00\u81f4\u6027":71,"swig\u76f4\u63a5\u8bfb\u53d6c":71,"swig\u9700\u8981\u5199\u4e00\u4e2ainterface\u6587\u4ef6":71,"switch":[34,72,121],"tag\u4e3a":88,"tag\u53ef\u4ee5\u662flatest\u6216latest":88,"tag\u7684\u66f4\u65b0\u65f6\u95f4\u662f\u5426\u5728\u4e0a\u8ff0\u7f16\u8bd1wheel\u5305\u5b8c\u6210\u540e\u662f\u5426\u6700\u65b0":88,"tensor\u5230\u5bf9eigentensor\u7684\u8f6c\u6362":102,"tensor\u5230eigentensor":102,"tensor\u5b9a\u4e49\u5728framework\u76ee\u5f55\u4e0b":102,"tensor\u662f\u4e00\u4e2a\u6b63\u5728\u5f00\u53d1\u4e2d\u7684\u6a21\u5757":102,"tensor\u6a21\u5757\u5bf9el":102,"tensor\u6a21\u5757\u6765\u5b9e\u73b0":101,"tensor\u6a21\u5757\u7684\u6587\u6863\u8f83\u5c11":102,"tensor\u6a21\u5757\u7684\u8be6\u7ec6\u4ecb\u7ecd\u8bf7\u53c2\u8003":102,"tests\u7684paddlepaddl":98,"tflops\u4e86":134,"throw":121,"tottime\u7684\u6bcf\u6b21\u8c03\u7528\u5e73\u5747\u65f6\u95f4":133,"trainer\u542f\u52a8\u9700\u8981\u4f20\u5165\u7aef\u53e3":117,"trainer\u63a5\u6536\u4e09\u4e2a\u53c2\u6570":110,"trainer\u8282\u70b9\u4e2a\u6570":117,"trainer\u9700\u8981\u548cpserver\u4fdd\u6301\u7f51\u7edc\u8054\u901a\u4ee5\u5b8c\u6210\u8bad\u7ec3":117,"true":[2,3,4,5,6,7,9,10,11,17,18,19,21,25,31,33,34,39,57,63,67,76,81,82,83,84,88,91,96,100,107,109,115,116,121,123,131,140],"true\u8868\u793a\u53cd\u5411\u5faa\u73af\u795e\u7ecf\u7f51\u7edc":140,"try":[35,36,39,40,41,57,62,66,69,84,89,92,104],"type\u5b57\u6bb5\u5747\u4e0d\u5c3d\u76f8\u540c":72,"type\u6307\u5b9a\u4e3a":133,"ubuntu\u4e0b\u5b89\u88c5\u547d\u4ee4\u4e3a":133,"unit\u5728\u4e00\u4e2a\u65f6\u95f4\u6b65\u5185\u8ba1\u7b97\u5f97\u5230\u7684\u4e2d\u95f4\u503c":108,"unsupported\u6a21\u5757":101,"update\u53c2\u6570\u65f6\u624d\u6709\u6548":129,"v1\u7248\u672c":104,"var":[17,18,33,34,45,46,47,51,58,59,61,63,76,81,82,83,85,89,94,95,96,103],"vector\u662frank\u4e3a1\u7684tensor":102,"void":[34,39,41,46,53,56,58,59,64,69,70,71,72,81,82,90,91,93,95,100,101,102],"wheel\u5305":88,"while":[2,4,9,34,43,46,47,57,62,65,66,75,78,79,84,87,89,93,123],"wise\u8ba1\u7b97\u63d0\u4f9b\u4e86\u5f3a\u5927\u7684\u652f\u6301":102,"wmt14\u6570\u636e\u7684\u63d0\u4f9b\u6587\u4ef6\u5728":140,"words\u5373\u4e3a\u8fd9\u4e2a\u6570\u636e\u4e2d\u7684\u5355\u5c42\u65f6\u95f4\u5e8f\u5217":137,"words\u662f\u539f\u59cb\u6570\u636e\u4e2d\u7684\u6bcf\u4e00\u53e5\u8bdd":137,"x86_64\u548cmaco":104,"x\u4e0ey\u4e3a\u4e4b\u524d\u63cf\u8ff0\u7684\u8f93\u5165\u5c42":110,"x\u548cwindow":142,"y\u8868\u793a\u8f93\u5165\u6570\u636e\u662f\u4e00\u4e2a\u7ef4\u5ea6\u4e3a1\u7684\u7a20\u5bc6\u5411\u91cf":110,"yaml\u6587\u4ef6\u4e2d\u5404\u4e2a\u5b57\u6bb5\u7684\u5177\u4f53\u542b\u4e49":123,"yaml\u6587\u4ef6\u63cf\u8ff0\u4e86\u8fd9\u6b21\u8bad\u7ec3\u4f7f\u7528\u7684docker\u955c\u50cf":123,"zero\u4e09\u79cd\u64cd\u4f5c":129,AGE:[121,122],AWS:[9,38,120,125,126],Abs:18,Added:92,And:[3,4,6,9,10,11,18,25,39,43,44,53,60,62,73,77,80,84,89,93,121],But:[4,5,9,18,32,59,65,73,80,89,104,145],EOS:4,For:[3,4,5,6,9,18,25,31,33,34,40,41,42,44,45,46,48,51,52,57,58,59,61,64,66,70,73,74,75,78,79,80,81,82,83,84,85,86,87,90,91,92,93,95,97,134,145],IDE:26,IDs:[10,18,43,47,75],IRs:48,Into:121,Its:[3,4,58,90,121],K8s:145,NMS:4,NOT:[18,83],Not:[31,36,66,92,145],OPs:[48,50],One:[3,5,18,25,32,43,70,73,89,92,95],Ops:[85,87,91],PFS:54,QoS:122,Such:[64,83,92,96],TLS:[31,54,121],That:[4,9,46,77],The:[1,2,3,4,5,6,9,10,11,17,18,19,22,25,31,32,33,35,36,40,42,43,44,46,47,48,50,51,52,55,56,58,62,65,66,69,70,72,74,75,77,78,80,81,82,83,84,87,89,90,91,92,93,95,96,97,100,101,102,115,121,123,135],Their:[4,36],Then:[4,5,18,45,48,59,64,66,77,80,82,121],There:[3,4,10,18,25,31,34,35,36,41,43,44,47,48,55,56,57,62,66,73,74,75,78,79,80,83,87,89,90,93,121],These:[3,11,18,33,34,46,51,56,61,76,87,90,91,92],Use:[3,9,18,31,49,55,84,85,92,121],Used:[5,21,85,93],Uses:66,Using:[18,36,57,78,84,85,87,89],VPS:121,Will:[9,25,110],With:[4,5,45,46,51,57,77,81,92,96],YES:44,Yes:[28,68],___embedding_0__:123,___embedding_1__:123,___fc_layer_0__:121,__align__:56,__cuda_align__:56,__device__:56,__doc__:91,__file__:44,__forceinline__:56,__fp16:56,__global__:56,__gradient_machines__:25,__hadd:56,__half:56,__half_raw:56,__impl__:91,__init__:[51,52,60,66,76,83,96,100,133],__main__:60,__name__:60,__param_conf__:25,__rnn_step__:140,__square_error_cost_0__:123,__tmp_params__:25,__va_args__:86,__x:56,_addup_repetitive_outputs_:33,_append_backward_ops_:[33,51],_append_backward_vars_:33,_binari:35,_create_global_var:83,_def:66,_dtype:62,_filer:69,_filter:69,_fwd:69,_fwd_pd:69,_input:69,_librari:35,_link:5,_live_in:66,_live_out:66,_loss:60,_op:[62,101],_output:69,_presucessor:66,_program:66,_proj:4,_recurrent_group:140,_remove_no_grad_branch_:33,_reorder_input:69,_source_language_embed:140,_src_input:69,_sucessor:66,_target_language_embed:140,_test:35,_update_op:52,_use:66,_value_index:62,a75:56,a_op:101,a_prev:92,aaaaa:38,aaaaaaaaaaaaa:121,abbrevi:11,abc:4,abil:60,abl:[4,31,33,46,47,48,64,76,80,83,145],about:[5,11,18,32,34,35,44,50,55,58,66,74,84,89,91,92,93,121],abov:[3,4,18,31,32,33,34,35,36,40,45,47,48,56,57,58,59,61,69,74,75,76,77,78,80,81,83,91,92,94,95,96,121,134,145],abs:[5,32,60,107],abs_numerical_grad:32,absolut:[32,107],acc:48,acceler:[4,37,68,77,78],accept:[2,4,9,18,31,85],access:[4,5,18,31,35,40,43,44,45,47,48,83],accessmod:121,accessor:83,accord:[3,4,11,18,32,33,41,48,50,61,75,85,96],accordingli:[3,4],account:[85,145],accoust:92,accrodingli:39,accumul:[14,36,41,52,77,78,92],accur:[32,43,80],accuraci:[3,52,92],achiev:[46,50,77,78,92,93],acl2016:10,acquir:57,across:[4,9,33,48,74,92],act1:62,act2:62,act:[4,5,18,19,34,46,48,62,75,83,96,107,110,112,135,140],act_output:91,act_typ:62,actgat:18,action:[47,121],activ:[5,18,19,24,35,62,66,75,80,83,87,91,107,110,112,140],activi:5,actnod:18,actual:[4,18,39,51,57,60,62,69,73,78,91,93,95],actual_layout:69,adadelta:107,adagrad:[78,90],adagradoptim:[20,76],adam:[31,41,48,60,109],adamaxoptim:20,adamoptim:20,adapt:[3,6,18,25,80,95],add:[4,5,9,18,22,23,25,32,33,34,35,39,43,46,47,48,50,52,56,59,63,65,76,78,82,83,85,87,89,93,94,98,102,104,135],add_activ:83,add_bia:83,add_depend:35,add_execut:35,add_input:[74,100],add_memori:74,add_output:74,add_scalar:[34,75,81],add_sum:83,add_test:[35,100],add_to:108,add_two:[34,74],add_unittest_without_exec:100,addattr:[91,101],addbia:100,addcom:[91,101],added:[3,4,10,18,25,34,50,51,56,73,77,78,87,98],adding:87,addinput:[91,101],addit:[4,5,33,47,77,80,85,87,96],addition:74,addmemori:69,addop:59,addoutput:101,addprimit:69,addprimitivedesc:69,addr:36,address:[36,41,45,48,115,145],addrow:100,addtolay:4,addtyp:91,adjust:[33,51],admin:145,administr:[43,145],adopt:[56,60],advanc:32,advantag:[32,56,57,78,84],adversari:[60,84],affect:[4,18,34],affili:75,afford:40,aforement:35,after:[4,5,10,11,18,33,34,35,40,41,43,48,49,50,51,53,55,56,66,69,77,79,80,83,92,98,121],aftern:80,again:[31,32,36,78],against:121,age:[10,123],agg_level:[4,136,137],aggreg:[52,77,121],aggregatelevel:[136,137],ago:35,agre:[107,110],ahead:92,alex:18,alexnet_pass1:131,alexnet_pass2:131,algo:69,algo_hrnn_demo:137,algorithm:[4,6,18,33,40,51,66,69,75,78,87,92,95],alia:18,alias:18,align:[4,5,9],all:[2,3,4,17,18,19,25,31,33,34,35,36,39,41,43,44,45,46,47,48,49,51,53,55,57,60,61,62,65,66,69,70,72,73,74,75,76,77,78,80,81,83,85,91,92,93,104,107,110,121,123,135,139,145],all_output_nam:33,alloc:[2,41,44,66,69,93,102,135],allow:[31,41,45,46,48,51,57,78,87,121],allow_only_one_model_on_one_gpu:[128,129,131],allreduc:77,almost:18,along:[4,11,18,19],alpha:[18,35,87],alreadi:[18,22,35,36,57,69,83,89,104,121],also:[4,5,10,18,21,31,33,34,35,39,42,46,47,48,56,57,59,60,61,62,65,66,73,74,75,78,79,80,81,82,83,84,87,89,91,92,93,96,97,134,145],although:[22,33,77],altogeth:145,alwai:[4,5,18,25,35,47,70,90,121,123],amazon:[121,122],amazonaw:121,amazonec2fullaccess:121,amazonelasticfilesystemfullaccess:121,amazonroute53domainsfullaccess:121,amazonroute53fullaccess:121,amazons3fullaccess:121,amazonvpcfullaccess:121,ambigu:[84,92],amd64:121,amd:73,amend:98,amodei:92,among:[18,121],amort:77,amount:18,analys:80,analysi:80,analyz:66,ancestor:[81,83],andd:121,andrew:66,android:142,android_abi:142,android_api:142,android_arm_neon:142,android_native_api_level:142,android_standalone_toolchain:142,android_toolchain:142,androideabi:142,ani:[4,5,9,18,21,31,35,36,41,43,44,45,47,48,53,56,57,64,66,70,75,77,78,83,84,86,87,92,95,107,110,121],announc:56,anoth:[4,9,18,25,31,33,34,44,46,47,57,58,69,75,83,89,91,93,95,121],anroid_arm_mod:142,ans:121,answer:[45,57,121],anthor:18,anymor:77,anyth:[9,75,84,121],anytim:60,apach:[68,107,110],apart:18,api:[10,25,30,31,33,35,41,42,44,45,46,52,54,59,60,62,74,79,80,85,88,96,97,113,115,116,117,121,123,133,134,142,145],api_pydataprovider2:107,api_shar:35,api_test:35,api_trainer_config_helpers_lay:140,apiserv:121,apivers:[121,122,123],appar:33,appear:[45,57,61,93],appel:66,append:[18,25,33,51,52,75,83,84,92,117,123,140],append_backward:[33,76,133],append_batch_s:18,append_clip_op:51,append_gradient_machin:25,append_op:[51,65,83],append_oper:83,appleyard:134,appli:[4,18,23,60,61,77,80,89],applic:[22,45,47,56,57,58,61,83,85,107,110,121,122,134,145],applyl1:39,appreci:92,approach:[4,48,49,50,77,78,79,87,92,145],approxim:[18,78],apt:[28,133],arbitrari:[4,48,70],arch:142,archetectur:92,architectur:[56,92],archiv:[10,18,71,72,113],area:60,arg:[3,5,15,22,33,62,76,91,101,109,123],arg_nam:4,argmax:18,argpars:123,args_ext:123,argu:82,argument:[4,9,11,18,22,33,34,39,40,48,76,79,82,83,113,115,116,123,142],argumentpars:123,arithmet:56,arm64:[142,143],arm64_standalone_toolchain:142,arm:[56,142,143,144],arm_standalone_toolchain:142,armeabi:142,armv7:[56,143],armv8:56,arn:121,around:[4,43,66,83,121,145],arrai:[2,4,9,11,18,25,41,45,47,61,75,81,83,84,85,96,101,107,109,110,115],arrang:[18,96],arrari:[18,115],array_to_lod_tensor:66,arrow:60,articl:[10,18,58,61,98],artifact:[88,121],artifici:66,arxiv:[5,18,60,92],as_row_vector:4,as_step_input:34,asgd:78,ask:[33,36,43],asr:92,assgin:66,assign:[3,4,19,33,40,45,49,51,56,58,77,92,115,121,145],assigne:92,assignmemt:66,associ:[79,86],assum:[3,4,18,34,48,69],assumpt:48,ast:45,astyp:[84,101],asyc:36,async:[36,50,128],async_count:[128,129],async_lagged_grad_discard_ratio:129,async_lagged_ratio_default:[128,129],async_lagged_ratio_min:[128,129],asynchron:[36,47,77,80],atom:49,att_seq:5,attach:5,attend:5,attended_sequ:5,attenion:5,attent:[4,5,19],attr1:4,attr2:4,attr:[2,4,5,18,34,45,62,65,69,81,82,83,91,101,107,108,109,140],attr_map:91,attrdesc:81,attribu:69,attribut:[4,5,18,24,33,34,50,51,65,81,83,85,89,91,96],attributemap:101,attrproto:91,attrtyp:[81,91,101],attrvalu:91,auc:[52,128],audio:92,augment:92,authent:121,author:[10,54,92,107,110,121],auto:[27,34,39,49,58,69,71,82,85,89,95,96,100,101,102,134],autom:121,automat:[4,18,31,33,41,48,50,51,59,76,85,91,92,121],avail:[10,36,41,50,56,57,66,121,145],ave:22,averag:[3,4,7,14,18,22,25,40,107],average_test_period:[128,129],avg:[134,136],avg_cost:[48,135],avg_x:18,avgpool:4,avoid:[18,32,34,36,47,48,65,69,77,78,79,134],avx:28,awai:57,await:122,awar:[31,45,47,52,58,74,83,121],awk:124,awni:92,aws:54,aws_account_id:121,awsaccountid:121,awskeymanagementservicepowerus:121,axi:[4,18,107],axiom:47,axis:4,b363:122,b8561f5c79193550d64fa47418a9e67ebdd71546186e840f88de5026b8097465:122,ba5f:121,back:[4,18,25,33,36,48,56,60,78],background:[3,4,87,92],background_id:[3,4],backpropag:[32,33],backward:[1,4,5,18,23,32,34,39,41,51,60,67,68,76,78,79,82,86,87,94,100,101,135],backward_first:140,backward_op:32,backwardactiv:100,bacth:46,baidu:[18,57,92,122],bake:48,balanc:[50,77,121],bandwidth:[56,77],bare:[122,145],barrier:118,barrierstatset:134,basci:62,base:[3,4,7,9,10,18,26,31,40,46,51,52,56,57,64,69,73,76,77,78,80,85,86,87,93,96,121,135],baseactiv:5,baseerrorclipattr:51,baseev:25,baselin:92,basematrix:100,basenam:3,basepoolingtyp:[4,5],basestr:[2,3,4,5,7,25],bash:[26,27,28,98,121,122,123,127],basi:[107,110],basic:[4,25,48,62,69,80,81,85,86,92,96],batch:[4,5,9,11,14,18,19,25,31,34,36,38,39,46,47,48,52,53,57,60,63,73,74,75,77,78,92,96,107,110,115,121,122,123],batch_id:[25,60,107,110],batch_im:60,batch_images_from_tar:11,batch_label:60,batch_norm:[60,92],batch_norm_lay:5,batch_norm_typ:4,batch_read:[38,46,84],batch_ref:18,batch_siz:[9,18,48,60,67,75,107,110],batch_szi:60,batch_z:60,batchnorm:[18,60,92],batchread:46,batchsiz:[4,100],bazel:35,bbbbb:38,bbox:3,bcd:4,bcebo:10,bcm2708:144,bdist_wheel:88,beacus:62,beam:[4,18,140],beam_gen:[4,140],beam_search:[25,75,139,140],beam_siz:[4,18,75,128,129,131,140],becaus:[3,4,10,31,32,34,35,36,41,56,75,79,83,84,87,89,90,94,95,96,97,121],becom:[18,49,50,89,93],been:[4,5,18,33,35,40,47,57],befor:[4,5,18,33,36,43,47,51,55,58,61,73,78,79,80,84,87,101,104,107,121,145],begin:[3,4,18,22,33,39,41,46,52,55,61,75,77],begin_norm_axi:18,beginiter:[25,31],beginn:140,beginpass:[25,31],begintrain:31,behavior:[18,47],behind:[57,96],being:[18,33,43,51,57,82,84],belong:[3,4,46,48,89],below:[18,34,36,41,48,50,56,57,70,79,84,87,96,97,121],benchmark:[70,92],benefit:[5,43,44,75],besid:[4,10,21,48,66,73,77],best:[35,69],besteffort:122,beta1:6,beta2:6,beta:[18,60],better:[5,35,57,66,69,75,95,121,145],between:[3,4,11,18,25,33,35,36,41,48,50,56,57,69,72,77,79,86,89,121],bgr:11,bi_gru:5,bi_lstm:5,bia:[4,5,18,75,83,100],bias:[4,18],bias_attr:[4,5,18,83,107,109,140],bias_initi:18,bias_param_attr:5,biases_:100,biasparameter_:100,biassiz:100,bidi:122,bidirect:[4,5,92],bidirectional_lstm:108,big:[45,50,66,145],bigger:[18,36],bilinear:4,bilinear_interpol:4,bilinearfwdbwd:134,bin:[28,116,117,121,122,123,127],binari:[3,4,9,18,35,44,48,56,58,60,70,116,121],bind:[45,47,56,59,89,93],bioinf:18,bit:56,bitcod:143,black:60,blank:[4,18,121],blob:10,block0:66,block1:66,block2:66,block:[4,18,33,37,39,41,45,47,48,49,50,51,52,53,57,64,66,73,74,76,93,97,102],block_expand:92,block_i:[4,18],block_id:[45,53],block_x:[4,18],blockdesc:[23,34,61,83,85],blockdescbind:64,blockingcount:49,blueprint:75,bn_bias_attr:5,bn_layer_attr:5,bn_param_attr:5,book:[10,28,85,92,103,135,140],booktitl:10,bool:[2,3,4,5,6,7,9,10,11,17,18,25,34,46,56,63,65,67,68,69,82,83,90,91,96,97,100,115,129,131],boost:[73,92,93],boot:[4,18,139,140,145],boot_bia:4,boot_bias_active_typ:4,boot_lay:140,boot_stat:96,boot_with_const_id:4,bootstrapp:145,borrow:[60,96],bos_id:[4,140],both:[1,2,4,5,11,18,22,31,34,35,36,43,46,47,48,50,56,57,60,64,66,73,75,77,80,82,90,92,93,121],bottl:77,bottleneck:80,bottom:[25,92],bound:[4,18,66],boundari:48,boundri:3,box:[4,60],brace:[34,61],brain:43,branch:[4,18,31,34,35,48,57,63,81,88,94,98],break_if:96,brief:[35,41,56,93,102],bring:[57,66],broadcast:[18,36,77,85,145],broken:98,browser:121,bsd:[26,47,77],bsp:47,bucket_nam:121,buf:39,buf_siz:[9,48],buffer:[9,39,47,69,70,78,84,89,135],buffer_s:[9,47],buffered_read:84,bufsiz:9,bug:[98,121],build:[4,10,17,26,27,35,44,48,61,62,66,68,78,87,88,91,92,98,103,104,113,121,123,125,126,127,133,142,143,144],build_dict:10,build_doc:103,build_model:60,buildtool:88,built:[35,45,48,56,58,66,73,77,91,92,96,133,134,145],bulk:47,bunch:70,button:121,c11:71,c703c041:98,c99:72,c99e:121,cach:[56,107],cache_pass_in_mem:107,cachetyp:107,cacul:[5,52],caff:[34,57],caffe2:[34,45,47,57],caffe_poli:109,calcul:[3,4,5,18,32,33,36,41,49,52,56,66],calcut:66,calendar:80,call:[3,4,5,9,18,22,25,31,32,33,34,39,40,41,42,44,45,47,48,51,58,60,61,66,74,75,76,80,83,85,86,89,91,93,96,121,123,133,134],callabl:[2,4,9,10,17],callback:[51,100],caller:[32,121],can:[2,3,4,5,9,10,11,17,18,19,21,22,25,31,32,33,34,35,36,39,40,43,44,45,46,47,48,50,51,53,56,57,58,59,60,61,62,64,65,66,69,73,74,75,76,77,78,80,81,82,83,84,85,86,87,91,93,95,96,97,121,134,145],cancel:43,candid:[4,18,75,92],candidate_activ:18,cannot:[46,85,89,95,96,104],cantain:62,capabl:[56,79,85],capac:[87,121],capi:[71,113],capi_priv:113,capi_prvi:72,caption:75,captur:4,card:77,care:[5,44,66,84,92,93,145],carefulli:92,caret:25,carpedm20:60,carri:18,cast:[56,95],cast_to_op_attr:91,cat:[9,11,28,123,124],categori:[4,10,36],categorig:10,categoryfil:122,caus:[36,55],caution:121,cbla:[67,113],cc_:35,cc_binari:35,cc_test:35,cclient:42,cde:4,cdn:10,cduadevicecontext:[73,93],ceil:4,ceil_mod:4,cell:[4,5,18],cell_activ:18,cell_t_prev:18,cell_valu:18,center:11,center_crop:11,cento:[30,145],central:87,ceph:[9,38],cephf:[38,44,54],cer:92,certain:[18,46,65,73,76,80,89,93],certif:[31,54,104,121],cffi:71,cfg:[66,122],cgo:71,ch1:47,ch2:47,chain:[9,33,61],challeng:[4,32,36,57,63,93],chan:47,chanc:[31,56],chang:[4,10,35,40,44,48,57,69,79,81,84,86,88,89,92,98,121],changes:69,channel:[4,5,11,18,45,134],channel_shar:4,chapter:[74,75,92],chapter_data:74,chapter_out:74,charact:[47,92],check:[9,33,34,35,51,69,82,85,94,98,100,104,109,115,121,129],check_align:9,check_attr:91,check_eq:100,check_grad:[32,101],check_l:100,check_output:101,check_sparse_distribution_batch:[128,129],check_sparse_distribution_in_pserv:[128,129],check_sparse_distribution_ratio:[128,129],check_sparse_distribution_unbalance_degre:[128,129],checker:[32,85],checkgrad:129,checkgrad_ep:129,checkmark:145,checkout:98,checkpoint:[50,82],checksum:54,child:34,chip:57,chmod:121,choic:[18,35,57],choos:[18,47,65],chosen:[18,60,73],chunk:[18,40,54],chunk_ev:14,chunk_schem:[3,14,18],chunktyp:3,chw:11,circl:61,circular:47,circumst:93,cite:10,claim:121,claimnam:[121,123],clang:[56,71,98,142],clarifi:[3,18],clariti:75,classdim:18,classic:[4,66,92],classif:[4,18,61],classifi:[4,60],classification_cost:107,classification_error_evalu:3,classification_evalu:3,claster:121,clean:[34,35,53,79,85,98,104],clear:[3,22,35,75,79,89,95],clearer:[79,83],clearli:89,cli:121,click:121,client:[18,39,42,85],clip:[2,5,129],clip_op:51,clip_op_desc:51,clipbynorm:18,clock:4,clone:[4,26,27,103,113,133,142,144],close:[47,84,98],close_channel:47,cloud:[35,36,44,54,55,85,145],cloud_read:9,cludform:121,cluster:[9,25,31,34,36,41,48,92,117,119,123],cluster_test_fil:117,cluster_train:[107,119],cluster_train_fil:117,cluster_train_v2:[119,120,124],cm469:121,cmake:[26,27,72,98,101,103,104,113,134,142,143,144],cmake_build_typ:[142,143,144],cmake_c:[142,143],cmake_system_nam:[142,143,144],cmakefil:104,cmakelist:[35,67,68,100],cmatrix:[71,72],cmu:18,cname:121,cnn:[4,18,122],coars:59,code:[4,9,31,33,35,43,46,47,48,50,53,56,59,60,61,65,70,73,76,78,79,80,82,84,85,86,87,91,96,100,121,122],codebas:85,coded_stream:109,codedinputstream:109,coeff:4,colindic:115,collabor:36,collect:[4,10,25,80],collectbia:100,color:11,colour:10,colum:115,column:[3,4,18,61,84,115],column_evalu:3,com:[4,5,10,18,26,27,28,35,60,88,98,103,104,113,121,122,133,135,142,144,145],combin:[3,4,5,9,25,66,76,85,89],come:[48,52,66,81,92,96],comma:[18,22,25,41],command:[9,22,26,35,39,44,55,100,121,122,123,125,126,131],commandlin:[123,134],comment:[18,35,62,91,92,123],commit:[35,122],common:[11,38,87,93],commonli:[55,87],commun:[36,41,42,47,48,50,77,121],compani:57,compar:[32,35,45,85],comparison:[35,57],compat:[19,56,59,77],compil:[4,26,35,48,57,62,64,66,73,77,86,90,91,97,127,142,143,144],complaint:35,complet:[4,5,10,18,25,33,34,36,40,41,51,54,61,70,73,85,121,122,123,145],complex:[5,18,43,47,66,75,85],complianc:[107,110],complic:[4,48,59,84,95,96],compon:[47,48,62,92,96,97],compos:[9,19,31,47,59,62,74,83,85],composenotalign:9,composit:59,compress:[40,115],compris:33,comput:[4,5,14,18,19,22,31,32,36,47,48,50,53,56,57,58,62,66,70,73,76,77,78,80,86,89,92,93,95,97,101,102,121,135],computation:4,computationgraph:62,con:77,concat:[60,140],concaten:[4,5,18,60,74,96,107],concentr:85,concept:[3,31,45,46,47,57,59,60,62,69,74,75,78,79,81,89,96,97],conceptu:[47,53,57,60,62],concern:[31,47,52],concis:[60,96],conckerneltrac:22,concret:[85,93],concurr:[36,43,50,80],cond:[18,34,57,63,81],condit:[4,18,40,48,57,63,69,92,94,107,110,122],condtion:60,conf:[4,109,119,123,137],conf_paddle_gradient_num:[121,123],conf_paddle_n:[121,123],conf_paddle_port:[121,123],conf_paddle_ports_num:[121,123],conf_paddle_ports_num_spars:[121,123],confid:4,confidence_threshold:4,config:[2,4,22,38,55,75,100,110,113,121,122,123,128,129,131,145],config_:[39,129],config_arg:[128,129,131],config_bas:[3,4,25],config_lay:100,config_len:41,config_pars:[67,68,100],config_proto:41,configmap:48,configprotostr:109,configur:[4,18,25,33,39,41,43,44,48,50,57,62,65,83,92,93,95,100,112,145],confirm:55,conflict:[89,98],confus:[11,60,65],conll:10,connect:[5,18,44,45,48,50,92,105,121,122,145],connectionist:[4,18],consequ:[4,5],consid:[3,4,33,82,93,145],consider:[4,5,73,92],consist:[3,4,10,11,18,40,46,47,58,70,81,84,85,86,91,92,97],consol:121,consolid:34,constant:[4,18,62,64,65,73,109],constantiniti:[16,18],constraint:89,construct:[3,18,31,53,62,66,74,83,85,89,91],constructbackwardgraph:61,constructoptimizationgraph:61,constructor:[18,51,56,80,83,85,89,91],consum:36,consumpt:66,contact:43,contain:[3,4,5,7,9,10,11,18,25,26,31,33,34,40,53,60,62,69,70,73,79,80,83,85,86,89,90,91,92,96,97,121,122,123],containerport:121,content:[18,41,55,70,75,103],content_dir:103,content_len:41,context:[4,5,10,18,19,51,69,89,90,93,101,102,107,135,140],context_attr:5,context_len:[4,5],context_proj_layer_nam:5,context_proj_param_attr:5,context_project:5,context_start:[4,5],contin:121,continu:[3,33,36,70,92],contrast:[4,18],contrib:87,contribut:[87,92],contributor:85,control:[2,34,45,47,94,121,122,145],controlflowgraph:66,conv2d:60,conv:[5,18,60,69,95],conv_act:5,conv_batchnorm_drop_r:5,conv_bias_attr:5,conv_filter_s:5,conv_fwd:69,conv_layer_attr:5,conv_num_filt:5,conv_op:4,conv_pad:5,conv_param_attr:5,conv_pool_2:48,conv_strid:5,conv_with_batchnorm:5,conveni:[31,33,62,76,91,92],convent:[18,33,41],convers:[56,57],convert:[10,18,38,48,49,50,56,57,58,69,84,86,92],convlay:4,convlut:92,convlution2d:18,convolut:[4,5,9,18,19,60,73,83,93],convolution2d:18,convolution_algorithm_opt:69,convoper:4,convproject:4,convtranslay:4,convtransproject:4,cool:98,cooper:92,coordin:[36,41],copi:[18,25,31,40,43,55,61,74,75,77,78,96,107,110,121],copy_from:51,copyright:[107,110],copyvariablewithtensor:95,core:[2,18,33,62,65,72,78,79,96,135],coreo:[121,145],corespond:18,corner:85,corpu:[10,92],correct:[4,18,32,33,56,77,121],correctli:[3,9,33,56,60],corresond:56,correspend:18,correspoind:31,correspond:[4,17,18,19,31,33,34,35,51,56,62,63,69,73,74,75,83,85,86,87,91,93,94,109],corss_entropi:31,cortex:56,cos:[4,91],cosin:[4,18,91],cosineop:91,cosineopproto:91,cosineopprotomak:91,cost:[18,25,31,33,48,61,76,77,81,82,95,107,110,135],cost_id:4,cost_np:82,could:[4,9,25,31,32,40,45,47,48,49,50,56,57,58,74,76,78,79,81,83,84,86,94,121],count:[3,18,36,44,52,82,84,92,117,122,129,131,134],counter:[14,22,36,40,49,61],cours:[3,44,73],covari:4,cover:[57,92],cp27:30,cp27m:[30,88],cp27mu:[30,88],cpp:[32,39,59,67,68,71,72,79,85,97,100,109,123,134,137],cprofil:133,cprofilev:133,cpu:[2,4,18,22,26,32,44,56,65,73,78,79,80,85,87,88,93,95,101,102,122,131,134,135],cpu_avx_mkl:30,cpu_avx_openbla:30,cpu_kernel:65,cpu_noavx_openbla:30,cpu_ns_:80,cpu_per_pserv:48,cpu_per_train:48,cpudevicecontext:[73,93,101],cpuelapsedu:80,cpuengin:68,cpuinfo:28,cpuplac:[22,48,65,69,73,93,95,101,102,135],cpusparsematrix:72,crash:[36,134],creat:[2,9,10,18,23,25,31,32,34,36,41,45,46,49,51,52,53,54,55,56,57,59,60,61,69,73,74,76,77,78,79,83,86,87,92,98,100,103,107,109,110,115,122,123,124,145],create_backward_pass:76,create_bias_paramet:100,create_block:83,create_doc_str:91,create_input_paramet:100,create_local_scop:53,create_oper:59,create_optimization_pass:76,create_paramet:83,create_python_ops_creatation_funct:91,create_rnn:34,create_rnn_op:74,create_tmp_var:83,create_tmp_vari:83,create_var:83,create_whileloop:96,creategradientoper:86,creatememori:69,createop:91,createoper:34,createprimitivedesc:69,createstack:121,createvari:34,creation:[59,121],creationd:121,creator:[9,10,38,85,86],creator_:86,credenti:55,crf:[93,95],critic:60,crlf:98,crop:[11,93],crop_grad:93,crop_siz:11,crope:11,cropgradkernel:93,cropkernel:93,cross:[4,18,83,109,142,143,144],cross_entropi:[4,31,48,60,66,95],cross_entropy_with_selfnorm:4,crt:54,csc:100,csr:[100,115],csv:[22,109],ctc:[3,18],ctc_error_evalu:92,ctc_evalu:3,ctest:[26,27,98,101],ctor:83,ctrl:[26,119],ctx:[69,95,101,102],cubla:73,cublas_handle_:93,cublashandle_t:93,cuda7:[30,112],cuda8:[27,28,30],cuda:[22,26,35,58,73,80,85,93,101,129,134],cuda_context:58,cuda_dir:[128,129],cuda_fp16:56,cuda_so:[28,104],cuda_visible_devic:107,cudaconfigurecal:134,cudadevicecontext:[58,73,93,101],cudadevicegetattribut:134,cudaelapsedu:80,cudaevent_t:80,cudaeventcr:134,cudaeventcreatewithflag:134,cudafre:134,cudagetdevic:134,cudagetdevicecount:134,cudagetdeviceproperti:134,cudagetlasterror:134,cudahostalloc:134,cudalaunch:134,cudamalloc:134,cudamemcpi:134,cudaplac:[22,73,93,95],cudaprofilerstart:134,cudaprofilerstop:134,cudaprofilestop:134,cudaruntimegetvers:134,cudasetdevic:134,cudasetupargu:134,cudastream_t:93,cudastreamcr:134,cudastreamcreatewithflag:134,cudastreamsynchron:134,cudeviceget:134,cudevicegetattribut:134,cudevicegetcount:134,cudevicegetnam:134,cudevicetotalmem:134,cudnn:[4,7,18,35,65,69,73,93,95],cudnn_batch_norm:4,cudnn_conv:4,cudnn_conv_workspace_limit_in_mb:[128,129],cudnn_convt:4,cudnn_dir:[128,129],cudnn_kernel:65,cudnnavginclpadpool:4,cudnnavgpool:4,cudnnv5:27,cudrivergetvers:134,cuinit:134,cumtim:133,cumul:4,cur_mem:75,curl:121,curli:[34,61],current:[4,18,33,34,35,36,39,41,45,50,52,57,65,73,74,75,78,79,80,83,89,95,96,103,121],current_block:[81,83],current_oper:81,current_word:[107,140],curv:31,custom:[31,44,56,60,75,78,85,92,121],custom_batch_read:84,custom_neg_class:18,cut:[9,96],cut_lin:9,cutoff:10,cv2:11,cxx:[142,143],cxx_compil:[142,143,144],cxx_flag:[142,143],cxxabi_1:30,cycl:36,cyclic:4,cython:71,d3e0:121,d_b0:60,d_b1:60,d_b2:60,d_block:60,d_f:60,d_g:60,d_h0:60,d_h0_bn:60,d_h0_relu:60,d_h1:60,d_h1_bn:60,d_h1_relu:60,d_h2:60,d_loss:60,d_loss_fak:60,d_loss_real:60,d_optim:60,d_step:60,d_t:60,d_w0:60,d_w1:60,d_w2:60,dandroid_abi:142,dandroid_arm_mod:142,dandroid_arm_neon:142,dandroid_standalone_toolchain:142,dario:92,darwin:121,dash:60,dat:38,data:[3,10,11,17,25,31,32,34,38,39,40,47,50,52,54,56,57,60,61,62,64,65,66,69,70,73,74,75,76,77,78,79,81,83,85,87,89,90,91,92,93,96,97,102,107,110,112,115,118,122,123,125,128,135,140],data_batch:107,data_feed:12,data_fil:11,data_i:60,data_lay:[39,107],data_layout:18,data_layout_:95,data_read:[9,84],data_reader_creator_random_imag:84,data_shar:96,data_typ:[9,10,70,90,92,95,97,108,110,112,115,140],data_type_:[65,73,95],data_x:60,databas:10,datacent:[38,55],datacenter1:38,datacenter2:38,datacenter_1:38,datacenter_2:38,datacenter_nam:38,datadim:4,datafeed:135,dataflow:62,dataflow_analysi:66,datalayout:95,dataparallel:48,dataprovid:[107,109,123],dataprovider_convert:92,datasci:4,dataset:[18,38,44,48,78,84,92,110,112,117,133,140],dataset_nam:11,datatransform:95,datatyp:[10,18,65,69,90,92,95,97],dcgan:60,dcmake_build_typ:[103,113],dcmake_install_prefix:[113,142,143,144],dcmake_system_nam:[142,143,144],dcs:10,dcuda_arch_nam:27,dcudnn_root:27,ddim:[46,73,93,102],dead:36,deal:[33,145],deb:98,debug:[32,33,48,55,57,83,103,133],debug_str:62,decai:[6,23],decar:9,decayedadagradoptim:20,decayr:39,decent:40,decid:[31,43,60,70,78,86,87,90],declar:[18,34,60,74],decod:[4,5,18,92,139,140],decoder_boot:140,decoder_dim:75,decoder_group_nam:140,decoder_input:[75,107,140],decoder_mem:[75,140],decoder_prev:5,decoder_s:[107,140],decoder_st:[5,140],deconv:[4,60],deconvolut:4,decor:[9,46],decrement:49,decrementcount:49,decrypt:121,deduc:85,deep:[4,18,33,43,47,53,60,61,66,68,80,85,87,92,93,134],deeper:58,deepspeech2:67,def:[4,9,31,32,33,38,44,51,52,59,60,62,65,66,74,75,76,83,84,91,96,100,101,107,109,110,123,140],def_block:60,defalut:[18,22],default_block:60,default_decor:123,default_devic:131,default_initi:18,default_main_program:[17,135],default_param_attr:83,default_st:96,default_startup_program:135,default_valu:131,defaultdict:66,defaultinfervartyp:64,defect:79,defer:43,defin:[4,5,9,25,31,33,34,35,36,43,45,46,49,50,51,56,57,58,59,60,62,65,66,73,74,77,81,83,84,85,89,91,93,96,101,107,110,135],define_py_data_sources2:109,definit:[33,34,36,40,48,53,58,65,81,86,91,96,135],definiton:59,degener:18,degre:4,delai:[78,93],delet:[18,44,54,98],deletestack:121,delimit:[3,109],deliv:145,delta:[4,32],delv:4,demand:[36,93],demo:[4,10,85,122,125],denot:18,dens:[4,9,41,42,90,92,121],dense_arrai:[9,108],dense_vector:[9,110,112,115],dense_vector_sequ:[9,115],dense_vector_sub_sequ:115,densescann:92,dep:35,depart:92,depend:[18,34,35,36,44,46,47,48,50,62,77,82,90,145],dependent_var:82,deploi:[4,145],deploy:[62,70,85,121,145],deprec:[4,92],depth:[34,57,92],dequeu:50,deriv:[1,31,46,48,51,63,76],desc:[34,51,69,70,83,91,96],desc_:34,descend:[18,96],descent:[4,36,78],descproto:70,describ:[17,31,33,34,35,40,45,48,53,58,65,69,70,74,75,79,81,83,85,90,91,95,97,121,122],describestack:121,describestackev:121,describestackresourc:121,descripotor:69,descript:[3,10,34,35,64,68,70,73,86,90,92,95,97,121,123],descriptor:[47,69,95],deseri:[25,70,79],deserializ:85,desgin:61,design:[4,9,18,33,39,46,65,66,71,78,80,87,145],desir:[9,36,48,78,121,122],destin:[18,41,55],destroi:[34,53],destruct:89,destructor:80,det_output:3,detail:[2,3,4,5,6,10,18,32,33,40,44,48,50,55,57,60,62,66,69,70,73,74,80,83,87,89,93,95,96,97,121,145],detect:[18,64,98],detection_evalu:3,detection_output:3,determin:[4,9,18,34,48,66,73,85],dev:[26,28,85,98,104,133,142,145],dev_ctx:[34,69,80],devel:88,develop:[33,35,57,64,79,80,83,86,88,92,98,135,143],deviat:2,devic:[2,28,32,45,48,52,56,62,68,69,73,77,79,80,85,95,102,104,131,135],device_:80,device_context:[69,101],device_count:18,device_typ:18,devicecontext:[34,73,80,101],deviceid:[68,131],deviceid_:68,deviceplac:93,devid:4,devot:92,dhcp:145,diagon:18,diagram:74,diamond:60,dic:11,dict:[3,10,25,33,83,109,123],dict_dim:107,dict_fil:3,dict_siz:[10,18,39,75],dictionari:[3,4,10,18,25,31,32,83,107],did:79,diff:[98,107],diff_mat:32,differ:[3,4,18,22,25,32,33,34,35,36,41,43,46,48,49,50,51,52,53,56,57,60,62,63,66,69,73,75,77,78,80,82,86,89,92,94,95,96,97,121],differenti:59,difficult:[3,32,57],dig:121,digit:4,digraph:62,dilat:[4,18,69],dilation_h:18,dilation_i:4,dilation_w:18,dim0:101,dim1:101,dim:[4,9,18,19,21,39,69,70,74,85,90,93,97,100,101,102],dim_:[93,102],dimens:[1,4,5,7,9,18,19,21,60,85,90,92,93,96,102,107],dimension:[4,18,115],dimes:4,dios_arch:143,dios_enable_bitcod:143,dios_platform:143,dios_use_veclib_for_bla:143,dir:[104,123,142],direcit:92,direct:[4,5,11,18,57,66,78,92],directli:[5,35,42,44,46,48,56,65,79,91,95,96],directori:[4,17,35,38,43,54,55,93,98,103,122,134],dirnam:17,disabl:[18,80,109],disadvantag:[78,83],discard:[9,36,40,75,98,129],discexp:109,discount:4,discov:36,discoveri:121,discret:4,discrim:60,discuss:[31,34,40,41,42,48,69,92],disk:70,dispatch:[48,79],dispens:18,displac:18,displai:[44,55],dissimilar:18,dist:[27,88,104],dist_train:[31,44],distanc:[3,4,18],distinguish:35,distribut:[4,18,34,40,41,42,43,45,47,52,58,77,85,92,97,107,110,120,125,126,129,145],distribute_test:[128,129],distributedli:48,disucss:31,div:18,divid:[4,6,18,33,52,91,97],divis:18,divisor:18,diy_beam_search_prob_so:[128,129],dnn:[69,92,104],dns:121,do_forward_backward:84,doc:[9,62,74,96,101,103,117,119,123],doc_cn:103,docker:[27,28,88,98,103,104,121,122,123,125,126,127,142,145],docker_build:31,docker_clust:[119,124],docker_push:31,dockerfil:[26,98,123,142,144],document:[4,5,18,32,46,48,54,61,74,75,80,85,92],doe:[5,18,36,40,41,43,44,45,46,48,50,53,56,62,66,74,79,83,85,86,87,135],doesn:[2,4,9,31,34,45,47,84],doing:[39,43,48,61],domain:121,don:[5,31,35,59,61,66,84,92,121],done:[3,4,5,33,35,36,40,41,48,49,64,66,70,78,86,87,92,98,121,123,134],dot:[4,5,19,101],dot_period:[123,129,131],dotmuloper:4,dotmulproject:4,doubl:[18,48,56,61,80,95,101,129],down:[92,134],download:[10,35,36,39,43,54,104,122,145],doxygen:98,dozen:35,dpython_execut:104,dpython_include_dir:104,dpython_librari:104,draw:75,drive:89,drop:[4,5,18,19,46,75],drop_fc:108,drop_rat:[2,108],drope:18,dropout:[2,5,19,108],dropout_prob:18,dropout_r:[4,18,19,108],drpi_arm_neon:144,drpi_toolchain:144,drwxr:122,ds2:92,dst:[41,69],dst_primitive_desc:69,dtoh:134,dtype:[18,47,48,62,83,109,135],due:[40,43,60,66,75,83,133],dummi:[25,40],dump:[70,116],dump_config:116,dump_v2_config:116,duplic:[18,50],durat:40,dure:[4,5,17,18,33,34,36,40,43,44,52,57,66,77,78,80,83,85,92,97,121,145],duse_eigen_for_bla:142,dwith_c_api:[72,113,142,143,144],dwith_doc:103,dwith_golang:113,dwith_gpu:[27,103,113,144],dwith_mkl:[103,113],dwith_profil:134,dwith_python:[72,113,144],dwith_swig_pi:[72,113,142,143,144],dwith_test:[27,101,143],dwith_tim:134,dynam:[18,41,72,74,83,84],dynamic_cast:100,dynamic_recurrent_op:96,dyogatam:18,e2e:145,each:[3,4,5,7,9,10,18,19,25,32,33,35,36,39,40,41,43,44,45,46,47,48,51,52,53,58,61,64,66,69,73,74,75,77,79,80,82,83,84,85,86,89,90,91,92,93,94,95,96,97,121,145],each_feature_vector:1,each_time_step_output:1,eager:57,earli:[56,58],eas:[9,64],easi:[32,33,75,78,84,85,87],easier:[31,50,56,57,84,94,96],easili:[31,60,77,80,84,86,89,93],echo:[28,104],edg:[11,66],edit:[3,18,47,121],editdist:18,editor:83,edu:[10,18,121,122],eeoi3ezpr86c:121,effect:[4,18,25,121],effici:[4,48,70,84,92,93],effort:[48,92],efg:4,efs:121,efs_dns_nam:121,efsvol:121,egd:66,eigen:[56,73,78,85,87,93,101],eigen_device_:93,eigen_use_gpu:101,eigenmatrix:102,eigentensor:102,eigenvector:102,either:[4,5,9,18,25,31,48,60,63,64,74,78,87,107,110],elabor:92,elb:121,elbapis:121,electr:66,electron:122,elem_dim:4,elememt:4,element:[3,4,5,9,11,18,25,32,40,47,50,62,75,85,101],element_typ:41,elementari:85,elementwis:[18,19],elif:[31,91,94],elliott:10,els:[28,31,39,44,47,48,50,51,57,60,63,64,65,66,89,91,94,100],elsewher:80,emac:26,emailweixu:35,emb1:39,emb2:[39,137],emb:[107,109,122],emb_para:109,emb_param_fil:109,emb_sum:107,embed:[31,34,39,50,64,75,90,96,109,140],embedding_lay:[39,107,137],embedding_nam:[4,140],embedding_s:[4,140],empir:[4,18],emplace_back:100,emploi:[33,51,91],empti:[3,9,18,33,36,46,47,75],emul:56,enabl:[2,4,18,26,34,35,40,45,50,51,62,80,121,134],enable_grad_shar:[128,129],enable_parallel_vector:129,enableonstart:22,enc_proj:[5,140],enc_seq:5,enc_vec:140,encapsul:41,encod:[5,40,75],encoded_proj:[5,140],encoded_sequ:[5,140],encoded_vector:140,encoder_ctx:75,encoder_ctx_expand:75,encoder_ctx_proj:75,encoder_dim:75,encoder_last:4,encoder_out_seq:75,encoder_s:140,encount:[18,39],encourag:[48,53],encrypt:121,encrypt_decrypt:121,end2end:145,end:[3,4,10,18,22,25,33,34,48,51,58,62,66,75,79,80,84,89,92,94,98,140],end_id:18,end_pass:31,end_po:4,endforwardbackward:[25,107],endian:70,endif:[73,80],enditer:[25,31,107,110],endpass:[25,31,110],endpoint:[9,18,38,121],endtrain:31,engin:[44,68,69,92],english:[4,10,92],enough:[33,34,65,66,73],enqueu:50,ensembl:5,ensur:[36,69,77,89],enter:[34,53],enterpris:85,entir:[4,5,10,41,43],entiti:[3,34,89],entranc:53,entri:[9,18,40,44,64,121],entropi:[4,18,83],entry_point:44,enumer:[1,73,109],env:[103,107,121,123,133],environ:[31,46,48,104,121,122,134],environmenterror:117,eol:98,eos_id:[4,140],epoch:60,epol:47,epsilon:[4,6,18],equal:[4,5,18,19,36,96,101],equat:[3,4,5,6,18,66,101],equival:[31,34,45,47,51,57,63,91,145],eras:46,erlang:47,error:[2,3,4,5,18,31,32,40,55,56,57,69,89,92,104,109,113,121,129],error_clip:51,error_clip_callback:51,error_clipping_threshold:[2,107],errorclipbyvalu:51,espeaci:18,especi:[4,5,17,68],essenc:[31,33],essenti:[4,31,53,56],establish:45,estim:[4,18,31,50,78],eta:122,etal:[10,18],etc:[3,9,18,34,47,48,52,69,77,78,84,89,92,121,145],etcd:[9,25,36,40,41,43],etcd_addr:41,etcd_endpoint:9,eth0:[121,123],etyp:47,euclidean:4,eval:[3,34,52,60,85],eval_program:52,eval_result:52,evalu:[4,12,18,24,25,43,62,82,92,116,134,135],evaluate_difficult:3,even:[31,56,77,83,84],evenli:[41,121],event:[22,107,110,122],event_:80,event_block:80,event_handl:[25,31,107,110],eventkind:80,eventlist:80,eventu:[48,96],everi:[3,4,5,9,18,31,36,40,41,43,51,52,61,62,64,66,69,73,74,77,83,89,91,95,110,135],everyth:[48,50,60],evid:79,evolv:57,exactli:[4,5,46,107,121],exampl:[3,4,5,9,10,11,18,19,25,34,44,46,48,50,52,55,57,58,59,60,61,62,64,66,69,73,74,75,79,80,81,83,84,85,86,87,90,93,94,95,96,121,135],example_read:9,exc_path:104,exceed:4,except:[4,10,21,23,43,45,57,61,80,92,96,110],excess:66,exchang:79,exclud:4,exclude_mod:4,exclude_param:25,excluded_chunk_typ:[3,14,18],exclus:18,exconv:4,exconvt:4,exdb:10,exe:[48,135],execut:[4,18,22,35,36,40,44,45,46,47,48,52,53,58,60,62,66,69,77,80,86,97,121],executioncontext:[69,95,101,102],executor:[12,17,45,48,52,56,57,58,60,76,81,83,95,97,133,135],exist:[18,31,34,36,46,55,57,75,83,84,86,91,93,96,102,121],exit:[41,55,122],exp:109,expand:[18,75],expand_a:[4,136],expand_level:[4,136],expandconvlay:4,expandlevel:136,expans:4,expect:[4,95],expected_desc:69,expected_kernel_kei:95,experi:[70,92],expert:35,expir:36,explain:[3,18,36,45,57,59,61],explan:[4,18,44,45,48,89,95],explicit:[46,80,96,100],explicitli:[31,48,53],explod:51,explor:[4,75,87],expon:4,exponenti:[1,18],expos:[33,42,47,69,70,93,96,121],express:[31,50,52,62,66,107,110,121],extend:[3,78,96],extens:[43,50,75],extent:72,extern:[35,68,71,72,85,92],extern_mklml:104,external_librari:35,extingrad_:68,extinval_:68,extoutgrad_:68,extoutval_:68,extra:[2,4,5,21,48,87,93,145],extra_lay:25,extraattr:[2,131],extraattribut:4,extraattributenon:4,extract:[3,4,18,57,79,92,121],extralayerattribut:[2,5,107,108],extralayeroutput:5,extrem:[4,45,57],f1205:109,f120da72:122,f7e3:121,fa0wx:122,fabric:[119,120],face:[35,87],fact:[18,45,57,77,81,83],factor:[2,4,6,18],factor_s:4,factori:71,fail:[36,40,75,104,109,122,129],failur:[36,41],fake:60,fake_imag:84,faked_imag:60,fall:[56,82],falloc:54,fals:[2,3,4,5,6,9,10,18,32,33,34,57,63,65,67,74,81,82,84,90,97,100,101,107,110,112,115,117,122,131,140],false_block:[34,63,81],false_label:84,false_neg:52,false_posit:52,false_read:84,familiar:47,fan_in:18,faq:141,far:[51,96],fashion:48,fast:[4,40,57,134],faster:[4,5,18,36,57],fastest:57,father:33,fault:[25,40,85],fbd1f2bb71f4:122,fc1:[62,100,131],fc1_bia:62,fc1_weight:62,fc2:[62,131],fc3:[62,131],fc4:131,fc8a365:121,fc8a:121,fc_act:5,fc_attr:5,fc_bias_attr:5,fc_layer:[83,91,107,109,131],fc_layer_nam:5,fc_mat:25,fc_op:91,fc_out:[18,34],fc_output:91,fc_param_attr:5,fc_without_b:34,fclayer:100,fcop:59,feasibl:78,featur:[1,4,9,10,18,33,48,56,62,77,80,92,98],feed:[5,17,25,31,48,61,74,87,110,135],feed_dict:60,feed_list:[13,135],feed_target_nam:17,feeded_var_nam:17,feeder:[9,48,135],fetch:[10,36,39,46,48,82,98,104,135],fetch_list:[48,83,135],fetch_op:82,fetch_target:17,few:[35,36,47,48,66,78,84,90,92],fewer:[4,18,47,83],fft:92,fg0:4,field1:25,field2:25,field:[4,10,21,25,34,62,64,70,82,83,86,90,91,107,121],fifth:61,figur:[31,35,48,50,60,68,74,80,83,92],file:[3,4,9,10,11,17,22,25,31,33,35,36,38,40,41,43,44,46,47,54,55,57,58,62,70,72,84,85,92,93,97,98,101,107,110,135,145],file_nam:109,file_typ:9,filelist:92,filenam:[11,38,83,107,133],fileoffset:54,filesystem:[43,44,48,54,121],fill:[4,36,40,73,83,115,121],fill_zero_grad:85,fill_zeros_like_op:33,filter:[4,5,17,18,51,69],filter_s:[4,5,18,19],filter_size_h:18,filter_size_i:4,filter_size_w:18,filter_strid:18,find:[4,18,34,36,43,47,56,62,69,75,89,95],find_var:32,findmemori:69,findop:34,findprimit:69,findprimitivedesc:69,findvar:[34,89],fine:[2,40,59],fingerprint:121,finish:[18,36,40,43,44,53,66,77,91,121,122],first:[4,18,22,25,31,33,34,36,40,43,44,45,48,53,55,57,60,61,62,69,74,75,81,82,83,85,90,91,92,93,94,96,101,102,115,121,145],first_n:18,first_seq:140,firstli:[3,4],firstn:9,firstseen:122,fit:[10,17,56,65,66,70,75,85],five:81,fix:[2,4,18,48,66,71,83,92,98,115],flag:[4,10,18,22,67,68,80],flatten0:62,flatten:[18,62,81,83,102],flatten_result:107,flexibl:[4,5,22,31,41,48,57,61,65,74,75,78,84,93,96],flip:11,flist:117,fliud:45,float16:47,float16_t:56,float32:[9,18,48,56,59,60,83,84,101,109,135],float64:18,float_16:18,float_to_half_rn:56,floor:[4,109],flow:[18,34,45,47,74,80,88,94],fluid:[0,13,14,15,16,17,18,19,20,21,22,23,33,46,48,50,53,73,80,83,93,94,95,133],fluid_cuda_create_tensor:58,fluid_cuda_mult:58,fluid_cuda_read:58,fly:33,fmt:[47,109],fname:109,fnt03:121,focu:[47,62],folder:[35,38,44,55,121],follew:18,follow:[3,4,5,6,9,10,11,18,19,25,31,32,33,34,35,36,40,44,45,46,47,48,50,53,56,57,58,59,60,61,62,63,64,66,69,73,74,75,77,78,80,81,82,83,84,85,86,87,89,90,91,92,93,94,95,96,121,125,126,135,145],footprint:58,forbid:31,forc:[18,77,83,95],force_cpu:[18,65],force_cudnn:65,force_load:71,forest:34,forev:47,forget:[6,18,31],forget_bia:18,fork:4,form:[4,5,18,46,47,52],formal:95,format:[3,9,10,11,18,22,25,32,40,46,48,56,57,73,75,92,96,98,100,112,115,121],former:[31,35,57,66,78],formul:18,formula:[4,5,6,18,32,66],formular:4,forth:60,forward:[1,4,5,18,32,33,34,39,41,51,57,60,67,68,69,70,76,79,81,84,85,86,87,90,100],forward_infer:69,forward_list:80,forward_op:32,forward_proj:18,forward_train:69,forwardactiv:100,forwardbackward:25,found:[56,81,87,89],four:[3,18,47,52,57,61,69,73],fourth:18,foward:82,fp16:[56,85,97],fp32:[73,85,95,97],fp64:[73,97],fparam:109,fpga:[73,135],fpgadevicecontext:93,fpgaengin:68,fpgaplac:[73,93],frac:18,frame:[3,53,85,92,96],framework:[31,33,34,47,51,52,56,57,62,73,77,78,80,81,85,87,89,91,93,101,133,135],frank:10,free:[10,58,93,145],freememoryop:58,frequenc:[10,92],frequent:[40,84,85,87,93],fresh:43,friend:89,friendli:60,from:[3,4,5,9,10,11,14,17,18,22,25,32,33,34,35,36,38,39,40,41,45,46,47,48,50,51,52,55,56,57,59,60,61,62,63,65,66,69,74,75,76,77,79,81,83,84,85,86,89,92,93,94,95,96,101,102,104,116,121,122,133,134,139,145],from_no_sequ:[4,136],from_sequ:[4,136],from_tar:[25,110],fromfil:[84,109],fromstr:109,front:[62,66],fuction:22,fulfil:134,full:[4,18,36,43,47,74,77,78,145],full_matrix_project:[5,140],fulli:[18,48,50,92,145],fullmatrixproject:4,fullsiz:39,fully_matrix_project:5,fullyconnect:[62,83],fullyconnectedlay:100,func:[9,40,45,58,86],funciton:[5,18],functor:[59,62],fundament:[46,47,50,56,85],funtion:18,further:[4,46,91,145],furthermor:18,futur:[4,18,43,48,56,66,74,85],future_context_s:18,fvs:91,fwd_desc:69,fwd_op:86,fwd_primit:69,fwd_primitive_desc:69,fwd_var:51,g_b0:60,g_b1:60,g_b2:60,g_block:60,g_command_config_arg:[67,68],g_h0:60,g_h0_bn:60,g_h0_relu:60,g_h1:60,g_h1_bn:60,g_h1_relu:60,g_h2:60,g_im:60,g_loss:60,g_optim:60,g_program:83,g_state:80,g_step:60,g_w0:60,g_w1:60,g_w2:60,gain:[4,18],gan:31,gangliao:35,gate:[4,5,18,19],gate_act:[4,5],gate_activ:18,gate_attr:4,gate_bias_attr:4,gate_param_attr:4,gate_recurr:4,gate_v:18,gatedrecurrentlay:67,gather:[4,18,33,66,77,79,101],gauss:2,gaussian_normal_random:60,gcc:[26,27,56,58,71,85,142,144],gcc_3:30,gcreators_:91,gemm:67,gen:4,gen_proto_pi:103,gen_rand_param:109,gender:[10,123],gendrated_id:75,gener:[3,4,5,9,25,31,32,33,34,35,36,38,40,41,43,45,48,57,59,64,66,69,73,77,78,81,82,83,84,85,86,90,91,92,93,94,96,110,115,121,123,131,134],generated_id:75,generated_scor:75,generated_word_embed:4,generatedinput:[4,139,140],genr:123,gereat:3,german:10,germani:10,get:[3,4,10,17,18,25,28,32,33,34,35,36,40,41,43,44,46,54,57,60,62,65,66,67,68,69,73,74,75,80,83,85,86,89,91,95,96,100,107,115,119,121,122,124,133],get_all_op_proto:91,get_block:83,get_config_arg:131,get_data:122,get_dict:10,get_dim:32,get_embed:10,get_float_el:32,get_grad:[25,107],get_grad_op_desc:33,get_input_lay:100,get_lin:9,get_movie_title_dict:10,get_numeric_gradi:32,get_numerical_gradi:32,get_output:32,get_program:66,get_sample_from_lin:107,get_shap:25,get_support:[30,104],get_symbol:62,get_tensor:32,get_var:18,get_vari:34,get_word_dict:10,get_worker_addr:45,getactualkerneltyp:65,getattr:51,getbatchs:100,geteigendevic:102,getengin:69,getenv:[31,44,117,123],getexpectedkerneltyp:[65,69,95],gethostbynam:123,gethostnam:123,getidmap:123,getinfervartyp:64,getinput:100,getinputgrad:100,getinputvalu:100,getkerneltyp:56,getkerneltypeforvar:95,getlayeroutput:[25,107],getlibrari:69,getmat:39,getoptconfig:39,getoutputgrad:100,getoutputvalu:100,getparam:39,getparameterconfig:39,getparameterptr:100,getparameterspars:39,getparametersremot:39,getplac:[69,93,101,102],getpodlist:123,getsiz:100,gettask:40,gettempl:121,gettensor:95,gettranspos:100,getw:100,getweight:100,getwgrad:100,gflag:113,gflags_complet:113,gflags_declar:113,gist:5,git:[26,27,88,98,103,104,113,142,144],github:[5,10,18,26,27,35,60,73,88,98,103,104,113,133,135,142,144],give:[18,36,74,83,85,95,121],given:[4,9,18,19,25,33,41,43,47,50,51,57,59,60,75,84,87,96],glibc:[142,144],glibc_2:30,glibcxx_3:30,glide:35,global:[2,18,23,26,31,34,35,36,58,62,65,79,80,85,89,91,93,95,121,134],global_block:83,global_learning_r:2,global_pool:18,global_step:18,globalstat:134,globalstatinfo:134,glog:113,gnueabihf:144,go_librari:35,go_test:35,goal:[46,47,50,56,61,77,85,92],gob:40,godep:35,godoc:71,goe:[5,36,57,63,89,135],going:[33,59,78,145],golang:35,good:[47,60,78,83,84,87,145],googl:[18,31,80,85,109,113,133,142],googleapi:121,googlenet:68,goroutin:[45,47],got:[65,89],govern:[107,110],gpg2:121,gpg:121,gprof:133,gprotos_:91,gpu:[2,4,7,22,26,28,30,32,44,47,52,56,66,73,77,78,79,80,85,87,88,93,95,104,112,115,117,131,134,135,145],gpu_id:[107,129,131],gpu_per_train:48,gpudevic:93,gpugpu_id:128,gpukernel:85,gpustarttimestamp:22,grab:36,grad:[32,33,41,51,68,83,90,107,129],grad_info_map:33,grad_n:51,grad_nam:51,grad_op:51,grad_op_class:85,grad_op_desc:51,grad_op_maker_:86,grad_op_typ:[85,86],grad_op_type_:86,grad_s_block:33,grad_share_block_num:[128,129],grad_to_var:[33,51],grad_var_nam:32,gradient:[2,3,4,6,18,23,25,36,40,47,49,51,61,64,76,77,78,79,83,85,90,116,117,118,123,129],gradient_clip:21,gradient_clipping_threshold:[2,107],gradient_evalu:3,gradient_flat:32,gradient_machin:[25,72,113],gradientmachin:[25,72,79,123],gradientmachine_:39,gradopdescmak:[64,86],gradopdescmakerbas:86,gradopmak:86,grai:11,grain:59,gram:92,grandient:25,grant:121,graph:[4,18,25,33,34,35,36,45,47,48,49,50,52,57,60,74,77,78,81],great:[50,92,145],greater:[4,18,51,78,115],greaterthan:91,greedi:[18,92],green:[45,60],grep:[28,124],gridsize3d:22,groudtruth:140,ground:[3,4,18],group:[5,18,40,62,69,93,145],group_input1:140,group_input2:140,group_input:140,grouplen:10,grpc:145,gru:[4,18,75,92],gru_bias_attr:5,gru_decod:140,gru_decoder_with_attent:140,gru_layer_attr:5,gru_memori:5,gru_out:75,gru_param_attr:5,gru_step:[75,140],gru_step_lay:5,grumemori:[5,108,140],gserver:[4,67,68,100],gsizex:134,gtx:66,guarante:[69,83],guard:39,guest:30,guid:[22,54,66,85,121,122],gutmann10a:18,gzip:[40,122],h0_bn:60,h_0:18,h_f:18,h_prev:34,hadoop:31,half:[4,18,19,56,121],half_to_float:56,hand:[66,85,92,93],handi:35,handl:[9,31,33,44,45,48,62,66,69,73,79,84,89,93,96,135],handler:[25,34],hannun:92,happen:[18,40,91],hard:[48,57,75,92,96,121],hardshrink:18,hardsigmoid:18,hardwar:[57,58,93],has:[3,4,5,10,18,19,22,31,32,33,34,35,36,40,41,43,46,47,48,50,51,52,56,57,60,62,66,70,73,75,77,80,81,85,90,91,93,95,115,121,134,135,145],has_kei:[25,33,51],has_selected_colum:4,has_var_recurs:33,hasdependentvar:82,hash:[73,77],hasn:57,hasnext:46,have:[4,5,9,18,19,22,31,32,33,34,35,36,40,41,43,44,46,47,48,50,51,53,56,57,58,59,60,61,65,66,69,70,73,74,75,77,78,79,80,81,83,84,85,86,89,90,92,93,95,97,121,145],haven:57,hdf:[9,38],head:[19,101,124],header:[41,70,72,85,93,109],headip:124,height:[4,9,11,18,34,71,84,100,101,109,115],height_:90,held:36,hello:31,help:[4,18,34,55,57,62,69,75,84,85,96,98],helper:[18,48,69,86,96],henc:[48,78,83,86,87,89],here:[2,3,4,5,9,18,19,21,31,35,36,42,47,50,51,53,55,57,61,62,69,73,74,84,87,91,115,121,145],heterogen:[48,50,80],heurist:[4,50,75],hidden:[4,5,18,76,83,108,109,121],hidden_a:109,hidden_b:109,hidden_dim:18,hidden_out:34,hidden_s:5,hidden_t_prev:18,hidden_v:18,hidden_valu:18,hierach:139,hierarch:[4,81,83,85],hierarchi:85,high:[2,56,77,92,93,145],higher:[59,74,96],highest:[9,34],highli:[10,92,96],him:31,hint:65,histor:59,histori:6,hl_get_sync_flag:100,hold:[31,33,36,40,42,46,47,56,60,62,64,66,89,91,93,95,102,121],holder_:[93,102],home:[28,38,55,121,122,123,124,133],honor:40,hook:2,hookattr:2,hookattribut:2,horizont:[4,11],host:[35,44,80,121,122],host_c:[142,143,144],hostfil:124,hostnam:121,hostnetwork:123,hostpath:[122,123],hostport:121,hot:18,hous:[10,112],how:[2,4,18,31,34,36,40,45,46,47,48,53,55,57,59,62,65,69,74,75,79,80,87,91,95,121],howev:[4,5,18,32,33,43,47,48,53,57,66,73,78,79,83,84,86,87,90,91,92,93,95,121],howto:[117,119,123],hpp:[56,71],html:10,htod:134,http:[4,5,10,18,26,27,28,35,44,60,88,98,103,104,107,110,113,121,122,133,135,142,144,145],hub:88,huber:4,huge:78,human:[4,80,92],hwc:11,hyp:18,hyper:[4,60],hyperparamet:[4,87],hyperplan:9,hypothesi:18,i1116:123,i1117:134,i386:143,iOS:143,iamfullaccess:121,iamusersshkei:121,icc:58,iclrworkshop2016:18,icml:92,ics:10,id_input:3,id_rsa:124,idea:[35,47,57,58,78,84,87],ideal:[48,95],ident:[4,18,86,121],identifi:[4,63,73],identityoffsetproject:4,identityproject:4,idmap:123,ids:[3,4,18,75,107,115],ids_arrai:115,idx:[40,46,60,66,100],ies:55,if_els:94,if_else_op:33,ifdef:[73,80],ifels:[34,81],ifelseop:81,ignor:[4,17,18],ignored_token:18,iii:92,iil:109,illustr:[3,18,36,41,47,48,59,74],im2col:18,im_siz:60,imag:[7,8,9,10,18,26,31,48,57,60,61,75,76,81,84,92,98,121,122,123,125,126,145],image_a:84,image_b:84,image_conv_lay:92,image_fil:84,image_h:18,image_lay:84,image_nam:31,image_path:84,image_reader_cr:84,image_w:18,imagenet:[4,38],imagepullpolici:[121,123],imageri:4,images_reader_cr:84,imagin:61,img2label:11,img:[4,5],img_conv_lay:5,img_pool_lay:5,imgsiz:134,imgsizei:134,imgsizex:134,immedi:[66,69,78,87,121],immutable_paramet:31,imper:45,imperfect:85,implement:[4,5,9,18,19,23,34,40,41,42,43,44,45,47,48,50,57,59,62,63,64,66,69,71,72,73,75,79,82,89,91,92,93,94,95,96],implemet:39,impli:[35,107,110],implicitli:45,imposs:[46,75,145],impractic:95,improv:[4,49,50,66,85,92,121],in_arg:115,in_fals:18,in_plac:18,in_tru:18,inarg:39,inbound:121,inc_path:104,includ:[3,4,5,10,11,18,31,34,35,41,44,46,47,56,57,60,62,66,71,72,74,75,80,81,83,85,91,98,101,113,121,134,142,143,144],inclus:[18,75],incom:[45,65],incorpor:4,incorrect:4,increas:[36,40,56,109],increment:[47,52,61,66],incupd:100,inde:[9,47],independ:[4,18,32,33,41,49,89,93,145],index:[3,4,7,9,10,18,25,32,33,34,36,40,45,81,83,96,121],indexslot:4,indiact:18,indic:[3,4,10,18,21,33,34,41,53,60,74,81,86,90,93,96,115,121],indice_map:96,indices_map:96,individu:[36,77,121],industri:[36,70,145],ineffici:[79,95],infer:[11,17,18,31,33,34,36,52,57,63,64,65,66,67,71,73,82,83,85,90,92,95,110,112],infer_shap:83,infer_var_type_:64,inferer:92,inferfac:64,inferior:43,infershap:[34,83,85,101,102],infershapecontext:[101,102],infervartypefn:64,info:[3,4,10,56,74,100,107,110,119,123,145],infom:4,inform:[4,10,18,25,34,44,55,62,65,66,69,70,73,74,77,83,87,89,90,121],infrastructur:[57,121],ingrad_:68,ingredi:[47,92],inherit:[22,34,46,76,85,93],ininst:31,init:[2,18,25,34,49,60,68,74,75,100,110,112,117,121,123],init_attr:83,init_batch_dim_idx:18,init_from_tar:25,init_model_path:[128,129,131],init_valu:18,initi:[2,4,5,10,12,18,21,25,33,35,40,45,48,49,50,52,61,74,77,78,83,87,91,96,112,129,135],initial_max:[2,109],initial_mean:[2,4,109],initial_min:[2,109],initial_std:[2,4,109],initialize_op_attr:83,initrd:145,inlcud:5,inlin:[93,102,121],inner:[4,107,115],inner_param_attr:5,inner_pos_arrai:115,inner_seq_pos_arrai:115,inproj_attr:4,inproj_bias_attr:4,inproj_param_attr:4,input0:102,input1:[4,5,102],input2:4,input:[1,3,4,5,7,9,11,14,17,18,19,25,32,33,34,39,43,45,46,48,49,50,51,52,56,57,58,59,60,61,62,64,65,66,68,69,73,74,75,78,79,82,83,84,85,86,89,91,92,93,95,96,100,101,102,107,108,109,110,112,115,123,131,135,136,139,140],input_conf:4,input_data:100,input_data_target:100,input_dim_idx:18,input_dtyp:18,input_featur:1,input_hassub_sequence_data:100,input_id:4,input_imag:5,input_index:100,input_label:100,input_lay:100,input_loc:4,input_nam:31,input_proj_bias_attr:5,input_proj_layer_attr:5,input_seg:96,input_seq:[4,18],input_sequence_data:100,input_sequence_label:100,input_sparse_float_value_data:100,input_sparse_non_value_data:100,input_t:100,input_to_check:32,input_typ:107,input_valu:32,input_var:[32,83],inputbuff:39,inputdef:100,inputgradi:86,inputlayers_:100,inputs_to_check:32,inputsizechang:69,inputtyp:9,insert:[18,33,51,58,77,82,85,86,98],insid:[3,5,33,36,48,50,51,52,65,69,79,80,84,85,86,121],inspir:80,instal:[4,18,27,28,30,44,68,88,98,103,104,112,113,122,127,133,142,143,144],install_android:142,instanc:[4,18,32,34,36,38,42,45,46,48,49,51,53,58,63,69,74,75,78,83,85,86],instance_ip:121,instanti:[36,53,135],instead:[4,5,7,32,33,35,39,44,45,47,48,56,57,61,62,92],instrins:56,instruct:[34,61],int16:97,int32:[18,73,81,96,97,129],int64:[18,48,54,73,90,95,97],int64_t:80,int8:73,integ:[3,4,9,18,40,44,45,47,56,71,75,110],integer_sequ:107,integer_valu:[9,107,110,115],integer_value_sequ:[9,75,92,115,140],integer_value_sub_sequ:115,integr:[3,18,145],intel:[57,73,93],intellig:66,inteloptimizedpaddl:68,intens:92,inter:[4,18,48],interact:[4,48,121],intercept:4,interchang:[61,85],interconnect:77,interest:[45,56,77],interfac:[2,4,5,22,25,34,40,44,46,55,62,77,79,85,86,92,93,121,145],intergr:4,intermedi:[18,48,55,58,60,66,76,92],intern:[4,5,25,56,92,121,133],internel:68,internet:[35,36,145],interpret:[3,18,53,57,58,97],interv:18,intrins:[45,53,56],introduc:[4,11,34,36,46,60,67,70,87,89,91],intuit:[43,85],inval_:68,invalid:[84,89],invent:57,invoc:[35,59,85],invok:[4,25,33,46,48,51,79,83,85,86,91,95,121,134],involv:75,iob:3,ioe:3,ios:143,ios_arch:143,ios_deployment_target:143,ios_development_root:143,ios_enable_bitcod:143,ios_platform:143,ios_sdk_root:143,ios_use_veclib_for_bla:143,ip_str:123,ips:[121,123],ipt:[4,83,91,109,140],ipx:145,ipython:31,is_bia:18,is_color:11,is_cpu_plac:69,is_inf:116,is_loc:25,is_mkldnn_librari:69,is_revers:18,is_scalar_condit:18,is_seq:[4,140],is_spars:18,is_stat:[2,109],is_target:82,is_tensor:91,is_test:[18,69],is_traget:82,is_train:11,isbinari:115,isinst:[51,107,110],ismkldnnkernel:69,ispodallrun:123,isspars:100,issu:[18,35,60,92],issue_numb:98,issuecom:18,istag:88,item:[4,9,18,25,43,56,84,112,123,145],iter:[4,5,6,9,25,31,36,48,57,58,66,69,78,80,84,92,96],iter_multiple_input_and_param:83,its:[4,5,18,25,31,33,34,36,40,45,46,47,50,51,52,57,58,60,61,62,64,66,70,74,75,77,78,79,82,83,85,86,89,90,91,93,95,121,134],itself:[33,36,43,46,58,69,78,89],ivector:[115,116],ivs:91,java:[34,71,81,85],jeremi:134,jku:18,jmlr:18,job:[10,33,43,45,48,51,85,123,128,129,131],job_desc:48,job_dispatch_packag:119,job_id:10,job_nam:[44,121,123],job_namespac:[121,123],job_path:[121,123],job_path_output:123,job_workspac:119,jobdesc:48,jobnam:[48,123],jobpath:[121,123],jobport0:121,jobport1:121,jobport2:121,jobport3:121,jobselector:123,jobserv:44,join:36,jointli:5,jpg:[11,46],json:[62,92,121,122],jth:5,judg:4,juditski:78,jupyt:44,just:[1,3,4,5,10,18,35,40,41,45,48,57,58,60,64,69,78,79,83,84,85,86,87,89,90,121],jx4xr:121,jypyt:31,k8s:[45,123,145],k8s_data:[121,123],k8s_job:31,k8s_token:31,k8s_train:[121,123],k8s_user:31,kafka:38,kcpu:80,kcuda:80,kdisabl:80,kebilinearinterpbw:134,kebilinearinterpfw:134,keep:[4,9,11,18,36,47,57,58,61,75,78,83,89,91,145],keep_dim:18,keep_top_k:4,kei:[10,11,19,22,25,26,32,33,34,36,38,40,54,56,65,69,85,86,91,92,96,98,107,123,134],kenlm:92,kept:[4,66,83],kera:87,kernel:[4,18,22,32,47,56,58,65,68,78,80,87,90,92,93,95,101,102],kernel_hint:65,kernel_type_for_var:95,kerneltyp:[65,69],key1:129,key2:129,key_pair_nam:121,keyid:121,keymetadata:121,keypair:121,keyserv:121,keystat:121,keyusag:121,keyword:[18,83,94,123],kforcecpu:65,kill:[36,121],kind:[31,32,36,42,46,48,51,58,61,65,69,76,77,80,93,95,97,107,110,121,122,123],kind_:80,kitten:18,kmark:80,kms:121,knchw8c:73,knchw:73,knhwc:73,know:[18,31,40,45,46,66,70,121],knowledg:92,known:[33,34,47,57,59,74],kpoprang:80,kpushrang:80,kqueue:47,kriz:10,krizhevski:18,kselectedrow:90,ksimonyan:5,kstate:80,kube_cluster_tl:31,kube_ctrl_start_job:31,kube_get_workers_addr:45,kube_list_containers_in_job_and_return_current_containers_rank:31,kubeconfig:121,kubectl:[119,122,123,124],kuberent:[36,121],kubernet:[31,36,45,48,85,120,123,125,126,145],kubernetes_service_host:31,kusecudnn:65,kusemkldnn:65,kvp:22,kwarg:[5,6,9,14,18,21,52,62,83,91],kwd:[15,22],l1_rate:2,l1_regularization_op:87,l1decayregular:23,l2_rate:2,l2_regularization_op:87,l2_sim:4,l2decayregular:23,l2regular:107,l93:39,label:[3,4,9,10,11,14,18,25,48,52,57,60,61,62,76,81,84,92,95,107,110,122,135],label_dim:4,label_fil:84,label_lay:84,label_path:84,labelselector:123,lag:129,lambda:[18,45,51],lambdacost:4,lambdarank:4,lan:127,lang:10,languag:[4,10,19,45,47,57,61,66,80,85,89,92,94,107,110],larg:[7,10,18,48,50,51,66,70,78,92,98],larger:[2,3,4,66,94],larger_than:[34,63,81],largest:18,last:[3,4,5,18,33,51,66,74,80,81,136],last_seq:[75,137],last_time_step_output:4,lastseen:122,latenc:[4,56,92,121],latent:4,later:[35,85,87,92,93,102,121],latest:[4,28,34,35,36,43,88,98,103,104,122,123,142],latter:[78,96],launch:[69,121],launcher:31,law:[107,110],layer1:[4,5,107,136],layer2:[4,107,136],layer3:4,layer:[2,3,5,7,9,12,24,25,33,34,39,45,47,48,50,57,60,61,63,76,78,81,84,85,87,91,92,93,96,100,107,109,110,112,115,116,135,136,139,140],layer_0:100,layer_att:108,layer_attr:[4,107,108,131,140],layer_help:65,layer_nam:107,layer_num:131,layer_s:115,layer_typ:[4,67,68],layerbas:100,layerconfig:100,layergradutil:100,layerhelp:[18,65,83],layermap:100,layeroutout:4,layeroutput:5,layers_test:104,layout:[11,69,95],layout_:[65,73],layouttyp:65,lazi:[78,87],lbl:3,ld_library_path:113,lead:[46,66,73],leaki:60,leakyrelu:18,learing_r:76,learn:[2,3,4,5,6,10,18,19,28,31,33,41,43,47,48,50,53,60,61,66,68,75,77,78,80,84,85,87,93,134],learnabl:[4,18,19,25],learning_r:[2,21,41,48,107,109,135],learning_rate_arg:109,learning_rate_decay_a:109,learning_rate_decay_b:109,learning_rate_schedul:109,leas:36,least:[3,18,36],leav:[34,121],lectur:66,lecun:10,left:[4,18,34],left_right_flip:11,left_scor:107,legal:91,len:[4,18,41,45,54,57,83,100,112,123],length:[4,5,9,10,11,18,41,56,67,70,74,75,85,92,96,122],leran:66,less:[4,18,31,51,145],less_equ:94,less_than:[31,66],lesser:18,let02:122,let:[3,4,18,31,34,43,45,47,58,59,61,65,69,73,74,75,76,86,93,95,121],level:[2,4,18,56,59,62,70,74,75,80,93,96,97,115,139],levenshtein:18,lgtest:35,lgtest_main:35,lib64:[28,104,129],lib:[27,72,113,133,142,143,144],lib_path:104,libapi:35,libari:72,libc:30,libcuda:[28,104],libgcc_:30,libgflag:113,libglog:113,libgoogl:133,libiomp5:68,libmkldnn:68,libmklml_intel:68,libnvidia:[28,104],libopenbla:113,libpaddl:[71,72,85,98,133],libpaddle_capi:72,libpaddle_capi_engin:113,libpaddle_capi_lay:113,libpaddle_capi_shar:113,libpaddle_capi_whol:113,libpaddle_gserv:72,libpaddle_math:72,libprotobuf:[109,113],librari:[4,18,35,42,47,48,68,69,72,77,92,95,129],library_:73,library_type_:95,librarydevicecontext:73,librarytyp:95,libstdc:30,libz:113,licens:[68,77,107,110],life:36,lifecycl:[80,145],lifetim:89,lightweight:59,like:[3,4,9,10,18,33,34,35,36,39,44,45,47,53,57,58,59,60,61,62,64,69,73,77,78,83,84,85,86,87,89,90,92,94,95,96,121,135,145],limit:[4,9,18,57,66,70,75,85,87,107,109,110,134],linaro:144,line:[3,9,22,35,39,44,47,55,61,78,81,83,85,87,98,107,109,121,131],line_break:9,line_count:109,linear:[4,18,19,75,107,109,110,112],linearli:18,lineno:133,link1:56,link2:56,link:[4,5,18,35,54,55,89,121,139,145],linux:[9,26,30,47,54,121,142,144],linux_x86_64:[30,88,104],lipo:143,list:[3,4,5,9,11,18,22,23,25,31,33,34,35,40,44,45,53,55,57,60,73,76,79,80,83,86,89,96,107,121,131,133],listdir:117,listen:[36,45,48],listen_and_do:45,listen_and_serv:18,listenanddo:45,lite:113,littl:[41,65,70],live:135,live_in:66,live_out:66,load:[11,17,31,36,48,60,77,83,110,121,123],load_and_transform:11,load_file_nam:17,load_imag:11,load_image_byt:11,load_missing_parameter_strategi:[128,129,131],load_mnist:60,load_paramet:109,loadsave_parameters_in_pserv:[39,128,129],loc:3,local:[2,18,25,27,32,34,36,42,43,47,61,66,74,81,83,85,123,128,129],local_scop:32,localhost:[28,103],localip:123,localpath:55,locat:[4,18,25,35,57,73,80,93,96],lock:[35,36,40,41],lod:[18,47,70,74,90,96,97],lod_desc:[90,97],lod_expand:75,lod_level:[18,83,90,97],lod_rank_table_obj:18,lod_tensor:[18,74,90,97],lod_tensor_aarri:18,lod_tensor_arrai:18,lodrankt:18,lodtenosr:46,lodtensor:[18,19,46,47,64,70,85,97],lodtensorarrai:18,lodtensordesc:[70,90],log:[30,40,48,55,60,100,105,109,117,119,121,122,123,124,129],log_barrier_abstract:[128,129],log_barrier_lowest_nod:[128,129],log_barrier_show_log:[128,129],log_clip:[128,129],log_error_clip:[128,129],log_period:[122,123,129,131],log_period_serv:[128,129],logarithm:[1,18],logger:107,logic:[43,48,50,51,60,64,76,77,79,89,96],logist:18,logit:[18,60,95],longer:[36,48,66],look:[3,18,34,44,45,47,57,58,61,78,83,86,87,92,121,135],lookahead:[4,18,92],lookup:[18,64,75,135],lookup_t:66,loop:[32,34,46,57,66,80,84,89],loop_var:96,loss:[4,18,33,48,60,62,76,78,87,92],lot:[48,73,75,78,83,87,93,145],low:[4,76,77,92,93,96],low_rnn:74,lower:[4,18,56,74,75],lower_level_rnn:74,lpaddle_capi_engin:113,lpaddle_capi_lay:113,lpaddle_capi_shar:72,lpaddle_capi_whol:72,lrelu:60,lstm:[4,18,122,140],lstm_bias_attr:5,lstm_cell_attr:5,lstm_group:5,lstm_last:137,lstm_layer_attr:5,lstm_step:5,lstm_unit_op:18,lstmemori:[5,108,140],lstmemory_group:[4,108],lstmemory_unit:108,lstmlayer:67,lstmp:18,ltr:4,luckili:66,mac:[72,142],machin:[4,5,10,25,48,50,57,60,66,68,77,78,87,107,116,121,124,139,145],machine_transl:140,maco:[26,30],macro:[59,73,86],made:[10,36,41,57],mai:[4,5,18,22,32,34,48,52,56,58,65,66,69,77,80,84,85,89,92,95,107,110,121],main:[18,45,47,51,57,58,62,77,81,85,113,121,133],main_program:[17,18,33,52],mainli:[42,66,73,93],maintain:[4,34,40,78,83,85,121],majel:35,major:[48,56,95],make:[3,4,18,26,27,31,33,34,35,36,40,41,43,47,48,49,56,57,61,74,75,78,79,83,84,85,87,92,96,98,100,101,103,104,113,121,134,142,143,144,145],make_chan:47,make_channel:47,make_ddim:102,make_function_oper:59,make_vari:91,maker:[85,86],malloc:93,man:54,manag:[25,36,41,42,45,47,48,55,80,89,93,103],mandarin:[4,92],mani:[5,11,33,35,40,45,47,57,60,65,66,75,79,80,83,85,86,89,90,91,94,95,96],manili:62,manipul:[57,83,86],manner:[4,78,87,92,93],mantain:66,manual:[48,76,78,86,109,145],manufactur:57,manylinux1:30,manylinux1_x86_64:[30,88,104],manylinux:88,map:[3,4,9,19,25,31,34,40,51,69,73,83,86,89,91,93,96,110,113,145],map_fn:96,map_read:9,mapper:9,mapreduc:31,margin:18,mark:[10,33,50,60,61,74,75,80,89,145],marker:80,market:56,mask:[2,4,18],master:[10,31,43,85,88,144],mastermind:35,mat:[71,72,115],mat_cache_row:39,mat_norm:39,mat_normal_shar:39,mat_param_attr:5,mat_sparse_row:39,mat_sparse_row_auto_grow:39,mat_sparse_row_id:39,mat_sparse_row_prefetch:39,mat_sparse_row_prefetch_full_s:39,mat_value_shar:39,match:[18,35,56,94,107],matchbox:145,math:[5,18,68,71,85,100,101,134],mathemat:87,matirx:4,matmul:[34,62,74,96,101],matric:18,matrix:[3,4,5,9,18,19,25,39,71,72,100,101,113,115,116],matrixptr:100,matrixtyp:72,mattyp:39,max:[2,4,9,10,18,19,22,32,49,51,66,83,109,131,134,136],max_diff:32,max_id:[4,25],max_job_id:10,max_length:[4,75,140],max_movie_id:10,max_norm:18,max_relative_error:[32,101],max_seq_len:18,max_sort_s:4,max_user_id:10,max_x:18,maxframe_evalu:3,maxid:3,maxid_evalu:3,maxim:[4,51],maximum:[3,4,10,18,22,34,41],maxinum:7,maxoutfunctor:93,maxpool:4,mayb:[34,69],mchw:18,md5:[10,37],mean:[2,3,4,5,6,7,9,11,22,25,33,35,48,49,51,62,75,82,84,89,92,95,107,121,129,135,145],mean_op:18,mean_var_nam:4,meant:96,measur:[18,52],mechan:[4,5,19,33,42,46,52,69,83,86,121],mem:[4,18,34,44,75],mem_per_pserv:48,mem_per_train:48,member:[4,10,31,51,61,62,73,79,83,89],memcpi:[79,134],memor:4,memori:[5,18,33,34,39,40,44,56,58,68,69,70,73,75,78,80,85,95,102,122,134,135,140],memory_boot:5,memory_nam:[4,108],memory_optim:66,memory_test:26,memory_threshold_on_load_data:[128,129],memoryalloc:93,memorydesc:69,mention:[18,33,35,40,48,50,57,74,77,78,80],mere:5,merg:[4,18,41,43,49,52,68,74,77,79,98,116],merge_model:116,merge_v2_model:116,merge_v2_modelss:116,messag:[18,34,45,47,53,57,58,61,70,80,81,82,83,85,86,90,97,98,104,122],metadata:[54,121,122,123],metal:145,metaphor:61,metaplotlib:31,method:[4,6,25,32,34,43,45,46,48,49,51,56,60,61,62,65,76,77,83,84,85,89,90,95,96,133],methodolog:78,metric:[52,80],mfs:123,microarchitectur:56,might:[4,34,35,45,47,57,66,81,92,121],million:10,min:[2,4,18,22,49,51,83,121,131,134],min_block:34,min_count:50,min_desc:34,min_pool_s:107,min_word_freq:10,mini:[4,9,14,18,25,34,36,47,52,53,57,63,74,107],mini_batch:84,minibatch:[4,18,34,52,61,63,81],minim:[34,48,50,51,57,60,76,85,135],minimum:[4,18,22,92],minsizerel:[142,143,144],minu:86,minus_grad:86,minusgradop:86,minusop:86,minusopgradmak:86,minusopprotoandcheckermak:86,minut:[36,43,121],mip:142,mirror:35,mislead:41,mismatch:18,miss:60,mistak:57,mit:121,mix:[5,80,96,140],mixed_lay:5,mixed_layer_attr:5,mixedlayertyp:4,mkdir:[27,55,103,113,121,124],mkl:[27,69,85,93,95,104,113],mkl_packed_:67,mkldnn:[4,68,73,95],mkldnn_:68,mkldnn_batch_norm:4,mkldnnactiv:68,mkldnnbase:68,mkldnnlayer:68,mkldnnmatrix:68,mkldnnstream:68,mkldnntester:68,mklml:[68,104],mklml_lnx_2018:104,mklpack:67,mklpackedgatedrecurrentlay:67,mklpackedgemm:67,mklpackedlstmlay:67,mklpackedrecurrentlay:67,mlp:62,mmt16_task1_test:10,mnist:[38,48,60,61,81,84,85,116,133],mnist_random_image_batch_read:84,mnist_train:84,mnist_train_batch_read:84,mnist_v2:116,mnt:123,mobil:[56,57,66,85,103],mode:[4,22,25,56,67,77,98,123],model:[4,5,10,17,18,19,25,33,34,36,37,45,48,50,51,52,61,66,67,76,77,78,85,87,92,95,96,103,110,112,116,121,131],model_list:[129,131],model_path:131,modelparallel:48,modern:66,modif:92,modifi:[4,23,48,56,62,87,98,121],modul:[5,10,25,48,59,60,75,92,96,101,109,133],modular:75,modulo:4,moment:18,momentum:[2,18,89,107,110],momentumop:133,momentumoptim:20,mon:122,monitor:[47,80],mono:4,month:35,more:[3,4,5,9,10,18,22,31,32,33,35,36,40,43,44,46,47,48,50,55,56,57,58,59,61,65,66,69,73,74,75,76,80,83,84,85,87,92,93,94,96,109,134,135,145],mose:10,mosesdecod:10,most:[4,9,25,31,33,35,43,47,48,58,61,62,73,75,78,80,84,87,92,93,94,135,145],mostli:[56,145],motiv:85,mount:[44,121],mountpath:[121,122,123],move:[4,36,40,46,55,57,78,121,145],movi:10,movidiu:57,movie_categori:10,movie_id:123,movie_info:10,movie_review:10,movieinfo:10,moving_average_fract:4,moving_mean_nam:18,moving_variance_nam:18,mpi:[47,77,124],mpirun:124,mse:[57,61,76,81],much:[4,18,36,57,69,76,84,87,96],mul:[59,66,83,100,101],mul_grad:101,mul_op:[18,101],mul_ratio:4,mul_result:83,mulgradkernel:101,mulkernel:101,mulop:[59,101],mulopgrad:101,mulopmak:101,mult:[45,58],multi30k:10,multi:[4,19,52,77,79,95,145],multi_binary_label_cross_entropi:4,multidimension:18,multigradientmachin:79,multilingu:10,multimod:10,multinomi:4,multip:19,multipl:[3,4,5,9,14,18,19,25,31,32,40,41,43,45,47,48,50,52,57,58,59,65,77,80,85,92,95,97,110,121],multiple_input:83,multiple_param_attr:83,multipli:[3,4,18,45],multiprocess:9,must:[1,3,4,5,9,11,18,33,41,46,51,66,69,70,73,80,82,83,84,85,91,97,100,101,102,107,117,121],mutabl:[93,102],mutable_data:[69,93,101,102],mutex:47,mutuable_data:93,mutual:18,mxnet:[34,45,47,57],my_cluster_nam:121,my_cost:109,my_external_dns_nam:121,my_lib:117,myerrorclip:51,myfil:9,mypaddl:[122,123],naiv:45,name:[2,3,4,5,7,11,17,18,21,22,25,31,32,33,34,36,38,39,41,44,45,46,48,52,56,59,62,65,68,69,70,72,73,75,80,81,83,85,88,90,91,96,97,100,109,110,112,122,123,125,126,131,134,135,140,145],name_:80,name_prefix:38,namespac:[34,63,71,83,100,101,122,123],nativ:[4,18,56],natur:[18,40,43,50,75,96],ncall:133,nccl1:77,nccl2:77,ncclinit:77,nchw8:95,nchw8c:95,nchw:[4,18,68,73],ndarrai:[11,18,25,38,107],ndcg:4,ndcg_num:4,ndk:142,nearest:56,nearli:[32,46],necess:96,necessari:[4,33,34,41,43,51,52,66,70,75,79,83,91,96],necessarili:45,neck:77,need:[3,4,5,9,17,18,19,23,31,32,33,35,39,40,41,43,44,46,47,48,50,51,52,55,57,58,59,60,65,66,69,73,75,76,77,78,79,80,82,83,85,86,87,89,90,91,92,93,96,104,121,123,134,145],need_tran:109,neg:[3,4,18],neg_distribut:4,neg_overlap:4,neg_pos_ratio:4,neglect:4,neighberhood:77,neither:4,neon:56,ner:3,nervana:57,nessesari:92,nest:[4,9,33,34,80,81,97,115],net:[4,5,12,18,34,60,74,89,116],netop:[34,85],network:[2,3,4,9,18,19,24,25,31,32,33,34,36,39,48,50,52,60,62,66,67,68,74,76,78,80,83,84,87,89,91,92,93,95,97,108,110,112,115,116,123,131,137,145],network_config:131,networkadministr:121,neural:[4,5,9,18,25,31,33,34,36,48,62,66,67,68,74,78,87,89,93,95,97,112,137,139],neuralnetwork:79,neuron:18,never:[9,66,84,89,121,122,123],new_block_idx:83,new_dim:18,new_op_desc:51,new_scop:95,new_stat:74,newblock:83,newbuff:69,newest:41,newli:[56,145],newop:34,newopdesc:83,newprogram:83,newscop:95,newvardesc:83,next:[4,10,33,36,42,46,47,51,75,77,96,121],nextlay:68,nfs4:121,nfs:[121,123],nfsdir:123,nfsver:121,ngram:10,nic:[123,128,129],nil:[40,47],nine:10,nlp:4,nltk:10,nms_threshold:4,nms_top_k:4,nmt_without_attent:107,nnz:[100,115],no_grad_dict:33,no_grad_set:[32,33,101],no_gradi:33,no_sequ:[4,110],node0:123,node1ip:124,node2ip:124,node3ip:124,node:[4,35,43,45,48,50,62,66,75,77,85,121,122,123,124,145],node_0:[121,123],node_1:[121,123],node_2:[121,123],node_id:117,nodeattr:62,nodeentri:62,nodefil:119,nodesep:62,nohup:117,nois:[4,18,36,60],noisi:[4,60],non:[4,18,36,47,56,57,90,121],none:[2,3,4,5,6,7,11,13,14,17,18,19,21,22,23,25,31,32,33,34,47,51,52,60,62,63,74,75,76,81,83,91,96,135,140],noneedtran:69,nontranspos:18,nor:45,norm:[5,18,60,73],norm_by_tim:[4,18],normal:[4,5,10,18,21,78,92,122,123],normaliniti:16,normalizaiton:18,normliz:18,notat:[4,66],note:[2,4,5,7,10,11,18,25,31,33,34,39,40,44,66,70,73,77,84,85,93,95,102,121],notebook:[28,44],noteworthi:57,noth:[1,25,65,83,89,98],notic:[4,51,57,77,86],notimplementederror:51,notin:95,notingradi:101,notion:96,notori:32,now:[9,33,35,36,46,47,50,60,70,73,78,85,86,87,89,121,139],np_arrai:9,nproc:26,nullptr:[69,80,86,89,100],num:[4,5,117,123,129],num_channel:[4,5],num_chunk_typ:[3,14,18],num_class:[4,5,18,62],num_col_dim:18,num_filt:[4,5,18,19],num_flatten_dim:18,num_gradient_serv:[117,128,129],num_head:19,num_hidden:62,num_neg_sampl:[4,18],num_or_sect:18,num_parameter_serv:31,num_pass:[25,110,122,123,128,129,131],num_per_batch:11,num_pserv:48,num_repeat:4,num_result:3,num_results_per_sampl:4,num_row:90,num_samples_process:109,num_shard:38,num_step:96,num_total_class:18,num_train:48,num_true_class:18,number:[3,4,5,9,10,11,14,18,19,22,34,36,38,50,52,66,78,80,84,85,91,96,121],numchunktyp:3,numdevices_:131,numer:4,numeric_grad:32,numerical_grad:32,numlogicaldevices_:131,numofallsampl:3,numofwrongpredict:3,numpi:[2,9,11,18,25,27,38,56,60,83,84,101,107,109,110],numreal:39,numsampl:134,numtagtyp:3,numtimeout:40,nv_:35,nv_gpu:26,nv_librari:35,nv_test:35,nvcc:[35,56,58],nvidia:[26,28,56,73,77,93,104],nvlink:77,nvprof:80,obei:3,obj:109,object:[2,4,5,9,18,25,31,39,46,48,51,52,60,62,66,71,76,80,83,85,87,89,134],observ:4,obtain:[4,18,43,46,78,93,107,110],obvious:[35,73],occup:[66,123],occupi:[56,80],occur:[10,25,66],occurr:34,oct:122,odd:4,odoti:18,off:[26,27,72,98,103,113,127,142,143,144,145],offer:[34,85,91],offici:[4,35,121],offlin:[36,38,145],offset:[4,18,39,115],often:[4,39,62,66,73],ograd:100,old:[32,41,43,75,85],older:[18,57],omega:87,omit:[18,107],omp_num_thread:133,ompi_comm_world_rank:117,onc:[4,36,40,45,48,50,52,57,61,78,94,121],one:[1,3,4,5,7,9,18,22,25,31,32,33,34,36,39,40,41,43,44,45,46,47,48,51,52,53,56,57,58,59,60,62,64,65,69,70,73,74,75,76,77,78,79,81,82,83,84,85,86,89,90,92,93,94,95,96,115,121,135,145],onehotcrossentropyopkernel:101,ones:[59,60,85],onli:[3,4,5,7,11,18,25,31,32,33,35,39,40,41,42,43,44,45,46,48,50,51,52,53,55,56,57,60,61,66,69,74,75,76,77,79,80,83,85,90,91,92,93,94,95,96,115,121,139,145],onlin:[4,6,36,38,66,84],only_cpu:32,onnx:57,onto:[18,48,50,121],op1:[66,95],op1_2_op2:95,op1_to_op2:95,op2:[66,95],op3:66,op_:101,op_check:101,op_class:[85,91],op_desc:[51,64,82],op_info:135,op_kei:69,op_maker_class:[85,91],op_proto:91,op_registri:135,op_siz:51,op_test:101,op_typ:[85,101],op_unique_kei:69,opattrcheck:101,opcreat:91,opdesc:[34,51,61,81,82,83,85,86,91,97],opdescbind:[64,86],opdescbuild:34,open:[4,11,18,31,38,57,60,68,84,107,109,110,121],openbla:[27,28,113],opencv:11,openmpi:[120,124],opensourc:77,oper:[4,5,9,11,18,22,23,32,34,45,47,48,49,50,52,53,56,57,58,60,61,62,64,65,74,75,76,77,80,82,87,89,92,93,95,97,101,102,121,135],operand:[18,56],operartor:102,operator_grad:32,operator_list:80,operatorbas:[34,59,85,86,91,101],operatorwithkernel:[95,101],opinfo:[64,85,86],opinfomak:64,opinfomap:86,opkernel:[101,102],opkernelkei:85,opkerneltyp:[73,95],opmak:91,opposit:18,opproto:101,opprotoandcheckermak:[86,101],opprotomak:[91,101],opregist:91,opregistri:91,ops:[32,33,34,35,45,46,58,61,62,78,81,82,83,85,93,101,145],ops_:34,ops_test:35,opt:[27,31,76,82,91,123],opt_op_list:76,optest:101,optim:[2,12,23,24,25,32,33,48,49,50,58,60,77,78,79,81,85,87,90,92,107,109,110,135],optimis:76,optimize_op_attr:83,optimizer_mod:18,optimzi:107,option:[3,4,10,18,22,31,35,48,60,65,70,81,82,83,85,90,91,92,97,142,145],optmization_op_list:76,opts_np:82,optyp:[64,91],opwithkernel:90,order:[4,5,9,11,18,22,25,33,61,70,80,84,87,96,121,123,133,145],ordereddict:25,orderli:18,oregon:121,org:[3,4,5,10,18,38,54,60,107,110],organ:[3,4],orient:91,origin:[4,5,9,10,17,18,32,56,60,89,96,98],other:[3,4,5,9,18,22,34,36,41,45,55,56,57,58,64,66,69,73,74,78,82,87,89,91,92,93,95,121,135,145],otherchunktyp:3,otherwis:[4,9,10,11,18,22,25,31,33,36,41,43,60,64,69,84,92],our:[18,31,33,35,46,47,48,50,60,64,66,73,77,78,89,96,121],out:[4,18,25,31,34,35,40,43,46,48,51,57,62,66,69,74,75,83,95,101,102,107,121,133,139,140],out_dir:[121,123],out_fals:18,out_left:4,out_mem:140,out_memori:5,out_right:4,out_size_i:4,out_size_x:4,out_tru:18,outer:4,outer_mem:137,outgrad_:68,outlier:4,outout_lay:25,outout_layer1:25,outout_layer2:25,output:[1,2,3,4,5,7,9,14,18,19,22,25,31,32,33,34,38,43,45,46,50,51,55,58,59,60,61,62,63,64,66,69,70,74,75,78,81,82,83,84,85,86,89,90,91,93,95,96,101,102,107,110,116,119,122,123,131,140],output_:[4,68],output_all_step:74,output_arg_nam:51,output_dim_idx:18,output_dtyp:18,output_fil:[22,116],output_height:18,output_id:4,output_lay:[25,107,110,112],output_max_index:7,output_mem:[4,140],output_mod:22,output_nam:32,output_num:74,output_path:38,output_s:18,output_seg:96,output_width:18,outputbuff:39,outputgradi:86,outputh:4,outputw:4,outsid:[4,5,48,89],outter:115,outter_pos_arrai:115,outter_seq_pos_arrai:115,outupt:96,outv:100,outval_:68,over:[4,5,18,25,31,57,66,77,78,96],overal:[60,78,80,145],overfit:[18,87],overflow:18,overlap:[3,4],overlap_threshold:[3,4],overload:[56,65],overrid:[34,36,55,69,93,101,102],overview:[40,41,42,93],overwrit:55,own:[4,18,33,41,43,51,53,62,64,76,77,78,87,91,121],pack:[96,109],packag:[9,10,40,44,45,59,68,88,104,121,133],pad:[5,18,69,92],pad_c:4,pad_h:4,pad_w:4,padding_attr:4,padding_down:18,padding_h:18,padding_i:4,padding_idx:18,padding_left:18,padding_right:18,padding_up:18,padding_w:18,padding_x:4,paddl:[1,2,3,4,5,6,7,9,10,11,13,14,15,16,17,18,19,20,21,22,23,25,26,27,28,30,31,34,35,36,38,44,46,48,55,58,59,60,63,67,68,69,70,71,72,74,75,79,81,85,87,88,91,92,93,96,98,100,101,103,107,109,110,112,113,115,116,117,119,121,122,123,124,127,131,133,134,135,140,142,145],paddle_arguments_get_sequence_start_po:115,paddle_arguments_set_id:115,paddle_arguments_set_sequence_start_po:115,paddle_arguments_set_valu:115,paddle_begin_init_param:41,paddle_capi:113,paddle_dir:101,paddle_doc:103,paddle_docs_cn:103,paddle_element_typ:41,paddle_element_type_float32:41,paddle_element_type_float64:41,paddle_element_type_int32:41,paddle_element_type_int64:41,paddle_element_type_uint32:41,paddle_element_type_uint64:41,paddle_enforc:[34,46,69],paddle_enforce_eq:[101,102],paddle_error:[71,72],paddle_exampl:44,paddle_finish_init_param:41,paddle_get_param:41,paddle_gradi:41,paddle_gradient_machine_create_shared_param:116,paddle_gradient_machine_forward:116,paddle_gradient_machine_load_parameter_from_disk:116,paddle_init:116,paddle_init_num_gradient_serv:117,paddle_init_param:41,paddle_init_port:117,paddle_init_ports_num:117,paddle_init_ports_num_for_spars:117,paddle_init_pserv:117,paddle_init_trainer_count:117,paddle_init_trainer_id:117,paddle_init_use_gpu:117,paddle_ivector:115,paddle_ivector_cr:115,paddle_job:44,paddle_manylinux_devel:27,paddle_matrix:[71,72,115,116],paddle_matrix_cr:[72,115],paddle_matrix_create_spars:115,paddle_matrix_get_row:115,paddle_matrix_get_shap:71,paddle_matrix_shap:71,paddle_matrix_sparse_copy_from:115,paddle_n:123,paddle_new_etcd_pserver_cli:41,paddle_new_pserver_cli:41,paddle_on_cloud:44,paddle_output:122,paddle_paramet:41,paddle_port:123,paddle_ports_num:123,paddle_ports_num_spars:123,paddle_process_by_paddl:123,paddle_pserver2:119,paddle_pserver_cli:41,paddle_pserver_client_releas:41,paddle_r:115,paddle_root:113,paddle_save_model:41,paddle_send_grad:41,paddle_server_num:123,paddle_train:[72,88,119,123],paddle_with_cuda:80,paddle_with_mkldnn:73,paddlepaddl:[4,5,9,10,11,18,25,26,27,28,30,35,36,38,41,42,43,44,45,48,54,55,59,60,61,63,65,70,74,75,76,79,80,83,84,85,89,96,97,98,107,110,112,113,115,116,119,120,122,123,125,126,127,133,134,140,142,144,145],paddlepaddle_gpu:30,paddlepaddlebook:28,paddlepaddlehub:28,page:[10,121],pair:[3,18,19,22,23,33,34,48,61,76,80,85],pairwis:4,pakcag:35,panic:47,paper:[4,10,18,60,92],para:39,paradigm:[45,53,85],paragraph:74,paragraph_data:74,paragraph_out:74,parallel:[18,45,47,48,50,77,80,85,95,121,122,123,131,134],parallel_for:45,parallel_nn:[2,128,129],paralleldo:49,parallelfor:45,paralleliz:92,param:[2,4,5,9,17,18,32,34,41,79,83,93,102,107,109],param_attr:[4,5,12,18,19,39,83,107,109,140],param_config_proto:41,param_fil:[109,116],param_initi:18,paramattr:[2,4,18,107,109,140],paramet:[3,4,5,6,7,9,17,18,19,23,24,32,33,34,35,37,39,43,45,48,49,51,53,55,57,58,60,61,62,64,70,74,76,77,81,84,89,91,92,96,107,109,110,112,115,118,119,123,129,135],parameter_block_s:[128,129],parameter_block_size_for_spars:[128,129],parameter_learning_r:2,parameter_list:[33,76],parameter_nam:[25,31],parameter_serv:31,parameter_valu:39,parameterattribut:[2,4,5,39],parameterclient2:123,parameterclient_:39,parametermap:100,parametermutex_:39,parameters_:100,parameters_and_grad:[23,76],parameterserver2:39,parameterset:31,parameterupdat:79,parameterupdater_:39,parametr:4,params_grad:76,params_pass_4:116,params_pass_90:110,params_pass_:110,paramt:121,paraspars:100,parent:[34,45,81,83,85],parent_:[34,89],parent_idx:83,parenthes:85,pars:[9,10,26,35,48,62,121],parse_known_arg:123,parsefromstr:109,parser:[9,123],part:[3,4,18,19,33,34,43,48,57,69,70,81,83,92,93,145],partial:[4,25],partial_sum:4,particular:[61,70,85,92,95],partit:[36,38,48,50,85,121],paserv:123,pass:[4,18,25,33,34,36,47,51,52,57,60,66,70,76,78,79,82,83,84,85,87,89,92,94,96,98,107,110,121,122,123,129,131,134],pass_gener:4,pass_id:[25,48,107,110],pass_idx:84,pass_manu:109,passtyp:100,past:[31,121],patch:[18,54],path:[3,9,10,11,17,25,36,40,41,44,66,75,84,92,113,121,122,123,129,142,143,144],path_to_paddlepaddle_working_directori:103,pattern:[10,36,71,78,87,121],paus:[36,43],pcie:77,pd_api:115,pdf:[5,18],peephol:18,peer:[77,105],pem:[31,38,121],pend:[36,40],pep425tag:[30,104],per:[3,4,10,11,18,36,41,77,78,84,87],percal:133,perf_test:133,perfectli:92,perform:[4,5,18,32,41,47,48,52,56,57,60,66,77,79,80,84,85,87,92,93,95,128,133,134],perftool:[80,133],period:[36,43,129],perl:10,perm:18,permiss:[107,110,121],permut:18,peroid:[4,11],persist:[17,18,53,90,92,97,121],persistentvolum:121,persistentvolumeclaim:[121,123],person:[3,31,65],perspect:85,perturb:32,pex:145,pfs:[38,55],pfsclient:38,pfspath:55,pgp:121,phase:[18,69,75,77,78,84,86,92,145],philosophi:[78,87],photo:60,phrase:18,physic:145,pick:[18,121],pickl:[117,124],pictur:77,piec:[5,45,80],pil:11,pillow:44,pip:[27,30,88,98,103,104,112,133],pipe:9,pipelin:[52,92],piperead:9,pivot:69,pixel:[4,9,10,48],place:[13,15,18,22,33,34,36,43,48,50,53,65,69,77,85,95,102,135],place_:[65,73,93,95],placehold:[60,93,102],placement:50,plain:[3,4,9,44,70,72,73],plan:[36,45,69,85,92],platform:[30,34,58,69,73,80,93,95,101,102,121,135,142,143],pleas:[2,4,5,6,10,11,18,31,36,40,41,42,45,47,58,62,73,74,83,84,85,92,93,97,103,104,121,123],plot:31,plu:4,plug:[77,78],pnpairvalid:128,pod:[38,44,45,121,122,123],pod_nam:121,podip:123,podlist:123,point:[18,34,36,44,47,56,66,69,77,93,102,115,134,145],pointer:[34,41,62,66,73,83,85,89,93,102,115],polar:10,poli:109,polici:[18,121],polit:18,poll:47,pollut:43,polyak:78,ponit:62,pool3:100,pool:[5,18,24,49,66,92],pool_attr:5,pool_bias_attr:5,pool_layer_attr:5,pool_pad:[5,18],pool_siz:[4,5,18,19],pool_size_i:4,pool_strid:[5,18,19],pool_typ:[4,5,18,19],pooled_height:4,pooled_width:4,pooling_lay:[5,107],pooling_typ:[4,107,136],poolingtyp:7,pop:[34,53],popul:41,popular:[35,60,62,80],port:[18,35,45,117,121,122,123,128,129],port_num:128,portabl:62,portal:103,ports_num:[117,123,129],ports_num_for_spars:[39,117,123,128,129,131],pose:36,posit:[3,4,5,18,115],positive_label:3,possibl:[31,34,40,47,50,66,83,87,97],post:[44,54],postpon:87,potenti:[56,134],pow:109,power:[56,66,77,92,145],ppo_workspac:103,pprof:133,pre:[4,5,10,31,41,65,66,121],pre_activ:83,pre_bia:83,pre_id:18,pre_mem:18,pre_stat:[74,96],preambl:83,precis:[3,14,18,52,56,78],precision_evalu:3,precompil:53,pred:[62,66],predecessor:66,predetermin:4,predic:[10,17],predict:[3,4,18,25,48,87,107,112,116],predict_fil:[128,129],predict_lay:25,predict_output_dir:[128,129],prediction1:25,prediction2:25,prefer:[57,65],prefetch:[39,100],prefix:[3,5,18,36,38,75,92,121],pregel:47,pregrad:100,prepand:83,prepar:[32,44,79,92,117,124,125],prepend:[18,83],prepend_oper:83,preprocess:[10,11,92,96],present:[31,33,34,80,96,98],preserv:55,prev_batch_st:[128,129],prev_cel:18,prev_cell_data:18,prev_hidden:18,prev_hidden_data:18,prevent:[6,18,31,36,40,43,51,87],preview:85,previou:[4,5,18,22,25,33,36,50,55,74,75,121],previous:4,previous_memori:34,price:[10,85,112],prim:69,primari:[57,61],primarili:[78,87],primit:[56,68,69,77,96],primitive_desc:69,primitivedesc:69,principl:[18,31,35,73],print:[2,22,25,30,31,47,48,57,62,83,94,104,110,112,124],print_graphviz:62,print_phas:18,print_tensor_lod:18,print_tensor_nam:18,print_tensor_shap:18,print_tensor_typ:18,printallstatu:134,printer:3,println:47,printstatu:134,priorbox:4,prioriti:85,prite:3,privat:[34,72,80,83,89,90,91,93,96,98,102],privileg:121,pro:77,prob:[3,25,112],probabalist:18,probabilist:4,probabl:[3,4,18,25,75,92],problem:[4,31,32,35,43,46,57,60,61,78,85,87],proc:28,proce:[9,36,84,121],procedur:[34,70],proceed:[10,18],process:[2,4,5,9,18,31,33,34,38,39,40,43,45,46,47,48,52,53,57,58,62,66,68,70,77,87,91,95,107,109,121,123],process_num:9,processor:[56,134],prod:98,produc:[4,5,9,18,36,57,62,84],product:[4,5,18,19,44,57,110,121],productgraph:122,prof:133,profil:[12,55,80,92,133,134],profilerst:80,profl:133,proflier:[80,134],prog:123,program:[9,13,17,18,22,31,33,38,41,43,48,50,53,61,63,66,76,77,80,84,85,89,94,97,123,134],programdesc:[45,48,53,57,66,70,82,83,86,97],programm:[48,57,83],progress:[36,40],proj:4,proj_activ:18,proj_dim:18,proj_out:18,proj_siz:18,project:[4,5,18,19,44,72,92],promis:[4,5,75],prompt:[55,57],prone:31,pronunc:92,prop_kind:69,propag:[4,6,33,57,78],proper:65,properli:65,properti:[62,87],propos:[18,34,49,50,75,76,77,78,96],proprietari:68,protect:[46,56,91,100,101],proto:[7,47,65,70,73,81,85,91,97,101],proto_:91,protobuf:[25,34,44,45,48,53,57,58,61,62,66,70,81,83,85,86,91,109,113,116],protocol:[3,135,145],protomak:101,provi:117,provid:[4,10,18,31,34,41,44,45,52,53,56,57,60,62,64,65,73,77,78,80,83,87,91,92,93,94,96,107,112,121,128,145],provis:[121,145],prune:[4,17,34],ps_desir:36,pserver:[25,39,41,42,44,85,117,119,121,123,128,129],pserver_addr:41,pserver_cpu:44,pserver_id:37,pserver_mem:44,pserver_num_thread:[39,128,129],pserver_spec:25,pseudo:[31,33,44,86,96],pseudocod:96,psize:100,ptr:[72,93],pub:[18,124],pull:[28,35,85,88,142],purpos:[4,36,48,50,65,134],push:[34,53,57,80,88,123],push_back:100,put:[35,36,39,50,66,69,83,93],pvc:121,pwd:[26,27,28,98,103,142],pxe:145,py_paddl:104,pybind:[34,47,56],pydataprovid:107,pydataprovider2:123,pyramid:4,pyramid_height:4,python2:133,python:[10,18,25,26,27,30,31,34,42,46,47,52,53,57,59,60,61,62,65,71,75,79,80,85,88,93,96,98,100,101,103,104,107,112,116,117,124,133,135,140],pythonpath:104,pytorch:[57,80],qualcomm:56,queri:[3,4,19,121],query_id:3,quest:10,question:[4,31,45,50,91,121],queue:[47,50],quick:62,quick_start:[44,121,122,123,125],quick_start_data:122,quickli:[75,83,85],quickstart:122,quit:75,r14b:142,r_h_val:18,r_t:4,rais:[9,18,19,23,51,62,117],rajathkmp:60,ran:[50,134],rand:[60,109,115,129,131,134],rand_max:115,random:[2,4,9,18,38,47,60,73,79,83,84,101,109],random_crop:11,random_imag:38,randomli:[11,18,43,115],rang:[4,9,18,38,45,48,56,60,66,80,84,91,123],rank0:77,rank1:77,rank:[4,18,31,96,121],rank_tabl:18,rankdir:62,ranktabl:18,rapid:86,raspberrypi:144,raspbian:144,rasspberri:144,rate:[2,3,4,5,6,10,19,41,92,107,123],rather:[33,44,60,96,121],ratio:[4,129],raw:[4,18,70],rdma_tcp:[128,129],reach:[36,66,77],read:[9,11,18,25,31,33,36,38,45,46,47,48,50,57,58,84,85,92,96,109,121,145],read_from_arrai:66,read_from_realistic_imag:31,read_from_rng:31,read_lock:37,read_minibatch:57,read_mnist_imag:31,read_next_from_fil:107,read_paramet:109,read_ranking_model_data:31,readabl:[80,85],reader:[10,25,38,48,56,60,61,81,92,110,117,133],reader_cr:38,reader_creator_bool:84,reader_creator_random_imag:[9,84],reader_creator_random_image_and_label:[9,84],readi:[36,47,121,122,145],readlockguard:39,readm:[72,98],readnext:46,readwritebuffer_:39,readwritemani:121,real:[4,18,39,60,84],realist:31,realiti:92,realiz:[34,74],realli:[57,87],rearrang:18,reason:[5,31,32,36,47,57,122],recal:[3,14,18],receiv:[18,36,44,47,48,50,74],recent:[66,78],recognit:[4,92],recommend:[5,18,31,123],record:[9,22,40,69,80,91,121],recordev:80,recordio:[9,10,31,38,40,46],recov:[36,96],recover:85,recoveri:40,rectifi:4,recurr:[18,67,74,89,92,137,138],recurrent_group:[5,92,107,108,137,139,140],recurrent_lay:5,recurrent_op:96,recurrentgradientmachin:[72,75,96],recurrentgroup:3,recurrentlay:67,recurs:[33,34,35,55,66,85],recv:[45,48,50,77,121],recvparametertyp:39,red:60,redirect:9,reduc:[4,18,50,56,77,85,133],reduce_by_kei:85,reduce_mean:60,ref:18,ref_batch_dim_idx:18,refactor:[48,50,61,75,78,79,83,87,96],refer:[2,4,5,6,11,18,19,22,34,36,40,41,42,45,56,62,69,73,74,77,81,83,85,87,89,93,96,97],referenc:40,refine_unknown_arg:123,reflect:40,reformul:18,reg:91,regard:[18,46,145],region:[4,89],regist:[47,66,73,86,93,95],register_gpu_profil:134,register_lay:100,register_op:[59,85,86,91,101],register_op_cpu_kernel:[93,101],register_op_cuda_kernel:[93,101],register_op_without_gradi:[85,101],register_oper:[64,86],register_tim:39,register_timer_info:134,registerop:91,registr:135,registri:[44,64,93,122,145],regress:4,regular:[2,12,18,21,33,107,121],reinit:46,reiniti:[46,69],rel:[5,18,32,43,87],relat:[36,43,44,56,73,80,89,95,145],relationship:[86,93],releas:[88,92,104,113,121,142,143,144],reli:[32,45,75,76,78,87],reliabl:[36,87],relu1:62,relu2:62,relu:[4,60,62,66],relwithdebinfo:133,remain:[18,96],remaind:18,rememb:4,remot:[2,35,39,48,85,98,121,129,131],remoteparameterupdat:[39,42],remov:[9,18,33,48,55,57,75,98],renam:[33,55,56],reorder:[18,69],reorder_primit:69,reorderlodtensorbyrankt:18,reorgan:4,repeat:[18,34,61,81,82,90,91,97],repeatedli:[61,66],replac:[18,35,40,64,78,86,92],replic:48,replicaset:44,repo:[35,144],report:[40,56,57,80],reportdataset:40,repositori:[4,103,142],reprenset:18,repres:[4,5,18,33,34,40,45,48,50,51,57,62,70,73,75,78,83,85,87,90,93,96,97,121],represent:[4,18,41,48,58,60,61,66,73,75,90],request:[35,36,39,43,45,85,88,121,122,145],requir:[3,4,31,33,36,41,43,44,46,48,50,51,55,56,62,66,68,74,78,80,81,82,85,87,90,91,92,97,103,107,110,121,145],requisit:66,research:[10,18,48,57],reserv:[18,55,107,110],reserveoutput:100,reset:[4,18,36,52,105],reset_program:52,resetingrad:68,resetinvalu:68,resetoutgrad:68,resetoutvalu:68,resetxxx:68,reshap:[32,84,109],reshape_s:4,resid:18,residu:47,resiz:[11,39,93,101,102],resize_s:11,resize_short:11,resolv:[35,98,122],resourc:[48,53,77,80,93,121],respect:[18,19,32,46,51,56,60,74],respons:[4,39,47,48,52,60,77,78,79,87,121,122],rest:[18,34,44,54,58,95,145],restart:[36,41,121,122,145],restartpolici:[121,122,123],restor:[32,78],restrict:[87,89,133],result:[1,3,4,17,18,22,25,32,33,40,47,52,60,61,62,66,70,75,76,77,79,110,121,134,135],result_fil:3,resum:43,retran:121,retriev:[34,75,89],return_seq:5,reuqest:88,reus:[34,43,75,84,85],rev:26,revamp:48,reveal:31,revers:[4,5,10,18,33,139,140],review:[10,45,98,122],reviews_electronics_5:122,rewrit:[35,47],rgb:[4,11],rho:6,rid:[46,57],right:[4,32,33,34,35,44,52,66,85,87,107,110],right_scor:107,ring:77,risk:33,rkt:[26,44],rmsprop:[78,107],rmspropoptim:78,rnn:[4,5,18,34,57,60,75,83,85,89,92,128,139,140],rnn_bias_attr:140,rnn_layer_attr:140,rnn_out:140,rnn_output:96,rnn_step:4,rnn_use_batch:[67,128,129],rnnalgorithm:75,rnnlm:10,rnnstep:96,roadmap:[92,96],robust:4,rocmplac:73,roi:4,role:[10,31,40,41,48,77,121],rollback:83,root:[6,7,33,77,121,122,123],rot:4,roughli:92,round:[56,77],routin:[56,68,77],row:[3,4,9,18,39,47,115],row_id:4,row_offset:115,rowoffset:115,rows_:90,rpc:40,rpcserver:40,rpi:144,rpi_arm_neon:144,rpi_toolchain:144,rsize:121,rstrip:123,rtk:145,rtype:9,rule:[3,18,33,48,51,57,61,121],run:[18,26,27,28,31,32,33,34,35,36,44,45,46,47,48,49,50,52,56,57,58,59,60,61,62,66,69,73,74,76,77,78,80,81,82,83,85,88,89,90,92,93,94,95,98,102,103,104,119,121,122,123,125,126,127,133,134,142,145],run_test:27,runinitfunct:[123,134],runnabl:50,running_on_cloud:44,runserv:103,runtim:[22,34,45,47,48,64,74,85,97,104],runtime_table_:34,s_block:33,safe:44,sai:[4,46,58,61,63,66,84],said:57,same:[3,4,5,18,19,23,25,31,32,40,41,43,45,46,47,48,59,60,62,65,66,74,75,77,83,85,86,89,92,95,96,102,121],samping_id:4,sampl:[3,9,10,18,52,60,83,91,115],sample_id:3,sample_num:3,sample_weight:18,sampler:60,satifi:[3,66],satisfi:[35,69,90,121],save:[4,9,17,25,36,38,40,41,44,45,48,61,62,66,70,78,90,97,121,122],save_dir:[122,123,129,131],save_file_nam:17,save_only_on:[128,129],save_parameter_to_tar:[25,110],savetxt:109,saving_period:[123,128,129],saving_period_by_batch:[128,129,131],scalabl:85,scalar:[4,18,33,34,63,94,96],scale:[1,19,48,50,78,86,91,92,101],scale_a:18,scale_b:18,scaleop:101,scaleopmak:[85,101],scalingproject:4,scan:[18,33,40,66,85],scatter:[4,33,77],scenario:75,schdule:121,schedul:[40,44,50,121],scheduler_factor:2,scheme:[3,6,39,87],scienc:66,scope:[15,32,45,49,53,58,95,135],score:[3,4,14,18,75,107],score_diff:107,scorer:92,scp:124,script:[10,27,77,103,119,121,124,142],sdk:143,search:[4,18,36,89,140],second:[4,18,31,45,55,57,60,62,74,75,81,82,84,89,91,101],secret:121,section:[33,50,57,83,121],see:[4,5,10,18,31,33,36,45,47,50,56,57,83,92,107,109,110,121],seed:[18,109,129,134],seem:[35,47,56,57,92],seen:[19,87],segment:[3,18,74,96],sel:47,sel_fc:4,selcet:4,select:[4,18,75,121],selected_generation_scor:75,selected_id:[4,75],selected_indic:4,selected_row:[90,97],selected_rows_desc:[90,97],selected_scor:75,selectedrow:[64,97],selectiv:4,selector:122,self:[32,51,52,60,62,66,67,68,70,76,83,96,100,101],self_addr:45,selfnorm:4,semant:[10,31,75,88],semaphor:47,semat:31,send:[36,41,45,48,50,65,77,85,91,121],send_back_parameter_typ:39,send_var:18,sendbackparameterspars:39,sendbackparametertyp:39,sendparameterrequest:39,sendparameterrespons:39,sens:[78,87],sensit:4,sent:[31,41,45,48,85,91,97,122],sentanc:107,sentenc:[4,10,57,74,75,96,140],sentence_input:96,separ:[3,17,18,22,41,48,59,78,86,87],seper:[18,96],seq0:18,seq1:18,seq2:18,seq3:18,seq:[4,10],seq_len:96,seq_po:115,seq_pool:[4,136],seq_pos_arrai:115,seq_silc:4,seq_text_print:3,seq_typ:9,seqtext_evalu:3,seqtoseq:[4,109],seqtoseq_net:4,sequenc:[1,3,4,5,7,9,10,18,33,34,45,53,57,61,67,76,81,92,96,107,110,115,137,139],sequence_group:4,sequence_layer_group:137,sequence_nest_group:4,sequence_nest_layer_group:137,sequence_start_posit:115,sequencegen:137,sequencesoftmaxop:18,sequencestartposit:4,sequencetextprint:3,sequencetyp:[4,110],sequenti:[4,34,45,47],seri:[5,46,137],serial:[25,34,40,70,79,85],serializ:[85,97],serv:[48,56,85,96,121],server:[18,27,31,35,39,42,43,48,58,77,85,105,117,118,119,123,129,145],serverless:36,servic:145,sess:[60,62,76],session:[62,76,82],set:[2,3,4,5,9,10,11,18,19,21,22,23,25,26,31,33,36,44,46,60,64,66,69,73,74,75,80,82,83,85,86,89,92,93,96,101,102,103,107,109,110,115,121,122,134],set_active_typ:100,set_attr:51,set_default_parameter_nam:2,set_drop_r:100,set_float_el:32,set_input:[4,51],set_output:51,set_shap:46,set_siz:100,set_typ:[51,100],setdatatyp:90,setdefault:101,setp:121,setq:26,settotalbyteslimit:109,setup:[48,78,88,100,101,145],seven:92,sever:[3,4,32,39,48,50,60,74,75,77,79,80,83,90,93,96,121],sexstant:145,sgd:[25,31,36,44,50,78,79,90,110,118,128,135],sgd_optim:135,sgdoptim:20,shall:[33,35],shape:[3,4,9,18,19,25,32,33,34,46,48,60,63,73,74,81,83,85,90,92,93,110,135],shapes_:46,shard:[36,37,38,39,40,41,43,48,50,118,121],share:[4,18,35,46,60,72,79,83,85,87,92,93,96],shared_bia:5,shared_bias:4,shared_librari:35,shared_ptr:[69,71,72,89,93,102],shef:10,shell:121,shift:[4,18],shorten:4,shorter:11,shoul:32,should:[2,3,4,9,11,18,19,22,25,31,32,33,34,41,44,47,48,51,52,56,58,59,60,64,65,69,73,74,75,76,78,79,80,81,84,85,86,87,90,91,92,94,95,96,97,101,103,121,139],should_be_fals:31,should_be_tru:31,show:[3,6,26,33,34,36,46,47,55,57,63,66,70,74,77,78,81,94,96,121],show_check_sparse_distribution_log:[128,129],show_layer_stat:[128,129],show_parameter_stats_period:[122,128,129,131],shown:[4,18,31,48,52,77,80,92,121],shrink_rnn_memori:18,shrunk:51,shuf:107,shuffl:[9,46,48,107],shuffleread:46,sid:121,side:[4,18,25,48,52,66,79],sig:121,sigint:119,sigma:18,sigmod:91,sigmod_op:91,sigmod_output:91,sigmoid:[4,19,34,91,96],sigmoidactiv:5,sigmoidcrossentropywithlogit:18,sign:[54,70,121],signatur:121,signific:92,sima:10,similar:[4,18,34,45,47,48,50,53,57,75,78,80,84,85,87,92,93,95,96,121,145],similarli:[4,9,57,66],simpl:[1,3,4,5,9,10,18,25,45,50,56,58,61,62,66,74,78,81,87,89,91,92,96,123],simple_attent:140,simple_gru:140,simple_lstm:[4,108],simple_rnn:[4,140],simple_transform:11,simpler:79,simplest:121,simpli:[4,11,31,41,48],simplifi:[31,75,83,91,92],simul:[57,143],simultan:121,sinc:[4,5,18,36,40,42,43,47,48,49,50,57,64,66,69,73,78,83,84,86,87,96,121,145],singl:[3,5,9,17,18,33,36,46,48,50,52,56,65,77,85,89,92],singleton:[45,49],sinlg:25,sit:[18,48],site:[35,121,133],sitten:18,sittin:18,situat:[33,82,95],size:[3,4,5,9,10,11,18,19,25,36,38,39,41,47,48,56,60,66,70,75,78,83,84,90,91,92,93,96,100,101,102,107,109,110,112,115,135,140],size_a:4,size_b:4,size_in_byt:69,size_t:[39,46,93,96,100],sizeof:[34,115],skip:[33,84,98,109,121],sleep:123,slice0:18,slice1:18,slice2:18,slice3:18,slice:[4,18,45],sliceproject:4,slide:[4,6,10,36],slight:57,slightli:60,slope:[4,18],slopeinterceptlay:4,small:[4,10,18,32,45,58,60,68,75],small_messag:[128,129],smaller:[18,32,36,56,75],smart:89,smooth:4,smt:10,snap:122,snapdragon:56,snapshot:[37,43,121],snippet:[47,59,76,121],sock:44,sock_recv_buf_s:[128,129],sock_send_buf_s:[128,129],socket:123,soft:18,soft_label:18,softmax:[4,5,18,31,34,48,50,57,62,63,75,81,100,107,140],softmax_param:109,softmax_param_attr:5,softmax_selfnorm_alpha:4,softmaxoutput:62,softrelu:18,softwar:[56,80,107,110,145],solid:60,solut:[77,145],solv:[31,33,46,66,85],some:[2,4,9,11,18,25,31,33,34,35,39,40,41,43,44,46,47,48,50,51,56,58,59,60,61,65,66,69,73,74,75,76,81,82,83,84,85,86,89,93,95,96,121,145],some_c_api_funct:72,some_inst:72,some_lay:18,some_op:[64,74,96],some_python_class:71,somecppclass:71,somedata:25,somegotyp:71,someth:[33,39,83],sometim:[4,80,84],somewhat:41,somewher:89,soon:36,sort:[4,10,18,22,96,121,123],sort_by_length:96,sortagrad:92,sorted_kei:22,sourc:[4,10,18,32,35,55,57,60,68,70,72,75,84,85,121],source_dict_dim:[75,140],source_dict_s:75,source_language_word:[75,140],space:[3,4,50,56,83,87,92],space_seperated_tokens_from_dictionary_according_to_seq:3,space_seperated_tokens_from_dictionary_according_to_sub_seq:3,span:80,spars:[2,4,6,9,18,39,47,100,107,115,117,121,123,129,131],sparse_binary_vector:[9,107,110,115],sparse_binary_vector_sequ:[9,115],sparse_binary_vector_sub_sequ:115,sparse_float_vector:[9,110],sparse_float_vector_sequ:9,sparse_non_value_slot:9,sparse_remot:39,sparse_upd:[2,39,107],sparse_value_slot:9,sparse_vector:[107,115],sparse_vector_sequ:115,sparse_vector_sub_sequ:115,sparseparam:100,sparseprefetchrowcpumatrix:100,spatial:4,spatial_scal:4,spec:[121,122,123],specia:10,special:[4,10,18,33,41,48,56,58,64,73,75,76],specialvartypeinfer:64,specif:[10,18,19,25,33,35,36,46,48,51,55,58,75,85,89,93,107,110],specifi:[3,4,10,17,18,22,31,32,39,40,41,44,45,47,48,49,51,52,53,55,60,70,80,83,89,91,96,103,121],spectrogram:92,speech:[4,92],speed:[4,5,56,70,77,78,145],speedup:80,sphinx:[71,103],split:[4,9,19,43,45,46,49,57,63,75,85,96,117,121],split_count:[117,121,123],sport:18,spread:33,sqrt_x:18,squar:[4,6,7,62],square_error_cost:[110,135],squash:98,srand:[115,129],src:[35,69,104,117,119,123],src_backward:140,src_dict:109,src_dict_path:109,src_dict_siz:10,src_embed:[75,140],src_forward:140,src_lang:10,src_primitive_desc:69,src_word_id:[75,140],src_word_vec:75,sreializ:97,srl:10,ssd:4,ssh:[121,124],ssh_server:119,sstabl:31,stabil:[4,18,32,66],stabl:[88,121],stack:[18,53,85,96,121],stackexchang:4,stage:[35,42,49,60,66,69,92,97,98],stale:36,stamp:104,stand:18,standalon:142,standard:[2,9,18,47,57,85,87,92],stanford:[10,32,122],star:35,start:[4,5,10,18,25,33,35,36,39,40,41,43,44,47,48,49,75,77,79,80,98,104,115,122,123,129],start_mpi_train:124,start_op_idx:33,start_paddl:123,start_pass:[128,129],start_po:4,start_pserv:[128,129],startpaddl:123,startup:[18,36,44,57,121],startup_program:18,stat:[129,134],state:[4,5,18,22,34,36,52,53,74,75,80,89,92,96,108,122,139],state_act:[4,5],statem:66,statement:[47,57,61,66,121],statfulset:123,static_cast:[69,102],staticinput:[4,139,140],statist:[4,18,52,80],statmt:10,statset:134,statu:[18,44,75,98,121,122,123,134],status:122,std:[25,35,39,46,62,64,65,69,71,72,80,82,85,86,89,91,93,100,101,102,129],stdbuf:117,stderr:119,stdout:[9,119],step1:18,step:[4,5,7,18,32,34,36,41,47,48,50,52,57,60,61,67,75,78,79,83,85,91,92,96,121,137,139,140,145],step_gradi:33,step_id:96,step_input:96,step_net:34,step_output:96,step_scop:85,stepnet:[34,74,85,89],still:[33,40,43,48,57,66,86],stirng:83,stmt1482205552000:121,stmt1482205746000:121,stochast:[6,36,40,43,78],stop:[4,83],stop_gradi:[18,83],storag:[54,56,121],store:[3,4,10,18,25,32,34,35,39,53,62,64,70,73,75,79,81,83,85,86,87,89,96,121],str:[11,18,25,33,44,96,123,131],straight:[81,84,90],straightforward:69,strategi:[7,36,83,129],stream:[9,48,69,80,93],stream_:93,streamid:22,street:4,strict:84,stride:[4,5,18,69,73,92],stride_h:18,stride_i:4,stride_w:18,stride_x:4,string:[3,4,9,10,11,18,22,25,33,34,40,55,62,65,70,80,81,82,83,85,86,89,90,91,97,100,101,121,129],strip:109,struct:[40,41,54,56,64,65,72,73,80,86,91,95,109],structur:[33,34,40,57,60,70,75,81,83,85,90,121],sts:121,stuff:98,style:[4,85,91],sub:[3,4,9,18,31,33,43,45,50,60,66,74,77,79,83],sub_block:33,sub_nest_seq:4,sub_sequ:[4,110],subclass:83,subcommand:55,subgradi:6,subgraph:[50,60],submiss:48,submit:[69,85,121],subnet0:121,subnet:[31,121],subobjectpath:122,subscript:18,subseq:[136,139],subsequ:[4,77],subsequenceinput:[4,137],subset:18,substitut:18,subtract:32,succ:66,succeed:[40,122],success:[4,41,121,122],successfulcr:122,sucess:66,sucessor:66,sudo:[26,121],suffer:32,suffix:[44,117],suggest:[4,35],suit:145,suitabl:[90,93],sum:[4,6,19,33,34,37,49,64,83],sum_op:33,sum_x:18,sume:18,summar:[18,60,80],summari:80,summat:18,sumopgradmak:86,sumpool:107,supercomput:66,suppli:[18,90],support:[2,3,4,6,7,9,11,18,30,32,34,36,43,44,45,47,48,50,57,59,60,66,69,70,73,75,78,79,80,82,84,85,86,87,90,92,95,121,145],support_inplac:66,suppos:[5,18,19,35,45,59,90,115],suppress:[4,55],sure:[18,121],surpass:4,svs:91,swagger:54,swig:[27,42,71,72],switch_ord:108,switchop:34,sychron:77,symbol:[4,34,62,72],symbols_ready_:34,symbolt:[34,85],symlink:98,sync:[36,78,87],sync_with_cpp:133,syncflag:100,synchron:[36,40,47,69,77,80,121],syntax:[45,53,57,75,84],sysroot:142,system:[34,35,36,41,43,47,48,50,54,59,60,66,68,92,107],t_max:18,t_min:18,tabl:[3,4,18,34,45,57,64,70,90,97],tablelookup:90,tablelookupgrad:90,tablelookupop:90,tableproject:4,tag:[3,10,28,88,98,104,127],tagtyp:3,tail:75,tainer_id:123,take:[3,4,5,9,18,25,31,33,34,35,36,43,45,46,47,48,51,53,56,58,60,61,63,64,66,69,73,78,81,82,83,84,85,86,93,95,96,121],taken:[4,51,62,66,73,96],talk:[41,58],tanh:[4,5,60,75,100,140],tanhactiv:5,tanhshrink:18,tar:[10,11,25,104,110,116,121],tarbal:121,target:[4,10,18,25,33,34,35,51,53,60,62,76,82,85],target_block:[33,51],target_dict_dim:140,target_dict_s:75,target_dictionary_dim:4,target_language_embed:4,target_language_word:140,target_link_librari:35,target_var:17,target_word:75,targetinlink:[4,137],task13:92,task14:92,task1:10,task:[3,4,10,18,48,70,75,80,91,116],task_queu:40,taskentri:40,taskqueu:40,tbd:[42,69,92,137],tcp:[121,129],tear:134,technic:[33,36],techniqu:[18,66],technolog:[18,57],tee:122,tell:[22,36,40,41,75,91],templat:[59,69,91,93,101,102,122,123,145],tempor:[4,18,92],temporari:[33,44,53,66,78,83],tempori:66,tensor:[19,32,35,45,47,49,50,56,57,58,60,62,64,65,69,70,73,74,75,90,96,97,101,135],tensor_arrai:45,tensor_array_read:96,tensor_array_s:96,tensor_array_stack:96,tensor_array_unstack:96,tensor_array_writ:96,tensor_data:70,tensor_in:95,tensor_s:32,tensor_test:35,tensor_to_check:32,tensorarrai:49,tensorarraydesc:96,tensordesc:[70,90],tensorflow:[34,45,47,48,50,57,60,63,87,96],term:[4,5,18,36,86,87,92],termin:122,terminolog:66,tessorarrai:96,test100:10,test10:10,test1:38,test:[4,9,10,11,18,25,31,32,35,62,72,78,84,88,98,100,101,102,112,115,117,124,129,131,134,135],test_:101,test_all_data_in_one_period:122,test_check_grad_ingore_i:101,test_check_grad_ingore_x:101,test_check_grad_norm:101,test_check_output:101,test_compar:104,test_comparespars:104,test_comparetwonet:104,test_comparetwoopt:104,test_config_pars:104,test_data_dir:117,test_fcgrad:100,test_gpuprofil:134,test_layergrad:100,test_list:109,test_mkldnn:68,test_mklpack:67,test_mul_op:[27,101],test_networkcompar:104,test_pass:[128,129,131],test_period:[128,129,131],test_predict:104,test_pydataprovid:104,test_pydataprovider2:104,test_pydataproviderwrapp:104,test_recurrent_machine_gener:104,test_recurrentgradientmachin:[104,137],test_swig_api:104,test_train:104,test_traineronepass:104,test_wait:[128,129],testa:31,testb:31,testbilinearfwdbwd:134,testconfig:100,testfcgrad:100,testfclay:100,testlayergrad:100,testmulop:101,testq:31,testresult:25,testutil:100,text1:55,text:[3,5,9,18,31,70,74,80,92,121],text_fil:9,tflop:134,tftp:145,tgz:[10,30,104],than:[2,3,4,5,18,33,36,44,45,46,51,57,58,59,60,83,85,87,94,96,109,115,121,145],the_step:57,theano:57,thehalf:18,thei:[4,18,31,33,35,36,41,43,45,46,47,50,51,55,57,60,61,65,66,75,76,80,83,85,91,96,97,121,134],them:[3,4,5,11,18,31,32,33,35,36,39,44,46,47,50,51,57,58,59,64,65,66,75,83,84,85,86,89,90,91,95,96,97,121,134],themselv:[33,35],theori:57,therefor:[33,66,78],therein:[4,18,34],theta:60,theta_d:60,theta_g:60,thi:[2,3,4,5,6,9,10,11,17,18,22,23,25,30,31,32,33,34,35,36,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,56,57,58,59,60,61,62,65,66,69,73,74,75,76,77,78,79,80,81,83,84,85,86,87,90,91,92,93,95,96,107,110,115,121,134,135,145],thin:64,thing:[48,60,85,93],think:[31,35],third:[4,18,36,62,115],third_parti:[4,68,104,113,142,143,144],those:[4,34,35,36,59,61,62,63,81],though:[96,145],thought:[18,35],thread:[45,47,49,80,134],thread_count:49,thread_id:80,thread_id_:80,thread_local_rand_use_global_se:[128,129],thread_pool:49,threadblocks:22,threadid:131,threadloc:134,threadpool:45,three:[3,4,10,18,19,32,33,36,47,52,56,57,58,61,69,75,76,79,80,81,84,92,93],threshold:[2,3,4,18,36,40,51,129],thresholdedrelu:18,through:[4,19,33,35,36,40,42,52,66,76,78,103,135],throughout:53,throughput:134,thrust:85,thu:[4,18,43,52,62,66,92,121],tier:122,time:[4,5,7,9,18,22,25,31,32,35,36,40,43,46,47,48,50,51,57,59,64,66,67,73,74,75,77,80,83,84,85,86,90,91,92,96,97,115,122,123,129,133,134,137,145],timelin:[4,80,85],timeo:121,timeout:[36,40],timeout_sec:9,timer:[22,134],timestamp:[4,37],timestep:[4,89],titan:66,titl:[10,123],tls:54,tmp:83,to_chw:11,to_no_sequ:[4,136],to_sequ:[4,136,137],to_tar:25,to_your_paddle_clone_path:103,todo:[3,9,10,34,36,40,43,75,91,92],toend:4,togeth:[4,5,9,25,33,96],token:[3,4,10,18,31,92,140],toler:[25,32],too:[10,32,45,47,51,69,95,96],took:145,tool:[80,103,121,123,142,144],toolchain:142,toolkit:92,top:[3,18,25,74,75,92],top_k:[3,18,75],top_level_rnn:74,topic:69,topk_generated_scor:75,topk_id:75,topk_indic:18,topk_out:18,topk_scor:75,toplevel:26,topolog:[31,36,48,62,66,70,79],topoloi:62,topolopi:25,torch:[34,57],toronto:10,tostr:109,total:[18,22,25,36,50,52,77,80,84,122,134,145],total_pass:84,tottim:133,touch:104,toward:57,trace:[34,58,60],track:[36,40,62,83,98],tractabl:4,tradit:[4,34,56,92],traffic:48,trail:9,train100:10,train10:10,train:[2,3,4,9,10,11,18,28,33,34,38,40,41,43,45,46,51,52,53,57,58,60,61,66,67,70,77,78,79,80,81,82,83,85,87,90,92,93,97,105,107,110,117,119,120,122,123,124,125,126,129,131,140],train_arg:123,train_args_dict:123,train_args_list:123,train_config_dir:[121,123],train_data:117,train_data_dir:117,train_i:110,train_id:121,train_list:[109,117],train_loop:57,train_read:[48,110],train_x:110,trainabl:[4,21,70,83],trainer:[31,37,38,39,40,42,48,50,58,67,68,78,79,85,100,110,117,118,123,129,131],trainer_config:[116,121,122,123],trainer_config_help:100,trainer_count:[107,112,117,121,122,123,128,129,131],trainer_cpu:44,trainer_cr:44,trainer_gpu:44,trainer_id:[117,121,123,129],trainer_intern:39,trainer_mem:44,trainer_packag:44,trainer_prog:48,trainerconfighelp:109,trainerid:[43,123],trainingjob:48,trainonebatch:39,tran:[69,100],trans_var:95,transact:[36,40],transcript:92,transfer:[66,80],transform:[4,5,11,18,85,92],transform_param_attr:5,transformed_st:5,translat:[4,5,10,66,107],translation_id:75,translation_scor:75,transpar:75,transpil:45,transpos:[4,11],transpose_i:18,transpose_x:18,transposedfullmatrixproject:4,travers:[33,61,66],travi:98,treat:[4,18,34,41,66],treatment:[41,56],tree:[4,34,45,53,57,83,123,135,144],trg_dic_siz:75,trg_dict_siz:10,trg_embed:[75,140],trick:75,tricki:71,trigger:[43,46,79],trim:4,trivial:[75,96],true_block:[34,63,81],true_imag:84,true_label:84,true_neg:52,true_posit:52,true_read:84,truth:[3,4,18],tune:[2,92,128,133],tupl:[4,5,9,10,11,18,25,33,83,84],ture:4,turn:[4,18,83,84,139],tutori:[22,121,123,124,125,126],twice:[50,60],twine:88,two:[3,4,5,18,19,31,33,41,42,43,44,45,46,47,48,52,55,56,57,58,60,61,64,66,70,73,75,78,80,81,84,85,86,87,89,90,91,92,95,96,97,101,102,121,134],txt:[35,44,55,67,68,100,103,117,121,124],type:[3,4,5,7,9,10,18,23,31,33,34,36,39,40,43,44,46,48,54,55,56,58,64,65,69,70,71,72,74,75,81,82,83,84,85,86,87,90,91,92,93,95,97,100,101,102,110,112,115,121,122,131,140],type_nam:91,typedef:[41,56,71,72,73,93],typeerror:51,typeid:91,typenam:[59,91,93,101,102],typic:[3,48],ubuntu:[30,88,112],ubyt:84,uci:10,uci_h:112,ufldl:[4,18],uid:122,uint16_t:56,uint32:[54,70],uint32_t:80,uint64:[70,71],uint64_t:[71,115],unawar:41,unbias:32,unblock:47,unbound:66,unbuff:47,unchang:18,unclear:43,uncreat:33,under:[18,35,40,50,77,95,107,110,121],underli:[18,46,75],understand:[57,83,92,145],understand_senti:140,undeterminist:134,uni:92,unidirect:[4,92],unifi:[46,53,62,90],uniform:[2,4,9,18,38,60,83,84],uniform_random:83,uniforminiti:16,uniniti:33,uninstal:[27,104],uniqu:[31,34,36,43,44,69,73,83,89,121],unique_nam:83,unique_name_gener:83,unique_ptr:[86,89,93,100],unit:[4,5,18,19,35,78,80,87,93],unitest:18,unittest:[72,101,104],unix:47,unk:[10,90,97],unknown:[4,10,18,23],unless:[18,107,110],unlik:[4,18,75],unnecessari:[33,92],unnorm:18,unordered_map:89,unpack:96,unrol:74,unscal:18,unseen:87,unseg:4,unsign:[41,56],unstack:96,unstack_from:96,unsupervis:60,unsupport:101,until:[36,41,47,49,50,57,66,89,121,123],untrack:98,unus:18,unzip:142,updat:[2,4,6,18,33,36,40,41,48,54,56,60,74,75,76,77,78,79,89,92,96,98,131,133],update_equ:[25,110],update_hook:2,update_memori:34,update_op:76,updatecallback:100,updatestack:121,upgrad:[30,77,104],upload:[36,44,47,54,88],upon:36,upper:4,upstream:[98,104],uri:121,url:[9,10],usag:[3,4,5,11,18,25,56,63,66,79,83,94,119,123],use:[2,3,4,5,7,9,10,11,18,22,25,31,32,34,35,36,42,46,47,48,49,50,53,56,60,62,64,65,66,69,73,75,76,77,79,80,83,89,90,91,92,95,96,97,98,101,107,110,115,117,121,123,134],use_cpu:65,use_cudnn:[18,19,65],use_eigen_bla:142,use_eigen_for_bla:[142,143],use_etcd:25,use_global_stat:4,use_gpu:[107,110,112,117,122,123,128,129,131],use_mkl_pack:67,use_mkldnn:[4,65,68],use_old_updat:[39,128,129],use_peephol:18,use_sparse_remote_updat:39,used:[3,4,5,6,7,9,10,11,18,22,25,31,32,34,35,36,42,43,46,47,48,51,53,56,57,60,62,66,74,75,78,79,80,83,84,85,87,89,91,93,95,96,121,134],useful:[4,5,32,56,66,83,89,95],usegpu:[100,115],user:[2,4,5,9,10,11,18,22,25,31,32,33,34,35,38,40,43,44,45,48,49,50,51,52,53,55,59,60,61,62,64,65,69,73,75,76,77,78,80,83,84,85,86,87,89,91,93,95,96,121,145],user_id:123,user_info:10,user_nam:38,usercert:38,userinfo:10,userkei:38,usernam:[38,98,142],uses:[4,18,32,36,43,45,47,48,56,66,73,74,75,79,80,93,95,121],using:[2,4,5,9,10,14,18,25,31,32,33,34,35,36,40,41,43,44,47,48,53,55,56,57,59,60,62,64,66,74,76,78,81,83,84,86,87,89,91,92,93,101,112,121],usr:[27,28,104,117,121,123,129],usual:[4,18,25,33,44,66,73,80,81,87,93,121,134],util:[48,67,68,77,116,123,134,145],uuid:[37,43],v7a:142,v8a:142,val:33,valgrind:133,valid:[4,10,11,18,84,85,89,121],valu:[2,3,4,7,9,10,11,18,19,22,25,32,33,34,36,45,47,51,52,62,63,66,68,70,74,75,76,78,79,81,85,89,90,91,94,96,97,100,107,115,121,123,131,142],value1:129,value2:129,value_:90,value_evalu:3,value_rang:9,valueerror:[18,19,62,107],values_:96,vanilla:140,var_nam:[33,95],var_recurs:51,vardesc:[34,61,81,83,85,90],vardescbuild:34,vari:121,variabl:[6,9,10,17,18,19,31,32,34,45,46,47,48,50,51,52,53,58,60,61,62,63,64,73,74,75,76,78,81,82,86,87,90,91,92,95,96,121,122,135],variablenamemap:101,varialbl:60,varianc:[4,18],variant:[4,64,73,93,96],varibal:33,varibl:62,varienc:96,varient:96,variou:[34,47,56,66,87],varproto:91,vars_:[34,89],vartyp:[18,90,97],vartypeinfer:64,vec1:4,vec2:4,vec2seq:92,vec:109,veclib:143,vecter:18,vector:[4,5,9,10,18,31,34,39,41,46,62,63,69,74,75,80,83,85,86,90,92,94,96,113,115],vendor:35,verb:10,verbos:55,veri:[4,7,35,40,45,50,53,57,59,60,66,69,75,79,84,87,89,92,93,96],verifi:34,version:[4,5,10,33,35,44,48,51,55,58,60,62,63,70,75,88,92,98,107,110,121,127,128,129,134,143],versu:31,vertic:4,vgg:5,via:[18,33,36,73,98,121,145],view:[4,70,73],vim:28,virtual:[46,51,64,65,86,93],virtualenv:26,visibl:[43,89],vision:10,visit:[25,33],visual:[4,75],vl16:10,vlog:39,vocabulari:92,volum:[103,122,123],volumemount:[121,122,123],volumn:121,vutbr:10,w_f:18,wai:[3,5,18,31,33,41,43,47,53,57,65,66,75,78,83,84,87,96],wait:[36,41,47,49,123],wang:18,wangkuiyi:35,want:[4,22,31,44,45,47,52,60,65,73,78,80,82,84,87,89,93,94,95,96],warn:[25,55,104,109,123],warp:[4,18],warp_ctc:92,warpctc:4,warranti:[107,110],wast:77,watch:36,wbia:121,websit:10,weight:[3,4,5,6,18,19,21,23,67,70,87,100],weight_act:5,weightlist:100,weights_:100,weights_primitive_desc:69,weights_t:100,welcom:[35,92],well:[18,33,44,47,48,50,57,59,60,87,90,92,121],wer:92,were:[3,18,35,47,57],west:121,wget:[104,142],wgt:69,what:[2,4,35,46,57,60,75,83,91,95,98,145],wheel:30,when:[2,3,4,6,9,18,19,25,33,34,35,36,39,40,41,44,45,48,50,51,52,53,55,56,57,58,62,75,77,78,79,80,81,83,85,93,96,121,134,145],whenev:[18,83,92],where:[4,5,6,18,19,31,33,34,36,43,45,48,57,58,61,73,74,75,78,81,85,87,93,96,135],wherea:[18,34,40,59,63,93,94,97],whether:[3,4,11,18,25,32,33,34,46,53,80,84,90,96,115],which:[2,3,4,5,9,10,11,17,18,19,21,22,25,31,32,33,34,35,36,38,40,41,43,44,45,46,47,48,49,51,53,56,57,58,59,60,62,64,66,69,70,73,74,75,76,77,79,81,82,83,84,85,86,89,90,91,94,95,96,97,110,121,133,145],while_grad:66,while_loop:[75,96],while_op:[18,33],whileloop:96,whileop:34,white:92,whl:[27,30],who:[33,59,61,77,83],whoever:41,whole:[3,9,33,46,60,63,66,71,72,74,77,82,91,92,113,121,145],wholli:46,whose:[4,9,18,32,33,36,43,51,74,85,86,91,96],why:[5,32,72,134],wide:[35,51,60,119,124],width:[3,4,9,11,18,39,71,84,100,101,109,115],wiil:18,wiki:[4,35],wikipedia:[4,10],window:[4,7,10,26,78,92],wirt:62,wise:[4,11,18,50,85,92],with_avx:[27,98,127,142,143],with_bia:91,with_c_api:[27,113,142,143,144],with_doc:27,with_doubl:[27,100,127],with_dso:27,with_golang:[27,113,142],with_gpu:[26,27,98,113,127,142,143],with_mkl:[27,67,68,113,142],with_mkldnn:68,with_mklml:68,with_profil:134,with_python:[27,113,127,142,143],with_rdma:[127,142,143],with_style_check:[27,98],with_swig_pi:[27,113,142,143],with_test:[27,98,101],with_tim:[127,134],within:[4,18,40,48,57,92],without:[3,4,33,36,41,46,47,80,83,84,85,92,107,110],wloop:96,wmt14:140,wmt16_files_mmt:10,wmt_shrinked_data:10,word2vec:[44,107,117,119],word:[3,4,10,33,50,61,64,66,74,75,85,91,92,96,107,139],word_dict:[117,124],word_dim:109,word_id:107,word_idx:10,word_vector_dim:[4,75,140],wordcount:92,words_freq_sort:10,work:[4,9,18,28,31,34,35,36,48,53,56,57,65,76,78,80,83,98,103,121,122,123,145],worker:[50,97,121],workercount:121,workflow:[85,121],workshop:10,workspac:[117,119],worri:32,worth:135,would:[22,25,34,35,36,43,47,48,49,50,57,59,60,61,69,76,78,79,83,84,90,92,96,121,145],wouldn:[57,61],wrap:[18,46,57,59,60,77,145],wrapper:[5,35,46,47,59,77,78,86,96,134],write:[9,18,31,36,43,45,46,47,48,50,56,57,58,59,62,64,69,76,78,83,84,85,86,93,96,107,109,110,121],write_lock:37,write_to_arrai:66,writer:[31,83],written:[18,22,33,34,45,50,53,60,70,78,85,86,90],wrong:84,wrote:62,wsize:121,www:[10,18,107,110],x64:144,x86:[142,143],x86_64:[142,143],x_first_step:18,x_last_step:18,x_neg:32,x_num_col_dim:18,x_po:32,x_reshap:18,x_t:18,x_t_data:18,x_transpos:18,xarg:[3,28,100,104,124],xavier:18,xavieriniti:[16,18],xcode:143,xcodebuild:143,xgbe0:129,xgbe1:129,xmap_read:9,xpu:57,xrang:[32,57,60,80,84,100,110,112],xx_layer:65,xxx:[31,96],xxxx:37,xxxxxxxxx:121,xxxxxxxxxx:121,xxxxxxxxxxxxx:121,xxxxxxxxxxxxxxxxxxx:121,y_dim:60,y_neg:32,y_num_col_dim:18,y_po:32,y_predict:[18,110,112,135],yaml:[35,119,121,122,123,124,145],yancey1989:44,yann:10,yapf:98,year:[10,57],yeild:25,yep:[80,133],yet:[57,92,145],yield:[9,31,38,46,84,107,110],you:[2,4,5,9,10,18,19,22,25,32,44,48,56,89,107,110,121,145],your:[4,9,10,25,31,35,39,44,55,85,104,121,142,143,144,145],your_access_key_id:121,your_param_nam:109,your_repo:123,your_secrete_access_kei:121,your_source_root:72,yuang:57,yuyang18:[9,10],yuyang:133,z_dim:60,z_size:60,zero:[2,4,5,6,9,10,32,33,36,47,60,75,79,83,90,121,129],zip:[10,83,123,142],zlib:113,zone:121,zxf:104,zxvf:121},titles:["API","Activation","Parameter Attribute","Evaluators","Layers","Networks","Optimizer","Pooling","Data Reader Interface and DataSets","Data Reader Interface","Dataset","Image Interface","Fluid","data_feeder","evaluator","executor","initializer","io","layers","nets","optimizer","param_attr","profiler","regularizer","Model Configuration","Training and Inference","\u7528Docker\u7f16\u8bd1\u548c\u6d4b\u8bd5PaddlePaddle","\u4ece\u6e90\u7801\u7f16\u8bd1","\u4f7f\u7528Docker\u5b89\u88c5\u8fd0\u884c","\u5b89\u88c5\u4e0e\u7f16\u8bd1","\u4f7f\u7528pip\u5b89\u88c5","PaddlePaddle Design Doc","Auto Gradient Check Design","Backward Building","Design Doc: Block and Scope","Required CMake Function","Design Doc: Distributed Training","\u6a21\u578b\u53c2\u6570\u68c0\u67e5\u70b9\uff08Checkpointing\uff09","\u8bad\u7ec3\u6570\u636e\u7684\u5b58\u50a8\u548c\u5206\u53d1","Alalysis of large model distributed training in Paddle","Design Doc: Master Server","Design Doc: The Client Library of Parameter Server","Design Doc: Remote Parameter Updater for Cluster Train","Design Doc: Save Model","Submit a Distributed Training Job","Design Doc: Concurrent Programming with Fluid","C++ Data Feeding","Design Doc: CSP in PaddlePaddle Fluid","Design Doc: Distributed Training Architecture","Design Doc: Execute the Program with Multi CPU","Design Doc: Parameter Server","Error Clip","Evaluator Design","Executor Design Doc","FileManager\u8bbe\u8ba1\u6587\u6863","PFSClient","Design Doc: float16","Design Doc: PaddlePaddle Fluid","PaddlePaddle Fluid: Towards a Compiled Programming Language","Design Doc: Functions, Operators, and Layers","Design for GAN","Design Doc: Computations as a Graph","Survey on Graph","The IfElse
Operator","Design Doc: InferVarType","Problem","Memory Optimization","Intel\u00ae MKL Packed on PaddlePaddle: Design Doc","Intel\u00ae MKL-DNN on PaddlePaddle: Design Doc","Design Doc: Add MKLDNN Kernel in Fluid Operator","Design Doc: Model Format","Paddle\u591a\u8bed\u8a00\u63a5\u53e3\u5b9e\u73b0","C-API \u6a21\u578b\u63a8\u65ad\u5b9e\u73b0\u6587\u6863","Design Doc: The Keys of Operator Kernel Type","RNNOp design","Design: Sequence Decoder Generating LoDTensors","Optimizer Design","Design Doc: NCCL support in Paddle Fluid","Averaging Parameter in PaddlePaddle","Design Doc: The C++ Class Parameters
","Introduction","Design Doc: PaddlePaddle Programs","Prune","Design Doc: Python API","Python Data Reader Design Doc","Design Doc: Refactorization Overview","Design Doc: Gradient Operators Registration","Regularization in PaddlePaddle","PaddlePaddle\u53d1\u884c\u89c4\u8303","Design of Scope in Paddle","Design Doc: Selected Rows","Interaction between C++ and Python","DeepSpeech2 on PaddlePaddle: Design Doc","Design Doc: Supporting new Device/Library","Design Doc: Switch","Background","Design for TensorArray","Background","\u5982\u4f55\u8d21\u732e\u4ee3\u7801","\u5f00\u53d1\u6807\u51c6","\u5b9e\u73b0\u65b0\u7684\u7f51\u7edc\u5c42","\u5982\u4f55\u5199\u65b0\u7684Operator","\u5728Paddle\u4e2d\u5982\u4f55\u4f7f\u7528Eigen","\u5982\u4f55\u8d21\u732e\u6587\u6863","\u7f16\u8bd1\u5b89\u88c5\u4e0e\u5355\u5143\u6d4b\u8bd5","\u96c6\u7fa4\u8bad\u7ec3\u4e0e\u9884\u6d4b","FAQ","\u672c\u5730\u8bad\u7ec3\u4e0e\u9884\u6d4b","\u6a21\u578b\u914d\u7f6e","\u53c2\u6570\u8bbe\u7f6e","\u57fa\u672c\u4f7f\u7528\u6982\u5ff5","\u65b0\u624b\u5165\u95e8","\u5feb\u901f\u5f00\u59cb","\u5b89\u88c5\u4e0e\u7f16\u8bd1C-API\u9884\u6d4b\u5e93","C-API\u9884\u6d4b\u5e93","\u8f93\u5165/\u8f93\u51fa\u6570\u636e\u7ec4\u7ec7","C-API\u4f7f\u7528\u6d41\u7a0b","\u542f\u52a8\u53c2\u6570\u8bf4\u660e","\u5206\u5e03\u5f0f\u8bad\u7ec3","\u4f7f\u7528fabric\u542f\u52a8\u96c6\u7fa4\u8bad\u7ec3","\u5728\u4e0d\u540c\u96c6\u7fa4\u4e2d\u8fd0\u884c","Distributed PaddlePaddle Training on AWS with Kubernetes","Kubernetes\u5355\u673a\u8bad\u7ec3","Kubernetes\u5206\u5e03\u5f0f\u8bad\u7ec3","\u5728OpenMPI\u96c6\u7fa4\u4e2d\u63d0\u4ea4\u8bad\u7ec3\u4f5c\u4e1a","<no title>","<no title>","\u73af\u5883\u51c6\u5907","\u53c2\u6570\u6982\u8ff0","\u7ec6\u8282\u63cf\u8ff0","\u547d\u4ee4\u884c\u53c2\u6570\u8bbe\u7f6e","\u4f7f\u7528\u6848\u4f8b","\u8fdb\u9636\u4f7f\u7528","Python\u4ee3\u7801\u7684\u6027\u80fd\u5206\u6790","GPU\u6027\u80fd\u8c03\u4f18","PaddlePaddle Fluid Source Code Overview","\u652f\u6301\u53cc\u5c42\u5e8f\u5217\u4f5c\u4e3a\u8f93\u5165\u7684Layer","\u5355\u53cc\u5c42RNN API\u5bf9\u6bd4\u4ecb\u7ecd","RNN\u6a21\u578b","Recurrent Group\u6559\u7a0b","RNN\u914d\u7f6e","PaddlePaddle \u6587\u6863","Android\u5e73\u53f0\u7f16\u8bd1\u6307\u5357","iOS\u5e73\u53f0\u7f16\u8bd1\u6307\u5357","Raspberry Pi\u5e73\u53f0\u7f16\u8bd1\u6307\u5357","Cluster bootstrapping tool survey"],titleterms:{"\u4e00\u4e9b\u7ec6\u8282\u7684\u8865\u5145":123,"\u4e0a\u4f20\u8bad\u7ec3\u6587\u4ef6":38,"\u4e0b\u8f7d\u6570\u636e":122,"\u4e0b\u8f7dmklml\u5e93\u5931\u8d25":104,"\u4e0d\u4f7f\u7528":71,"\u4e0d\u4f7f\u7528swig\u8fd9\u79cd\u4ee3\u7801\u751f\u6210\u5668":71,"\u4e0d\u540c\u7684":108,"\u4e0d\u5bfc\u51fapaddle\u5185\u90e8\u7684\u7ed3\u6784\u4f53":71,"\u4e0d\u5f15\u7528\u5176\u4ed6\u52a8\u6001\u5e93":71,"\u4e24\u79cd\u4f7f\u7528":108,"\u4e3a\u4ec0\u4e48\u8981":26,"\u4e3a\u4ec0\u4e48\u9700\u8981\u6027\u80fd\u5206\u6790":134,"\u4ec0\u4e48\u662f\u6027\u80fd\u5206\u6790":134,"\u4ec5\u4ec5\u4f7f\u7528void":71,"\u4ece\u5feb\u7167\u6062\u590d":37,"\u4ece\u6e90\u7801\u7f16\u8bd1":27,"\u4ee3\u7801\u8981\u6c42":98,"\u4f7f\u7528":[98,122],"\u4f7f\u7528\u52a8\u6001\u5e93\u6765\u5206\u53d1paddl":71,"\u4f7f\u7528\u6848\u4f8b":131,"\u4f7f\u7528\u6a21\u578b\u521d\u59cb\u5316\u7f51\u7edc":131,"\u4f7f\u7528\u6d41\u7a0b":116,"\u4f7f\u7528\u73af\u5883\u53d8\u91cf":123,"\u4f7f\u7528\u8f6c\u6362\u5e93":38,"\u4f7f\u7528docker\u542f\u52a8paddlepaddl":28,"\u4f7f\u7528docker\u5b89\u88c5\u8fd0\u884c":28,"\u4f7f\u7528docker\u6267\u884cgpu\u8bad\u7ec3":28,"\u4f7f\u7528docker\u6784\u5efa":103,"\u4f7f\u7528fabric\u542f\u52a8\u96c6\u7fa4\u8bad\u7ec3":119,"\u4f7f\u7528paddlepaddl":103,"\u4f7f\u7528pip\u5b89\u88c5":30,"\u4fdd\u6301\u672c\u5730\u4ed3\u5e93\u6700\u65b0":98,"\u4fee\u6539\u542f\u52a8\u811a\u672c":122,"\u514b\u9686":98,"\u5177\u4f53\u67d0\u79cd\u7c7b\u578b\u7684\u5934\u6587\u4ef6":72,"\u5177\u4f53\u67d0\u79cd\u7c7b\u578b\u7684\u5b9e\u73b0\u6587\u4ef6":72,"\u5185\u7f6e\u5b9a\u65f6\u5668":134,"\u5199\u68af\u5ea6\u68c0\u67e5\u5355\u5143\u6d4b\u8bd5":100,"\u51c6\u5907\u4e00\u4e2alinux\u96c6\u7fa4":119,"\u51c6\u5907\u4ea4\u53c9\u7f16\u8bd1\u73af\u5883":[142,143],"\u51c6\u5907\u6570\u636e\u96c6":117,"\u51c6\u5907\u8bad\u7ec3\u6570\u636e":123,"\u51c6\u5907\u8bad\u7ec3\u7a0b\u5e8f":117,"\u51c6\u5907\u9884\u6d4b\u6a21\u578b":116,"\u51c6\u5907openmpi\u96c6\u7fa4":124,"\u51cf\u5c11\u6570\u636e\u8f7d\u5165\u7684\u8017\u65f6":107,"\u51cf\u5c11dataprovider\u7f13\u51b2\u6c60\u5185\u5b58":107,"\u51fa\u73b0":108,"\u5206\u5757\u6587\u4ef6\u4f20\u8f93":54,"\u5206\u5e03\u5f0f\u8bad\u7ec3":118,"\u5206\u652f\u89c4\u8303":88,"\u521b\u5efa\u672c\u5730\u5206\u652f":98,"\u521b\u5efa\u795e\u7ecf\u7f51\u7edc\u8f93\u5165":116,"\u521b\u5efajob":123,"\u521b\u5efapaddlepaddl":122,"\u521d\u59cb\u5316paddlepaddle\u8fd0\u884c\u73af\u5883":116,"\u5220\u9664\u672c\u5730\u5206\u652f":98,"\u5220\u9664\u8fdc\u7a0b\u5206\u652f":98,"\u5229\u7528\u66f4\u591a\u7684\u8ba1\u7b97\u8d44\u6e90":107,"\u5230\u8fdc\u7a0b\u4ed3\u5e93":98,"\u5236\u4f5c\u955c\u50cf":123,"\u5236\u4f5cdocker\u955c\u50cf":122,"\u524d\u5411\u8ba1\u7b97":116,"\u524d\u5411operator\u5355\u6d4b":101,"\u52a0\u8f7d\u6a21\u578b":116,"\u52a0\u8f7dpaddlepaddl":110,"\u52a0\u901f\u6267\u884c":37,"\u52a0\u901f\u8bad\u7ec3\u901f\u5ea6":107,"\u52a8\u6001\u5e93\u4e2d\u4e0d\u5d4c\u5165\u4efb\u4f55\u5176\u4ed6\u8bed\u8a00\u7684\u89e3\u91ca\u5668":71,"\u52a8\u6001\u6269\u5bb9":37,"\u5355\u5143\u6d4b\u8bd5":129,"\u5355\u53cc\u5c42rnn":137,"\u539f\u56e0":71,"\u539f\u56e0\u5217\u8868":71,"\u53c2\u6570\u5185\u5b58":107,"\u53c2\u6570\u670d\u52a1\u5668\u548c\u5206\u5e03\u5f0f\u901a\u4fe1":129,"\u53c2\u6570\u6982\u8ff0":128,"\u53c2\u6570\u8bbe\u7f6e":109,"\u53c2\u8003\u6587\u6863":54,"\u53c2\u8003\u8d44\u6599":134,"\u53cc\u5c42rnn":137,"\u53cc\u5c42rnn\u4ecb\u7ecd":139,"\u53cc\u5c42rnn\u7684\u4f7f\u7528":139,"\u53cd\u5411operator\u5355\u6d4b":101,"\u53d1\u5e03docker\u955c\u50cf":88,"\u53d1\u5e03wheel\u5305\u5230pypi":88,"\u53ef\u80fd\u78b0\u5230\u7684\u95ee\u9898":26,"\u5404\u4e2a\u7248\u672c\u6700\u65b0\u7684whl\u5305":30,"\u540d\u8bcd\u89e3\u91ca":54,"\u5411\u91cf":129,"\u542f\u52a8\u4efb\u52a1":123,"\u542f\u52a8\u53c2\u6570\u670d\u52a1\u5668":117,"\u542f\u52a8\u53c2\u6570\u8bf4\u660e":117,"\u542f\u52a8\u8ba1\u7b97\u8282\u70b9":117,"\u542f\u52a8\u96c6\u7fa4\u4f5c\u4e1a":[119,124],"\u5440":26,"\u547d\u4ee4\u884c\u53c2\u6570\u8bbe\u7f6e":130,"\u548c":136,"\u5728\u4e0d\u540c\u8bbe\u5907\u4e0a\u6307\u5b9a\u5c42":131,"\u5728\u4e0d\u540c\u96c6\u7fa4\u4e2d\u8fd0\u884c":120,"\u5728docker\u4e2d\u6267\u884cpaddlepaddle\u8bad\u7ec3\u7a0b\u5e8f":28,"\u5728openmpi\u96c6\u7fa4\u4e2d\u63d0\u4ea4\u8bad\u7ec3\u4f5c\u4e1a":124,"\u5728paddle\u4e2d\u5982\u4f55\u4f7f\u7528eigen":102,"\u57fa\u4e8edocker\u5bb9\u5668\u7684\u7f16\u8bd1\u65b9\u5f0f":142,"\u57fa\u4e8elinux\u4ea4\u53c9\u7f16\u8bd1\u73af\u5883\u7684\u7f16\u8bd1\u65b9\u5f0f":142,"\u57fa\u672c\u4f7f\u7528\u6982\u5ff5":[110,115],"\u57fa\u672c\u539f\u7406":139,"\u57fa\u672c\u8981\u6c42":71,"\u5982\u4f55\u4e66\u5199\u6587\u6863":103,"\u5982\u4f55\u4f7f\u7528":108,"\u5982\u4f55\u5171\u4eab\u53c2\u6570":109,"\u5982\u4f55\u5199\u65b0\u7684oper":101,"\u5982\u4f55\u51cf\u5c11\u5185\u5b58\u5360\u7528":107,"\u5982\u4f55\u521d\u59cb\u5316\u53c2\u6570":109,"\u5982\u4f55\u52a0\u8f7d\u9884\u8bad\u7ec3\u53c2\u6570":109,"\u5982\u4f55\u52a0\u901f\u8bad\u7ec3\u901f\u5ea6":107,"\u5982\u4f55\u548c\u660e\u6587\u8fdb\u884c\u76f8\u4e92\u8f6c\u5316":109,"\u5982\u4f55\u5728\u8bad\u7ec3\u8fc7\u7a0b\u4e2d\u83b7\u5f97\u53c2\u6570\u7684\u6743\u91cd\u548c\u68af\u5ea6":107,"\u5982\u4f55\u5728\u8bad\u7ec3\u8fc7\u7a0b\u4e2d\u83b7\u5f97\u67d0\u4e00\u4e2alayer\u7684output":107,"\u5982\u4f55\u6307\u5b9agpu\u8bbe\u5907":107,"\u5982\u4f55\u66f4\u65b0www":103,"\u5982\u4f55\u6784\u5efa\u6587\u6863":103,"\u5982\u4f55\u8bbe\u7f6e\u5b66\u4e60\u7387\u9000\u706b":109,"\u5982\u4f55\u8c03\u7528":107,"\u5982\u4f55\u8d21\u732e\u4ee3\u7801":98,"\u5982\u4f55\u8d21\u732e\u6587\u6863":103,"\u5982\u4f55\u8fdb\u884c\u6027\u80fd\u5206\u6790":134,"\u5982\u4f55\u9009\u62e9sgd\u7b97\u6cd5\u7684\u5b66\u4e60\u7387":109,"\u5b50\u5e8f\u5217\u95f4\u65e0memori":137,"\u5b50\u5e8f\u5217\u95f4\u6709memori":137,"\u5b58\u50a8\u7684\u53c2\u6570\u683c\u5f0f\u662f\u4ec0\u4e48":109,"\u5b89\u88c5":30,"\u5b89\u88c5\u4e0e\u7f16\u8bd1":29,"\u5b89\u88c5\u4e0e\u7f16\u8bd1c":113,"\u5b89\u88c5\u4ea4\u53c9\u7f16\u8bd1\u5668":144,"\u5b89\u88c5\u6d41\u7a0b":29,"\u5b9a\u4e49operator\u7c7b":101,"\u5b9a\u4e49opkernel\u7c7b":101,"\u5b9a\u4e49protomaker\u7c7b":101,"\u5b9e\u73b0":71,"\u5b9e\u73b0\u5355\u5143\u6d4b\u8bd5":101,"\u5b9e\u73b0\u65b0\u7684\u7f51\u7edc\u5c42":100,"\u5b9e\u73b0\u65b9\u5f0f":72,"\u5b9e\u73b0\u8ba1\u7b97":102,"\u5b9e\u73b0c":[100,101],"\u5b9e\u73b0python\u5c01\u88c5":100,"\u5bfb\u627e\u6027\u80fd\u74f6\u9888":133,"\u5bfc\u51fac":71,"\u5c06\u547d\u4ee4\u53c2\u6570\u4f20\u7ed9\u7f51\u7edc\u914d\u7f6e":131,"\u5de5\u5177":134,"\u5e38\u89c1\u95ee\u9898\u548c\u89e3\u51b3\u65b9\u6cd5":30,"\u5e38\u89c1\u95ee\u9898\u89e3\u7b54":29,"\u5e76\u5b8c\u6210":98,"\u5efa\u7acb":98,"\u5f00\u53d1\u6807\u51c6":99,"\u5f00\u59cb\u5f00\u53d1":98,"\u5f02\u6b65\u968f\u673a\u68af\u5ea6\u4e0b\u964d":129,"\u5feb\u7167\u4fdd\u5b58\u7684\u8bbe\u8ba1\u5982\u4e0b":37,"\u5feb\u901f\u4f7f\u7528":112,"\u5feb\u901f\u5b89\u88c5":112,"\u5feb\u901f\u5f00\u59cb":112,"\u6027\u80fd\u5206\u6790\u5c0f\u6280\u5de7":134,"\u6027\u80fd\u5206\u6790\u5de5\u5177\u4ecb\u7ecd":134,"\u6027\u80fd\u8c03\u4f18":129,"\u603b\u4f53\u6d41\u7a0b":26,"\u603b\u7ed3":115,"\u6216\u8005\u662f":104,"\u6267\u884c\u5355\u5143\u6d4b\u8bd5":27,"\u627e\u5230\u7684pythonlibs\u548cpythoninterp\u7248\u672c\u4e0d\u4e00\u81f4":104,"\u62a5importerror":104,"\u6307\u9488\u4f5c\u4e3a\u7c7b\u578b\u7684\u53e5\u67c4":71,"\u63a5\u53e3\u8f93\u51fa\u591a\u4e2alayer\u7684\u9884\u6d4b\u7ed3\u679c":107,"\u63a8\u5bfc\u65b9\u7a0b":100,"\u63a8\u6d4b\u6267\u884c":37,"\u63d0\u4ea4":98,"\u63d0\u4ea4\u4ee3\u7801\u7684\u4e00\u4e9b\u7ea6\u5b9a":98,"\u63d0\u4ea4\u955c\u50cf":122,"\u642d\u5efa\u795e\u7ecf\u7f51\u7edc":110,"\u652f\u6301\u53cc\u5c42\u5e8f\u5217\u4f5c\u4e3a\u8f93\u5165\u7684layer":136,"\u652f\u6301\u7528\u6237\u81ea\u5b9a\u4e49\u7684\u6570\u636e\u9884\u5904\u7406job":38,"\u6570\u636e\u652f\u6301":129,"\u6574\u4f53\u65b9\u6848":123,"\u6587\u4ef6\u4f20\u8f93\u4f18\u5316":54,"\u6587\u4ef6\u8bbf\u95ee\u65b9\u5f0f":38,"\u6587\u4ef6\u8bbf\u95ee\u7684\u6743\u9650":38,"\u6587\u4ef6\u9884\u5904\u7406":38,"\u6587\u6863":141,"\u65b0\u624b\u5165\u95e8":111,"\u65e5\u5fd7\u4e2d\u4fdd\u5b58\u5747\u4e3a\u7f51\u7edc\u901a\u4fe1\u7c7b\u9519\u8bef":105,"\u65f6\u95f4\u5e8f\u5217":137,"\u65f6\u95f4\u6b65":137,"\u66b4\u9732\u63a5\u53e3\u539f\u5219":72,"\u672c\u5730\u6d4b\u8bd5":131,"\u672c\u5730\u8bad\u7ec3":131,"\u672c\u5730\u8bad\u7ec3\u4e0e\u9884\u6d4b":107,"\u672f\u8bed":37,"\u6784\u5efa\u548c\u6d4b\u8bd5":98,"\u6784\u5efapaddlepaddle\u7684android\u5f00\u53d1\u955c\u50cf":142,"\u67b6\u6784\u56fe":54,"\u67e5\u770b\u6027\u80fd\u5206\u6790\u6587\u4ef6":133,"\u67e5\u770b\u8bad\u7ec3\u7ed3\u679c":122,"\u67e5\u770b\u8f93\u51fa":123,"\u6846\u67b6\u751f\u6210":54,"\u6848\u4f8b\u4e00":131,"\u6848\u4f8b\u4e8c":131,"\u68c0\u67e5\u6a21\u578b\u8f93\u51fa":119,"\u68c0\u67e5\u96c6\u7fa4\u8bad\u7ec3\u7ed3\u679c":119,"\u6982\u5ff5\u7b80\u4ecb":101,"\u6982\u5ff5\u89e3\u91ca":38,"\u6982\u8ff0":[113,136,139],"\u6a21\u5757":54,"\u6a21\u578b\u53c2\u6570\u68c0\u67e5\u70b9":37,"\u6a21\u578b\u63a8\u65ad\u5b9e\u73b0\u6587\u6863":72,"\u6a21\u578b\u914d\u7f6e":[108,137],"\u6a21\u578b\u914d\u7f6e\u7684\u6a21\u578b\u914d\u7f6e":137,"\u6ce8\u518coper":101,"\u6ce8\u610f\u4e8b\u9879":[101,116],"\u6d41\u7a0b\u4ecb\u7ecd":38,"\u6d4b\u8bd5":129,"\u6df7\u5408\u4ee3\u7801\u7684\u6027\u80fd\u5206\u6790":133,"\u6e05\u7406":116,"\u73af\u5883\u51c6\u5907":127,"\u751f\u6210\u5e8f\u5217":140,"\u751f\u6210\u6027\u80fd\u5206\u6790\u6587\u4ef6":133,"\u751f\u6210\u6d41\u7a0b\u7684\u4f7f\u7528\u65b9\u6cd5":139,"\u751f\u6210sparse\u6587\u4ef6":54,"\u7528\u6237\u4f7f\u7528\u6d41\u7a0b":54,"\u7528docker\u7f16\u8bd1\u548c\u6d4b\u8bd5paddlepaddl":26,"\u7684\u533a\u522b":108,"\u7684\u53c2\u6570":108,"\u7684\u65b9\u6cd5\u6709\u4f55\u533a\u522b":108,"\u76ee\u5f55\u7ed3\u6784":72,"\u76ee\u6807":54,"\u76f4\u63a5\u6784\u5efa":103,"\u76f8\u5173\u6982\u5ff5":139,"\u77e9\u9635":129,"\u793a\u4f8b1":137,"\u793a\u4f8b2":137,"\u793a\u4f8b3":137,"\u793a\u4f8b4":137,"\u793a\u4f8b\u7a0b\u5e8f":38,"\u795e\u7ecf\u5143\u6fc0\u6d3b\u5185\u5b58":107,"\u7a00\u758f\u8bad\u7ec3":131,"\u7aef\u6570\u636e\u7c7b\u578b\u8bf4\u660e":115,"\u7b26\u53f7":71,"\u7b80\u5355\u95e8\u63a7\u5faa\u73af\u795e\u7ecf\u7f51\u7edc":140,"\u7c7b":[71,100,101],"\u7ebf\u6027\u56de\u5f52\u5b8c\u6574\u793a\u4f8b":110,"\u7ec4\u7ec7\u5e8f\u5217\u4fe1\u606f":115,"\u7ec4\u7ec7\u8f93\u5165\u6570\u636e":[115,116],"\u7ec6\u8282\u63cf\u8ff0":129,"\u7ec8\u6b62\u96c6\u7fa4\u4f5c\u4e1a":119,"\u7ed1\u5b9apython":101,"\u7f16\u5199\u9884\u6d4b\u4ee3\u7801":116,"\u7f16\u5199yaml\u6587\u4ef6":122,"\u7f16\u8bd1":101,"\u7f16\u8bd1\u4f9d\u8d56":27,"\u7f16\u8bd1\u548c\u5b89\u88c5":[142,143,144],"\u7f16\u8bd1\u548c\u6267\u884c":101,"\u7f16\u8bd1\u5b89\u88c5\u4e0e\u5355\u5143\u6d4b\u8bd5":104,"\u7f16\u8bd1\u5b89\u88c5\u540e\u6267\u884c":104,"\u7f16\u8bd1\u65b9\u6cd5":27,"\u7f16\u8bd1\u6d41\u7a0b":29,"\u7f16\u8bd1\u9009\u9879":[27,72],"\u7f16\u8bd1\u9009\u9879\u7684\u8bbe\u7f6e":27,"\u7f16\u8bd1\u9009\u9879\u8bf4\u660e":27,"\u7f16\u8bd1paddlepaddl":142,"\u7f29\u5bb9":37,"\u800c\u662f\u624b\u5199\u591a\u8bed\u8a00\u7ed1\u5b9a":71,"\u80cc\u666f":71,"\u81ea\u7136\u8bed\u8a00\u5904\u7406":129,"\u83b7\u53d6paddlepaddle\u7684docker\u955c\u50cf":28,"\u8986\u76d6\u4e0d\u4e00\u81f4\u7684\u90e8\u5206":54,"\u8bad\u7ec3":129,"\u8bad\u7ec3\u56e0\u6b64\u9000\u51fa\u600e\u4e48\u529e":107,"\u8bad\u7ec3\u6570\u636e\u5b58\u50a8":38,"\u8bad\u7ec3\u6570\u636e\u7684\u5b58\u50a8\u548c\u5206\u53d1":38,"\u8bad\u7ec3\u6a21\u578b":110,"\u8bad\u7ec3\u6d41\u7a0b\u7684\u4f7f\u7528\u65b9\u6cd5":139,"\u8bad\u7ec3\u8fc7\u7a0b\u4e2d\u51fa\u73b0":107,"\u8bcd\u6c47\u8868":137,"\u8be6\u7ec6\u6559\u7a0b":134,"\u8bfb\u53d6\u53cc\u5c42\u5e8f\u5217\u6570\u636e":137,"\u8f6c\u6362\u5e93":38,"\u8f93\u5165":[115,139],"\u8f93\u5165\u4e0d\u7b49\u957f":137,"\u8f93\u5165\u793a\u4f8b":139,"\u8f93\u51fa":139,"\u8f93\u51fa\u6570\u636e":115,"\u8f93\u51fa\u6570\u636e\u7c7b\u578b":115,"\u8f93\u51fa\u6570\u636e\u7ec4\u7ec7":115,"\u8fd0\u884c\u5bb9\u5668":122,"\u8fd0\u884c\u73af\u5883\u4f9d\u8d56":30,"\u8fd0\u884cdocker":104,"\u8fd9\u4e2a\u52a8\u6001\u5e93\u4f7f\u7528c99\u6807\u51c6\u7684\u5934\u6587\u4ef6\u5bfc\u51fa\u4e00\u4e9b\u51fd\u6570":71,"\u8fdb\u884c\u8bad\u7ec3":[38,122],"\u8fdb\u9636\u4f7f\u7528":132,"\u901a\u7528":129,"\u9047\u5230":104,"\u914d\u7f6e\u4ea4\u53c9\u7f16\u8bd1\u53c2\u6570":[142,143,144],"\u914d\u7f6e\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u67b6\u6784":140,"\u914d\u7f6e\u7f51\u7edc":110,"\u94a9\u5b50":98,"\u94fe\u63a5\u8bf4\u660e":113,"\u9519\u8bef\u600e\u4e48\u529e":108,"\u968f\u673a\u6570":129,"\u96c6\u7fa4\u591a\u8282\u70b9\u8bad\u7ec3":105,"\u96c6\u7fa4\u8bad\u7ec3":131,"\u96c6\u7fa4\u8bad\u7ec3\u4e0e\u9884\u6d4b":105,"\u9700\u8981\u7684\u8f6f\u786c\u4ef6":26,"\u975e\u6cd5\u6307\u4ee4":104,"abstract":[48,49,50,77,145],"android\u5e73\u53f0\u7f16\u8bd1\u6307\u5357":142,"api\u4f7f\u7528\u6d41\u7a0b":116,"api\u5bf9\u6bd4\u4ecb\u7ecd":137,"api\u5e93":142,"api\u9884\u6d4b\u5e93":[113,114],"beam_search\u7684\u751f\u6210":137,"book\u4e2d\u6240\u6709\u7ae0\u8282":88,"book\u6559\u7a0b":28,"case":33,"class":[60,79,83],"cmake\u6e90\u7801\u7f16\u8bd1":104,"filemanager\u8bbe\u8ba1\u6587\u6863":54,"final":65,"float":107,"function":[35,59,60,83],"gpu\u548ccpu\u6df7\u5408\u4f7f\u7528":131,"gpu\u6027\u80fd\u8c03\u4f18":134,"gpu\u955c\u50cf\u51fa\u73b0":104,"group\u6559\u7a0b":139,"import":104,"ios\u5e73\u53f0\u7f16\u8bd1\u6307\u5357":143,"kubernetes\u5206\u5e03\u5f0f\u8bad\u7ec3":123,"kubernetes\u5355\u673a\u8bad\u7ec3":122,"new":93,"org\u5de5\u5177":103,"paddle\u52a8\u6001\u5e93\u4e2d":71,"paddle\u591a\u8bed\u8a00\u63a5\u53e3\u5b9e\u73b0":71,"paddle\u7248\u672c\u53f7\u4e3a0":104,"paddlepaddle\u53d1\u884c\u89c4\u8303":88,"paddlepaddle\u56de\u5f52\u6d4b\u8bd5\u5217\u8868":88,"paddlepaddle\u662f\u5426\u652f\u6301\u7ef4\u6570\u53ef\u53d8\u7684\u6570\u636e\u8f93\u5165":108,"paddlepaddle\u73af\u5883\u4f9d\u8d56":30,"paddlepaddle\u7684softmax\u80fd\u5426\u6307\u5b9a\u8ba1\u7b97\u7684\u7ef4\u5ea6":108,"paddlepaddle\u7f16\u8bd1\u4f9d\u8d56":27,"pi\u5e73\u53f0\u7f16\u8bd1\u6307\u5357":144,"pod\u95f4\u901a\u4fe1":123,"python\u4e0ec":133,"python\u4ee3\u7801\u7684\u6027\u80fd\u5206\u6790":133,"python\u76f8\u5173\u7684\u5355\u5143\u6d4b\u8bd5\u90fd\u8fc7\u4e0d\u4e86":104,"return":[83,84],"rnn\u6a21\u578b":138,"rnn\u914d\u7f6e":140,"switch":[69,93,94],"tensor\u4f7f\u7528\u6837\u4f8b":102,"tensor\u5230eigentensor\u7684\u8f6c\u6362":102,"tensor\u6a21\u5757":102,"while":18,AWS:121,Abs:1,DNS:121,EFS:121,For:35,KMS:121,The:[34,41,45,53,57,60,61,63,64,73,76,79,85,86,94],Use:[34,81],Using:[35,41],With:44,about:60,abs:18,absolut:75,access:121,account:121,accuraci:[14,18],action:[67,68],activ:[1,4,68],actor:47,adadelta:6,adagrad:[6,20],adam:[6,20],adamax:[6,20],add:[66,69,121],address:121,addto:4,advanc:93,aggreg:4,aggregatelevel:4,alalysi:39,algorithm:[32,36,48,74,82],all:[89,96],analog:45,analysi:[48,66],anneal:109,api:[0,48,67,68,72,76,78,83,87,91],append_regularization_op:23,appendix:145,arbitrari:57,architectur:[48,80],argument:[55,84],arrai:32,array_length:18,array_read:18,array_to_lod_tensor:18,array_writ:18,asset:121,assign:18,associ:[89,121],assumpt:145,async:129,attent:140,attribut:[2,66,87],auc:3,auto:32,averag:78,avg:7,aws:121,background:[32,50,67,93,94,95,96,97],backward:[33,57,61,85],base:[44,75],basepool:7,basic:[66,93,145],batch:84,batch_norm:[4,18],batch_siz:84,beam:[75,92],beam_search:[4,18],beam_search_decod:18,becaus:109,benchmark:[67,68],benefit:[50,85],between:[31,47,83,85,91,93],bidirectional_gru:5,bidirectional_lstm:5,big:109,bilinear_interp:4,binari:34,bla:27,block:[34,58,60,61,81,83,85],block_expand:4,blockdesc:81,blockguard:18,blockguardserv:18,blockguardwithcomplet:18,bootstrap:145,brelu:[1,18],bring:145,bucket:121,build:[33,60,85],can:89,capi:72,capi_priv:72,cast:18,ceil:18,challeng:[33,50,82],chang:75,channel:47,check:[4,32],checkpoint:[36,37,43],choic:65,choos:[35,121],chunk:3,chunk_ev:18,chunkevalu:14,cifar:10,classif:3,classification_error:3,classification_error_print:3,client:41,clip:[4,18,51],clip_by_norm:18,clone:98,close:32,cloudform:121,cluster:[42,121,145],cmake:[35,67,68],code:[44,58,83,135],column_sum:3,commit:98,compar:145,comparis:83,compat:57,compil:[34,56,58,81,85,135],complet:57,compos:84,comput:[34,61,69,85,87],con:145,concat:[4,18],concept:[83,85,121],concern:68,conclus:[43,62,145],concurr:[45,47],condit:60,conditionalblock:18,configur:[24,121],conll05:10,connect:4,constant:16,construct:61,content:[67,68,72,92,104,105,107,108,109,121,134,136],context_project:4,control:[66,85],control_flow:18,contruct:66,conv2d:18,conv2d_transpos:18,conv:4,conv_oper:4,conv_project:4,conv_shift:4,convert:43,convolut:92,core:[32,83,121],corner:33,cos_sim:[4,18],cost:4,cpu:49,creat:[33,47,84,85,89,121],create_arrai:18,create_global_var:18,create_paramet:18,create_tensor:18,createreaderop:46,creation:[40,78,87],creator:84,credenti:121,crf:4,crf_decod:[4,18],cross_channel_norm:4,cross_entropi:18,cross_entropy_cost:4,cross_entropy_with_selfnorm_cost:4,csp:47,ctc:[4,92],ctc_error:3,ctc_greedy_decod:18,cuda:[27,56,104],cuda_profil:22,cudnn:27,cudnnavg:7,cudnnmax:7,current:[56,86],custom:84,data:[4,8,9,18,36,46,48,84,95,121],data_feed:13,datafeed:[9,13],dataflow:66,dataprovid:129,dataset:[8,10,36,40],datatyp:[9,73],decayedadagrad:[6,20],decod:75,decor:84,decoratedread:46,deep:[34,57],deepspeech2:92,defin:121,definit:97,delet:121,demo:[60,121],dens:43,depend:[60,92],deploi:44,describ:[57,76],descript:[55,85],design:[31,32,34,36,40,41,42,43,45,47,48,49,50,52,53,56,57,59,60,61,64,67,68,69,70,73,74,75,76,77,79,81,83,84,85,86,89,90,92,93,94,96],destroi:[89,121],detail:[39,92],detect:3,detection_map:3,detection_output:4,develop:85,devic:[18,93],devicecontext:93,dictionari:84,differ:[85,93],directori:121,discrimin:60,discuss:[50,60],dispatch:[36,40],distribut:[31,36,39,44,48,50,121],dnn:68,doc:[31,34,36,40,41,42,43,45,47,48,49,50,53,56,57,59,61,64,67,68,69,70,73,77,79,81,83,84,85,86,90,92,93,94],docker:[26,44],doe:84,dot_prod:4,dot_product_attent:5,dotmul_oper:4,dotmul_project:4,down:121,download:121,driver:104,drop_out:108,dropout:[4,18],duplic:108,dure:[75,84],dylib:72,dynam:[36,96],dynamic_gru:18,dynamic_lstm:18,dynamic_lstmp:18,dynamicrnn:18,dynet:62,ec2:121,edit_dist:18,eigen:102,elast:121,elect:43,elementwise_add:18,elementwise_div:18,elementwise_max:18,elementwise_min:18,elementwise_mul:18,elementwise_pow:18,elementwise_sub:18,els:34,elu:18,embed:[4,18],engin:60,enough:32,entri:84,environ:44,eos:4,error:51,evalu:[3,14,52],event:[25,31,80],evolut:57,exampl:[31,35,45,47,63,72],except:107,execut:[34,49,57,81,85],executor:[15,53],exp:[1,18],expand:[4,136],expandlevel:4,explan:32,extern:121,factorization_machin:4,faq:106,fault:36,feed:46,file:[34,121],fileread:46,fill_const:18,fill_constant_batch_size_lik:18,find:121,first_seq:[4,136],float16:56,floor:18,flow:66,fluid:[12,45,47,57,58,69,77,135],fork:98,format:[34,36,70],forward:61,frame:34,framework:[32,102],from:[31,43,91],full_matrix_project:4,fulli:4,functor:93,futur:[57,92],gan:60,gate:140,gated_unit:4,gener:[58,60,75,145],get_inference_program:17,get_output:4,get_plac:18,give:84,global:[81,83],global_scop:15,glu:19,gpu:129,grad_op:33,gradient:[32,33,41,68,86],gradient_print:3,graph:[61,62,66,85,87],group:[4,121],gru:[5,129],gru_group:5,gru_step:4,gru_unit:[5,18],grumemori:4,handler:[31,71],happen:43,hard_shrink:18,hard_sigmoid:18,hardwar:56,helper:83,hierarchi:34,high:[76,78,87,91],how:[32,39,78,84,85,93],hsigmoid:4,huber_classification_cost:4,huber_regression_cost:4,iam:121,ident:1,identity_project:4,ifels:[18,63],ifelseop:34,illeg:104,im2sequ:18,imag:[4,5,11,44],imdb:10,img_cmrnorm:4,img_conv:4,img_conv_bn_pool:5,img_conv_group:5,img_pool:4,imikolov:10,implement:[32,33,35,39,49,51,52,56,70,74,77,78,83,84,85,86,87],increment:18,infer:[25,107],infershap:[81,90],infervartyp:64,ingredi:31,ingress:54,initi:[16,41,60,121],insid:89,inspect:121,instal:[121,145],instanc:121,instead:84,instruct:104,insuffici:104,integr:[93,121],intel:[67,68],interact:91,interfac:[8,9,11,32,36,41,42,53,76,84,89],intermedi:85,interpol:4,introduc:[75,96],introduct:[80,87],isn:84,issu:[56,98],job:[36,44,121,122],kei:[67,73,121],kernel:[69,73,85],kmax_sequence_scor:4,kube:121,kubectl:121,kubernet:[44,121,122],l1decai:23,l2_distanc:4,l2_normal:18,l2decai:23,lambda_cost:4,languag:[34,58],larg:39,last_seq:[4,136],layer:[4,18,31,59,67,68,83,108],layer_norm:18,layout:73,leaky_relu:18,learn:[34,57,109],less_than:18,leval:91,level:[76,78,87,91],libpaddle_capi_shar:72,libpaddle_capi_whol:72,librari:[41,56,73,85,93],limit:48,linear:1,linear_chain_crf:18,linear_comb:4,list:[37,84],listenandserv:18,live:66,load:47,load_inference_model:17,load_param:17,load_persist:17,load_var:17,local:[48,89,121],lod:75,lod_rank_t:18,lod_tensor_to_arrai:18,lodtensor:[74,75,96],lodtensordesc:97,log:[1,18],logic:40,logsigmoid:18,low:[78,87,91],lstm:[5,129],lstm_step:4,lstm_unit:18,lstmemori:4,lstmemory_group:5,lstmemory_unit:5,machin:75,macro:85,main:60,make:66,manag:35,map:[84,85],master:[36,40,44,45],math:[4,93],mathemat:32,matmul:18,matrix:68,max:7,max_sequence_len:18,maxframe_print:3,maxid:4,maxid_print:3,maxout:4,mean:18,member:60,memori:[4,66,74,93,108,137,139],merge_lod_tensor:18,messag:[91,109],method:75,might:60,migrat:85,mileston:85,mini:84,minibatch:[9,47],mix:4,mkl:[67,68],mkldnn:69,mkldnn_helper:69,mkldnndevicecontext:69,mnist:10,model:[24,31,39,41,43,47,57,60,70,75,140],modul:[85,93,104],momentum:[6,20],more:60,motiv:[33,47,53,70,77,82],movielen:10,mul:18,multi:[49,58],multi_binary_label_cross_entropy_cost:4,multibox_loss:4,multipl:84,multiplex:[4,18],mxnet:62,name:[89,104,108,121],nativ:58,nccl:77,nce:[4,18],necess:83,necessari:85,need:84,nest:74,net:19,network:[5,85,140],neural:140,nlp:[5,129],norm:[4,87],normal:16,note:32,numer:32,numpi:32,nvprof:134,nvvp:134,object:36,offset:75,ones:18,onli:[84,89],op_mak:85,oper:[46,59,63,66,69,73,78,81,83,85,86,90,96],opinfomap:85,opkernel:[85,93],opproto:91,ops:[18,87],optim:[6,20,36,41,61,66,76,83],option:55,opwithkernel:85,order:55,org:103,origin:85,orthogon:89,other:68,out_prod:4,output:121,overview:[43,51,53,67,68,85,89,92,135],pack:[67,75],packag:35,pad:4,paddl:[39,77,84,89,102,104,108],paddlejob:44,paddlepaddl:[31,34,47,57,58,67,68,78,81,87,88,92,103,104,121,135,141],pair:121,paradigm:57,parallel_nn:131,paralleldo:18,param_attr:21,paramattr:21,paramet:[2,25,31,36,41,42,44,47,50,68,78,79,83,87,121],parameteraverageoptim:78,parent:89,part:61,partit:41,path:[43,55],penalti:87,perform:[78,129],persist:40,pfsclient:[54,55],pfsserver:54,place:[66,73,93],placement:48,platform:104,pnpair:3,point:[67,107,121],polici:66,pool2d:18,pool:[4,7,136],pose:[64,86],potenti:65,pow:18,power:4,pre:98,precision_recal:3,prefetch:84,prelu:4,prepar:121,principl:69,print:[3,18],privat:121,pro:145,problem:[52,64,65,66,73,76,86,95],procedur:145,process:[36,41,44,76,85],profil:22,program:[34,45,47,49,57,58,81,83],programdesc:[58,81],project:35,propos:[64,86,87],protobuf:90,protocol:109,provid:84,prune:82,pserver:43,pull:98,push:98,python:[32,44,48,67,68,74,76,78,83,84,87,91,97,115],qualiti:85,queue:[36,40],rank:3,rank_cost:4,raspberri:144,rate:109,reader:[8,9,31,46,84],readerbas:46,readerhold:46,readop:46,realiz:85,reciproc:18,recoveri:36,recurr:[4,5,108,139,140],recurrent_group:4,recv:47,reduce_max:18,reduce_mean:18,reduce_min:18,reduce_sum:18,refactor:85,refer:[32,48,50,66,67,68,92],region:121,regist:[64,85,91],registr:[85,86],registri:85,regular:[23,41,87],reject:109,rel:75,relat:[46,85,96],relu6:18,relu:[1,18],remot:42,remoteexecutor:48,render:121,reorder_lod_tensor_by_rank:18,repeat:4,represent:[34,85],request:98,requir:[35,60],reset_profil:22,reshap:[4,18],resiz:4,retri:40,reus:83,rmsprop:6,rnn:[74,96,129,137],rnnop:[34,74,85],roi_pool:4,rotat:4,round:18,route53:121,row:[90,92],row_conv:[4,18],row_l2_norm:4,rpc:47,run:[53,135],runtim:44,sampl:4,sampling_id:4,save:43,save_inference_model:17,save_param:17,save_persist:17,save_var:17,scale:[4,18,36],scale_shift:4,scaled_dot_product_attent:19,scaling_project:4,scope:[34,74,85,89],scope_guard:15,search:[75,92],secur:121,select:[41,47,90],selectedrow:90,selective_fc:4,semant:94,send:[18,47],sentiment:10,separ:85,seq_concat:4,seq_reshap:4,seq_slic:4,seqtext_print:3,sequenc:[75,140],sequence_conv:18,sequence_conv_pool:[5,19],sequence_expand:18,sequence_first_step:18,sequence_last_step:18,sequence_pool:18,sequence_reshap:18,sequence_softmax:18,sequencesoftmax:1,server:[36,40,41,44,47,50,121],servic:121,setup:121,sextant:145,sgd:[20,129],shape:75,share:[31,33,66,89],should:89,shrink_memori:18,shuffl:84,sigmoid:[1,18],sigmoid_cross_entropy_with_logit:18,simpl:75,simple_attent:5,simple_gru2:5,simple_gru:5,simple_img_conv_pool:[5,19],simple_lstm:5,singl:84,slice_project:4,slope_intercept:4,small_vgg:5,smooth_l1_cost:4,soft_relu:18,softmax:1,softplu:18,softrelu:1,softshrink:18,softsign:[1,18],solut:[64,65,66,67,73,82,86,95],sourc:135,spars:[41,42,43,90],split:18,split_lod_tensor:18,spp:4,sqrt:18,squar:[1,18],square_error_cost:[4,18],squarerootn:7,stack:34,stanh:[1,18],start:[31,121],statement:52,staticrnn:18,staticrnnmemorylink:18,step2:116,step:[74,116],storag:87,store:36,strategi:66,sub_nested_seq:4,sub_seq:4,subcommond:55,submit:44,suffici:84,suitabl:35,sulut:69,sum:[3,7,18],sum_cost:4,sum_to_one_norm:4,summar:[31,45],summari:70,support:[56,77,93,96,104],survei:[56,62,87,145],swish:18,switch_scop:15,synopsi:55,syntax:47,system:[57,121],tabl:[72,92],table_project:4,tanh:[1,18],tanh_shrink:18,task:[36,40,92],tear:121,tecton:145,templat:121,tensor:[4,18,85,93,102],tensorarrai:[75,96],tensordesc:97,tensorflow:62,test:[67,68,69],text_conv_pool:5,theori:32,thi:[89,104],think:60,three:96,thresholded_relu:18,time:135,timelin:43,todo:[37,38,49],togeth:89,toler:36,too:109,tool:[35,145],topic:93,topk:18,toward:58,train:[25,31,36,39,42,44,48,76,84,121],trainer:[25,36,41,43,44,47,121],tran:4,trans_full_matrix_project:4,transform:95,translat:75,transpil:[48,49,50,58,66,77],transpos:18,tune:129,ture:57,two:32,type:[47,73],uci_h:10,uniform:[16,96],unit:[67,68,69],unpack:75,updat:[31,42,43,121],usag:[33,51,74,75,84],use:[39,84],user:36,util:3,valu:83,value_print:3,vardesc:97,variabl:[33,66,83,85,89,97],verifi:121,version:[45,56,104],vgg_16_network:5,volum:121,vpc:121,warp_ctc:4,warpctc:18,weightnormparamattr:21,what:[39,43],wheel:104,when:[43,89],whileguard:18,whl:104,why:[56,57,78,84,85,96],wmt14:10,wmt16:10,work:92,worker:45,xavier:16,zero:18}})
\ No newline at end of file
+Search.setIndex({docnames:["build_and_install/build_cn","build_and_install/build_from_source_cn","build_and_install/docker_install_cn","build_and_install/index_cn","build_and_install/pip_install_cn","design/api","design/auto_gradient_check","design/backward","design/block","design/build_system/README","design/cluster_train/README","design/cluster_train/checkpointing","design/cluster_train/data_dispatch","design/cluster_train/large_model_dist_train","design/cluster_train/master_server","design/cluster_train/pserver_client","design/cluster_train/remote_parameter_updater","design/cluster_train/save_model","design/cluster_train/submit-job","design/concurrent_programming","design/cpp_data_feeding","design/csp","design/dist_refactor/distributed_architecture","design/dist_refactor/multi_cpu","design/dist_refactor/parameter_server","design/error_clip","design/evaluator","design/executor","design/file_manager/README","design/file_manager/pfs/pfsclient","design/float16","design/fluid","design/fluid_compiler","design/functions_operators_layers","design/gan_api","design/graph","design/graph_survey","design/if_else_op","design/infer_var_type","design/kernel_hint_design","design/memory_optimization","design/mkl/mkl_packed","design/mkl/mkldnn","design/mkl/mkldnn_fluid","design/model_format","design/multi_language_interface/00.why_plain_c","design/multi_language_interface/01.inference_implementation","design/operator_kernel_type","design/ops/rnn","design/ops/sequence_decoder","design/optimizer","design/paddle_nccl","design/parameter_average","design/parameters_in_cpp","design/profiler","design/program","design/prune","design/python_api","design/reader/README","design/refactorization","design/register_grad_op","design/regularization","design/releasing_process","design/scope","design/selected_rows","design/simple_op_design","design/speech/deep_speech_2","design/support_new_device","design/switch","design/switch_kernel","design/tensor_array","design/var_desc","dev/contribute_to_paddle_cn","dev/index_cn","dev/new_layer_cn","dev/new_op_cn","dev/use_eigen_cn","dev/write_docs_cn","faq/build_and_install/index_cn","faq/cluster/index_cn","faq/index_cn","faq/local/index_cn","faq/model/index_cn","faq/parameter/index_cn","getstarted/concepts/use_concepts_cn","getstarted/index_cn","getstarted/quickstart_cn","howto/capi/compile_paddle_lib_cn","howto/capi/index_cn","howto/capi/organization_of_the_inputs_cn","howto/capi/workflow_of_capi_cn","howto/cluster/cmd_argument_cn","howto/cluster/index_cn","howto/cluster/multi_cluster/fabric_cn","howto/cluster/multi_cluster/index_cn","howto/cluster/multi_cluster/k8s_aws_cn","howto/cluster/multi_cluster/k8s_cn","howto/cluster/multi_cluster/k8s_distributed_cn","howto/cluster/multi_cluster/openmpi_cn","howto/cluster/multi_cluster/src/k8s_data/README","howto/cluster/multi_cluster/src/k8s_train/README","howto/cluster/preparations_cn","howto/cmd_parameter/arguments_cn","howto/cmd_parameter/detail_introduction_cn","howto/cmd_parameter/index_cn","howto/cmd_parameter/use_case_cn","howto/index_cn","howto/optimization/cpu_profiling_cn","howto/optimization/gpu_profiling_cn","howto/read_source","howto/rnn/hierarchical_layer_cn","howto/rnn/hrnn_rnn_api_compare_cn","howto/rnn/index_cn","howto/rnn/recurrent_group_cn","howto/rnn/rnn_config_cn","index_cn","mobile/cross_compiling_for_android_cn","mobile/cross_compiling_for_ios_cn","mobile/cross_compiling_for_raspberry_cn","survey/cluster_bootstrapping_tools"],envversion:50,filenames:["build_and_install/build_cn.md","build_and_install/build_from_source_cn.rst","build_and_install/docker_install_cn.rst","build_and_install/index_cn.rst","build_and_install/pip_install_cn.rst","design/api.md","design/auto_gradient_check.md","design/backward.md","design/block.md","design/build_system/README.md","design/cluster_train/README.md","design/cluster_train/checkpointing.md","design/cluster_train/data_dispatch.md","design/cluster_train/large_model_dist_train.md","design/cluster_train/master_server.md","design/cluster_train/pserver_client.md","design/cluster_train/remote_parameter_updater.md","design/cluster_train/save_model.md","design/cluster_train/submit-job.md","design/concurrent_programming.md","design/cpp_data_feeding.md","design/csp.md","design/dist_refactor/distributed_architecture.md","design/dist_refactor/multi_cpu.md","design/dist_refactor/parameter_server.md","design/error_clip.md","design/evaluator.md","design/executor.md","design/file_manager/README.md","design/file_manager/pfs/pfsclient.md","design/float16.md","design/fluid.md","design/fluid_compiler.md","design/functions_operators_layers.md","design/gan_api.md","design/graph.md","design/graph_survey.md","design/if_else_op.md","design/infer_var_type.md","design/kernel_hint_design.md","design/memory_optimization.md","design/mkl/mkl_packed.md","design/mkl/mkldnn.md","design/mkl/mkldnn_fluid.md","design/model_format.md","design/multi_language_interface/00.why_plain_c.md","design/multi_language_interface/01.inference_implementation.md","design/operator_kernel_type.md","design/ops/rnn.md","design/ops/sequence_decoder.md","design/optimizer.md","design/paddle_nccl.md","design/parameter_average.md","design/parameters_in_cpp.md","design/profiler.md","design/program.md","design/prune.md","design/python_api.md","design/reader/README.md","design/refactorization.md","design/register_grad_op.md","design/regularization.md","design/releasing_process.md","design/scope.md","design/selected_rows.md","design/simple_op_design.md","design/speech/deep_speech_2.md","design/support_new_device.md","design/switch.md","design/switch_kernel.md","design/tensor_array.md","design/var_desc.md","dev/contribute_to_paddle_cn.md","dev/index_cn.rst","dev/new_layer_cn.rst","dev/new_op_cn.md","dev/use_eigen_cn.md","dev/write_docs_cn.rst","faq/build_and_install/index_cn.rst","faq/cluster/index_cn.rst","faq/index_cn.rst","faq/local/index_cn.rst","faq/model/index_cn.rst","faq/parameter/index_cn.rst","getstarted/concepts/use_concepts_cn.rst","getstarted/index_cn.rst","getstarted/quickstart_cn.rst","howto/capi/compile_paddle_lib_cn.md","howto/capi/index_cn.rst","howto/capi/organization_of_the_inputs_cn.md","howto/capi/workflow_of_capi_cn.md","howto/cluster/cmd_argument_cn.md","howto/cluster/index_cn.rst","howto/cluster/multi_cluster/fabric_cn.md","howto/cluster/multi_cluster/index_cn.rst","howto/cluster/multi_cluster/k8s_aws_cn.md","howto/cluster/multi_cluster/k8s_cn.md","howto/cluster/multi_cluster/k8s_distributed_cn.md","howto/cluster/multi_cluster/openmpi_cn.md","howto/cluster/multi_cluster/src/k8s_data/README.md","howto/cluster/multi_cluster/src/k8s_train/README.md","howto/cluster/preparations_cn.md","howto/cmd_parameter/arguments_cn.md","howto/cmd_parameter/detail_introduction_cn.md","howto/cmd_parameter/index_cn.rst","howto/cmd_parameter/use_case_cn.md","howto/index_cn.rst","howto/optimization/cpu_profiling_cn.md","howto/optimization/gpu_profiling_cn.rst","howto/read_source.md","howto/rnn/hierarchical_layer_cn.rst","howto/rnn/hrnn_rnn_api_compare_cn.rst","howto/rnn/index_cn.rst","howto/rnn/recurrent_group_cn.md","howto/rnn/rnn_config_cn.rst","index_cn.rst","mobile/cross_compiling_for_android_cn.md","mobile/cross_compiling_for_ios_cn.md","mobile/cross_compiling_for_raspberry_cn.md","survey/cluster_bootstrapping_tools.md"],objects:{},objnames:{},objtypes:{},terms:{"00m":108,"01org":78,"03m":108,"0424m":108,"04\u4ee5\u4e0a":4,"04\u4ee5\u53camaco":86,"055ee37d":95,"0630u":108,"06u":108,"0810u":108,"0957m":108,"0\u53f7\u8bad\u7ec3\u8282\u70b9\u662f\u4e3b\u8bad\u7ec3\u8282\u70b9":103,"0\u5c42\u5e8f\u5217":110,"0_cudnn5":1,"0_cudnn5_avx_mkl":[2,4],"0_cudnn7_avx_mkl":4,"0rc1":62,"0rc2":62,"0x10f256d50":36,"0x7ffe4de00110":36,"100gi":95,"100m":81,"10g":18,"1150u":108,"11\u5b9e\u73b0\u4e86c":46,"11e6":96,"124n":108,"12\u4ee5\u4e0a":4,"12\u64cd\u4f5c\u7cfb\u7edf":78,"12gb":40,"13m":96,"1490u":108,"14\u7248\u672c\u4ee5\u4e0a\u7684":118,"14\u8fd9\u79cd\u5199\u6cd5\u5c06\u4f1a\u6d4b\u8bd5\u6a21\u578b":105,"1550u":108,"15\u884c":111,"16\u5b57\u8282\u8868\u793a\u4fdd\u5b58\u7684\u53c2\u6570\u603b\u4e2a\u6570":83,"16u":108,"173n":108,"1770u":108,"18ad":95,"18e457ce3d362ff5f3febf8e7f85ffec852f70f3b629add10aed84f930a68750":96,"197u":108,"1\u4e4b\u540e\u7684\u4efb\u4f55\u4e00\u4e2a\u7248\u672c\u6765\u7f16\u8bd1\u8fd0\u884c":1,"1\u7684\u5c42\u4e4b\u5916":105,"1\u7a00\u758f\u6570\u636e":74,"1\u8f6e\u5b58\u50a8\u7684\u6240\u6709\u6a21\u578b":105,"210u":108,"215n":108,"228u":108,"2520u":108,"2680u":108,"26\u884c":111,"279n":108,"27m":108,"285m":108,"2863m":108,"28m":108,"2977m":108,"2\u4e09\u7c7b\u7684\u6bd4\u4f8b\u4e3a":83,"2\u4e2a\u5b50\u5e8f\u5217":89,"2\u5206\u522b\u4ee3\u88683\u4e2a\u8282\u70b9\u7684trainer":97,"2\u610f\u5473\u77400\u53f7\u548c1\u53f7gpu\u5c06\u4f1a\u4f7f\u7528\u6570\u636e\u5e76\u884c\u6765\u8ba1\u7b97fc1\u548cfc2\u5c42":105,"2\u8fd9\u51e0\u4e2a\u76ee\u5f55\u8868\u793apaddlepaddle\u8282\u70b9\u4e0etrain":97,"2cbf7385":95,"302n":108,"30u":108,"328n":108,"32u":108,"331n":108,"3320u":108,"365e":95,"36u":108,"3710m":108,"3768m":108,"387u":108,"38u":108,"3920u":108,"39u":108,"3\u4ee5\u4e0a\u7684\u7b26\u53f7":4,"3\u53f7gpu":81,"4035m":108,"4090u":108,"4096mb":103,"4279m":108,"43u":108,"448a5b355b84":96,"4560u":108,"4563m":108,"45u":108,"4650u":108,"4726m":108,"473m":96,"4\u4e2a\u5e8f\u5217\u7684\u957f\u5ea6\u5206\u522b\u4e3a":89,"4\u5b57\u8282\u8868\u793apaddlepaddle\u7248\u672c\u4fe1\u606f":83,"4gb":103,"500m":81,"50bd":95,"50gi":95,"514u":108,"525n":108,"526u":108,"536u":108,"5460u":108,"5470u":108,"54u":108,"5690m":108,"573u":108,"578n":108,"5798m":108,"586u":108,"58s":96,"5969m":108,"5\u4f5c\u4e3a\u7f16\u8bd1\u73af\u5883":4,"5\u5373\u5c06\u505c\u6b62\u7ef4\u62a4":4,"5_cudnn5_avx_mkl":4,"5_cudnn5_avx_openbla":[4,86],"6080u":108,"6140u":108,"6305m":108,"639u":108,"64\u5e73\u53f0\u4e3a\u4f8b":116,"64m":44,"655u":108,"6780u":108,"6810u":108,"682u":108,"6970u":108,"6\u4e07\u4ebf\u6b21\u6d6e\u70b9\u8fd0\u7b97\u6bcf\u79d2":108,"6\u4ee5\u4e0a":[4,86],"6\u4f5c\u4e3a\u6807\u51c6\u7f16\u8bd1\u73af\u5883":4,"6ce9":95,"704u":108,"7090u":108,"72u":108,"73u":108,"75u":108,"760u":108,"767u":108,"783n":108,"784u":108,"78m":108,"7\u4ee5\u4e0a":116,"7\u4ee5\u4e0a\u7684\u7b26\u53f7":4,"7\u4ee5\u4e0b":116,"7\u548cpip":78,"7\u7248\u672c\u5f00\u59cb":116,"7\u7cfb\u5217":4,"7kb":96,"8000\u5c31\u53ef\u4ee5\u5728\u7f51\u9875\u4e0a\u751f\u6210\u9700\u8981\u7684\u6587\u6863":77,"8250u":108,"8300u":108,"830n":108,"849m":108,"861u":108,"8661m":108,"892m":108,"8\u5b57\u8282\u8868\u793a\u6bcf\u4e2a\u53c2\u6570\u5360\u7528\u7684\u5b57\u8282\u6570":83,"901n":108,"90u":108,"918u":108,"9247m":108,"924n":108,"9261m":108,"9330m":108,"94u":108,"9530m":108,"983m":108,"988u":108,"997u":108,"99u":108,"9a235":117,"9f18":96,"\u4e00\u4e2a":89,"\u4e00\u4e2a0\u5c42\u5e8f\u5217":110,"\u4e00\u4e2a0\u5c42\u5e8f\u5217\u7ecf\u8fc7\u8fd0\u7b97\u6269\u5c55\u6210\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":110,"\u4e00\u4e2a\u4e0d\u5171\u4eab\u7684\u4f8b\u5b50\u662f":75,"\u4e00\u4e2a\u5178\u578b\u7684chunk\u5982\u4e0b\u6240\u793a":28,"\u4e00\u4e2a\u5206\u5e03\u5f0fpaddlepaddle\u8bad\u7ec3\u4efb\u52a1\u4e2d":96,"\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":110,"\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217\u6216\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217":110,"\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217\u7ecf\u8fc7\u8fd0\u7b97\u6269\u5c55\u6210\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217":110,"\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217\u8fdb\u5165":113,"\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217":110,"\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217\u6216\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":110,"\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217\u7ecf\u8fc7\u8fd0\u7b97\u53d8\u6210\u4e00\u4e2a0\u5c42\u5e8f\u5217":110,"\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217\u7ecf\u8fc7\u8fd0\u7b97\u53d8\u6210\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":110,"\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217\u8fdb\u5165":113,"\u4e00\u4e2a\u53cc\u5c42rnn\u7531\u591a\u4e2a\u5355\u5c42rnn\u7ec4\u6210":113,"\u4e00\u4e2a\u53ef\u8c03\u7528\u7684\u51fd\u6570":113,"\u4e00\u4e2a\u5e38\u7528\u7684cmake\u914d\u7f6e\u5982\u4e0b":118,"\u4e00\u4e2a\u6570\u636e\u96c6\u5927\u90e8\u5206\u5e8f\u5217\u957f\u5ea6\u662f100":81,"\u4e00\u4e2a\u662f\u6d6e\u70b9\u8ba1\u7b97\u91cf":108,"\u4e00\u4e2a\u72ec\u7acb\u7684\u5143\u7d20":110,"\u4e00\u4e2a\u72ec\u7acb\u7684\u8bcd\u8bed":110,"\u4e00\u4e2a\u795e\u7ecf\u7f51\u7edc\u7684\u6a21\u578b\u7531\u5927\u91cf\u7684\u53c2\u6570\u7ec4\u6210":11,"\u4e00\u4e2a\u7f51\u7edc\u5c42\u7684\u524d\u5411\u4f20\u64ad\u90e8\u5206\u628a\u8f93\u5165\u8f6c\u5316\u4e3a\u76f8\u5e94\u7684\u8f93\u51fa":74,"\u4e00\u4e2a\u7f51\u7edc\u5c42\u7684\u53c2\u6570\u662f\u5728":74,"\u4e00\u4e2a\u7f51\u7edc\u5c42\u7684c":74,"\u4e00\u4e2a\u8f93\u51fa\u6570\u636e\u540c\u6837\u88ab\u7ec4\u7ec7\u4e3a\u4e00\u4e2a":89,"\u4e00\u4e2a\u8f93\u51fa\u7ec4\u6210":75,"\u4e00\u4e2a\u91cd\u8981\u7684\u95ee\u9898\u662f\u9009\u62e9\u6b63\u786e\u7684learning_r":83,"\u4e00\u4e2achunk\u7531\u6240\u5728\u7684\u6587\u4ef6\u504f\u79fb":28,"\u4e00\u4e2agpu\u8bbe\u5907\u4e0a\u4e0d\u5141\u8bb8\u914d\u7f6e\u591a\u4e2a\u6a21\u578b":103,"\u4e00\u4e2agradientmachine\u7c7b\u7684\u5bf9\u8c61\u7ba1\u7406\u7740\u4e00\u7ec4\u8ba1\u7b97\u5c42":90,"\u4e00\u4e2alabel":111,"\u4e00\u4e2amemory\u5305\u542b":114,"\u4e00\u4e2aposix\u517c\u5bb9\u7684\u6587\u4ef6\u7cfb\u7edf":28,"\u4e00\u4e9b\u60c5\u51b5\u4e3a\u4e86\u4fbf\u4e8e\u53d1\u5e03":90,"\u4e00\u53e5\u8bdd\u662f\u7531\u8bcd\u8bed\u6784\u6210\u7684\u5e8f\u5217":113,"\u4e00\u53f0\u7535\u8111":0,"\u4e00\u662fbatch":81,"\u4e00\u6837\u7684\u65b9\u5f0f":0,"\u4e00\u7ef4\u6570\u7ec4":[89,90],"\u4e00\u7ef4\u6574\u578b\u6570\u7ec4":89,"\u4e00\u81f4":[110,111],"\u4e00\u822c\u4e0d\u5141\u8bb8\u518d\u4ece":62,"\u4e00\u822c\u4ece":72,"\u4e00\u822c\u5728paddlepaddle\u4e2d":111,"\u4e00\u822c\u662f\u7531\u4e8e\u76f4\u63a5\u4f20\u9012\u5927\u5b57\u5178\u5bfc\u81f4\u7684":83,"\u4e00\u822c\u6765\u8bf4":114,"\u4e00\u822c\u7531mkl":42,"\u4e00\u822c\u8868\u793a":111,"\u4e00\u822c\u8bbe\u7f6e":83,"\u4e00\u8282":90,"\u4e09\u79cd\u5e8f\u5217\u6a21\u5f0f":84,"\u4e0a":72,"\u4e0a\u4ea4\u53c9\u7f16\u8bd1raspberri":118,"\u4e0a\u4f20\u5230cloud\u6216\u8005\u4e0b\u8f7d\u5230\u672c\u5730\u7684\u65f6\u95f4\u53ef\u80fd\u6bd4\u8f83\u957f":28,"\u4e0a\u4f20\u65b9\u6cd5":62,"\u4e0a\u4f20\u8ba1\u7b97\u5f97\u51fa\u7684\u68af\u5ea6":92,"\u4e0a\u56fe\u4e2d\u7684":89,"\u4e0a\u56fe\u4e2d\u865a\u7ebf\u7684\u8fde\u63a5":111,"\u4e0a\u56fe\u63cf\u8ff0\u4e86\u4e00\u4e2a3\u8282\u70b9\u7684\u5206\u5e03\u5f0f\u8bad\u7ec3\u573a\u666f":97,"\u4e0a\u6ce8\u518c\u4e00\u4e0b":28,"\u4e0a\u7f16\u8bd1\u5f88\u6162":0,"\u4e0a\u8fd0\u884c":116,"\u4e0a\u8ff0\u4ee3\u7801\u5c06bias\u5168\u90e8\u521d\u59cb\u5316\u4e3a1":83,"\u4e0a\u8ff0\u547d\u4ee4\u4e2d":2,"\u4e0a\u8ff0\u547d\u4ee4\u7f16\u8bd1\u51fa\u4e00\u4e2a":0,"\u4e0a\u8ff0\u7684":82,"\u4e0a\u8ff0\u7684\u4ee3\u7801\u7247\u6bb5\u5305\u542b\u4e86\u4e24\u79cd\u65b9\u6cd5":108,"\u4e0a\u8ff0paddlepaddl":62,"\u4e0a\u9762\u7684\u4ee3\u7801\u5728":75,"\u4e0a\u9762\u7684\u4ee3\u7801\u9996\u5148\u5bfc\u5165\u4f9d\u8d56\u7684\u5305":75,"\u4e0b":[75,77],"\u4e0b\u4e00\u4e2awheel\u5305\u9700\u8981\u66f4\u65b0\u7248\u672c\u53f7\u624d\u53ef\u4ee5\u4e0a\u4f20":62,"\u4e0b\u4f1a\u770b\u5230\u5982\u4e0b\u76ee\u5f55\u7ed3\u6784":87,"\u4e0b\u540c":83,"\u4e0b\u56fe\u4e2d\u5c31\u5c55\u793a\u4e86\u4e00\u4e9b\u5173\u4e8e\u5185\u5b58\u6570\u636e\u8fc1\u5f99\u548c\u8ba1\u7b97\u8d44\u6e90\u5229\u7528\u7387\u7684\u5efa\u8bae":108,"\u4e0b\u56fe\u662f\u4e00\u4e2a\u5168\u8fde\u63a5\u5c42\u7684\u793a\u610f\u56fe":74,"\u4e0b\u56fe\u662fcsr\u5b58\u50a8\u7a00\u758f\u77e9\u9635\u7684\u793a\u610f\u56fe":89,"\u4e0b\u5b58\u653e\u516c\u5171\u6570\u636e\u96c6\u5408":12,"\u4e0b\u627e\u5230":87,"\u4e0b\u62c9\u6846\u4e2d\u627e\u5230\u751f\u6210\u76843\u4e2a\u4e8c\u8fdb\u5236\u6587\u4ef6":62,"\u4e0b\u6587\u4ee5nlp\u4efb\u52a1\u4e3a\u4f8b":113,"\u4e0b\u6587\u4f1a\u8be6\u7ec6\u8fdb\u884c\u4ecb\u7ecd":89,"\u4e0b\u6587\u4f7f\u7528":97,"\u4e0b\u6587\u5c31\u662f\u7528job\u7c7b\u578b\u7684\u8d44\u6e90\u6765\u8fdb\u884c\u8bad\u7ec3":96,"\u4e0b\u6587\u8be6\u7ec6\u89e3\u91ca":89,"\u4e0b\u7684":[90,97],"\u4e0b\u8868\u5217\u51fa\u4e86python\u7aef\u8bad\u7ec3\u63a5\u53e3\u66b4\u9732\u7684\u6570\u636e\u7c7b\u578b":89,"\u4e0b\u8f7d":28,"\u4e0b\u8f7d\u5230\u672c\u5730":28,"\u4e0b\u8f7d\u5b8c\u6570\u636e\u540e":96,"\u4e0b\u8f7d\u5f97\u5230":62,"\u4e0b\u8f7d\u6307\u5b9a\u7248\u672c\u7684docker\u955c\u50cf":2,"\u4e0b\u8f7dgpu\u7248\u672c":2,"\u4e0b\u9762":90,"\u4e0b\u9762\u4e3e\u4e2a\u7b80\u5355\u7684\u4f8b\u5b50":108,"\u4e0b\u9762\u4ecb\u7ecd\u4ecb\u7ecd":75,"\u4e0b\u9762\u4ee5":91,"\u4e0b\u9762\u4ee5\u77e9\u9635\u4e58\u64cd\u4f5c":75,"\u4e0b\u9762\u4ee5addop\u4e3a\u4f8b\u8bf4\u660etensor\u7684\u4f7f\u7528\u8fc7\u7a0b":76,"\u4e0b\u9762\u5206\u522b\u4ecb\u7ecd\u67d0\u4e00\u7c7b\u6587\u4ef6\u7684\u5b9e\u73b0\u65b9\u5f0f":46,"\u4e0b\u9762\u5217\u51fa\u4e86":114,"\u4e0b\u9762\u5217\u51fa\u4e86\u5168\u8fde\u63a5\u5c42\u7684\u68af\u5ea6\u68c0\u67e5\u5355\u5143\u6d4b\u8bd5":74,"\u4e0b\u9762\u5c31\u6839\u636e\u8fd9\u51e0\u4e2a\u6b65\u9aa4\u5206\u522b\u4ecb\u7ecd":97,"\u4e0b\u9762\u6211\u4eec\u4f7f\u7528\u8fd9\u4e2a\u955c\u50cf\u6765\u4e0b\u8f7d\u6570\u636e\u5230docker":96,"\u4e0b\u9762\u662f":75,"\u4e0b\u9762\u662f\u5bf9":75,"\u4e0b\u9762\u662fc":90,"\u4e0b\u9762\u7684\u4ee3\u7801\u5c06\u968f\u673a\u751f\u6210\u7684\u77e9\u9635\u8f6c\u5316\u4e3a\u53ef\u4ee5\u88abpaddlepaddle\u52a0\u8f7d\u7684\u6a21\u578b\u53c2\u6570":83,"\u4e0b\u9762\u7684\u4ee3\u7801\u7247\u6bb5\u4ecegithub\u62c9\u53d6\u6700\u65b0\u4ee3\u7801":87,"\u4e0b\u9762\u7684\u4ee3\u7801\u7247\u6bb5\u521b\u5efa\u4e86\u4e00\u4e2a\u9ad8\u5ea6\u4e3a1":89,"\u4e0b\u9762\u7684\u4ee3\u7801\u7247\u6bb5\u521b\u5efa\u4e86\u4e00\u4e2acpu\u4e0a\u7684\u4e8c\u503c\u7a00\u758f\u77e9\u9635":89,"\u4e0b\u9762\u7684\u4ee3\u7801\u7247\u6bb5\u521b\u5efa\u4e86\u542b\u6709\u4e09\u4e2a\u5143\u7d20":89,"\u4e0b\u9762\u7684\u4ee3\u7801\u7247\u6bb5\u5728\u521b\u5efa\u4e86\u4e00\u4e2acpu\u4e0a\u7684\u5e26\u5143\u7d20\u503c\u7684\u7a00\u758f\u77e9\u9635":89,"\u4e0b\u9762\u7684\u4ee3\u7801\u7247\u6bb5\u5b9e\u73b0\u4e86":74,"\u4e0b\u9762\u7684\u70b9\u5b9e\u73b0\u4e86mulop\u7684\u5b9a\u4e49":75,"\u4e0b\u9762\u7ed9\u51fa\u4e86\u4e00\u4e2a\u4f8b\u5b50":74,"\u4e0b\u9762\u7ed9\u51fa\u5728\u4e09\u7ef4\u7a7a\u95f4\u4e2d\u4f7f\u7528\u7ebf\u6027\u56de\u5f52\u62df\u5408\u4e00\u6761\u76f4\u7ebf\u7684\u4f8b\u5b50":84,"\u4e0b\u9762\u8be6\u7ec6\u89e3\u91ca\u4ec0\u4e48\u662f":89,"\u4e0b\u9762\u8fd9\u4e9blayer\u80fd\u591f\u63a5\u53d7\u53cc\u5c42\u5e8f\u5217\u4f5c\u4e3a\u8f93\u5165":110,"\u4e0d\u4e00\u81f4\u7684\u7531pfsclient\u4e0b\u8f7d\u6216\u8005\u4f20\u8f93chunk\u5b8c\u6210":28,"\u4e0d\u4ec5\u8981\u63d0\u4f9b\u6bcf\u4e00\u4e2a\u5916\u5c42\u5e8f\u5217\u5728\u6574\u4e2a":89,"\u4e0d\u4f1a\u4fdd\u7559\u5728\u78c1\u76d8\u4e0a":0,"\u4e0d\u4f1a\u518d\u4ece":81,"\u4e0d\u4f1a\u865a\u62df\u4efb\u4f55\u786c\u4ef6":0,"\u4e0d\u4f7f\u7528\u9759\u6001\u5e93":45,"\u4e0d\u4f7f\u7528\u989d\u5916\u7a7a\u95f4":74,"\u4e0d\u4f7f\u7528c":45,"\u4e0d\u4f7f\u7528swig":45,"\u4e0d\u5141\u8bb8\u4e00\u4e2a\u6587\u4ef6\u4e2d\u5305\u542b\u591a\u4e2aop":75,"\u4e0d\u5171\u4eab\u5219\u4e0d\u52a0":75,"\u4e0d\u5171\u4eab\u7684\u4f8b\u5b50\u53ef\u4ee5\u53c2\u8003":75,"\u4e0d\u53ef\u4ee5\u66f4\u6539":62,"\u4e0d\u53ef\u518d\u8fdb\u884c\u62c6\u5206":89,"\u4e0d\u540c":42,"\u4e0d\u540c\u4e8e\u4e0a\u8ff0\u4ecb\u7ecd\u7684recurr":82,"\u4e0d\u540c\u4e8eop\u7684\u7f16\u8bd1\u6d4b\u8bd5":75,"\u4e0d\u540c\u53c2\u6570\u670d\u52a1\u5668\u4e0a\u6570\u636e\u5927\u5c0f\u7684\u6700\u5927\u503c\u4e0e\u6700\u5c0f\u503c\u7684\u6bd4\u7387":103,"\u4e0d\u540c\u5e8f\u5217\u53ef\u80fd\u4f1a\u542b\u6709\u4e0d\u540c\u6570\u76ee\u4e2a\u5143\u7d20":89,"\u4e0d\u540c\u65f6\u95f4\u6b65\u7684\u8f93\u5165\u662f\u4e0d\u540c\u7684":114,"\u4e0d\u540c\u7248\u672c\u7684\u7f16\u8bd1\u5668\u4e4b\u95f4":45,"\u4e0d\u540c\u7684\u4f18\u5316\u7b97\u6cd5\u9700\u8981\u4f7f\u7528\u4e0d\u540c\u5927\u5c0f\u7684\u5185\u5b58":81,"\u4e0d\u540c\u7684\u5206\u5e03\u5f0f\u6587\u4ef6\u7cfb\u7edf":97,"\u4e0d\u540c\u7684\u6570\u636e\u7c7b\u578b\u548c\u5e8f\u5217\u6a21\u5f0f\u8fd4\u56de\u7684\u683c\u5f0f\u4e0d\u540c":84,"\u4e0d\u540c\u8ba1\u7b97\u5c42\u5bf9\u7a7a\u8f93\u5165\u7684\u5904\u7406\u7b56\u7565\u6709\u53ef\u80fd\u4e0d\u540c":89,"\u4e0d\u540c\u8bbe\u5907":75,"\u4e0d\u540c\u8bed\u8a00\u7684\u63a5\u53e3\u9002\u5e94\u4e0d\u540c\u8bed\u8a00\u7684\u7279\u6027":45,"\u4e0d\u540c\u8f93\u5165\u542b\u6709\u7684\u5b50\u53e5":113,"\u4e0d\u540c\u8f93\u5165\u5e8f\u5217\u542b\u6709\u7684\u8bcd\u8bed\u6570\u5fc5\u987b\u4e25\u683c\u76f8\u7b49":113,"\u4e0d\u540cdataprovider\u5bf9\u6bd4\u5982\u4e0b":111,"\u4e0d\u540crank\u7684tensor\u662f\u4e0d\u540c\u7c7b\u578b":76,"\u4e0d\u5728":46,"\u4e0d\u5bb9\u6613\u51fa\u9519":28,"\u4e0d\u5d4c\u5165\u5176\u4ed6\u8bed\u8a00\u89e3\u91ca\u5668":45,"\u4e0d\u5d4c\u5165python\u89e3\u91ca\u5668":45,"\u4e0d\u5e94\u8be5\u88ab\u62c6\u89e3":113,"\u4e0d\u6307\u5b9a\u65f6":113,"\u4e0d\u652f\u6301":89,"\u4e0d\u652f\u6301\u5e8f\u5217\u957f\u5ea6\u4e3a":89,"\u4e0d\u662f\u4e00\u6761\u5e8f\u5217":84,"\u4e0d\u662f\u771f\u6b63\u7684layer":82,"\u4e0d\u662f\u901a\u8fc7\u4e00\u822c\u7684\u65b9\u5f0f\u6765\u5b9e\u73b0\u5bf9\u8f93\u51fa\u7684\u6fc0\u6d3b":82,"\u4e0d\u663e\u793a\u7684\u5199\u6bcf\u4e2a\u7c7b\u5177\u4f53\u5305\u542b\u4ec0\u4e48":45,"\u4e0d\u6ee1\u8db3\u94a9\u5b50\u7684":72,"\u4e0d\u7528mount\u7684\u65b9\u5f0f\u6765\u8bbf\u95ee\u6570\u636e":12,"\u4e0d\u80fd\u4fee\u6539op\u7684\u6210\u5458\u53d8\u91cf":75,"\u4e0d\u80fd\u592a\u968f\u610f":72,"\u4e0d\u80fd\u88ab\u63d0\u4ea4\u5230":72,"\u4e0d\u8981\u5728\u6ce8\u91cd\u6027\u80fd\u7684\u8bad\u7ec3\u573a\u666f\u4e0b\u4f7f\u7528":81,"\u4e0d\u8bba\u5e8f\u5217\u4e2d\u7684\u5143\u7d20\u5728\u5185\u5b58\u4e2d\u5360\u7528\u591a\u5c11\u5b9e\u9645\u5b58\u50a8\u7a7a\u95f4":89,"\u4e0d\u8bba\u6570\u636e\u57df\u662f":89,"\u4e0d\u8bba\u662f\u4e00\u7ef4\u6574\u578b\u6570\u7ec4\u8fd8\u662f\u4e8c\u7ef4\u6d6e\u70b9\u6570\u77e9\u9635":89,"\u4e0d\u8bba\u662f\u5355\u5c42\u5e8f\u5217\u8fd8\u662f\u53cc\u5c42\u5e8f\u5217\u7684\u5e8f\u5217\u4fe1\u606f":89,"\u4e0d\u8fc7\u5b9e\u9645\u4e0a\u662f\u8fd0\u884c\u5728\u4e00\u4e2a":0,"\u4e0d\u9700\u5728\u4f7f\u7528c":90,"\u4e0d\u9700\u8981\u4f9d\u8d56\u5176\u4ed6\u4efb\u4f55\u8f6f\u4ef6\u4e86":0,"\u4e0d\u9700\u8981\u63d0\u4f9b\u5143\u7d20\u503c":89,"\u4e0d\u9700\u8981\u8bbe\u7f6e":116,"\u4e0e":[42,75,97,107],"\u4e0e\u4e4b\u76f8\u5bf9\u7684\u662flocal":28,"\u4e0e\u5176\u4ed6\u7b2c\u4e09\u65b9\u5e93\u4e00\u6837":42,"\u4e0e\u5176\u5b83":90,"\u4e0e\u529f\u80fd\u5206\u652f\u4e0d\u540c\u7684\u662f":62,"\u4e0e\u5355\u5c42rnn\u7684\u914d\u7f6e\u7c7b\u4f3c":111,"\u4e0e\u53ef\u80fd\u6709\u7684":62,"\u4e0e\u540c\u6b65sgd\u76f8\u6bd4":92,"\u4e0e\u5bfb\u627epython\u4ee3\u7801\u7684\u6027\u80fd\u74f6\u9888\u7c7b\u4f3c":107,"\u4e0e\u5f53\u524d\u7684\u8870\u51cf\u56e0\u5b50\u7684\u4e58\u79ef":83,"\u4e0e\u672c\u5730\u8bad\u7ec3\u76f8\u540c":93,"\u4e0e\u6b64\u4e0d\u540c\u7684\u662f":97,"\u4e0e\u8c03\u4f18":107,"\u4e0e\u8f93\u5165\u4e0d\u540c\u7684\u662f":90,"\u4e0e\u8fd9\u4e2a\u8bad\u7ec3\u6570\u636e\u4ea4\u4e92\u7684layer":81,"\u4e0ebatch":41,"\u4e0ejob":97,"\u4e0eoperator\u524d\u5411\u8ba1\u7b97\u7684\u8f93\u51fa\u8fdb\u884c\u5bf9\u6bd4":75,"\u4e0eoperator\u6ce8\u518c\u65f6\u6ce8\u518c\u7684\u7c7b\u578b\u4e00\u81f4":75,"\u4e0epython\u4e0d\u540c":107,"\u4e14\u4e0d\u6392\u9664commit\u4e4b\u95f4\u7684\u4fee\u6539\u5b58\u5728\u76f8\u4e92\u8986\u76d6\u7684\u60c5\u51b5":72,"\u4e14\u4f7f\u7528":87,"\u4e14\u589e\u52a0\u4e00\u4e2a\u7b2c\u4e09\u65b9\u8bed\u8a00":45,"\u4e14\u5c55\u793a\u6548\u679c\u66f4\u597d":107,"\u4e14\u5e8f\u5217\u7684\u6bcf\u4e00\u4e2a\u5143\u7d20\u8fd8\u662f\u4e00\u4e2a\u65f6\u95f4\u5e8f\u5217":84,"\u4e14\u6bcf\u4e2a\u53e5\u5b50\u8868\u793a\u4e3a\u5bf9\u5e94\u7684\u8bcd\u8868\u7d22\u5f15\u6570\u7ec4":111,"\u4e14\u8c03\u7528\u65f6\u4e0d\u80fd\u629b\u51fa\u5f02\u5e38\u6216\u51fa\u73b0\u8fd0\u884c\u65f6\u9519\u8bef":46,"\u4e14c99\u652f\u6301bool\u7c7b\u578b\u548c\u5b9a\u957f\u6574\u6570":45,"\u4e14c99\u76f8\u5bf9\u4e8ec11\u4f7f\u7528\u66f4\u52a0\u5e7f\u6cdb":45,"\u4e24\u4e2a\u5b50\u76ee\u5f55\u4e0b":77,"\u4e24\u4e2a\u5d4c\u5957\u7684":113,"\u4e24\u4e2a\u64cd\u4f5c":108,"\u4e24\u4e2a\u8f93\u5165\u7684\u5b50\u5e8f\u5217\u957f\u5ea6\u4e5f\u5e76\u4e0d\u76f8\u540c":111,"\u4e24\u4e2a\u90e8\u5206":77,"\u4e24\u4e2a\u9690\u5c42\u7684\u7b80\u5355\u5168\u8fde\u63a5\u7f51\u7edc":90,"\u4e24\u6b21":89,"\u4e24\u79cd\u5e38\u7528\u7684\u6a21\u578b\u52a0\u8f7d\u65b9\u5f0f":90,"\u4e24\u79cd\u65b9\u6cd5\u7684\u533a\u522b":81,"\u4e24\u79cdblas\u5e93":1,"\u4e24\u8005\u90fd\u662f\u5bf9\u68af\u5ea6\u7684\u622a\u65ad":81,"\u4e25\u683c\u7684\u547d\u540d\u89c4\u8303pep":62,"\u4e2a\u5185\u5b58\u6c60\u5b9e\u9645\u4e0a\u51b3\u5b9a\u4e86shuffle\u7684\u7c92\u5ea6":81,"\u4e2a\u6027\u5316\u63a8\u8350":62,"\u4e2a\u6279\u6b21\u7684\u53c2\u6570\u5e73\u5747\u503c\u8fdb\u884c\u6d4b\u8bd5":103,"\u4e2a\u6a21\u578b\u6d4b\u8bd5\u6570\u636e":103,"\u4e2d":[41,42,45,46,74,75,76,81,89,97,107],"\u4e2d\u4e0d\u8981\u6dfb\u52a0\u5927\u6587\u4ef6\u7b49":72,"\u4e2d\u4f1a\u4f7f\u7528\u5230\u7684\u5b57\u5178\u6570\u636e\u6587\u4ef6":91,"\u4e2d\u4f1a\u63d0\u4f9b\u4e00\u4e9b\u5fc5\u8981\u7684\u63a5\u53e3\u548c\u51fd\u6570":42,"\u4e2d\u4f20\u5165\u53c2\u6570":91,"\u4e2d\u4f20\u5165\u7684\u53c2\u6570":91,"\u4e2d\u5143\u7d20\u4e2a\u6570\u603b\u662f\u7b49\u4e8e\u884c\u6570":89,"\u4e2d\u5143\u7d20\u7684\u4e2a\u6570\u7b49\u4e8e\u7f51\u7edc\u4e2d\u8f93\u51fa\u5c42\u7684\u4e2a\u6570":81,"\u4e2d\u5173\u4e8e\u65f6\u95f4\u9012\u5f52\u795e\u7ecf\u7f51\u7edc\u7684\u4ecb\u7ecd":111,"\u4e2d\u5199\u5165json\u5185\u5bb9":11,"\u4e2d\u5305\u542b\u4e00\u4e2araspberri":118,"\u4e2d\u5305\u542b\u6240\u4f9d\u8d56\u7684\u6240\u6709\u7b2c\u4e09\u65b9\u5e93":116,"\u4e2d\u5305\u542b\u82e5\u5e72\u4e2a\u4e0d\u540candroid":116,"\u4e2d\u5305\u542bc":[116,118],"\u4e2d\u5355\u5143\u6d4b\u8bd5\u7684\u4e00\u90e8\u5206":72,"\u4e2d\u5355\u5143\u6d4b\u8bd5\u80fd\u987a\u5229\u901a\u8fc7":72,"\u4e2d\u542b\u6709\u591a\u4e2a\u5e8f\u5217":89,"\u4e2d\u5b8c\u5168\u4e00\u81f4":45,"\u4e2d\u5b9a\u4e49":114,"\u4e2d\u5b9a\u4e49\u548c\u4f7f\u7528":113,"\u4e2d\u5b9e\u73b0\u4e86\u4e00\u4e2amerge\u7684\u65b9\u6cd5":42,"\u4e2d\u5b9e\u73b0\u7684\u7ed3\u6784\u4f53":46,"\u4e2d\u5bf9\u5e94\u7684layer\u5904":41,"\u4e2d\u5f15\u5165\u7684":41,"\u4e2d\u6253\u5370\u5176\u503c":81,"\u4e2d\u6307\u5b9a":103,"\u4e2d\u6307\u5b9a\u7684\u540d\u5b57":105,"\u4e2d\u63d0\u4f9b\u4e00\u4e2a\u4e0emkl\u6709\u5173\u7684\u603b\u5f00\u5173":42,"\u4e2d\u63d0\u4f9b\u4e86\u4e00\u4e9b\u5168\u5c40\u51fd\u6570\u7528\u6765\u5b9e\u73b0paddl":76,"\u4e2d\u641c\u7d22\u8fd9\u51e0\u4e2a\u5e93":1,"\u4e2d\u64cd\u4f5c":89,"\u4e2d\u6587\u6587\u6863":77,"\u4e2d\u6587\u6587\u6863\u76ee\u5f55":77,"\u4e2d\u6587\u7ef4\u57fa\u767e\u79d1\u9875\u9762":111,"\u4e2d\u6839\u636e":41,"\u4e2d\u6bcf\u4e2a\u5143\u7d20\u662f\u4e00\u4e2alayer\u7684\u8f93\u51fa\u7ed3\u679c\u77e9\u9635":81,"\u4e2d\u6bcf\u4e2apod\u7684ip\u5730\u5740":97,"\u4e2d\u6bcf\u5c42\u7684\u6570\u503c\u7edf\u8ba1":103,"\u4e2d\u6dfb\u52a0":41,"\u4e2d\u6dfb\u52a0\u4e00\u4e2a":42,"\u4e2d\u6dfb\u52a0\u4e24\u4e2a\u8f93\u5165":75,"\u4e2d\u7528\u4e8e\u5b58\u50a8\u6570\u636e\u7684":90,"\u4e2d\u7684":[76,90],"\u4e2d\u7684\u4e00\u884c":72,"\u4e2d\u7684\u4ee3\u7801\u4f5c\u4e3a\u5b9e\u4f8b":91,"\u4e2d\u7684\u504f\u79fb":89,"\u4e2d\u7684\u5bf9\u5e94\u5206\u652f\u5373\u53ef":72,"\u4e2d\u7684\u7248\u672c\u4fe1\u606f":62,"\u4e2d\u7684\u76f8\u5173\u811a\u672c":90,"\u4e2d\u7684\u8d77\u59cb\u504f\u79fb":89,"\u4e2d\u83b7\u53d6":97,"\u4e2d\u8bbe\u7f6e\u7684\u6240\u6709\u8282\u70b9":93,"\u4e2d\u8be6\u7ec6\u4ecb\u7ecd":74,"\u4e2d\u8c03\u7528":75,"\u4e2d\u8fd0\u884c\u4efb\u52a1\u7684\u89d2\u5ea6":12,"\u4e2d\u914d\u7f6e\u5faa\u73af\u795e\u7ecf\u7f51\u7edc":114,"\u4e34\u65f6\u53d8\u91cf\u7b49\u7b49":81,"\u4e3a":[41,42,75,89,114,116,117,118],"\u4e3a\u4e86\u4f7f":75,"\u4e3a\u4e86\u4f7f\u8bc4\u5ba1\u4eba\u5728\u8bc4\u5ba1\u4ee3\u7801\u65f6\u66f4\u597d\u5730\u4e13\u6ce8\u4e8e\u4ee3\u7801\u672c\u8eab":72,"\u4e3a\u4e86\u4fdd\u8bc1\u6548\u7387":74,"\u4e3a\u4e86\u4fdd\u8bc1gpu\u9a71\u52a8\u80fd\u591f\u5728\u955c\u50cf\u91cc\u9762\u6b63\u5e38\u8fd0\u884c":2,"\u4e3a\u4e86\u51cf\u5c11\u751f\u6210\u94fe\u63a5\u5e93\u7684\u5927\u5c0f\u628a":87,"\u4e3a\u4e86\u5c01\u88c5\u80fd\u591f\u6b63\u786e\u5de5\u4f5c":74,"\u4e3a\u4e86\u5c3d\u53ef\u80fd\u5c11\u7684\u5728\u7236\u7c7blayer\u4e2d\u6dfb\u52a0\u53d8\u91cf\u6216\u8005\u51fd\u6570":42,"\u4e3a\u4e86\u5e94\u5bf9\u4ee5\u4e0a\u7684\u95ee\u9898":28,"\u4e3a\u4e86\u5f00\u53d1paddlepaddl":0,"\u4e3a\u4e86\u63cf\u8ff0\u65b9\u4fbf":113,"\u4e3a\u4e86\u65b9\u4fbf\u5927\u5bb6":72,"\u4e3a\u4e86\u66b4\u9732\u7684\u63a5\u53e3\u5c3d\u91cf\u7b80\u5355":46,"\u4e3a\u4e86\u66f4\u597d\u7684\u7b26\u5408paddlepaddle\u7684\u4ee3\u7801\u98ce\u683c":42,"\u4e3a\u4e86\u6700\u5927\u7a0b\u5ea6\u51cf\u5c11\u591a\u6b21\u8c03\u7528":41,"\u4e3a\u4e86\u751f\u6210\u66f4\u53ef\u8bfb\u7684\u6027\u80fd\u5206\u6790\u7ed3\u679c":107,"\u4e3a\u4e86\u7b80\u5316cmake\u914d\u7f6e":116,"\u4e3a\u4e86\u8fbe\u5230\u6027\u80fd\u6700\u4f18":108,"\u4e3a\u4e86\u8fbe\u5230\u6700\u5feb\u7684\u8ba1\u7b97\u901f\u5ea6":[116,117],"\u4e3a\u4e86\u8fdb\u4e00\u6b65\u63d0\u5347paddlepaddle\u5728\u57fa\u672c\u6570\u5b66\u8fd0\u7b97\u7684\u8ba1\u7b97\u901f\u5ea6":42,"\u4e3a\u4ec0\u4e48\u7528":0,"\u4e3a\u4f7f\u7528c":90,"\u4e3a\u4f8b":[75,82],"\u4e3a\u4f8b\u6765\u4ecb\u7ecd\u5982\u4f55\u5199\u5e26kernel\u7684oper":75,"\u4e3a\u53c2\u6570\u77e9\u9635\u7684\u5bbd\u5ea6":83,"\u4e3a\u5b83\u4eec\u9644\u52a0\u4e0a\u5e8f\u5217\u4fe1\u606f\u5c06\u53d8\u6210\u5e8f\u5217\u8f93\u5165":89,"\u4e3a\u5bb9\u5668\u5185\u6267\u884c\u7684\u547d\u4ee4":2,"\u4e3a\u60a8\u505a\u6027\u80fd\u8c03\u4f18\u63d0\u4f9b\u4e86\u65b9\u5411":108,"\u4e3a\u65b9\u4fbf\u4f5c\u4e1a\u542f\u52a8\u63d0\u4f9b\u4e86\u4e24\u4e2a\u72ec\u7279\u7684\u547d\u4ee4\u9009\u9879":93,"\u4e3a\u6b64":96,"\u4e3a\u6bcf\u4e00\u4e2a":[89,90],"\u4e3a\u6bcf\u4e00\u4e2a\u8f93\u5165":[89,90],"\u4e3a\u6bcf\u4e2aop\u521b\u5efa\u5355\u72ec\u7684":75,"\u4e3a\u8f93\u51fa\u5206\u914d\u5185\u5b58":74,"\u4e3aconst\u51fd\u6570":75,"\u4e3aoutput_\u7533\u8bf7\u5185\u5b58":74,"\u4e3b\u8981\u4e3a\u5f00\u53d1\u8005\u4f7f\u7528":103,"\u4e3b\u8981\u529f\u80fd\u5305\u62ec":28,"\u4e3b\u8981\u5305\u62ec":42,"\u4e3b\u8981\u5305\u62ec\u4e86\u6df1\u5ea6\u5b66\u4e60\u76f8\u5173\u7684\u6570\u5b66\u539f\u8bed\u4e0e\u64cd\u4f5c":42,"\u4e3b\u8981\u5305\u62ec\u56db\u79cd\u7c7b\u578b":84,"\u4e3b\u8981\u539f\u56e0\u5305\u62ec\u4e24\u4e2a\u65b9\u9762":81,"\u4e3b\u8981\u7528\u4e8epython":75,"\u4e3b\u8981\u9488\u5bf9paddlepaddle\u5728\u91cd\u6784\u4e4b\u524d\u7684\u4ee3\u7801\u6846\u67b6\u4ee5\u53cav1\u7684api":42,"\u4e3e\u4e00\u4e2a\u4f8b\u5b50":83,"\u4e3e\u4f8b":81,"\u4e3e\u4f8b\u8bf4\u660e":111,"\u4e4b\u524d":72,"\u4e4b\u540e":[74,84],"\u4e4b\u540e\u4f7f\u7528":74,"\u4e4b\u540e\u4f7f\u7528\u77e9\u9635\u8fd0\u7b97\u51fd\u6570\u6765\u8ba1\u7b97":74,"\u4e4b\u540e\u518d\u7528\u7f51\u9875\u8fde\u5230http":77,"\u4e4b\u540e\u521d\u59cb\u5316\u6240\u6709\u7684\u6743\u91cd\u77e9\u9635":74,"\u4e4b\u540e\u624d\u80fd\u5f00\u59cb\u7f16\u8bd1\u7684\u6b65\u9aa4":1,"\u4e4b\u5916\u7684\u6240\u6709\u5934\u6587\u4ef6":46,"\u4e4b\u7c7b\u7684\u7a0b\u5e8f\u6765\u7f16\u8bd1\u6e90\u7801":0,"\u4e4b\u95f4\u7684\u8fd0\u7b97\u662f\u72ec\u7acb\u7684":113,"\u4e58\u4e0a\u8f93\u51fa\u7684\u68af\u5ea6":74,"\u4e58\u6cd5\u548c\u4e58\u6cd5\u68af\u5ea6\u7684\u8ba1\u7b97\u5360\u75282":107,"\u4e58\u9664\u7b49\u65f6\u5019":81,"\u4e5f\u4e0d\u4f7f\u7528\u5176\u4ed6\u52a8\u6001\u5e93":45,"\u4e5f\u4e0d\u5b58\u5728\u4e00\u4e2asubseq\u76f4\u63a5\u751f\u6210\u4e0b\u4e00\u4e2asubseq\u7684\u60c5\u51b5":113,"\u4e5f\u4e0d\u5e94\u8be5\u62a5\u9519":46,"\u4e5f\u4e0d\u751f\u6210":46,"\u4e5f\u4e0d\u80fd\u63a5\u6536\u5e8f\u5217\u6570\u636e\u4f5c\u4e3a\u8f93\u5165":82,"\u4e5f\u4f1a\u5360\u7528\u78c1\u76d8":0,"\u4e5f\u53ef\u4ee5\u4f7f\u7528":72,"\u4e5f\u53ef\u4ee5\u4f7f\u7528\u8fd9\u4e9b\u955c\u50cf":62,"\u4e5f\u53ef\u4ee5\u5229\u7528paddlepaddl":77,"\u4e5f\u53ef\u4ee5\u662f\u4e00\u4e2a\u8bcd\u8bed":113,"\u4e5f\u53ef\u4ee5\u662f\u5728\u4efb\u52a1\u542f\u52a8\u524d\u4e0b\u8f7d\u5230\u672c\u5730\u7684":91,"\u4e5f\u53ef\u4ee5\u76f4\u63a5\u5728\u7f51\u9875\u9884\u89c8\u6587\u6863":77,"\u4e5f\u53ef\u4ee5\u8bf4\u662f\u67d0\u4e9b\u7279\u5b9a\u6307\u4ee4\u7684\u4f7f\u7528\u60c5\u51b5":108,"\u4e5f\u53ef\u4ee5\u901a\u8fc7\u4fee\u6539":97,"\u4e5f\u53ef\u5199\u6210":75,"\u4e5f\u53ef\u81ea\u884c\u524d\u5f80\u5b98\u7f51\u4e0b\u8f7d":117,"\u4e5f\u53ef\u901a\u8fc7\u4ee5\u4e0b\u547d\u4ee4\u83b7\u53d6":116,"\u4e5f\u5c31\u662f":72,"\u4e5f\u5c31\u662f\u672c\u5730\u7684\u6e90\u7801\u6811\u6839\u76ee\u5f55\u91cc\u7684":0,"\u4e5f\u5c31\u662f\u7a7a\u8f93\u5165":89,"\u4e5f\u5c31\u662f\u81ea\u5df1\u7528\u6237\u540d\u4e0b\u7684":72,"\u4e5f\u5c31\u662f\u8bf4":[89,103,105],"\u4e5f\u5c31\u662f\u8bf4\u8f93\u51fa\u7684\u7ed3\u679c\u4e0d\u4f1a\u5728\u539f\u6765\u7684\u6570\u636e\u4e0a\u7d2f\u52a0":42,"\u4e5f\u5c31\u662fpaddlepaddle\u4e2d\u7684\u4e00\u7ef4\u6574\u578b\u6570\u7ec4":89,"\u4e5f\u63cf\u8ff0\u4e86\u5bb9\u5668\u9700\u8981\u4f7f\u7528\u7684\u5b58\u50a8\u5377\u6302\u8f7d\u7684\u60c5\u51b5":97,"\u4e5f\u652f\u6301cpu\u7684\u6027\u80fd\u5206\u6790":108,"\u4e5f\u662f\u4e00\u4e2a\u65f6\u95f4\u5e8f\u5217":111,"\u4e5f\u662fdecoder\u5faa\u73af\u5c55\u5f00\u7684\u4f9d\u636e":113,"\u4e5f\u6ca1\u7528":78,"\u4e66\u5199":45,"\u4e86":0,"\u4e86\u89e3\u5176\u8c03\u7528\u5173\u7cfb":107,"\u4e86\u89e3\u60a8\u7684\u786c\u4ef6":108,"\u4e86\u89e3\u66f4\u591a\u7ec6\u8282":114,"\u4e86\u89e3\u66f4\u591a\u8be6\u7ec6\u4fe1\u606f":114,"\u4e8c\u7ef4\u6d6e\u70b9\u578b\u77e9\u9635":89,"\u4e8c\u7ef4\u6d6e\u70b9\u6570\u77e9\u9635":89,"\u4e8c\u7ef4\u77e9\u9635":90,"\u4e8c\u7ef4\u77e9\u9635\u53ef\u4ee5\u8868\u793a\u884c\u5411\u91cf\u548c\u5217\u5411\u91cf":89,"\u4e8c\u8005\u8bed\u610f\u4e0a\u5b8c\u5168\u4e00\u81f4":111,"\u4e8e\u662f":89,"\u4e8e\u662f\u6211\u4eec\u53ef\u4ee5\u70b9\u51fb":107,"\u4e8e\u662f\u8fd9\u91cc\u4f7f\u7528":107,"\u4ea4\u4e92\u7684\u65b9\u6cd5":107,"\u4ea4\u53c9\u7f16\u8bd1\u5de5\u5177\u94fe\u4e3a":116,"\u4ea4\u53c9\u7f16\u8bd1android\u5e73\u53f0\u4e0a\u9002\u7528\u7684paddlepaddle\u5e93":116,"\u4ea4\u53c9\u7f16\u8bd1android\u7248\u672c\u7684paddlepaddle\u5e93\u65f6":116,"\u4ea4\u53c9\u7f16\u8bd1ios\u5e73\u53f0\u4e0a\u9002\u7528\u7684paddlepaddle\u5e93":117,"\u4ea4\u53c9\u7f16\u8bd1ios\u7248\u672c\u7684paddlepaddle\u5e93\u65f6":117,"\u4ea4\u53c9\u7f16\u8bd1raspberri":118,"\u4ea4\u7531cmake\u7cfb\u7edf\u672c\u8eab\u6765\u5904\u7406":116,"\u4ea6\u53ef\u4ee5\u901a\u8fc7\u624b\u52a8\u8bbe\u7f6e":[116,117],"\u4eab\u53d7\u60a8\u7684\u65c5\u7a0b":2,"\u4eba\u8138\u8bc6\u522b":12,"\u4ec0\u4e48\u662f":0,"\u4ec5\u4ec5\u4f7f\u7528":45,"\u4ec5\u4f1a\u5728\u652f\u6301avx2\u6307\u4ee4\u96c6\u53ca\u4ee5\u4e0a\u7684\u673a\u5668\u624d\u4f7f\u7528mkl":42,"\u4ec5\u5728\u8fdc\u7a0b\u7a00\u758f\u8bad\u7ec3\u65f6\u6709\u6548":74,"\u4ec5\u5bf9\u7a00\u758f\u6570\u636e\u6709\u6548":74,"\u4ec5\u652f\u6301\u6574\u578b\u503c":89,"\u4ec5\u7528\u4e8e\u5b58\u50a8\u6574\u578b\u503c":90,"\u4ecb\u7ecd\u4e86\u4e00\u79cd\u901a\u8fc7ssh\u8fdc\u7a0b\u5206\u53d1\u4efb\u52a1":97,"\u4ecb\u7ecd\u4ea4\u53c9\u7f16\u8bd1android\u5e73\u53f0\u4e0a\u9002\u7528\u7684paddlepaddle\u5e93\u7684\u65b9\u6cd5\u548c\u6b65\u9aa4":116,"\u4ecb\u7ecd\u4f7f\u7528paddlepaddl":91,"\u4ece":[62,79,108],"\u4ece0\u5230num":103,"\u4ece0\u5f00\u59cb\u7684\u6574\u6570":91,"\u4ece\u4e00\u4e2aword\u751f\u6210\u4e0b\u4e00\u4e2aword":113,"\u4ece\u5185\u6838\u51fd\u6570\u7684\u89d2\u5ea6":108,"\u4ece\u6a21\u578b\u6587\u4ef6\u5c06\u9884\u8bad\u7ec3\u53c2\u6570\u8f7d\u5165":83,"\u4ece\u6bcf\u4e00\u4e2a\u65f6\u95f4\u6b65\u6765\u770b":111,"\u4ece\u6e90\u7801\u4ea4\u53c9\u7f16\u8bd1ios\u5e73\u53f0\u4e0a\u9002\u7528\u7684paddlepaddle\u5e93":117,"\u4ece\u6e90\u7801\u4ea4\u53c9\u7f16\u8bd1paddlepaddl":116,"\u4ece\u6e90\u7801\u7f16\u8bd1":3,"\u4ece\u78c1\u76d8\u52a0\u8f7d\u9884\u6d4b\u6a21\u578b":90,"\u4ece\u78c1\u76d8\u6587\u4ef6\u4e2d\u52a0\u8f7duuid\u6587\u4ef6\u540d\u7684\u68c0\u67e5\u70b9\u5feb\u7167\u6587\u4ef6":11,"\u4ece\u800c\u53ef\u4ee5\u505a\u4e00\u4e9b\u4e0e\u8ba1\u7b97\u91cd\u53e0\u7684\u5de5\u4f5c":74,"\u4ece\u800c\u5f15\u53d1\u5176\u4ed6\u8282\u70b9\u65e0\u6cd5\u8fde\u63a5\u5bfc\u81f4":79,"\u4ece\u800c\u907f\u514d\u4e86packing\u5197\u4f59":41,"\u4ece\u8bed\u4e49\u4e0a\u770b":113,"\u4ece\u8d77\u59cb\u7aef\u53e3\u76d1\u542c\u591a\u4e2a\u7aef\u53e3\u7528\u4e8e\u901a\u4fe1":91,"\u4ece\u8f93\u5165\u6570\u636e\u4e0a\u770b":111,"\u4ececmake":116,"\u4eceetcd\u4e2d\u8bfb\u53d6\u8282\u70b9":11,"\u4ecestart":103,"\u4ed3\u5e93\u7684\u8fdc\u7a0b\u4e3b\u673a":72,"\u4ed6\u4e3b\u8981\u5305\u542b\u4e86\u5b9e\u9645\u66b4\u9732\u7684\u7c7b\u578b\u7ed3\u6784":46,"\u4ed6\u4eec\u5206\u522b\u662f":111,"\u4ed6\u4eec\u5728\u81ea\u5df1\u7684":0,"\u4ed6\u4eec\u5728paddle\u7684\u6587\u6863\u548capi\u4e2d\u662f\u4e00\u4e2a\u6982\u5ff5":111,"\u4ed6\u662f\u5c06":46,"\u4ed6\u7684\u76ee\u6807\u662f\u4f7f\u7528c":45,"\u4ee3\u66ff":97,"\u4ee3\u7801\u4e2d9":111,"\u4ee3\u7801\u53c2\u8003":91,"\u4ee3\u7801\u5982\u4e0b":[81,82,83,114],"\u4ee3\u7801\u6ce8\u91ca\u8bf7\u9075\u5b88":72,"\u4ee3\u7801\u7247\u6bb5\u5982\u4e0b":89,"\u4ee3\u7801\u751f\u6210\u7684\u7b26\u53f7\u53ef\u80fd\u4e0d\u4e00\u81f4":45,"\u4ee3\u7801\u7684\u6027\u80fd\u5206\u6790":107,"\u4ee3\u7801\u793a\u4f8b\u5982\u4e0b":[75,90],"\u4ee3\u8868\u5bbf\u4e3b\u673a\u76ee\u5f55":97,"\u4ee3\u8868\u8fd9\u4e2alayer\u662f\u7528\u4e8e\u8dd1\u5728mkl":42,"\u4ee3\u8868\u8fd9\u4e2ashard\u7684\u6700\u5927index":12,"\u4ee3\u8868shard\u7684index":12,"\u4ee5":82,"\u4ee5\u4e0a":[72,116],"\u4ee5\u4e0a\u4e24\u79cd\u65b9\u5f0f\u53ea\u9700\u9009\u62e9\u5176\u4e00\u5373\u53ef":90,"\u4ee5\u4e0a\u4ee3\u7801\u7684reader\u8f93\u51fa\u7684data":12,"\u4ee5\u4e0a\u547d\u4ee4\u4f1a\u5728\u5f53\u524d\u76ee\u5f55\u4e0b\u751f\u6210100\u4e2a\u6587\u4ef6":12,"\u4ee5\u4e0b":12,"\u4ee5\u4e0b\u4ee3\u7801\u7247\u6bb5\u5b9a\u4e49":114,"\u4ee5\u4e0b\u547d\u4ee4\u542f\u52a8\u4e00\u4e2a":0,"\u4ee5\u4e0b\u6307\u4ee4\u80fd\u68c0\u67e5linux\u7535\u8111\u662f\u5426\u652f\u6301avx":2,"\u4ee5\u4e0b\u64cd\u4f5c\u5747\u5728head\u8282\u70b9\u4e2d\u6267\u884c":98,"\u4ee5\u4e0b\u6559\u7a0b\u5c06\u6307\u5bfc\u60a8\u63d0\u4ea4\u4ee3\u7801":72,"\u4ee5\u4e0b\u7b80\u79f0rnn":41,"\u4ee5\u4ea4\u4e92\u5f0f\u7684\u65b9\u5f0f\u6267\u884c\u6216\u8c03\u8bd5\u60a8\u7684\u4ee3\u7801":2,"\u4ee5\u4f7f\u7528":116,"\u4ee5\u4f7f\u7528adam\u7b97\u6cd5\u4e3a\u4f8b":83,"\u4ee5\u4fbf\u6211\u4eec\u53ef\u4ee5\u628a\u66f4\u591a\u7684\u7cbe\u529b\u653e\u5230\u903b\u8f91\u672c\u8eab\u4e0a":28,"\u4ee5\u4fbf\u83b7\u5f97\u8bad\u7ec3\u6570\u636e\u7684\u4f4d\u7f6e\u548c\u83b7\u53d6\u73af\u5883\u53d8\u91cf\u914d\u7f6e":91,"\u4ee5\u4fdd\u8bc1\u68af\u5ea6\u7684\u6b63\u786e\u8ba1\u7b97":74,"\u4ee5\u4fdd\u8bc1\u68af\u5ea6\u8ba1\u7b97\u7684\u6b63\u786e\u6027":74,"\u4ee5\u4fdd\u8bc1\u7f16\u8bd1\u9ad8\u6548":0,"\u4ee5\u53ca":[0,41,74,89],"\u4ee5\u53ca\u4f7f\u7528\u5b50\u5e8f\u5217\u6765\u5b9a\u4e49\u5206\u7ea7\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u67b6\u6784":114,"\u4ee5\u53ca\u5207\u6362\u673a\u5668\u65f6\u9700\u8981\u65b0\u5b89\u88c5\u7684\u8f9b\u82e6":0,"\u4ee5\u53ca\u53cc\u5c42\u5e8f\u5217":110,"\u4ee5\u53ca\u5982\u4f55\u89e3\u6790\u795e\u7ecf\u7f51\u7edc\u524d\u5411\u8ba1\u7b97\u7684\u8f93\u51fa\u7ed3\u679c":89,"\u4ee5\u53ca\u76ee\u6807\u673a\u7248openblas\u5e93":118,"\u4ee5\u53ca\u76f8\u5173\u7684\u5c5e\u6027\u53c2\u6570":75,"\u4ee5\u53ca\u7b2c\u4e09\u65b9\u4f9d\u8d56\u94fe\u63a5\u5e93\u548c\u5934\u6587\u4ef6":87,"\u4ee5\u53ca\u8ba1\u7b97\u903b\u8f91\u5728\u5e8f\u5217\u4e0a\u7684\u5faa\u73af\u5c55\u5f00":113,"\u4ee5\u53ca\u8f93\u5165\u7684\u68af\u5ea6":74,"\u4ee5\u53caandroid":116,"\u4ee5\u53cagcc":1,"\u4ee5\u53canumpi":12,"\u4ee5\u53carelu":74,"\u4ee5\u63d0\u4f9b\u4e00\u4e9b\u9ed8\u8ba4\u7684\u7f16\u8bd1\u5668\u548c\u7f16\u8bd1\u53c2\u6570\u76f8\u5173\u914d\u7f6e":116,"\u4ee5\u63d0\u4f9b\u4e00\u4e9b\u9ed8\u8ba4\u7684\u7f16\u8bd1\u5668\u548c\u7f16\u8bd1\u53c2\u6570\u914d\u7f6e":117,"\u4ee5\u6b64\u8fbe\u5230\u6700\u597d\u7684\u6027\u80fd":42,"\u4ee5\u786e\u4fdd\u6240\u6709\u7684\u7b2c\u4e09\u65b9\u4f9d\u8d56\u5e93\u548cpaddlepaddle\u4ee3\u7801\u90fd\u662f\u9488\u5bf9\u65b0\u7684cmake\u914d\u7f6e\u91cd\u65b0\u7f16\u8bd1\u7684":[116,117,118],"\u4ee5\u793a\u533a\u5206":[41,42],"\u4ee5\u8f93\u51fa":81,"\u4ee5\u9017\u53f7\u95f4\u9694":103,"\u4ee5\u907f\u514d\u94fe\u63a5\u4e0d\u5fc5\u8981\u7684\u5e93":87,"\u4ee5eigentensor\u4e3a\u4f8b":76,"\u4ee5embedding\u5c42\u4e3a\u4f8b":83,"\u4ee5lstm\u4e3a\u4f8b":82,"\u4efb\u4f55\u65f6\u5019\u5982\u679c\u9700\u8981\u6d6e\u70b9\u578b\u6570\u7ec4":89,"\u4efb\u52a1\u6765\u7ec8\u6b62\u96c6\u7fa4\u4f5c\u4e1a":93,"\u4efb\u52a1\u88ab\u8c03\u5ea6\u5728\u96c6\u7fa4\u4e2d\u65f6":94,"\u4efb\u610f\u5c06\u4e00\u4e9b\u6570\u636e\u7ec4\u5408\u6210\u53cc\u5c42\u65f6\u95f4\u5e8f\u5217":111,"\u4efb\u610f\u65f6\u523b\u53ea\u53ef\u80fd\u540c\u65f6\u6709\u4e00\u53f0\u670d\u52a1\u5668\u6545\u969c":11,"\u4f18\u5316\u524d":41,"\u4f18\u5316\u540e":41,"\u4f18\u5316\u5668\u5219\u7528\u94fe\u5f0f\u6cd5\u5219\u6765\u5bf9\u6bcf\u4e2a\u53c2\u6570\u8ba1\u7b97\u635f\u5931\u51fd\u6570\u7684\u68af\u5ea6":74,"\u4f1a\u4ea7\u751f\u5f53\u524dpython\u4e8c\u8fdb\u5236\u7684\u5b8c\u6574\u8def\u5f84":107,"\u4f1a\u4ee5":[41,42],"\u4f1a\u4f7f\u7528":90,"\u4f1a\u4f7f\u7528\u76f8\u540c\u7684\u539f\u6570\u636e":41,"\u4f1a\u5148\u4e34\u65f6\u4fdd\u5b58\u5728":42,"\u4f1a\u5148\u8fdb\u884c\u53c2\u6570\u7684\u521d\u59cb\u5316\u4e0e\u89e3\u6790":97,"\u4f1a\u5171\u4eab\u53c2\u6570":83,"\u4f1a\u5173\u8054\u53c2\u6570":82,"\u4f1a\u5206\u522b\u4ecb\u7ecd\u96c6\u7fa4\u4f5c\u4e1a\u7684\u542f\u52a8\u548c\u505c\u6b62\u65b9\u6cd5":94,"\u4f1a\u52a0\u8f7d\u4e0a\u4e00\u8f6e\u7684\u53c2\u6570":103,"\u4f1a\u53d8\u6210\u8bcd\u8868\u4e2d\u7684\u4f4d\u7f6e":111,"\u4f1a\u542f\u52a8pserver\u4e0etrainer\u8fdb\u7a0b":97,"\u4f1a\u5728":[42,77],"\u4f1a\u5728\u5f53\u524d\u76ee\u5f55\u751f\u6210\u4e24\u4e2a\u5b50\u76ee\u5f55":77,"\u4f1a\u5728\u7f16\u8bd1paddlepaddle\u7684\u65f6\u5019\u4e0b\u8f7d\u5e76\u7f16\u8bd1mkl":42,"\u4f1a\u5927\u4e0d\u76f8\u540c":91,"\u4f1a\u5bf9\u6bcf\u4e00\u4e2a\u6fc0\u6d3b\u6682\u5b58\u4e00\u4e9b\u6570\u636e":81,"\u4f1a\u5bf9\u8bad\u7ec3\u6027\u80fd\u9020\u6210\u5f71\u54cd":81,"\u4f1a\u5bf9\u8fd9\u7c7b\u8f93\u5165\u8fdb\u884c\u62c6\u89e3":113,"\u4f1a\u5bfc\u81f4\u4e0d\u540c\u7248\u672cpython\u5728\u4e00\u4e2a\u8fdb\u7a0b\u91cc\u7684bug":45,"\u4f1a\u5c06\u6bcf\u4e2a\u65f6\u95f4\u6b65\u7684\u8f93\u51fa\u62fc\u63a5":113,"\u4f1a\u5c06\u7b2c\u4e00\u4e2a":81,"\u4f1a\u5f15\u5165":42,"\u4f1a\u6210\u4e3astep\u51fd\u6570\u7684\u8f93\u5165":113,"\u4f1a\u6253\u5370\u5230\u6807\u51c6\u8f93\u51fa":107,"\u4f1a\u628a\u8bad\u7ec3\u96c6\u548c\u6d4b\u8bd5\u96c6\u5206\u522b\u5206\u5272\u6210\u591a\u4e2a\u6587\u4ef6":91,"\u4f1a\u628acpu\u7684buffer\u5bf9\u9f50\u4e3a4096":42,"\u4f1a\u62a5\u5982\u4e0b\u7684\u9519\u8bef":81,"\u4f1a\u62a5\u9519":113,"\u4f1a\u6dfb\u52a0\u76f8\u5e94\u7684\u811a\u672c\u5728":42,"\u4f1a\u6dfb\u52a0\u76f8\u5e94\u7684\u811a\u672c\u7528\u4e8e\u6d4b\u8bd5\u548c\u5bf9\u6bd4\u5728\u4f7f\u7528mkl":41,"\u4f1a\u72ec\u7acb\u62e5\u6709\u4e00\u4efd\u8bad\u7ec3\u597d\u7684\u6a21\u578b":90,"\u4f1a\u751f\u6210\u6027\u80fd\u5206\u6790\u7ed3\u679c\u6587\u4ef6":107,"\u4f1a\u76f4\u63a5\u62a5\u9519\u9000\u51fa":45,"\u4f1a\u76f8\u5e94\u5730\u6539\u53d8\u8f93\u51fa\u7684\u5c3a\u5bf8":74,"\u4f1a\u81ea\u52a8\u4f7f\u7528mklml\u5e93\u4f5c\u4e3apaddlepaddle\u7684cblas\u548clapack\u5e93":42,"\u4f1a\u81ea\u52a8\u5173\u95ed\u5bf9\u5e94\u7684issu":72,"\u4f1a\u81ea\u52a8\u5728\u7f16\u8bd1\u65f6\u4e0b\u8f7d":1,"\u4f1a\u81ea\u52a8\u6839\u636e\u786c\u4ef6\u914d\u7f6e":42,"\u4f1a\u83b7\u53d6\u5f53\u524dnamespace\u4e0b\u7684\u6240\u6709pod":97,"\u4f1a\u88ab":91,"\u4f1a\u88ab\u62c6\u89e3\u4e3a\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":113,"\u4f1a\u88ab\u62c6\u89e3\u4e3a\u975e\u5e8f\u5217":113,"\u4f1a\u88abpickle\u5e8f\u5217\u5316\u6210\u5b57\u7b26\u4e32":12,"\u4f1a\u901a\u8fc7\u5224\u6570\u636e\u662f\u5426\u9644\u5e26\u6709\u5e8f\u5217\u4fe1\u606f\u6765\u5224\u65ad\u4e00\u4e2a\u5411\u91cf":89,"\u4f1a\u9020\u6210\u90ae\u4ef6\u707e\u96be":72,"\u4f20\u5165":12,"\u4f20\u7ed9dataprovider\u7684\u67d0\u4e00\u4e2aargs\u8fc7\u5927":83,"\u4f20\u9012\u7ed9\u914d\u7f6e\u6587\u4ef6\u7684\u53c2\u6570":103,"\u4f46":46,"\u4f46\u4e0d\u66b4\u9732":46,"\u4f46\u4e0d\u7528\u4e8e\u8ba1\u7b97\u68af\u5ea6":74,"\u4f46\u4e0d\u9700\u8981\u63d0\u524d\u521b\u5efa":103,"\u4f46\u4e8e\u53cc\u5c42\u5e8f\u5217\u7684lstm\u6765\u8bf4":111,"\u4f46\u53ef\u4ee5\u83b7\u53d6":81,"\u4f46\u548c\u5355\u5c42rnn\u4e0d\u540c":111,"\u4f46\u5b50\u53e5\u542b\u6709\u7684\u8bcd\u8bed\u6570\u53ef\u4ee5\u4e0d\u76f8\u7b49":113,"\u4f46\u5c3d\u91cf\u8bf7\u4fdd\u6301\u7f16\u8bd1\u548c\u8fd0\u884c\u4f7f\u7528\u7684cudnn\u662f\u540c\u4e00\u4e2a\u7248\u672c":1,"\u4f46\u5e76\u6ca1\u6709\u7ecf\u8fc7\u56de\u5f52\u6d4b\u8bd5":62,"\u4f46\u5e8f\u5217\u8f93\u51fa\u65f6":111,"\u4f46\u622a\u65ad\u65f6\u673a\u4e0d\u540c":81,"\u4f46\u6240\u6709fork\u7684\u7248\u672c\u5e93\u7684\u6240\u6709\u5206\u652f\u90fd\u76f8\u5f53\u4e8e\u7279\u6027\u5206\u652f":62,"\u4f46\u662f":[81,111],"\u4f46\u662f\u53c8\u8fc7\u4e8e\u7410\u788e":46,"\u4f46\u662f\u5728mkl":42,"\u4f46\u662f\u5728paddlepaddle\u4e2d":42,"\u4f46\u662f\u5927\u90e8\u5206\u53c2\u6570\u662f\u4e3a\u5f00\u53d1\u8005\u63d0\u4f9b\u7684":102,"\u4f46\u662f\u5b50\u5e8f\u5217\u7684\u6570\u76ee\u5fc5\u987b\u4e00\u6837":111,"\u4f46\u662f\u5e76\u4e0d\u80fd\u4fdd\u8bc1\u53c2\u6570\u540c\u6b65\u66f4\u65b0":92,"\u4f46\u662f\u652f\u6301avx\u6307\u4ee4\u96c6":72,"\u4f46\u662f\u6574\u4e2a\u8bad\u7ec3\u8fc7\u7a0b\u4e2d\u4e0d\u9700\u8981\u4efb\u4f55\u8f6c\u6362":42,"\u4f46\u662f\u6bcf\u4e2a\u6837\u672c\u4ec5\u5305\u542b\u51e0\u4e2a\u8bcd":105,"\u4f46\u662f\u6ce8\u610f\u7684\u662f":42,"\u4f46\u662f\u7a81\u7136\u6709\u4e00\u4e2a10000\u957f\u7684\u5e8f\u5217":81,"\u4f46\u662f\u865a\u62df\u7684\u4e0d\u4ec5\u4ec5\u662f":0,"\u4f46\u662f\u89e3\u91ca\u6027\u8bed\u8a00":45,"\u4f46\u662f\u8c03\u8bd5python\u4e2d\u4f7f\u7528\u7684\u52a8\u6001\u94fe\u63a5\u5e93\u4e0e\u76f4\u63a5\u8c03\u8bd5\u539f\u59cb\u4e8c\u8fdb\u5236\u76f8\u6bd4\u589e\u52a0\u4e86\u5f88\u591a\u590d\u6742\u5ea6":107,"\u4f46\u662fbatch":81,"\u4f46\u6709\u503c\u7684\u5730\u65b9\u5fc5\u987b\u4e3a1":84,"\u4f46\u6709\u503c\u7684\u90e8\u5206\u53ef\u4ee5\u662f\u4efb\u4f55\u6d6e\u70b9\u6570":84,"\u4f46\u7531\u4e8ecuda\u5e93\u901a\u5e38\u9700\u8981cento":4,"\u4f46\u9700\u6ce8\u610f\u53cd\u5411op\u6ca1\u6709":75,"\u4f46eigen":76,"\u4f5c\u4e3a\u4e0b\u4e00\u4e2a\u5b50\u53e5memory\u7684\u521d\u59cb\u72b6\u6001":111,"\u4f5c\u4e3a\u4f8b\u5b50\u6f14\u793a\u5982\u4f55\u914d\u7f6e\u590d\u6742\u7684\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u6a21\u578b":114,"\u4f5c\u4e3a\u53c2\u6570\u5c5e\u6027":75,"\u4f5c\u4e3a\u53c2\u6570\u7684id":83,"\u4f5c\u4e3a\u53e6\u4e00\u4e2a\u7b2c\u4e09\u65b9\u5e93\u96c6\u6210\u8fdbpaddlepaddl":42,"\u4f5c\u4e3a\u5b58\u50a8\u7cfb\u7edf":12,"\u4f5c\u4e3a\u5f53\u524d\u65f6\u523b\u8f93\u5165":113,"\u4f5c\u4e3a\u7c7b\u53e5\u67c4":45,"\u4f5c\u4e3a\u7edf\u8ba1\u7684\u57fa\u672c\u5355\u4f4d":89,"\u4f5c\u4e3a\u7f16\u8bd1\u5de5\u5177":1,"\u4f5c\u4e3a\u8c03\u7528":90,"\u4f5c\u4e3a\u8f93\u5165":89,"\u4f5c\u4e3a\u8f93\u51fa":114,"\u4f5c\u4e3aboot_layer\u4f20\u7ed9\u4e0b\u4e00\u4e2a\u5b50\u53e5\u7684memori":111,"\u4f5c\u7528":110,"\u4f60\u53ef\u4ee5\u5c06\u7f51\u7edc\u914d\u7f6e\u6210\u67d0\u4e9b\u5c42\u4f7f\u7528gpu\u8ba1\u7b97":105,"\u4f60\u8fd8\u53ef\u4ee5\u901a\u8fc7\u8fd0\u884cdjango\u6846\u67b6\u76f4\u63a5\u6fc0\u6d3b\u5de5\u5177\u7684\u670d\u52a1\u5668":77,"\u4f60\u9700\u8981\u4e00\u4e9b\u66f4\u590d\u6742\u7684\u5355\u5143\u6d4b\u8bd5\u6765\u4fdd\u8bc1\u4f60\u5b9e\u73b0\u7684\u7f51\u7edc\u5c42\u662f\u6b63\u786e\u7684":74,"\u4f60\u9700\u8981\u5728\u7f51\u7edc\u914d\u7f6e\u4e2d\u6307\u5b9a\u8bbe\u5907\u7684id\u53f7":105,"\u4f60\u9700\u8981\u5728\u914d\u7f6ecmake\u65f6\u5c06":74,"\u4f60\u9700\u8981\u628a\u8be5\u6587\u4ef6\u52a0\u5165":74,"\u4f7f\u4e4b\u53d8\u4e3a\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217\u8f93\u5165":89,"\u4f7f\u4e4b\u53d8\u4e3a\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217\u8f93\u5165":89,"\u4f7f\u5f97\u5355\u5143\u6d4b\u8bd5\u6709\u4e00\u4e2a\u5e72\u51c0\u7684\u73af\u5883":78,"\u4f7f\u5f97\u642d\u6a21\u578b\u65f6\u66f4\u65b9\u4fbf":74,"\u4f7f\u68af\u5ea6\u7684\u63d0\u4ea4\u548c\u53c2\u6570\u7684\u66f4\u65b0\u6309\u7167\u987a\u5e8f\u65b9\u5f0f\u6267\u884c":92,"\u4f7f\u7528":[42,46,62,74,81,82,83,87,89,90,103,107,108,111,113,114,116],"\u4f7f\u75280\u53f7\u548c1\u53f7gpu\u8ba1\u7b97fc2\u5c42":105,"\u4f7f\u75280\u53f7gpu\u8ba1\u7b97fc2\u5c42":105,"\u4f7f\u75281\u53f7gpu\u8ba1\u7b97fc3\u5c42":105,"\u4f7f\u75282\u53f7\u548c3\u53f7gpu\u8ba1\u7b97fc3\u5c42":105,"\u4f7f\u7528\u4e00\u4e2a\u5c3a\u5ea6\u4e3a":74,"\u4f7f\u7528\u4e00\u4e2a\u8bcd\u524d\u4e24\u4e2a\u8bcd\u548c\u540e\u4e24\u4e2a\u8bcd":81,"\u4f7f\u7528\u4e0a\u6587\u521b\u5efa\u7684yaml\u6587\u4ef6\u521b\u5efakubernet":96,"\u4f7f\u7528\u4e0b\u9762\u547d\u4ee4":12,"\u4f7f\u7528\u4e0b\u9762\u7684\u547d\u4ee4\u6765\u8fd0\u884c\u5b83":77,"\u4f7f\u7528\u4e86\u540c\u6837\u7684parameter\u548cbia":83,"\u4f7f\u7528\u4ee5\u4e0a\u8bad\u7ec3\u597d\u7684\u6a21\u578b\u8fdb\u884c\u9884\u6d4b":84,"\u4f7f\u7528\u52a8\u6001\u5e93":45,"\u4f7f\u7528\u53c2\u6570":[1,91],"\u4f7f\u7528\u540c\u6837\u7684\u8bad\u7ec3\u6570\u636eblock":11,"\u4f7f\u7528\u57fa\u4e8edocker\u5bb9\u5668\u7684\u7f16\u8bd1\u65b9\u5f0f":116,"\u4f7f\u7528\u591a\u5757\u663e\u5361\u8bad\u7ec3":81,"\u4f7f\u7528\u591a\u7ebf\u7a0b\u8bad\u7ec3":81,"\u4f7f\u7528\u5b66\u4e60\u5b8c\u6210\u7684\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u6a21\u578b\u751f\u6210\u5e8f\u5217":114,"\u4f7f\u7528\u5b83\u4f1a\u5f00\u542f\u4e00\u4e2ahttp\u670d\u52a1":107,"\u4f7f\u7528\u5bb9\u5668\u65b9\u5f0f\u8fd0\u884c\u8bad\u7ec3\u4efb\u52a1\u7684kubernet":97,"\u4f7f\u7528\u6211\u4eec\u4e4b\u524d\u6784\u9020\u7684\u955c\u50cf":96,"\u4f7f\u7528\u6570\u503c\u6cd5\u68c0\u6d4b\u68af\u5ea6\u6b63\u786e\u6027\u548c\u7a33\u5b9a\u6027":75,"\u4f7f\u7528\u6587\u6863":75,"\u4f7f\u7528\u663e\u5361\u8bad\u7ec3":81,"\u4f7f\u7528\u667a\u80fd\u6307\u9488\u7684\u539f\u56e0\u662f":46,"\u4f7f\u7528\u6848\u4f8b":104,"\u4f7f\u7528\u73af\u5883\u53d8\u91cf":91,"\u4f7f\u7528\u7684\u53c2\u6570\u4e0epaddlepaddle\u7533\u8bf7\u7684buffer\u5171\u7528\u4e00\u5757\u5185\u5b58":42,"\u4f7f\u7528\u76f8\u5bf9\u8def\u5f84\u7684\u5f15\u7528\u65b9\u5f0f":46,"\u4f7f\u7528\u8005\u4e0d\u9700\u8981\u5173\u5fc3":103,"\u4f7f\u7528\u8005\u53ea\u9700\u8981\u5173\u6ce8\u4e8e\u8bbe\u8ba1rnn\u5728\u4e00\u4e2a\u65f6\u95f4\u6b65\u4e4b\u5185\u5b8c\u6210\u7684\u8ba1\u7b97":113,"\u4f7f\u7528\u8005\u65e0\u9700\u5173\u5fc3\u8fd9\u4e2a\u53c2\u6570":103,"\u4f7f\u7528\u8005\u901a\u5e38\u65e0\u9700\u5173\u5fc3":103,"\u4f7f\u7528\u8be5learning_rate_schedule\u65f6":83,"\u4f7f\u7528\u8fd9\u4e2a\u795e\u7ecf\u7f51\u7edc\u53ef\u4ee5\u5b8c\u6210\u5bf9\u65b0\u6570\u636e\u7684\u9884\u6d4b":11,"\u4f7f\u7528\u8fd9\u79cd\u65b9\u5f0f":[90,111],"\u4f7f\u7528\u8fdc\u7a0b\u7a00\u758f\u65b9\u5f0f\u8bad\u7ec3\u65f6":74,"\u4f7f\u7528\u9759\u6001\u5e93\u548c\u52a8\u6001\u5e93\u96be\u5ea6\u5dee\u4e0d\u591a":45,"\u4f7f\u7528c":[46,87],"\u4f7f\u7528c99\u505a\u63a5\u53e3":45,"\u4f7f\u7528c99\u800c\u4e0d\u4f7f\u7528c11\u7684\u539f\u56e0\u662f":45,"\u4f7f\u7528c99\u800c\u4e0d\u4f7f\u7528c89":45,"\u4f7f\u7528checkgrad\u6a21\u5f0f\u65f6\u7684\u53c2\u6570\u53d8\u5316\u5927\u5c0f":103,"\u4f7f\u7528cmake\u7684\u8bdd":107,"\u4f7f\u7528cpu\u4e24\u7ebf\u7a0b\u8ba1\u7b97fc4\u5c42":105,"\u4f7f\u7528cpu\u8ba1\u7b97fc4\u5c42":105,"\u4f7f\u7528docker":2,"\u4f7f\u7528docker\u5b89\u88c5\u548c\u8fd0\u884cpaddlepaddle\u53ef\u4ee5\u65e0\u9700\u8003\u8651":2,"\u4f7f\u7528docker\u5b89\u88c5\u8fd0\u884c":3,"\u4f7f\u7528docker\u5c31\u4e0d\u7528\u914d\u7f6e\u4ea4\u53c9\u7f16\u8bd1\u73af\u5883\u4e86":0,"\u4f7f\u7528docker\u6784\u5efapaddlepaddle\u7684\u6587\u6863":77,"\u4f7f\u7528docker\u7684\u60c5\u51b5\u4e0b":1,"\u4f7f\u7528eigen\u8fdb\u884c\u77e9\u9635\u8ba1\u7b97":116,"\u4f7f\u7528fabric\u542f\u52a8\u96c6\u7fa4\u8bad\u7ec3":94,"\u4f7f\u7528init":105,"\u4f7f\u7528lstm\u4f5c\u4e3aencod":111,"\u4f7f\u7528memory\u7684rnn\u5b9e\u73b0\u4fbf\u5982\u4e0b\u56fe\u6240\u793a":111,"\u4f7f\u7528model":105,"\u4f7f\u7528openblas\u7684\u955c\u50cf":2,"\u4f7f\u7528openblas\u8fdb\u884c\u77e9\u9635\u8ba1\u7b97":116,"\u4f7f\u7528paddlepaddl":[87,90],"\u4f7f\u7528pip\u5b89\u88c5":3,"\u4f7f\u7528rdma\u8fd8\u662ftcp\u4f20\u8f93\u534f\u8bae":103,"\u4f7f\u7528regress":62,"\u4f7f\u7528swig\u53ea\u652f\u6301cpython\u89e3\u91ca\u5668":45,"\u4f7f\u7528swig\u9700\u8981\u591a\u8bed\u8a00\u7ed1\u5b9a\u7684\u5f00\u53d1\u4eba\u5458\u719f\u7ec3\u638c\u63e1swig\u914d\u7f6e":45,"\u4f7f\u7528void":45,"\u4f7f\u8be5\u5c42\u7684\u53c2\u6570\u5728\u8bad\u7ec3\u8fc7\u7a0b\u4e2d\u4fdd\u6301\u4e0d\u53d8":83,"\u4f8b\u5982":[1,12,45,46,62,74,81,82,84,89,97,102,103,105,108,111,114],"\u4f8b\u5982\u4e0b\u56fe\u4e2d":107,"\u4f8b\u5982\u4e0b\u9762\u4ee3\u7801":81,"\u4f8b\u5982\u4e5f\u53ef\u5728\u7a0b\u5e8f\u8fd0\u884c\u8fc7\u7a0b\u4e2d\u518d\u52a0\u8f7d\u53e6\u5916\u4e00\u4e2a\u6a21\u578b":90,"\u4f8b\u5982\u4f7f\u7528":81,"\u4f8b\u5982\u542b\u6709\u591a\u4e2a\u901a\u9053\u7684\u56fe\u7247":89,"\u4f8b\u5982\u5728deepspeech2":41,"\u4f8b\u5982\u5bf9\u4e8ejava\u6216\u8005python":45,"\u4f8b\u5982\u5bf9\u4e8ejava\u6765\u8bf4":45,"\u4f8b\u5982\u5bf9\u4e8epython":45,"\u4f8b\u5982\u5c06\u7b2c\u4e00\u6761\u6570\u636e\u8f6c\u5316\u4e3a":111,"\u4f8b\u5982\u6587\u672c\u5206\u7c7b\u4e2d":111,"\u4f8b\u5982\u672c\u4f8b\u4e2d\u7684\u4e24\u4e2a\u7279\u5f81":111,"\u4f8b\u5982\u673a\u5668\u4e0a\u67094\u5757gpu":81,"\u4f8b\u5982c":45,"\u4f8b\u5982java\u4e0epython\u7684\u9519\u8bef\u5904\u7406\u662f\u76f4\u63a5\u6254\u51fa\u6765except":45,"\u4f8b\u5982output\u76ee\u5f55\u4e0b\u5c31\u5b58\u653e\u4e86\u8f93\u51fa\u7ed3\u679c":97,"\u4f8b\u5982python\u53ef\u4ee5\u4f7f\u7528":45,"\u4f8b\u5982python\u7684":45,"\u4f8b\u5982rnn":41,"\u4f8b\u5982sigmoid":74,"\u4f8b\u5b50\u4e2d\u4e3a3\u4e2a":91,"\u4f8b\u5b50\u4e2d\u662f":74,"\u4f8b\u5b50\u4e2d\u662f0":74,"\u4f8b\u5b50\u4e2d\u662f100":74,"\u4f8b\u5b50\u4e2d\u662f4096":74,"\u4f8b\u5b50\u4e2d\u662f8192":74,"\u4f8b\u5b50\u4e2d\u662ffc":74,"\u4f8b\u5b50\u4e2d\u662fsoftmax":74,"\u4f9bpaddlepaddle\u52a0\u8f7d":103,"\u4f9d\u636e\u662f\u5426\u5305\u542bkernel":75,"\u4f9d\u6b21\u7c7b\u63a8":62,"\u4f9d\u8d56":[1,4],"\u4f9d\u8d56\u73af\u5883\u5373\u53ef\u8fd0\u884c":2,"\u4f9d\u8d56libpython2":1,"\u4fbf\u548c\u5355\u5c42rnn\u914d\u7f6e\u4e2d\u7684":111,"\u4fbf\u662f\u5c06\u9759\u6001\u5e93\u52a0\u5165jvm\u4e2d":45,"\u4fdd\u5b58\u6a21\u578b\u53c2\u6570\u7684\u76ee\u5f55":103,"\u4fdd\u5b58\u7684\u53c2\u6570\u4e5f\u662ffloat\u7c7b\u578b":83,"\u4fdd\u5b58\u7f51\u7edc\u5c42\u8f93\u51fa\u7ed3\u679c\u7684\u76ee\u5f55":103,"\u4fdd\u5b58\u9884\u6d4b\u7ed3\u679c\u7684\u6587\u4ef6\u540d":103,"\u4fdd\u6301\u5c3d\u91cf\u5c11\u7684commit":72,"\u4fdd\u8bc1\u4f7f\u7528gpu\u8bad\u7ec3\u65f6\u4e5f\u53ef\u4ee5\u83b7\u5f97":81,"\u4fe1\u53f7\u6765\u81ea\u52a8\u7ec8\u6b62\u5b83\u542f\u52a8\u7684\u6240\u6709\u8fdb\u7a0b":93,"\u4fe1\u606f":89,"\u4fee\u590d\u6240\u6709bug\u540e":62,"\u4fee\u590ddocker\u7f16\u8bd1\u955c\u50cf\u95ee\u9898":62,"\u4fee\u6539":[42,62,96],"\u4fee\u6539\u542f\u52a8\u811a\u672c\u540e":96,"\u4fee\u6539\u6210":62,"\u4fee\u6539\u6210\u66f4\u5feb\u7684\u7248\u672c":108,"\u503c\u5f97\u6ce8\u610f\u7684\u662f":[72,111],"\u503c\u5f97\u6df1\u5165\u5206\u6790":108,"\u503c\u7c7b\u578b":105,"\u5047\u5982\u6211\u4eec\u662f\u4e09\u5206\u7c7b\u95ee\u9898":83,"\u5047\u8bbe":74,"\u5047\u8bbe\u60a8\u5df2\u7ecf\u5728\u5f53\u524d\u76ee\u5f55":2,"\u5047\u8bbe\u635f\u5931\u51fd\u6570\u662f":74,"\u5047\u8bbe\u7b2c\u4e00\u4e2alayer\u7684\u8f93\u51faa\u662f\u4e00\u4e2a":81,"\u504f\u7f6e\u53c2\u6570\u7684\u5927\u5c0f":74,"\u505a\u4e00\u4e2a\u4ecb\u7ecd":76,"\u505a\u53ea\u8bfb\u6302\u8f7d":12,"\u505a\u5982\u4e0b\u51e0\u4e2a\u64cd\u4f5c":62,"\u505a\u63a5\u53e3":45,"\u505a\u68af\u5ea6\u68c0\u6d4b":75,"\u505a\u68c0\u67e5":75,"\u505c\u6b62\u4fdd\u5b58\u68c0\u67e5\u70b9\u7684\u7ebf\u7a0b":11,"\u505c\u6b62\u52a0\u8f7d\u6570\u636e":103,"\u5141\u8bb8\u5916\u7f51\u8bbf\u95ee\u8fd9\u4e2ahttp\u670d\u52a1":107,"\u5143\u7d20":110,"\u5143\u7d20\u4e4b\u95f4\u7684\u987a\u5e8f\u662f\u5e8f\u5217\u6240\u643a\u5e26\u7684\u91cd\u8981\u4fe1\u606f":89,"\u5143\u7d20\u4e4b\u95f4\u7684\u987a\u5e8f\u662f\u91cd\u8981\u7684\u8f93\u5165\u4fe1\u606f":110,"\u5145\u5206\u53d1\u6325\u82f1\u7279\u5c14\u5e73\u53f0\u7684\u4f18\u52bf":41,"\u5145\u5206\u5c55\u73b0\u82f1\u7279\u5c14\u5e73\u53f0\u7684\u4f18\u52bf":42,"\u5148\u4ece\u5355\u7ebf\u7a0b\u5f00\u59cb":107,"\u5148\u5378\u8f7d\u4e4b\u524d\u7684\u7248\u672c":1,"\u5148\u5b8c\u6210\u5bf9\u6743\u91cd\u7684packing\u64cd\u4f5c":41,"\u5148\u5b9e\u73b0\u6a21\u578b\u63a8\u65ad\u7684api":46,"\u5148\u627e\u51fa\u53c2\u6570":82,"\u5148\u67e5\u770b\u4e00\u4e0b\u662f\u5426\u66fe\u7ecf\u5b89\u88c5\u8fc7paddl":78,"\u5148\u68c0\u67e5\u5173\u952e\u8def\u5f84\u7684\u6027\u80fd\u95ee\u9898":107,"\u514b\u9686\u4e0b\u9762":118,"\u5168\u8fde\u63a5\u5c42\u4ee5\u4e00\u4e2a\u7ef4\u5ea6\u4e3a":74,"\u5168\u8fde\u63a5\u5c42\u6ca1\u6709\u7f51\u7edc\u5c42\u914d\u7f6e\u7684\u8d85\u53c2\u6570":74,"\u5168\u8fde\u63a5\u5c42\u7684\u5b9e\u73b0\u4f4d\u4e8e":74,"\u5168\u8fde\u63a5\u5c42\u7684\u6bcf\u4e2a\u8f93\u51fa\u90fd\u8fde\u63a5\u5230\u4e0a\u4e00\u5c42\u7684\u6240\u6709\u7684\u795e\u7ecf\u5143\u4e0a":74,"\u5168\u8fde\u63a5\u5c42python\u5c01\u88c5\u7684\u4f8b\u5b50\u4e2d\u5305\u542b\u4e0b\u9762\u51e0\u6b65":74,"\u516c\u5f0f":2,"\u5171\u4eab\u4e00\u4e2aop\u5b9a\u4e49":75,"\u5171\u4eab\u5185\u5b58":42,"\u5171\u4eab\u540c\u4e00\u4e2a\u6743\u91cd":41,"\u5171\u4eab\u540c\u4e00\u4e2akernel\u65f6":75,"\u5171\u4eab\u5b58\u50a8\u6302\u5728\u7684\u8def\u5f84":97,"\u5173\u4e8e\u4ec0\u4e48\u662f":89,"\u5173\u4e8e\u5728paddlepaddle\u4e2d\u5982\u4f55\u4f7f\u7528eigen\u5e93":75,"\u5173\u4e8e\u65f6\u95f4\u5e8f\u5217":111,"\u5173\u4e8e\u6784\u5efa\u548c\u6d4b\u8bd5\u7684\u66f4\u591a\u4fe1\u606f":72,"\u5173\u4e8eavx":2,"\u5173\u4e8eeigen":76,"\u5173\u4e8elstm":82,"\u5173\u4e8epaddlepaddle\u7684\u5206\u5e03\u5f0f\u8bad\u7ec3":97,"\u5173\u4e8epaddlepaddle\u7684\u66f4\u591a\u4f7f\u7528\u65b9\u6cd5\u8bf7\u53c2\u8003":84,"\u5173\u4e8eunbound":113,"\u5173\u952e\u8bcd\u5305\u62ec":72,"\u5176\u4e2d":[45,62,74,81,83,84,107,114,116,118],"\u5176\u4e2d\u5305\u542b\u4e86\u7528\u6237\u7684\u8bad\u7ec3\u7a0b\u5e8f":91,"\u5176\u4e2d\u5305\u542b\u6240\u4f9d\u8d56\u7684\u6240\u6709\u7b2c\u4e09\u65b9\u5e93":117,"\u5176\u4e2d\u5305\u542b\u6240\u6709c":117,"\u5176\u4e2d\u5305\u542bpaddlepaddle\u7684c":117,"\u5176\u4e2d\u6bcf\u4e2a\u5143\u7d20\u662f\u53cc\u5c42\u5e8f\u5217\u4e2d\u6bcf\u4e2asubseq\u6700\u540e\u4e00\u4e2a":110,"\u5176\u4e2dcheckgrad\u4e3b\u8981\u4e3a\u5f00\u53d1\u8005\u4f7f\u7528":103,"\u5176\u4e2dmean\u548cstd\u662f\u8bad\u7ec3\u914d\u7f6e\u4e2d\u7684\u53c2\u6570":103,"\u5176\u4e2dx\u8868\u793a\u8f93\u5165\u6570\u636e\u662f\u4e00\u4e2a\u7ef4\u5ea6\u4e3a2\u7684\u7a20\u5bc6\u5411\u91cf":84,"\u5176\u4e3b\u8981\u63a5\u53e3\u5982\u4e0b":76,"\u5176\u4ed6\u4eba\u53ef\u4ee5\u590d\u73b0\u95ee\u9898\u4ee5\u4fbf\u5e2e\u52a9":0,"\u5176\u4ed6\u5185\u5b58\u6742\u9879":81,"\u5176\u4ed6\u5185\u5b58\u6742\u9879\u662f\u6307paddlepaddle\u672c\u8eab\u6240\u7528\u7684\u4e00\u4e9b\u5185\u5b58":81,"\u5176\u4ed6\u51fd\u6570\u5747\u8fd4\u56de":46,"\u5176\u4ed6\u6240\u6709\u5c42\u90fd\u4f1a\u4f7f\u7528gpu\u8ba1\u7b97":105,"\u5176\u4ed6\u7528\u6237\u7684fork\u7248\u672c\u5e93\u5e76\u4e0d\u9700\u8981\u4e25\u683c\u9075\u5b88":62,"\u5176\u4ed6\u7684\u4f9d\u8d56\u8f6f\u4ef6":1,"\u5176\u4ed6\u914d\u7f6e\u53c2\u6570":[116,117],"\u5176\u4ed6\u9ad8\u7ea7\u529f\u80fd\u5305\u62ec\u5b9a\u4e49\u591a\u4e2amemori":114,"\u5176\u4f1a\u81ea\u52a8\u88ab\u52a0\u5165\u7f16\u8bd1\u5217\u8868":74,"\u5176\u547d\u4ee4\u5982\u4e0b":107,"\u5176\u5b83\u53ef\u9009\u7f16\u8bd1\u9009\u9879\u6309\u9700\u8fdb\u884c\u8bbe\u5b9a":87,"\u5176\u5b83layer\u7684\u8f93\u51fa":113,"\u5176\u5b9e\u4e5f\u662f\u548c\u6bcf\u4e2amini":81,"\u5176\u6b21":111,"\u5176\u8bf4\u660e\u5982\u4e0b":111,"\u5176\u8f6c\u6362\u6b21\u6570\u51cf\u5c11\u81f3":41,"\u5176\u8f93\u51fa\u88ab\u7528\u4f5cmemory\u7684\u521d\u59cb\u503c":114,"\u5176name\u7531\u53c2\u6570":82,"\u5177\u4f53\u4f7f\u7528\u65b9\u6cd5\u4e3a":[46,81],"\u5177\u4f53\u505a\u6cd5\u8bf7\u53c2\u8003":0,"\u5177\u4f53\u539f\u56e0\u53c2\u8003":46,"\u5177\u4f53\u53ef\u4ee5\u53c2\u8003":[74,81],"\u5177\u4f53\u53ef\u4ee5\u53c2\u8003mkl":42,"\u5177\u4f53\u53ef\u53c2\u8003\u6587\u6863":113,"\u5177\u4f53\u5b9e\u73b0\u65b9\u5f0f\u6bd4\u5982":[41,42],"\u5177\u4f53\u60c5\u51b5\u56e0\u4eba\u800c\u5f02":108,"\u5177\u4f53\u64cd\u4f5c\u5982\u4e0b":78,"\u5177\u4f53\u6b65\u9aa4\u5982\u4e0b":78,"\u5177\u4f53\u7684\u5b8c\u6210\u72b6\u6001\u53ef\u4ee5\u53c2\u89c1":42,"\u5177\u4f53\u7684\u89e3\u51b3\u65b9\u6cd5\u662f":78,"\u5177\u4f53\u8bf7\u53c2\u8003":[46,72],"\u5177\u4f53\u8bf7\u89c1":72,"\u5177\u6709\u76f8\u540c\u7684\u7ed3\u679c\u4e86":111,"\u5185":114,"\u5185\u5b58":108,"\u5185\u5b58\u4e0d\u8db3":79,"\u5185\u5b58\u5bb9\u9650\u9608\u503c":103,"\u5185\u5bb9":75,"\u5185\u5bb9\u5982\u4e0b":96,"\u5185\u5c42\u5e8f\u5217\u5728":89,"\u5185\u5c42inner_step\u7684recurrent_group\u548c\u5355\u5c42\u5e8f\u5217\u7684\u51e0\u4e4e\u4e00\u6837":111,"\u5185\u5df2\u7ecf\u5305\u542bpaddlepaddle\u7684\u6267\u884c\u7a0b\u5e8f\u4f46\u662f\u8fd8\u6ca1\u4e0a\u8ff0\u529f\u80fd":97,"\u5185\u7f6e\u7684":90,"\u5185\u90e8":[90,97],"\u5185\u90e8\u5b58\u50a8":42,"\u5185\u90e8\u7531":[89,90],"\u5185\u90e8\u9a71\u52a8python\u89e3\u91ca\u5668\u8fdb\u884c\u6a21\u578b\u914d\u7f6e\u89e3\u6790\u548c\u6570\u636e\u8bfb\u53d6":45,"\u518d\u4ee5":75,"\u518d\u505a\u4e00\u5b9a\u7684reshap":82,"\u518d\u5199\u5165\u7f51\u7edc\u53c2\u6570":83,"\u518d\u5728\u6bcf\u4e00\u4e2aapi\u4e2d\u81ea\u5df1\u68c0\u67e5\u7c7b\u578b":45,"\u518d\u57fa\u4e8e":62,"\u518d\u5b89\u88c5":[4,78],"\u518d\u5bf9\u6bcf\u4e00\u4e2a\u5355\u5c42\u65f6\u95f4\u5e8f\u5217\u8fdb\u884c\u5904\u7406":111,"\u518d\u5bf9\u6bcf\u4e00\u53e5\u8bdd\u7684\u7f16\u7801\u5411\u91cf\u7528lstm\u7f16\u7801\u6210\u4e00\u4e2a\u6bb5\u843d\u7684\u5411\u91cf":111,"\u518d\u5bf9\u8fd9\u4e2a\u6bb5\u843d\u5411\u91cf\u8fdb\u884c\u5206\u7c7b":111,"\u518d\u5c06\u66f4\u65b0\u540e\u7684\u53c2\u6570\u4e0b\u53d1\u5230\u6bcf\u4e2a\u8ba1\u7b97\u8282\u70b9":92,"\u518d\u5f00\u542f\u591a\u7ebf\u7a0b":107,"\u518d\u628a\u5df2\u8f6c\u6362\u4e3apacked\u683c\u5f0f\u7684\u6570\u636e\u4f20\u9012\u7ed9\u90a3\u4e9b\u590d\u7528\u540c\u4e00\u6570\u636e\u7684gemm":41,"\u518d\u6307\u5b9a":1,"\u518d\u68c0\u67e5\u5176\u4ed6\u90e8\u5206\u7684\u6027\u80fd\u95ee\u9898":107,"\u518d\u6b21\u5bf9\u4ee3\u7801\u8fdb\u884c\u6027\u80fd\u5206\u6790":108,"\u518d\u6b21\u8fdb\u884c\u6027\u80fd\u5206\u6790":107,"\u518d\u7528\u8fd9\u4e2a\u68af\u5ea6\u53bb\u548c":74,"\u518d\u901a\u8fc7\u51fd\u6570":97,"\u518d\u91cd\u65b0\u5b89\u88c5":1,"\u5199\u4ee3\u7801":45,"\u5199\u5165\u5feb\u7167\u6570\u636e":11,"\u5199\u5165\u6587\u4ef6\u4e2d":90,"\u5199\u68af\u5ea6\u68c0\u67e5\u5355\u5143\u6d4b\u8bd5\u662f\u4e00\u4e2a\u9a8c\u8bc1\u65b0\u5b9e\u73b0\u7684\u5c42\u662f\u5426\u6b63\u786e\u7684\u76f8\u5bf9\u7b80\u5355\u7684\u529e\u6cd5":74,"\u5199\u7684":107,"\u51c6\u5907\u60a8\u7684\u8ba1\u7b97\u96c6\u7fa4":101,"\u51c6\u5907\u8bad\u7ec3\u6570\u636e":98,"\u51c6\u5907\u8bad\u7ec3\u6570\u636e\u548c\u9a8c\u8bc1\u6570\u636e\u96c6":91,"\u51c6\u5907\u9884\u6d4b\u6a21\u578b\u548c":90,"\u51c6\u5907\u9884\u6d4b\u6a21\u578b\u90e8\u5206":90,"\u51cf\u5c0f\u5e8f\u5217\u7684\u957f\u5ea6":81,"\u51cf\u5c0f\u8fd9\u4e2a\u5185\u5b58\u6c60\u5373\u53ef\u51cf\u5c0f\u5185\u5b58\u5360\u7528":81,"\u51cf\u5c0fbatch":81,"\u51e0\u53f0\u5230\u51e0\u5343\u53f0\u89c4\u6a21":101,"\u51fa\u73b0":78,"\u51fa\u73b0\u4ee5\u4e0b\u9519\u8bef":83,"\u51fa\u73b0\u8be5\u9519\u8bef\u7684\u539f\u56e0\u4e00\u822c\u662f\u7528\u6237\u5bf9\u4e0d\u540clayer\u7684\u53c2\u6570":82,"\u51fa\u73b0\u8fd9\u4e2a\u95ee\u9898\u7684\u4e3b\u8981\u539f\u56e0\u662f":[4,78],"\u51fd\u6570":[41,42,74,89,107,108,114],"\u51fd\u6570\u4e2d\u64cd\u4f5c\u7684\u91cd\u8981\u53d8\u91cf\u7684\u8be6\u7ec6\u89e3\u91ca":75,"\u51fd\u6570\u5047\u8bbe":114,"\u51fd\u6570\u52a0\u5230\u4ee3\u7801\u4e2d":108,"\u51fd\u6570\u5373\u53ef\u5b8c\u6210\u8f6c\u6362":12,"\u51fd\u6570\u53ea\u5173\u6ce8\u4e8ernn\u4e00\u4e2a\u65f6\u95f4\u6b65\u4e4b\u5185\u7684\u8ba1\u7b97":113,"\u51fd\u6570\u540d":107,"\u51fd\u6570\u540d\u4e3a":46,"\u51fd\u6570\u547d\u540d":45,"\u51fd\u6570\u5b9a\u4e49\u8f93\u5165":75,"\u51fd\u6570\u5b9e\u9645\u4f7f\u7528\u7684\u603b\u65f6\u95f4":107,"\u51fd\u6570\u5f97\u5230\u7684\u68af\u5ea6\u53bb\u5bf9\u6bd4":74,"\u51fd\u6570\u5fc5\u987b\u5148\u8c03\u7528\u57fa\u7c7b\u4e2d\u7684\u51fd\u6570":74,"\u51fd\u6570\u5fc5\u987b\u8fd4\u56de\u4e00\u4e2a\u6216\u591a\u4e2alayer\u7684\u8f93\u51fa":113,"\u51fd\u6570\u603b\u65f6\u95f4":107,"\u51fd\u6570\u6307\u51fa\u4e86\u5728\u8bad\u7ec3\u65f6\u9700\u8981\u4ece\u53c2\u6570\u670d\u52a1\u5668\u53d6\u51fa\u7684\u884c":74,"\u51fd\u6570\u6765\u5c06\u4fe1\u606f\u8f93\u51fa\u5230\u754c\u9762\u4e2d":108,"\u51fd\u6570\u7684\u5b9e\u73b0\u662f\u6b63\u786e\u7684":74,"\u51fd\u6570\u7684\u5f00\u5934\u5fc5\u987b\u8c03\u7528":74,"\u51fd\u6570\u7684\u603b\u5171\u8017\u65f6\u5f88\u957f":107,"\u51fd\u6570\u7684\u8c03\u7528\u6b21\u6570":107,"\u51fd\u6570\u80fd\u591f\u5c06\u4f7f\u7528":90,"\u51fd\u6570\u91cc\u5b9e\u73b0":75,"\u5206\u4e3a":90,"\u5206\u522b\u4e3a\u6570\u636e\u8f93\u5165\u6dfb\u52a0\u5916\u5c42\u5e8f\u5217\u548c\u5185\u5c42\u5e8f\u5217\u7684\u5e8f\u5217\u4fe1\u606f":89,"\u5206\u522b\u4ece\u8bcd\u8bed\u548c\u53e5\u5b50\u7ea7\u522b\u7f16\u7801\u8f93\u5165\u6570\u636e":113,"\u5206\u522b\u4ee3\u8868\u8f93\u5165\u6570\u636e":42,"\u5206\u522b\u4f7f\u7528\u5355\u53cc\u5c42rnn\u4f5c\u4e3a\u7f51\u7edc\u914d\u7f6e\u7684\u6a21\u578b":111,"\u5206\u522b\u5b9a\u4e49\u5b50\u53e5\u7ea7\u522b\u548c\u8bcd\u8bed\u7ea7\u522b\u4e0a\u9700\u8981\u5b8c\u6210\u7684\u8fd0\u7b97":113,"\u5206\u522b\u5bf9\u5e94capi":62,"\u5206\u522b\u662f":110,"\u5206\u522b\u662frnn\u72b6\u6001\u548c\u8f93\u5165\u7684\u53d8\u6362\u77e9\u9635":114,"\u5206\u522b\u662fsentences\u548clabel":111,"\u5206\u522b\u662fwords\u548clabel":111,"\u5206\u522b\u8ba1\u7b97\u6bcf\u4e2a\u53c2\u6570\u7684\u68af\u5ea6":74,"\u5206\u522b\u8fdb\u884c\u5e8f\u5217\u64cd\u4f5c":111,"\u5206\u5e03\u5f0f\u5b58\u50a8\u670d\u52a1":11,"\u5206\u5e03\u5f0f\u8ba1\u7b97\u5e73\u53f0\u901a\u5e38\u4f1a\u901a\u8fc7api\u6216\u8005\u73af\u5883\u53d8\u91cf\u63d0\u4f9b\u4efb\u52a1\u8fd0\u884c\u9700\u8981\u7684\u53c2\u6570":94,"\u5206\u5e03\u5f0f\u8bad\u7ec3":106,"\u5206\u5e03\u5f0f\u8bad\u7ec3\u67b6\u6784\u5982\u4e0b\u56fe\u6240\u793a":92,"\u5206\u652f":[62,72],"\u5206\u652f\u4e00\u65e6\u5efa\u7acb":62,"\u5206\u652f\u4e0a":72,"\u5206\u652f\u4e0a\u521b\u5efa\u65b0\u5206\u652f":72,"\u5206\u652f\u4e2d":62,"\u5206\u652f\u4e3a\u5f00\u53d1":62,"\u5206\u652f\u4e3a\u6bcf\u4e00\u6b21release\u65f6\u5efa\u7acb\u7684\u4e34\u65f6\u5206\u652f":62,"\u5206\u652f\u4e3a\u7a33\u5b9a":62,"\u5206\u652f\u529f\u80fd\u7684\u5c01\u95ed":62,"\u5206\u652f\u5408\u5165":62,"\u5206\u652f\u5408\u5165master\u5206\u652f":62,"\u5206\u652f\u540c\u6b65\u4e3b\u7248\u672c\u5e93\u7684":62,"\u5206\u652f\u540d":72,"\u5206\u652f\u540d\u4e3a":62,"\u5206\u652f\u5b58\u5728\u7684\u65f6\u5019":62,"\u5206\u652f\u6d3e\u751f\u51fa\u65b0\u7684\u5206\u652f":62,"\u5206\u652f\u7528\u6765\u6d4b\u8bd5\u53ea\u9700\u8981\u8ba1\u7b97\u4e00\u4e2a\u8f93\u5165\u68af\u5ea6\u7684\u60c5\u51b5":75,"\u5206\u652f\u7684\u7248\u672c\u90fd\u662f\u7ecf\u8fc7\u5355\u5143\u6d4b\u8bd5\u548c\u56de\u5f52\u6d4b\u8bd5\u7684\u7248\u672c":62,"\u5206\u652f\u7684\u7248\u672c\u90fd\u7ecf\u8fc7\u5355\u5143\u6d4b\u8bd5":62,"\u5206\u652f\u89c4\u8303":72,"\u5206\u6790\u5f97\u5230\u7684\u4fe1\u606f\u7528\u4e8e\u534f\u52a9\u8fdb\u884c\u7a0b\u5e8f\u7684\u4f18\u5316":108,"\u5206\u7247":11,"\u5206\u7c7b\u4efb\u52a1\u4e2d\u7c7b\u522b\u6807\u7b7e":89,"\u5206\u914d\u5230\u5f53\u524d\u6570\u636e\u5757\u6837\u672c\u6570\u7684\u56db\u5206\u4e4b\u4e00":103,"\u5207\u6362\u5230":72,"\u5207\u6362\u5230\u6240\u5efa\u5206\u652f":72,"\u5217\u5143\u7d20\u6392\u5217\u6210\u7684\u77e9\u5f62\u9635\u5217":89,"\u5217\u540d":107,"\u5217\u8868\u5982\u4e0b":84,"\u5219\u4e0d\u9700\u8981\u91cd\u5199\u8be5\u51fd\u6570":74,"\u5219\u4f1a\u4f7f\u7528openblas\u4f5c\u4e3ablas\u5e93":1,"\u5219\u4f7f\u7528":117,"\u5219\u4f7f\u7528\u540c\u6b65\u8bad\u7ec3":103,"\u5219\u4f7f\u7528\u542f\u52a8\u53c2\u6570\u5b9a\u4e49\u7684\u521d\u59cb\u5316\u65b9\u6cd5\u521d\u59cb\u5316\u53c2\u6570":11,"\u5219\u4f7f\u7528\u8be5\u53c2\u6570\u4f5c\u4e3a\u9ed8\u8ba4\u503c":103,"\u5219\u53ef\u8bbe\u7f6e":[116,117,118],"\u5219\u5e76\u4e0d\u4f1a\u7b49\u5f85\u6240\u6709trainer\u63d0\u4ea4\u68af\u5ea6\u624d\u66f4\u65b0\u53c2\u6570":92,"\u5219\u5ffd\u7565":11,"\u5219\u603b\u4f1a\u663e\u793a\u963b\u9694\u6458\u8981\u4fe1\u606f":103,"\u5219\u628a\u53e6\u4e00\u4e2a\u6162\u901f\u7684kill\u6389":11,"\u5219\u662f\u5e26gui\u7684nvidia\u53ef\u89c6\u5316\u6027\u80fd\u5206\u6790\u5de5\u5177":108,"\u5219\u663e\u793a\u963b\u9694\u6027\u80fd\u7684\u6458\u8981\u4fe1\u606f":103,"\u5219\u76f4\u63a5\u5f15\u5165\u53e6\u4e00\u79cd\u7c7b\u578b\u7684\u5934\u6587\u4ef6":46,"\u5219\u8bbe\u7f6e\u6210":[116,118],"\u5219\u9700\u8981\u4f7f\u7528\u7b49\u4e8e\u6743\u91cd\u53c2\u6570\u89c4\u6a21\u5927\u7ea65\u500d\u7684\u5185\u5b58":81,"\u5219\u9700\u8981\u5206\u522b\u7f16\u8bd1\u771f\u673a\u548c\u6a21\u62df\u5668\u7248\u672c":117,"\u5219\u9700\u8981\u56de\u6eda\u5230\u4e0a\u4e00\u4e2a\u68c0\u67e5\u70b9":11,"\u5219\u9700\u8981\u5728\u672c\u673a\u5b89\u88c5\u4e0b\u9762\u7ae0\u8282\u5217\u51fa\u7684":1,"\u5219\u9700\u8981\u624b\u52a8\u62f7\u8d1d\u5c5e\u4e8e\u6bcf\u4e2atrainer\u8282\u70b9\u7684\u8bad\u7ec3\u6570\u636e\u5230\u5bf9\u5e94\u7684\u8282\u70b9\u4e0a":91,"\u521b\u5efa":[42,89,90],"\u521b\u5efa\u4e00\u4e2a":86,"\u521b\u5efa\u4e00\u4e2akubernet":97,"\u521b\u5efa\u5e76\u5207\u6362\u5230\u65b0\u5206\u652f":72,"\u521b\u5efa\u6210\u529f\u540e":97,"\u521b\u5efa\u65e5\u5fd7\u76ee\u5f55":98,"\u521b\u5efa\u7a00\u758f\u77e9\u9635\u65f6\u9700\u8981\u663e\u793a\u5730\u6307\u5b9a\u77e9\u9635\u7684":89,"\u521d\u59cb\u5316\u504f\u7f6e\u5411\u91cf":74,"\u521d\u59cb\u5316\u6743\u91cd\u8868":74,"\u521d\u59cb\u5316\u6a21\u578b\u7684\u8def\u5f84":103,"\u521d\u59cb\u5316\u7236\u7c7b":74,"\u521d\u59cb\u5316biases_":74,"\u521d\u59cb\u72b6\u6001":113,"\u5220\u9664":72,"\u5220\u9664\u78c1\u76d8\u76ee\u5f55\u4e2d\u4e0d\u662f\u5f53\u524duuid\u7684\u5feb\u7167\u6587\u4ef6":11,"\u5224\u65ad\u662f\u5426\u5b89\u88c5\u6210\u529f":117,"\u5229\u7528\u5206\u5e03\u5f0f\u8bad\u7ec3\u9a7e\u9a6d\u66f4\u591a\u7684\u8ba1\u7b97\u8d44\u6e90":81,"\u5229\u7528\u66f4\u591a\u7684\u8ba1\u7b97\u8d44\u6e90\u53ef\u4ee5\u5206\u4e3a\u4ee5\u4e0b\u51e0\u4e2a\u65b9\u5f0f\u6765\u8fdb\u884c":81,"\u5229\u7528\u8fd9\u79cd\u7279\u6027":113,"\u522b\u4eba\u5e2e\u4e86\u5fd9":72,"\u522b\u5fd8\u4e86":0,"\u5230":[11,78,114],"\u5230\u6307\u5b9a\u6587\u4ef6\u4e2d":90,"\u5230\u672c\u5730":72,"\u5230\u6b64":75,"\u5230\u7b2c\u4e8c\u6b65":62,"\u5236\u4f5c\u65b0\u955c\u50cf\u6765\u5b8c\u6210\u4ee5\u4e0a\u7684\u5de5\u4f5c":97,"\u5236\u4f5cpaddlepaddle\u955c\u50cf":97,"\u524d\u4e00\u7bc7\u6587\u7ae0\u4ecb\u7ecd\u4e86\u5982\u4f55\u5728kubernetes\u96c6\u7fa4\u4e0a\u542f\u52a8\u4e00\u4e2a\u5355\u673apaddlepaddle\u8bad\u7ec3\u4f5c\u4e1a":97,"\u524d\u540e\u7684\u7f51\u7edc\u6027\u80fd":41,"\u524d\u5411\u4f20\u64ad":74,"\u524d\u5411\u4f20\u64ad\u7ed9\u5b9a\u8f93\u5165":74,"\u524d\u5411\u548c\u540e\u5411":74,"\u524d\u5411\u8ba1\u7b97\u4e4b\u540epaddlepaddle\u5185\u90e8\u5df2\u7ecf\u5206\u914d":90,"\u524d\u5411op\u5b9e\u73b0\u5b8c\u6210":75,"\u524d\u8005\u5728":81,"\u524d\u8005\u5b58\u50a8op\u7684\u8f93\u5165\u8f93\u51fa\u548c\u53c2\u6570\u5c5e\u6027":75,"\u524d\u8005\u622a\u65ad\u53ef\u5b66\u4e60\u53c2\u6570\u7684\u68af\u5ea6":81,"\u524d\u8005op\u7684\u5b9a\u4e49\u7ee7\u627f\u81ea":75,"\u524d\u81ea\u52a8\u68c0\u67e5\u4e00\u4e9b\u57fa\u672c\u4e8b\u5b9c":72,"\u524d\u9700\u8981\u5b89\u88c5":107,"\u524d\u9988":92,"\u529f\u80fd":28,"\u529f\u80fd\u7684\u6b63\u786e\u6027\u5305\u62ec\u9a8c\u8bc1paddlepaddle\u76ee\u524d\u7684":62,"\u52a0\u4e0a\u504f\u7f6e\u5411\u91cf":74,"\u52a0\u5165":108,"\u52a0\u6743\u548c\u7528\u6765\u751f\u6210":114,"\u52a0\u6743\u7f16\u7801\u5411\u91cf":114,"\u52a0\u8f7d\u5177\u4f53\u7f51\u7edc\u53c2\u6570":83,"\u52a0\u8f7d\u6a21\u578b\u53ef\u5176\u5b83\u591a\u79cd\u65b9\u5f0f":90,"\u52a0\u8f7d\u6a21\u578b\u9700\u540c\u65f6\u6307\u5b9a":90,"\u52a0\u8f7d\u9884\u6d4b\u6a21\u578b":90,"\u52a0\u8f7d\u9884\u8bad\u7ec3\u53c2\u6570":83,"\u52a0\u8f7dtest":103,"\u52a0\u901f\u7f16\u8bd1":1,"\u52a0\u901fpaddlepaddle\u8bad\u7ec3\u53ef\u4ee5\u8003\u8651\u4ece\u4ee5\u4e0b\u51e0\u4e2a\u65b9\u9762":81,"\u52a8\u6001\u5e93":[45,87],"\u52a9\u624b":74,"\u5305":107,"\u5305\u542b\u4e86\u67d0\u79cd\u7c7b\u578b\u7684\u7c7b\u578b\u5b9a\u4e49\u548c\u66b4\u9732\u7684\u5168\u90e8\u51fd\u6570":46,"\u5305\u542b\u4f46\u4e0d\u9650\u4e8e":1,"\u5305\u542b\u6d4b\u8bd5\u6570\u636e\u96c6\u7684\u76ee\u5f55":91,"\u5305\u542b\u8bad\u7ec3\u6570\u636e\u7684\u76ee\u5f55":91,"\u5305\u542b\u8fd9\u4e2a\u51fd\u6570\u8c03\u7528\u5176\u4ed6\u51fd\u6570\u7684\u65f6\u95f4":107,"\u5305\u542bkernel\u7684op\u548c\u4e0d\u5305\u542bkernel\u7684op":75,"\u5305\u62ec":[12,41,42,87,94,103],"\u5305\u62ec\u4e86\u7f16\u8bd1\u51fa\u7684paddlepaddle\u5934\u6587\u4ef6\u548c\u94fe\u63a5\u5e93":87,"\u5305\u62ec\u5b57\u7b26\u4e32\u5206\u914d":81,"\u5305\u62ec\u6743\u91cdw\u548c\u504f\u7f6eb":11,"\u5305\u62ec\u751f\u6210cpu":1,"\u5305\u62ec\u795e\u7ecf\u7f51\u7edc\u62d3\u6251\u7ed3\u6784":84,"\u5305\u62ecbool":105,"\u5305\u62eclinux":116,"\u5305\u62ecmkl":42,"\u5305\u7684\u65b9\u6cd5\u662f":78,"\u533a\u522b\u662f\u540c\u65f6\u5904\u7406\u4e86\u4e24\u4e2a\u8f93\u5165":111,"\u533a\u522b\u662frnn\u4f7f\u7528\u4e24\u5c42\u5e8f\u5217\u6a21\u578b":111,"\u534f\u540c\u5b8c\u6210releas":62,"\u5355\u4e2a\u503c":12,"\u5355\u4f4d\u662fmb":103,"\u5355\u5143\u6d4b\u8bd5":[0,76],"\u5355\u5143\u6d4b\u8bd5\u4f1a\u5f15\u7528site":78,"\u5355\u5143\u6d4b\u8bd5\u4f1a\u88ab\u81ea\u52a8\u52a0\u5165\u5de5\u7a0b\u8fdb\u884c\u7f16\u8bd1":75,"\u5355\u5143\u6d4b\u8bd5\u5728\u5185\u7684\u6240\u6709\u5355\u5143\u6d4b\u8bd5":0,"\u5355\u5143\u6d4b\u8bd5checkgrad_ep":102,"\u5355\u53cc\u5c42\u5e8f\u5217\u7684\u53e5\u5b50\u662f\u4e00\u6837\u7684":111,"\u5355\u53cc\u5c42rnn":112,"\u5355\u5c42":113,"\u5355\u5c42\u4e0d\u7b49\u957frnn":111,"\u5355\u5c42\u548c\u53cc\u5c42\u5e8f\u5217\u7684\u4f7f\u7528\u548c\u793a\u4f8b2\u4e2d\u7684\u793a\u4f8b\u7c7b\u4f3c":111,"\u5355\u5c42\u5e8f\u5217":[89,110],"\u5355\u5c42\u5e8f\u5217\u7684\u6bcf\u4e2a\u5143\u7d20":110,"\u5355\u5c42\u5e8f\u5217\u7b2ci\u4e2a\u5143\u7d20":110,"\u5355\u5c42\u6216\u53cc\u5c42":110,"\u5355\u5c42\u65f6\u95f4\u5e8f\u5217":111,"\u5355\u5c42rnn":[111,113],"\u5355\u5c42rnn\u548c\u53cc\u5c42rnn\u7684\u7f51\u7edc\u914d\u7f6e":111,"\u5355\u673acpu\u8bad\u7ec3":81,"\u5355\u673agpu\u8bad\u7ec3":81,"\u5355\u6b65\u51fd\u6570":114,"\u5355\u6b65\u51fd\u6570\u548c\u8f93\u51fa\u51fd\u6570\u5728":114,"\u5355\u6b65\u51fd\u6570\u548c\u8f93\u51fa\u51fd\u6570\u90fd\u975e\u5e38\u7b80\u5355":114,"\u5355\u6b65\u51fd\u6570\u7684\u5b9e\u73b0\u5982\u4e0b\u6240\u793a":114,"\u5355\u6d4b\u5305\u62ec\u5bf9\u6bd4\u524d\u5411op\u4e0d\u540c\u8bbe\u5907":75,"\u5355\u70b9\u6545\u969c":11,"\u5355\u7eaf\u7684":107,"\u5355\u8fdb\u5355\u51fa":113,"\u5360\u7528\u4e8617":107,"\u5373":[46,75,77,81,82,97],"\u5373\u4e0a\u8ff0\u4ee3\u7801\u4e2d\u7684\u7b2c19\u884c":111,"\u5373\u4e0b\u8f7d\u5931\u8d25":78,"\u5373\u4e0d\u5141\u8bb8\u5728":75,"\u5373\u4e0d\u9700\u8981\u4f7f\u7528memori":111,"\u5373\u4e3a\u4e00\u4e2a\u65f6\u95f4\u6b65":111,"\u5373\u4e3a\u5355\u5c42rnn\u5e8f\u5217\u7684\u4f7f\u7528\u4ee3\u7801":111,"\u5373\u4e3a\u65f6\u95f4\u5e8f\u5217\u7684\u8f93\u5165":111,"\u5373\u4e3a\u8fd9\u4e2a\u53cc\u5c42rnn\u7684\u7f51\u7edc\u7ed3\u6784":111,"\u5373\u4e8c\u7ef4\u6570\u7ec4":111,"\u5373\u4f7f\u7528":[46,82],"\u5373\u4f7f\u7528\u6237\u76f4\u63a5\u5f15\u7528\u67d0\u79cd\u7c7b\u578b\u7684\u5934\u6587\u4ef6":46,"\u5373\u4f7f\u95f4\u9694\u5f88\u5c0f":103,"\u5373\u4f7fc":46,"\u5373\u4f8b\u5982":46,"\u5373\u4fbf\u662f":0,"\u5373\u4fbf\u8bbe\u7f6e":78,"\u5373\u4fbfpaddl":46,"\u5373\u521d\u59cb\u72b6\u6001\u4e3a0":113,"\u5373\u5355\u65f6\u95f4\u6b65\u6267\u884c\u7684\u51fd\u6570":114,"\u5373\u53cc\u5c42\u65f6\u95f4\u5e8f\u5217":111,"\u5373\u53cc\u5c42rnn\u7684\u6bcf\u4e2a\u72b6\u6001":113,"\u5373\u53ef":72,"\u5373\u53ef\u4ee5\u6781\u5927\u7684\u52a0\u901f\u6570\u636e\u8f7d\u5165\u6d41\u7a0b":81,"\u5373\u53ef\u4f7f\u7528\u5f00\u53d1\u955c\u50cf\u6765\u7f16\u8bd1android\u7248paddlepaddl":116,"\u5373\u53ef\u5728":118,"\u5373\u53ef\u5f00\u59cb\u4e0b\u8f7d":4,"\u5373\u53ef\u5f00\u59cb\u4e0b\u9762\u7684\u6b65\u9aa4":2,"\u5373\u53ef\u663e\u793a\u6027\u80fd\u5206\u6790\u7684\u7ed3\u679c":107,"\u5373\u53ef\u68c0\u67e5\u6211\u4eec\u8c03\u4f18\u540e\u7684\u4fee\u6b63\u662f\u5426\u80fd\u591f\u6539\u5584\u7a0b\u5e8f\u7684\u6027\u80fd":107,"\u5373\u5728\u53cc\u5c42\u5e8f\u5217\u7684\u539f\u59cb\u6570\u636e\u4e2d":111,"\u5373\u5728\u7f51\u7edc\u914d\u7f6e\u4e2d":81,"\u5373\u5927\u90e8\u5206\u503c\u4e3a0":84,"\u5373\u5b8c\u6210\u67d0\u4e00\u4e2a\u4efb\u52a1\u7684\u6700\u5c11\u51fd\u6570":46,"\u5373\u5c06\u4e00\u6bb5\u8bdd\u8fdb\u884c\u5206\u7c7b":111,"\u5373\u5c06nchw\u8f6c\u6362\u6210nhwc":82,"\u5373\u5f53\u524d\u65f6\u95f4\u6b65\u4e0b\u7684\u795e\u7ecf\u7f51\u7edc\u4f9d\u8d56\u524d\u4e00\u4e2a\u65f6\u95f4\u6b65\u795e\u7ecf\u7f51\u7edc\u4e2d\u67d0\u4e00\u4e2a\u795e\u7ecf\u5143\u8f93\u51fa":111,"\u5373\u6211\u4eec\u53ef\u4ee5\u5148\u5b9a\u4e49\u4e00\u4e2atensor":76,"\u5373\u628a\u5355\u5c42rnn\u751f\u6210\u540e\u7684subseq\u7ed9\u62fc\u63a5\u6210\u4e00\u4e2a\u65b0\u7684\u53cc\u5c42seq":113,"\u5373\u6574\u4e2a\u53cc\u5c42group\u662f\u5c06\u524d\u4e00\u4e2a\u5b50\u53e5\u7684\u6700\u540e\u4e00\u4e2a\u5411\u91cf":111,"\u5373\u6574\u4e2a\u8f93\u5165\u5e8f\u5217":110,"\u5373\u6574\u6570\u6570\u7ec4":111,"\u5373\u65f6\u95f4\u9012\u5f52\u795e\u7ecf\u7f51\u7edc":111,"\u5373\u662f\u8de8\u8d8a\u65f6\u95f4\u6b65\u7684\u7f51\u7edc\u8fde\u63a5":111,"\u5373\u66b4\u9732":46,"\u5373\u7279\u5f81\u7684\u6570\u7ec4":111,"\u5373\u7f51\u5361\u540d":97,"\u5373\u8868\u793a\u4e0d\u9700\u8981\u8f6c\u6362":42,"\u5373\u8bad\u7ec3\u8fc7\u7a0b\u4e2d\u51fa\u73b0nan\u6216\u8005inf":81,"\u5373\u8bbe\u7f6e":81,"\u5373\u8fd0\u884c\u8bad\u7ec3\u7a0b\u5e8f":2,"\u5373\u8fd9\u4e2a\u52a8\u6001\u5e93\u662f\u4e0d\u4f9d\u8d56\u4e8e\u5176\u4ed6\u4efb\u4f55\u6587\u4ef6\u7684":45,"\u5373define_py_data_sources2\u5e94\u6539\u4e3a":83,"\u5373input":113,"\u5373rnn\u4e4b\u95f4\u6709\u4e00\u6b21\u5d4c\u5957\u5173\u7cfb":111,"\u5378\u8f7dpaddlepaddle\u5305":78,"\u538b\u6241\u6210\u4e3aeigen\u7684\u4e00\u7ef4tensor":76,"\u538b\u7f29\u6210\u4e00\u4e2a\u5411\u91cf":111,"\u539f\u56e0":[72,78],"\u539f\u56e0\u5728\u4e8e\u6ca1\u6709\u628a\u673a\u5668\u4e0acuda\u76f8\u5173\u7684\u9a71\u52a8\u548c\u5e93\u6620\u5c04\u5230\u5bb9\u5668\u5185\u90e8":78,"\u539f\u56e0\u662f\u6bcf\u4e2a\u56de\u590d\u90fd\u4f1a\u53d1\u9001\u4e00\u5c01\u90ae\u4ef6":72,"\u539f\u6765\u7684\u65b9\u6848":42,"\u53c2\u6570":[0,45,74,81,90,97,102],"\u53c2\u6570\u4e3a":75,"\u53c2\u6570\u5171\u4eab\u7684\u914d\u7f6e\u793a\u4f8b\u4e3a":83,"\u53c2\u6570\u548c\u73af\u5883\u53d8\u91cf":91,"\u53c2\u6570\u670d\u52a1\u5668":[92,102],"\u53c2\u6570\u670d\u52a1\u5668\u4e4b\u95f4\u4e0d\u76f8\u4e92\u4f9d\u8d56":92,"\u53c2\u6570\u670d\u52a1\u5668\u4e5f\u4e0d\u4f1a\u7b49\u5f85\u8ba1\u7b97\u8282\u70b9\u5168\u90e8\u90fd\u63d0\u4ea4\u68af\u5ea6\u4e4b\u540e\u624d\u5f00\u59cb\u4e0b\u4e00\u6b65":92,"\u53c2\u6570\u670d\u52a1\u5668\u63a5\u6536\u4ece\u8ba1\u7b97\u8282\u70b9\u4e0a\u4f20\u7684\u68af\u5ea6":92,"\u53c2\u6570\u670d\u52a1\u5668\u7684\u53c2\u6570\u5206\u5757\u5927\u5c0f":103,"\u53c2\u6570\u670d\u52a1\u5668\u7684\u76d1\u542c\u7aef\u53e3":103,"\u53c2\u6570\u670d\u52a1\u5668\u7684\u7f51\u7edc\u8bbe\u5907\u540d\u79f0":103,"\u53c2\u6570\u670d\u52a1\u5668\u7684ip\u5730\u5740":103,"\u53c2\u6570\u670d\u52a1\u5668\u7a00\u758f\u66f4\u65b0\u7684\u53c2\u6570\u5206\u5757\u5927\u5c0f":103,"\u53c2\u6570\u6765\u63a7\u5236\u7f13\u5b58\u65b9\u6cd5":81,"\u53c2\u6570\u6982\u8ff0":104,"\u53c2\u6570\u7684\u4e2a\u6570\u548c\u53c2\u6570\u5217\u8868":90,"\u53c2\u6570\u7684\u89e3\u6790":97,"\u53c2\u6570\u8bbe\u7f6e":80,"\u53c2\u6570\u8bbe\u7f6e\u4e86\u5916\u5c42":111,"\u53c2\u6570\u8bf4\u660e":91,"\u53c2\u6570\u8bf4\u660e\u5bb9\u5668\u5df2\u4ea4\u4e92\u5f0f\u8fd0\u884c":2,"\u53c2\u6570\u8f93\u5165":81,"\u53c2\u6570\u9700\u8981\u5b9e\u73b0":114,"\u53c2\u7167\u4e0a\u8ff0\u6b65\u9aa4\u66f4\u65b0":72,"\u53c2\u8003":[2,28,45],"\u53c2\u8003\u4e0b\u56fe":62,"\u53c2\u8003\u5f3a\u8c03\u90e8\u5206":108,"\u53c2\u8003\u65f6\u95f4\u5e8f\u5217":111,"\u53c2\u8003\u6837\u4f8b\u6570\u636e\u51c6\u5907\u811a\u672c":91,"\u53c2\u8003\u955c\u50cf\u7684":97,"\u53c8\u53ef\u4ee5\u907f\u514d\u4e0d\u5fc5\u8981\u7684\u8f6c\u6362":42,"\u53c8\u662f\u4e00\u4e2a\u5355\u5c42\u7684\u5e8f\u5217":110,"\u53c8\u8981\u4fdd\u8bc1\u6570\u636e\u662f\u968f\u673a\u7684":81,"\u53ca":74,"\u53cc\u5411\u95e8\u63a7\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u7684\u9690\u85cf\u72b6\u6001":114,"\u53cc\u5411\u9a8c\u8bc1":28,"\u53cc\u5c42":113,"\u53cc\u5c42\u4e0d\u7b49\u957frnn":111,"\u53cc\u5c42\u5e8f\u5217":[89,110],"\u53cc\u5c42\u5e8f\u5217\u5728\u5904\u7406\u957f\u5e8f\u5217\u7684\u4efb\u52a1\u6216\u662f\u6784\u5efa\u5c42\u7ea7\u6a21\u578b\u65f6\u4f1a\u53d1\u6325\u4f5c\u7528":89,"\u53cc\u5c42\u5e8f\u5217\u6216\u5355\u5c42\u5e8f\u5217":110,"\u53cc\u5c42\u5e8f\u5217\u6570\u636e\u4e00\u5171\u67094\u4e2a\u6837\u672c":111,"\u53cc\u5c42\u5e8f\u5217\u662f\u4e00\u4e2a\u5d4c\u5957\u7684\u5e8f\u5217":110,"\u53cc\u5c42\u5e8f\u5217\u662fpaddlepaddle\u652f\u6301\u7684\u4e00\u79cd\u975e\u5e38\u7075\u6d3b\u7684\u6570\u636e\u7ec4\u7ec7\u65b9\u5f0f":113,"\u53cc\u5c42\u5e8f\u5217\u6bcf\u4e2asubseq\u4e2d\u6bcf\u4e2a\u5143\u7d20":110,"\u53cc\u5c42\u5e8f\u5217\u7ecf\u8fc7\u8fd0\u7b97\u53d8\u6210\u4e00\u4e2a0\u5c42\u5e8f\u5217":110,"\u53cc\u5c42\u5e8f\u5217\u9700\u8981\u8bbe\u7f6e\u5206\u522b\u4e3a\u5916\u5c42\u5e8f\u5217\u548c\u5185\u5c42\u5e8f\u5217\u5206\u522b\u8bbe\u7f6e":89,"\u53cc\u5c42\u6216\u8005\u5355\u5c42":110,"\u53cc\u5c42\u65f6\u95f4\u5e8f\u5217\u7684dataprovider\u7684\u4ee3\u7801":111,"\u53cc\u5c42rnn":113,"\u53cc\u5c42rnn\u6570\u636e\u968f\u610f\u52a0\u4e86\u4e00\u4e9b\u9694\u65ad":111,"\u53cc\u5c42rnn\u987e\u540d\u601d\u4e49":111,"\u53cc\u8fdb\u5355\u51fa":113,"\u53cc\u8fdb\u53cc\u51fa":113,"\u53cd\u5411\u4f20\u64ad":74,"\u53cd\u5411\u4f20\u64ad\u6839\u636e\u8f93\u51fa\u7684\u68af\u5ea6":74,"\u53cd\u5411\u8ba1\u7b97\u5df2\u7ecf\u81ea\u52a8\u96c6\u6210\u8fdb\u6d4b\u8bd5\u6846\u67b6":75,"\u53cd\u5411op\u7684\u68af\u5ea6\u6d4b\u8bd5":75,"\u53cd\u5411op\u7c7b":75,"\u53cd\u5411op\u7c7b\u7684\u5b9a\u4e49":75,"\u53cd\u5411opkernel\u7684\u5b9a\u4e49\u4e0e\u524d\u5411op\u7c7b\u4f3c":75,"\u53d1\u578b\u7248":62,"\u53d1\u5e03\u5230dockerhub":62,"\u53d1\u5e03docker\u955c\u50cf\u53ea\u9700\u8981\u5bf9\u81ea\u52a8push\u7684\u955c\u50cf\u6253\u4e0a":62,"\u53d1\u6563\u5230\u4e86\u4e00\u4e2a\u6570\u503c\u7279\u522b\u5927\u7684\u5730\u65b9":81,"\u53d1\u884c\u548c\u7ef4\u62a4":72,"\u53d1\u9001\u53c2\u6570\u7684\u7aef\u53e3\u53f7":103,"\u53d6\u503c\u76f8\u540c\u7684layer":82,"\u53d6\u5176\u4e2d\u4e00\u4e2a\u6a21\u578bparams_pass_90":84,"\u53d6\u51b3\u4e8e":75,"\u53d8\u6362\u77e9\u9635":74,"\u53d8\u91cf\u6765\u533a\u5206layer\u7684\u5c5e\u6027":42,"\u53e5\u5b50\u662f\u7531\u8bcd\u8bed\u6784\u6210\u7684\u5e8f\u5217":89,"\u53e6\u4e00\u4e2a\u65b9\u6cd5\u662f\u4ea4\u53c9\u7f16\u8bd1":118,"\u53e6\u4e00\u4e2a\u662f\u5185\u5b58\u64cd\u4f5c\u91cf":108,"\u53e6\u4e00\u4e2a\u662f\u6bcf\u6761\u5e8f\u5217":81,"\u53e6\u4e00\u79cd\u65b9\u5f0f\u662f\u5c06\u7f51\u7edc\u5c42\u5212\u5206\u5230\u4e0d\u540c\u7684gpu\u4e0a\u53bb\u8ba1\u7b97":105,"\u53e6\u5916":[0,111],"\u53e6\u5916\u6700\u65b0\u7684pip\u5b98\u65b9\u6e90\u4e2d\u7684\u5b89\u88c5\u5305\u9ed8\u8ba4\u662fmanylinux1\u6807\u51c6":4,"\u53ea\u4f5c\u4e3aread":113,"\u53ea\u4fdd\u5b58\u6700\u540e\u4e00\u8f6e\u7684\u53c2\u6570":103,"\u53ea\u5728\u7b2c\u4e00\u6b21cmake\u7684\u65f6\u5019\u6709\u6548":1,"\u53ea\u5bf9\u7279\u6b8a\u5728\u7ebf\u7cfb\u7edf\u8003\u8651\u4e24\u53f0\u4ee5\u4e0a\u540c\u65f6\u6545\u969c\u7684\u5bb9\u707e":11,"\u53ea\u5bf9\u795e\u7ecf\u7f51\u7edc\u7ed3\u6784\u8fdb\u884c\u5e8f\u5217\u5316":90,"\u53ea\u5c06\u795e\u7ecf\u7f51\u7edc\u7ed3\u6784\u8fdb\u884c\u5e8f\u5217\u5316":90,"\u53ea\u662f\u53cc\u5c42\u5e8f\u5217\u5c06\u5176\u53c8\u505a\u4e86\u5b50\u5e8f\u5217\u5212\u5206":111,"\u53ea\u66b4\u9732\u6982\u5ff5\u7684\u63a5\u53e3":46,"\u53ea\u6709\u5728\u9047\u5230\u9700\u8981":3,"\u53ea\u6709\u5f53\u8bbe\u7f6e\u4e86spars":103,"\u53ea\u7528\u4e8e\u5728\u5e8f\u5217\u751f\u6210\u4efb\u52a1\u4e2d\u6307\u5b9a\u8f93\u5165\u6570\u636e":113,"\u53ea\u7559\u4e0b\u6838\u5fc3\u8ba1\u7b97\u5c42":90,"\u53ea\u80fd\u5728recurrent_group\u4e2d\u4f5c\u4e3astep":82,"\u53ea\u80fd\u6309\u884c\u8ba1\u7b97":82,"\u53ea\u80fd\u6d4b\u8bd5\u5355\u4e2a\u6a21\u578b":105,"\u53ea\u80fd\u8bbf\u95ee\u5b83\u4eec\u7684\u8f93\u51fa\u503c":82,"\u53ea\u80fd\u8c03\u7528paddle\u7684\u52a8\u6001\u5e93":45,"\u53ea\u8981\u4e00\u7cfb\u5217\u7279\u5f81\u6570\u636e\u4e2d\u7684":111,"\u53ea\u8981\u51fa\u73b0\u6d6e\u70b9\u6570\u5f02\u5e38":81,"\u53ea\u8bfbmemory\u8f93\u5165":113,"\u53ea\u9488\u5bf9\u5185\u5b58":81,"\u53ea\u9700\u4e2d\u65ad":93,"\u53ea\u9700\u5728\u7f16\u8bd1\u65f6\u9700\u914d\u5236\u4e0b\u9762\u8fd9\u4e9b\u7f16\u8bd1\u9009\u9879":87,"\u53ea\u9700\u7528\u60a8\u5b9a\u4e49\u7684\u76ee\u5f55\u4fee\u6539":93,"\u53ea\u9700\u8981":114,"\u53ea\u9700\u8981\u6062\u590d\u8fd9\u53f0\u8282\u70b9":11,"\u53ea\u9700\u8981\u8bbe\u7f6e\u884c\u504f\u79fb":89,"\u53ea\u9700\u8981\u94fe\u63a5":87,"\u53ea\u9700\u8fdb\u884c\u524d\u5411\u8ba1\u7b97\u800c\u65e0\u9700\u8c03\u7528\u53cd\u5411\u8ba1\u7b97":90,"\u53ef\u4ee5":[2,62,72,77],"\u53ef\u4ee5\u4ece":2,"\u53ef\u4ee5\u4ece\u6211\u4eec\u7684ci\u7cfb\u7edf\u4e2d\u4e0b\u8f7d\u6700\u65b0\u7684whl\u5b89\u88c5\u5305\u548cc":4,"\u53ef\u4ee5\u4f30\u8ba1\u51fa\u5982\u679c\u6a21\u578b\u91c7\u7528\u4e0d\u53d8\u7684\u8f93\u51fa\u6700\u5c0f\u7684cost0\u662f\u591a\u5c11":83,"\u53ef\u4ee5\u4f7f\u7528":[83,90,94],"\u53ef\u4ee5\u4f7f\u7528\u4e0b\u9762\u7684\u547d\u4ee4\u66f4\u65b0\u60a8\u7684pip":4,"\u53ef\u4ee5\u4f7f\u7528\u5982\u4e0b\u4ee3\u7801":83,"\u53ef\u4ee5\u4f7f\u7528\u76f8\u5e94\u6570\u636e\u7c7b\u578b\u7684":83,"\u53ef\u4ee5\u4f7f\u7528\u8be5\u53c2\u6570":103,"\u53ef\u4ee5\u4f7f\u7528kubernetes\u7684\u547d\u4ee4\u884c\u5de5\u5177\u521b\u5efajob":97,"\u53ef\u4ee5\u5148\u4f7f\u7528":82,"\u53ef\u4ee5\u51cf\u5c0f\u7cfb\u7edf\u590d\u6742\u6027":11,"\u53ef\u4ee5\u51cf\u5c11\u7f13\u5b58\u6c60\u7684\u5927\u5c0f":81,"\u53ef\u4ee5\u521b\u5efa\u4e00\u4e2a":96,"\u53ef\u4ee5\u521b\u5efa\u975e":75,"\u53ef\u4ee5\u52a0\u901fpaddlepaddle\u7684\u8ba1\u7b97":2,"\u53ef\u4ee5\u53c2\u8003":[0,2,72,111,114],"\u53ef\u4ee5\u53c2\u8003\u4e0b\u9762\u7684\u6b65\u9aa4\u6392\u67e5":79,"\u53ef\u4ee5\u53c2\u8003paddlepaddl":84,"\u53ef\u4ee5\u540c\u65f6\u5728cpu":76,"\u53ef\u4ee5\u542b\u6709\u4e00\u6761\u6216\u591a\u6761\u6837\u672c":89,"\u53ef\u4ee5\u544a\u8bc9\u60a8\u67d0\u4e2a\u64cd\u4f5c\u5230\u5e95\u82b1\u4e86\u591a\u957f\u65f6\u95f4":108,"\u53ef\u4ee5\u5728":[1,93],"\u53ef\u4ee5\u5728\u4efb\u4f55\u673a\u5668\u4e0a\u6267\u884c\u7684":45,"\u53ef\u4ee5\u5728\u5171\u4eab\u5b58\u50a8\u4e0a\u67e5\u770b\u8f93\u51fa\u7684\u65e5\u5fd7\u548c\u6a21\u578b":97,"\u53ef\u4ee5\u5728\u6b64\u9875\u9762\u7684":62,"\u53ef\u4ee5\u5728\u8fd9\u4e2a":72,"\u53ef\u4ee5\u5728event_handler\u4e2d":81,"\u53ef\u4ee5\u5b8c\u6210\u795e\u7ecf\u7f51\u7edc\u7684sgd\u65b9\u6cd5\u7684\u8bad\u7ec3":92,"\u53ef\u4ee5\u5b9e\u73b0\u4ecepaddl":76,"\u53ef\u4ee5\u5c06cmake":107,"\u53ef\u4ee5\u5c06memory\u7406\u89e3\u4e3a\u4e00\u4e2a\u65f6\u5ef6\u64cd\u4f5c":113,"\u53ef\u4ee5\u5c06op\u5206\u4e3a\u4e24\u79cd":75,"\u53ef\u4ee5\u5c1d\u8bd5\u4ee5\u4e0b\u7684\u65b9\u6cd5":2,"\u53ef\u4ee5\u5e2e\u60a8\u63d0\u4f9b\u4e00\u4e9b\u5b9a\u4f4d\u6027\u80fd\u74f6\u9888\u7684\u5efa\u8bae":108,"\u53ef\u4ee5\u5e76\u884c\u7f16\u8bd1\u5417":0,"\u53ef\u4ee5\u5feb\u901f\u5728\u672c\u5730\u542f\u52a8\u4e00\u4e2a\u5305\u542b\u4e86paddlepaddle\u5b98\u65b9book\u6559\u7a0b\u7684jupyt":2,"\u53ef\u4ee5\u6267\u884c":[4,78],"\u53ef\u4ee5\u6267\u884c\u4ee5\u4e0b\u547d\u4ee4\u7f16\u8bd1\u751f\u6210\u6587\u6863":77,"\u53ef\u4ee5\u6267\u884cctest\u547d\u4ee4\u5373\u53ef":1,"\u53ef\u4ee5\u628a\u5b83\u60f3\u8c61\u4e3a\u4e00\u4e2a\u7c7b\u4f3c":0,"\u53ef\u4ee5\u628a\u672c\u5730\u7684\u6570\u636e\u4e0a\u4f20\u5230\u5b58\u50a8\u96c6\u7fa4\u4e2d":12,"\u53ef\u4ee5\u6307\u5b9a\u540c\u65f6\u6267\u884cgpu\u4e0a\u7684\u5355\u5143\u6d4b\u8bd5":1,"\u53ef\u4ee5\u6307\u5b9a\u54ea\u4e00\u4e2a\u8f93\u5165\u548c\u8f93\u51fa\u5e8f\u5217\u4fe1\u606f\u4e00\u81f4":111,"\u53ef\u4ee5\u6307\u5b9a\u5f00\u542f\u81ea\u52a8\u68c0\u6d4bsm\u67b6\u6784":1,"\u53ef\u4ee5\u6309\u7167\u4e0b\u9762\u7684\u65b9\u6cd5":1,"\u53ef\u4ee5\u662f\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":[110,113],"\u53ef\u4ee5\u662f\u4e00\u4e2a\u975e\u5e8f\u5217":113,"\u53ef\u4ee5\u662f\u4ece\u5206\u5e03\u5f0f\u5b58\u50a8\u6302\u8f7d\u8fc7\u6765\u7684":91,"\u53ef\u4ee5\u662f\u4ee5\u4e0b\u51e0\u79cd":74,"\u53ef\u4ee5\u662f\u6574\u578b":89,"\u53ef\u4ee5\u663e\u793a\u5730\u6307\u5b9a\u4e00\u4e2alayer\u7684\u8f93\u51fa\u7528\u4e8e\u521d\u59cb\u5316memori":113,"\u53ef\u4ee5\u66f4\u6709\u6b21\u5e8f\u7684\u5b8c\u6210\u6027\u80fd\u7684\u4f18\u5316":107,"\u53ef\u4ee5\u6709\u4ee5\u4e0b\u4e24\u79cd":113,"\u53ef\u4ee5\u6709\u6548\u51cf\u5c0f\u7f51\u7edc\u7684\u963b\u585e":103,"\u53ef\u4ee5\u6709\u6548\u7684\u907f\u514dparamet":11,"\u53ef\u4ee5\u67e5\u770b":97,"\u53ef\u4ee5\u67e5\u770b\u6b64pod\u8fd0\u884c\u7684\u5bbf\u4e3b\u673a":96,"\u53ef\u4ee5\u6d4b\u8bd5\u591a\u4e2a\u6a21\u578b":105,"\u53ef\u4ee5\u7528":[0,28],"\u53ef\u4ee5\u7528\u4ee5\u4e0b\u6307\u4ee4":12,"\u53ef\u4ee5\u7528\u5982\u4e0b\u547d\u4ee4":72,"\u53ef\u4ee5\u7528\u6765\u8ba1\u7b97cpu\u51fd\u6570\u6216cuda\u5185\u6838\u7684\u65f6\u95f4\u6d88\u8017":108,"\u53ef\u4ee5\u76f4\u63a5\u8fd0\u884c":90,"\u53ef\u4ee5\u770b\u4f5c\u662f\u4e00\u4e2a\u975e\u5e8f\u5217\u8f93\u5165":110,"\u53ef\u4ee5\u770b\u51fa":92,"\u53ef\u4ee5\u770b\u5230\u6700\u8017\u65f6\u7684\u51fd\u6570\u662fc":107,"\u53ef\u4ee5\u7cbe\u786e\u8bf4\u660e\u4e00\u4e2a\u957f\u8017\u65f6\u64cd\u4f5c\u7684\u5177\u4f53\u539f\u56e0":108,"\u53ef\u4ee5\u7ee7\u7eed\u5728\u81ea\u5df1\u7684\u529f\u80fd\u5206\u652f\u63d0\u4ea4\u4ee3\u7801":62,"\u53ef\u4ee5\u8003\u8651\u4f7f\u7528\u4e00\u4e9b\u4f18\u5316\u7b97\u6cd5":81,"\u53ef\u4ee5\u8054\u7cfbop":79,"\u53ef\u4ee5\u8054\u7cfbop\u662f\u5426\u53ef\u4ee5\u66f4\u6362\u96c6\u7fa4\u6216\u5347\u7ea7\u5f53\u524d\u96c6\u7fa4":79,"\u53ef\u4ee5\u83b7\u53d6\u7f51\u7edc\u4e2d\u5b9a\u4e49\u7684\u4efb\u610f\u591a\u4e2a":90,"\u53ef\u4ee5\u88c5\u7684\u662f":0,"\u53ef\u4ee5\u8bbe\u7f6e":[107,116,117,118],"\u53ef\u4ee5\u8bbf\u95ee\u7531recurr":82,"\u53ef\u4ee5\u8c03\u7528resize\u63a5\u53e3\u8fdb\u884c\u6539\u53d8":76,"\u53ef\u4ee5\u8f7b\u677e\u5730\u5b8c\u6210\u795e\u7ecf\u7f51\u7edc\u914d\u7f6e":84,"\u53ef\u4ee5\u8fd0\u884c":91,"\u53ef\u4ee5\u9009\u5728\u5728\u5f53\u524d\u673a\u5668\u5b89\u88c5\u4e5f\u53ef\u4ee5\u62f7\u8d1d\u5230\u76ee\u6807\u673a\u5668\u5b89\u88c5":1,"\u53ef\u4ee5\u9009\u62e9\u662f\u5426\u4f7f\u7528\u53c2\u6570":105,"\u53ef\u4ee5\u901a\u8fc7":72,"\u53ef\u4ee5\u901a\u8fc7\u4fee\u6539\u8fd9\u4e24\u4e2a\u51fd\u6570\u6765\u5b9e\u73b0\u590d\u6742\u7684\u7f51\u7edc\u914d\u7f6e":114,"\u53ef\u4ee5\u901a\u8fc7\u5728":81,"\u53ef\u4ee5\u901a\u8fc7\u7f51\u9875\u6d4f\u89c8":2,"\u53ef\u4ee5\u901a\u8fc7\u8fd9\u4e2a\u8f93\u51fa\u6765\u5b8c\u6210\u81ea\u5b9a\u4e49\u7684\u8bc4\u4f30\u6307\u6807\u8ba1\u7b97\u7b49\u529f\u80fd":81,"\u53ef\u4ee5\u901a\u8fc7\u9636\u6bb5\u6027\u7684\u4fdd\u5b58\u6bcf\u4e2aparamet":11,"\u53ef\u4ee5\u91c7\u53d6\u4e0b\u9762\u51e0\u70b9\u63aa\u65bd":107,"\u53ef\u4ee5\u91cd\u547d\u540d\u8fd9\u4e2awhl\u5305\u4e3a":[4,78],"\u53ef\u53c2\u8003":90,"\u53ef\u5728":87,"\u53ef\u5728\u547d\u4ee4\u884c\u6267\u884c":117,"\u53ef\u663e\u5f0f\u6307\u5b9a\u4e3a":117,"\u53ef\u7528\u4e8e\u5728\u7f51\u7edc\u914d\u7f6e\u4e2d\u89e3\u6790\u8fd9\u4e9b\u53c2\u6570":105,"\u53ef\u76f4\u63a5\u8fd0\u884c":90,"\u53ef\u80fd\u4f1a\u5bfc\u81f4\u51fa\u9519":97,"\u53ef\u80fd\u4f1a\u9020\u6210\u7f51\u7edc\u62e5\u585e":11,"\u53ef\u80fd\u7684\u4ee3\u7801\u4e3a":81,"\u53ef\u80fd\u7684\u539f\u56e0\u662f":83,"\u53ef\u80fd\u7684\u60c5\u51b5\u4e0b":108,"\u53ef\u80fd\u9700\u8981\u6ce8\u610f\u7ed9\u8fd9\u4e2a\u865a\u62df\u673a\u591a\u5206\u914d\u4e00\u4e9b":0,"\u53ef\u89c1\u8be5\u8ba1\u7b97\u7531\u4e24\u4e2a\u8f93\u5165":75,"\u53ef\u8bbe\u7f6e":[116,117],"\u53ef\u8bbe\u7f6e\u4e3a":117,"\u53ef\u8bbe\u7f6e\u7684\u76ee\u6807\u67b6\u6784\u5982\u4e0b\u8868\u6240\u793a":117,"\u53ef\u9009":[1,74,90,91],"\u53ef\u9009\u7684\u4e0d\u540c\u7f16\u8bd1\u73af\u5883docker\u955c\u50cf":1,"\u53ef\u9009\u914d\u7f6e\u9009\u9879":87,"\u53ef\u914d\u7f6e\u4e3a":87,"\u53ef\u91c7\u7528\u7b2c\u4e8c\u79cd\u65b9\u5f0f":82,"\u53f3\u4fa7\u7684":62,"\u5404\u6b21\u524d\u5411\u4e4b\u95f4\u4e5f\u90fd\u4f7f\u7528\u4e86\u76f8\u540c\u7684\u6743\u91cd":41,"\u5404\u9879\u66f4\u52a0\u5177\u4f53\u7684\u5355\u5143\u6d4b\u8bd5\u5728":75,"\u5408\u5e76\u5165\u4e00\u4e2a\u6587\u4ef6":90,"\u5408\u5e76\u6a21\u578b\u6587\u4ef6":90,"\u540c\u4e00\u6b21\u524d\u5411":41,"\u540c\u65f6":[41,42,78,81,108],"\u540c\u65f6\u4e5f\u4f1a\u8bfb\u53d6\u76f8\u5173\u8def\u5f84\u53d8\u91cf\u6765\u8fdb\u884c\u641c\u7d22":1,"\u540c\u65f6\u4e5f\u53ef\u4ee5\u52a0\u901f\u5f00\u59cb\u8bad\u7ec3\u524d\u6570\u636e\u8f7d\u5165\u7684\u8fc7\u7a0b":81,"\u540c\u65f6\u4e5f\u53ef\u4ee5\u901a\u8fc7":72,"\u540c\u65f6\u4e5f\u80fd\u591f\u5f15\u5165\u66f4\u52a0\u590d\u6742\u7684\u8bb0\u5fc6\u673a\u5236":113,"\u540c\u65f6\u4f1a\u5f00\u542fintel":42,"\u540c\u65f6\u5176\u5185\u90e8\u5b9e\u73b0\u53ef\u4ee5\u907f\u514d\u7eafcpu\u7248\u672cpaddlepaddle\u5728\u6267\u884c\u672c\u8bed\u53e5\u65f6\u53d1\u751f\u5d29\u6e83":108,"\u540c\u65f6\u518d\u5c06":62,"\u540c\u65f6\u53c8\u5c3d\u53ef\u80fd\u5c11\u7684\u727a\u7272mkl":42,"\u540c\u65f6\u5728\u5185\u5b58\u91cc\u76f4\u63a5\u968f\u5373\u9009\u53d6\u6570\u636e\u6765\u505ashuffl":81,"\u540c\u65f6\u5c06\u53c2\u6570\u521d\u59cb\u5316\u4e3a":83,"\u540c\u65f6\u628a\u5f53\u524d\u76ee\u5f55":0,"\u540c\u65f6\u63d0\u8d77":62,"\u540c\u65f6\u6570\u636e\u683c\u5f0f\u5c31\u662f":42,"\u540c\u65f6\u7528\u6237\u9700\u8981\u5728\u7f51\u7edc\u914d\u7f6e\u4e2d\u6307\u5b9a":105,"\u540c\u65f6\u8bbe\u7f6e\u5185\u5b58\u7f13\u5b58\u529f\u80fd":81,"\u540c\u65f6\u8f93\u51fa\u5e8f\u5217\u5c42\u548c\u975e\u5e8f\u5217\u5c42":81,"\u540c\u6837":84,"\u540c\u6837\u4e5f\u53ef\u4ee5\u5728\u6d4b\u8bd5\u6a21\u5f0f\u4e2d\u6307\u5b9a\u6a21\u578b\u8def\u5f84":103,"\u540c\u6837\u53ef\u4ee5\u6269\u5c55\u5230\u53cc\u5c42\u5e8f\u5217\u7684\u5904\u7406\u4e0a":113,"\u540c\u6837\u53ef\u83b7\u53d6\u5230\u8f93\u5165\u8f93\u51fa\u548c\u5c5e\u6027\u53c2\u6570":75,"\u540c\u6b65\u6267\u884c\u64cd\u4f5c\u7684\u7ebf\u7a0b\u6570":103,"\u540c\u7406":75,"\u540d\u5b57\u4fee\u9970":45,"\u540e":[1,72,83,97,116,117,118],"\u540e\u5411":41,"\u540e\u5411\u4f20\u64ad":74,"\u540e\u5411\u4f20\u64ad\u7ed9\u5b9a\u8f93\u51fa\u7684\u68af\u5ea6":74,"\u540e\u5411\u65f6\u590d\u7528\u5df2\u7ecf\u8f6c\u6362\u8fc7\u7684\u6743\u91cd":41,"\u540e\u7f00\u4e3a":91,"\u540e\u8005\u5728\u6fc0\u6d3b\u51fd\u6570\u53cd\u5411\u8ba1\u7b97\u65f6\u88ab\u8c03\u7528":81,"\u540e\u8005\u622a\u65ad\u56de\u4f20\u7ed9\u524d\u5c42\u7684\u68af\u5ea6":81,"\u540e\u8005\u7528\u4e8e\u68c0\u67e5\u53c2\u6570\u5c5e\u6027\u7684\u5408\u6cd5\u6027":75,"\u540e\u8005\u7ee7\u627f\u81ea":75,"\u540e\u9988":92,"\u5411\u6307\u5b9a\u7684\u76ee\u5f55\u4e2d\u4e00\u4e2a\u65b0\u7684\u6587\u4ef6":11,"\u5411\u91cf":89,"\u5411\u91cfenable_parallel_vector":102,"\u5411paddlepaddle\u7684\u4e3b\u7248\u672c\u5e93\u63d0\u4ea4":62,"\u5417":0,"\u5426\u5219":[75,116,118],"\u5426\u5219\u4f1a\u628a":72,"\u5426\u5219\u4f7f\u7528\u591a\u673a\u8bad\u7ec3":103,"\u5426\u5219\u4f7f\u7528cpu\u6a21\u5f0f":103,"\u5426\u5219\u4f7f\u7528gpu":105,"\u5426\u5219\u5b83\u4ee5\u4e00\u4e2a\u5e8f\u5217\u8f93\u5165":114,"\u5426\u5219\u5f97\u628apaddle\u9759\u6001\u5e93\u94fe\u63a5\u5230\u89e3\u91ca\u5668\u91cc":45,"\u5426\u5219\u9891\u7e41\u7684\u591a\u8282\u70b9\u5de5\u4f5c\u7a7a\u95f4\u90e8\u7f72\u53ef\u80fd\u4f1a\u5f88\u9ebb\u70e6":93,"\u542b\u4e49":107,"\u542b\u6709\u5e8f\u5217\u4fe1\u606f\u548c\u5b50\u5e8f\u5217\u4fe1\u606f\u7684\u7a20\u5bc6\u5411\u91cf":74,"\u542b\u6709\u5e8f\u5217\u4fe1\u606f\u7684\u6574\u6570":74,"\u542b\u6709\u5e8f\u5217\u4fe1\u606f\u7684\u7a20\u5bc6\u5411\u91cf":74,"\u542f\u52a8\u4e00\u4e2a\u65b0\u7684\u7ebf\u7a0b\u5f00\u59cb\u4fdd\u5b58\u68c0\u67e5\u70b9":11,"\u542f\u52a8\u4e00\u4e2a\u6d4b\u8bd5\u96c6\u7fa4":93,"\u542f\u52a8\u53c2\u6570\u8bf4\u660e":92,"\u542f\u52a8\u5bb9\u5668\u5f00\u59cb\u8bad\u7ec3":97,"\u542f\u52a8\u5e76\u884c\u5411\u91cf\u7684\u9608\u503c":103,"\u542f\u52a8\u5feb\u901f\u5e94\u7b54":103,"\u542f\u52a8\u8bad\u7ec3\u4efb\u52a1":98,"\u542f\u7528\u68af\u5ea6\u53c2\u6570\u7684\u9608\u503c":103,"\u547d\u4ee4\u4e3a":[78,96],"\u547d\u4ee4\u521b\u5efa\u65b0\u955c\u50cf":96,"\u547d\u4ee4\u5220\u9664":[116,117,118],"\u547d\u4ee4\u53ef\u4ee5\u8bbe\u7f6e":1,"\u547d\u4ee4\u65f6":116,"\u547d\u4ee4\u6709\u65f6\u5019\u4f1a\u4ea7\u751f\u4e00\u4e9b\u4e2d\u95f4\u7ed3\u679c":0,"\u547d\u4ee4\u770b\u5230\u505c\u6b62\u540e\u4f46\u662f\u6ca1\u6709\u5220\u9664\u7684":0,"\u547d\u4ee4\u7f16\u8bd1\u6e90\u7801\u5373\u53ef":0,"\u547d\u4ee4\u884c\u4e2d\u7684":107,"\u547d\u4ee4\u884c\u53c2\u6570\u8bbe\u7f6e":106,"\u547d\u4ee4\u8bbe\u7f6e\u8be5\u7c7b\u7f16\u8bd1\u9009\u9879":1,"\u547d\u4ee4\u9009\u9879\u5e76\u4e14":93,"\u547d\u4ee4\u91cc\u90fd\u7528\u4e86":0,"\u547d\u540d\u4e3a":72,"\u547d\u540d\u89c4\u8303":75,"\u547d\u540d\u8bf7\u9075\u5b88":75,"\u548c":[0,1,12,41,42,45,46,62,72,74,75,76,77,81,82,83,87,89,91,92,93,105,107,108,111,114,116,118],"\u548c\u4e00\u4e2a\u5df2\u7ecf\u5206\u8bcd\u540e\u7684\u53e5\u5b50":111,"\u548c\u4e09\u79cd\u5e8f\u5217\u6a21\u5f0f":84,"\u548c\u4e0b\u9762\u5c06\u8981\u4ecb\u7ecd\u7684\u6ce8\u518c\u51fd\u6570\u4e00\u8d77\u653e\u5728":75,"\u548c\u4e2d\u6587\u6587\u6863":77,"\u548c\u4e4b\u524d\u51cf\u5c0f\u901a\u8fc7\u51cf\u5c0f\u7f13\u5b58\u6c60\u6765\u51cf\u5c0f\u5185\u5b58\u5360\u7528\u7684\u539f\u7406\u4e00\u81f4":81,"\u548c\u504f\u7f6e\u5411\u91cf":74,"\u548c\u5185\u5b58":0,"\u548c\u5217\u53f7":89,"\u548c\u53cc\u5c42\u5e8f\u5217\u542b\u6709subseq":110,"\u548c\u5bf9\u5e94\u884c\u7684\u4ee3\u7801":107,"\u548c\u5e8f\u5217\u4e2d\u542b\u6709\u5143\u7d20\u7684\u6570\u76ee\u540c":110,"\u548c\u5f02\u6b65\u968f\u673a\u68af\u5ea6\u4e0b\u964d":92,"\u548c\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u7684\u8f93\u5165":114,"\u548c\u64cd\u4f5c\u7cfb\u7edf\u4e0a\u76f4\u63a5\u8fd0\u884c\u7684":0,"\u548c\u672a\u6765\u53ef\u80fd\u8fd8\u4f1a\u7528\u5230":42,"\u548c\u793a\u4f8b2\u4e2d\u7684\u914d\u7f6e\u7c7b\u4f3c":111,"\u548c\u79bb\u7ebf\u6570\u636e\u7684\u65b9\u5f0f":12,"\u548c\u90e8\u5206layer":113,"\u548cpool":110,"\u548cpserver\u4e4b\u95f4\u7528\u4e8e\u7a00\u758f\u7c7b\u578b\u53c2\u6570\u901a\u4fe1\u7684\u7aef\u53e3\u4e2a\u6570":91,"\u54ea\u4e2atrainer\u5148\u5b8c\u6210block\u7684\u8bad\u7ec3":11,"\u54ea\u4e9b\u4e0d\u662f":111,"\u56db\u79cd\u6570\u636e\u7c7b\u578b":84,"\u56e0\u4e3a\u5168\u8fde\u63a5\u5c42\u7684\u6fc0\u6d3b\u53ef\u4ee5\u662fsoftmax":74,"\u56e0\u4e3a\u53c2\u6570":105,"\u56e0\u4e3a\u5b83\u4eec\u7684\u8ba1\u7b97\u6548\u7387\u6bd4":114,"\u56e0\u4e3a\u5b83\u6bd4":114,"\u56e0\u4e3a\u5b98\u65b9\u955c\u50cf":97,"\u56e0\u4e3a\u6211\u4eec\u4f1a\u628a\u6240\u6709\u7f16\u8bd1\u5de5\u5177\u90fd\u5b89\u88c5\u8fdb\u4e00\u4e2a":0,"\u56e0\u4e3a\u6e90\u7801\u5c31\u5728\u672c\u673a\u4e0a":0,"\u56e0\u4e3a\u8fd9\u4e2a\u5de5\u5177\u5177\u6709web\u670d\u52a1\u754c\u9762":107,"\u56e0\u4e3a\u8fd9\u6837\u505a\u4e5f\u6ca1\u6cd5\u4fdd\u8bc1\u6d88\u9664\u968f\u673a\u6027":11,"\u56e0\u4e3ac":107,"\u56e0\u4e3apython\u7684\u641c\u7d22\u8def\u5f84\u662f\u4f18\u5148\u5df2\u7ecf\u5b89\u88c5\u7684python\u5305":78,"\u56e0\u4e3aswig\u5728\u7b2c\u4e09\u65b9\u8bed\u8a00\u4e2d\u66b4\u9732\u7684\u51fd\u6570\u540d":45,"\u56e0\u6b64":[41,74,111,113,116],"\u56e0\u6b64\u53cc\u5c42\u5e8f\u5217\u7684\u914d\u7f6e\u4e2d":111,"\u56e0\u6b64\u53ef\u80fd\u6d4b\u8bd5\u4e0d\u591f\u5b8c\u5907":76,"\u56e0\u6b64\u5728\u8f6c\u6362\u65f6\u9700\u8981\u663e\u793a\u7684\u6307\u5b9a":76,"\u56e0\u6b64\u5b83\u662finteger_value_sub_sequ":111,"\u56e0\u6b64\u5f53":116,"\u56e0\u6b64\u6211\u4eec\u91c7\u7528\u8f93\u51fa\u7684\u52a0\u6743\u548c":74,"\u56e0\u6b64\u7528\u6237\u5e76\u4e0d\u9700\u8981\u5173\u5fc3\u5b83\u4eec":102,"\u56e0\u6b64\u9519\u8bef\u7684\u4f7f\u7528\u4e8c\u8fdb\u5236\u53d1\u884c\u7248\u53ef\u80fd\u4f1a\u5bfc\u81f4\u8fd9\u79cd\u9519\u8bef":78,"\u56fd\u5185\u7528\u6237\u53ef\u4ee5\u4f7f\u7528\u4e0b\u9762\u7684\u955c\u50cf\u6e90\u6765\u52a0\u901f\u8bbf\u95ee":2,"\u56fe1":[89,90],"\u56fe2":89,"\u56fe\u50cf\u5206\u7c7b":62,"\u56fe\u8868":2,"\u5728":[0,41,42,46,62,72,75,89,90,91,107,110,114,117],"\u5728\u4e00\u4e2a\u4e0d\u53ef\u4e2d\u65ad\u5e76\u7f3a\u5c11\u5907\u4efd\u7684\u8bad\u7ec3\u4efb\u52a1\u4e2d":11,"\u5728\u4e00\u4e2a\u529f\u80fd\u9f50\u5168\u7684kubernetes\u673a\u7fa4\u91cc":96,"\u5728\u4e00\u4e2a\u53c2\u6570\u7684\u68af\u5ea6\u88ab\u66f4\u65b0\u540e":74,"\u5728\u4e00\u4e9b\u5206\u5e03\u5f0f\u7cfb\u7edf\u4e2d":91,"\u5728\u4e00\u6b21\u8bad\u7ec3\u4e2d":107,"\u5728\u4e00\u8f6e\u4e2d\u6bcfsave":103,"\u5728\u4e0a\u56fe\u4e2d\u663e\u793a\u4e86\u5728\u4e00\u4e2a\u5b9e\u9645\u751f\u4ea7\u73af\u5883\u4e2d\u7684\u5e94\u7528":12,"\u5728\u4e0a\u9762\u4ee3\u7801\u4e2d":111,"\u5728\u4e0a\u9762\u7684\u4ee3\u7801\u4e2d":75,"\u5728\u4e0b\u4e00\u7bc7\u4e2d":96,"\u5728\u4e0d\u540c\u96c6\u7fa4\u4e2d\u8fd0\u884c":92,"\u5728\u4e4b\u540e\u7684":81,"\u5728\u4e86\u89e3docker\u7684\u57fa\u672c\u4f7f\u7528\u65b9\u6cd5\u4e4b\u540e":2,"\u5728\u4efb\u610f\u65f6\u95f4\u67d0\u4e00\u53f0\u53c2\u6570\u670d\u52a1\u5668\u4e0a\u4fdd\u5b58\u7684\u53c2\u6570\u53ef\u80fd\u6bd4\u53e6\u4e00\u53f0\u8981\u66f4\u65b0":92,"\u5728\u4f7f\u7528\u4e0d\u540c\u7684\u5206\u5e03\u5f0f\u8ba1\u7b97\u5e73\u53f0\u65f6":91,"\u5728\u4f7f\u7528\u5206\u5e03\u5f0f\u8ba1\u7b97\u5e73\u53f0\u8fdb\u884c\u8bad\u7ec3\u65f6":94,"\u5728\u4f7f\u7528\u540c\u6b65sgd\u8bad\u7ec3\u795e\u7ecf\u7f51\u7edc\u65f6":92,"\u5728\u4f7f\u7528\u65f6":82,"\u5728\u4f7f\u7528\u8be5\u6587\u6863\u4e4b\u524d":84,"\u5728\u4f7f\u7528c":87,"\u5728\u4f7f\u7528paddlepaddl":87,"\u5728\u4f7f\u7528twine\u4e0a\u4f20\u4e4b\u524d":62,"\u5728\u5168\u8fde\u63a5\u5c42\u4e2d":74,"\u5728\u5177\u4f53\u7684\u8ba1\u7b97\u4e2d":76,"\u5728\u51c6\u5907\u53d1\u8d77":72,"\u5728\u51fa\u73b0\u5355\u70b9\u6545\u969c\u65f6":11,"\u5728\u51fd\u6570":97,"\u5728\u5206\u5e03\u5f0f\u73af\u5883\u4e2d\u6d4b\u8bd5":103,"\u5728\u5206\u5e03\u5f0f\u8bad\u7ec3\u4e2d":103,"\u5728\u521b\u5efaparameters\u540e":83,"\u5728\u5355\u5c42\u6570\u636e\u7684\u57fa\u7840\u4e0a":111,"\u5728\u53c2\u6570\u670d\u52a1\u5668\u4e0a\u52a0\u8f7d\u548c\u4fdd\u5b58\u53c2\u6570":103,"\u5728\u53c2\u6570\u670d\u52a1\u5668\u7ec8\u7aef\u6bcflog":103,"\u5728\u53cc\u5c42rnn\u4e2d\u7684\u7ecf\u5178\u60c5\u51b5\u662f\u5c06\u5185\u5c42\u7684\u6bcf\u4e00\u4e2a\u65f6\u95f4\u5e8f\u5217\u6570\u636e":111,"\u5728\u53cd\u5411\u4f20\u9012\u7684\u65f6\u5019":81,"\u5728\u53d8\u6362\u65f6\u9700\u8981\u5c06\u8f93\u5165\u5e8f\u5217\u4f20\u5165":111,"\u5728\u542f\u52a8job\u4e4b\u524d":97,"\u5728\u547d\u4ee4\u884c\u663e\u793a\u5206\u6790\u7ed3\u679c":107,"\u5728\u56de\u590d\u8bc4\u5ba1\u4eba\u610f\u89c1\u65f6":72,"\u5728\u56fe\u50cf\u4efb\u52a1\u4e2d":82,"\u5728\u591acpu\u8bad\u7ec3\u65f6\u5171\u4eab\u8be5\u53c2\u6570":103,"\u5728\u5b8c\u6210\u4e00\u5b9a\u91cf\u6570\u636e\u7684\u8bad\u7ec3\u540e":92,"\u5728\u5b8c\u6210\u795e\u7ecf\u7f51\u7edc\u7684\u642d\u5efa\u4e4b\u540e":84,"\u5728\u5b9a\u4e49\u8f93\u5165layer\u4e4b\u540e":84,"\u5728\u5b9e\u73b0\u6bcf\u4e2a\u5b50\u7c7b\u7684\u65f6\u5019\u5c31\u4e0d\u9700\u8981\u5173\u5fc3\u5206\u652f\u7684\u4e8b\u60c5\u4e86":42,"\u5728\u5b9e\u73b0\u8fc7\u7a0b\u4e2d":46,"\u5728\u5b9e\u9645\u5e94\u7528\u4e2d":82,"\u5728\u5bb9\u5668\u4e2d\u7f16\u8f91\u4ee3\u7801":2,"\u5728\u5bb9\u5668\u521b\u5efa\u540e":97,"\u5728\u5bf9\u5bb9\u5668\u7684\u63cf\u8ff0":97,"\u5728\u5bf9\u5e94\u7684":41,"\u5728\u5c42\u4e2d\u6307\u5b9a":105,"\u5728\u5c42\u521d\u59cb\u5316\u7684\u65f6\u5019":41,"\u5728\u5e8f\u5217\u751f\u6210\u4efb\u52a1\u4e2d":113,"\u5728\u5f00\u59cb\u8bad\u7ec3\u4e4b\u524d":12,"\u5728\u5f02\u6784\u96c6\u7fa4\u4e2d":11,"\u5728\u5f02\u6b65sgd\u4e2d":92,"\u5728\u5f15\u5165\u5176\u4ed6\u7c7b\u578b\u7684\u5934\u6587\u4ef6\u65f6":46,"\u5728\u5f53\u524d":81,"\u5728\u5f53\u524d\u7684\u5b9e\u73b0\u65b9\u5f0f\u4e0b":74,"\u5728\u5f97\u5230":97,"\u5728\u5feb\u7167\u5199\u5165\u5b8c\u6210\u540e":11,"\u5728\u60a8\u7684\u5b9e\u9645\u73af\u5883\u4e2d":11,"\u5728\u6211\u4eec\u7684\u4f8b\u5b50\u4e2d":114,"\u5728\u6267\u884c\u65f6":76,"\u5728\u63d0\u4ea4":72,"\u5728\u642d\u5efa\u795e\u7ecf\u7f51\u7edc\u7684\u8fc7\u7a0b\u4e2d":84,"\u5728\u65e0\u7279\u6b8a\u9700\u6c42\u60c5\u51b5\u4e0b":87,"\u5728\u6709\u666e\u901a\u7684cpu":42,"\u5728\u672c\u4f8b\u4e2d":[72,105,111],"\u5728\u672c\u6559\u7a0b\u4e2d":114,"\u5728\u672c\u6587\u6863\u4e2d":28,"\u5728\u672c\u793a\u4f8b\u4e2d":111,"\u5728\u672c\u8282\u4e2d":114,"\u5728\u673a\u7fa4\u4e0a\u8fd0\u884c\u8f6c\u6362\u7a0b\u5e8f":12,"\u5728\u67d0\u4e9b\u60c5\u51b5\u4e0b":81,"\u5728\u6811\u7684\u6bcf\u4e00\u5c42\u4e0a":103,"\u5728\u6837\u4f8b\u4e2d":46,"\u5728\u6b64":[102,105],"\u5728\u6bcf\u4e2a\u65f6\u95f4\u6b65\u4e2d":114,"\u5728\u6bcf\u4e2a\u65f6\u95f4\u6b65\u7684\u5b50\u5e8f\u5217\u957f\u5ea6\u53ef\u4ee5\u4e0d\u76f8\u7b49":111,"\u5728\u6bcf\u4e2a\u65f6\u95f4\u6b65\u957f":114,"\u5728\u6bcf\u4e2apod\u4e0a\u90fd\u901a\u8fc7volume\u65b9\u5f0f\u6302\u8f7d\u5206\u5e03\u5f0f\u6587\u4ef6\u7cfb\u7edf\u7684\u4e00\u4e2a\u76ee\u5f55\u7528\u4e8e\u4fdd\u5b58\u8bad\u7ec3\u6570\u636e\u548c\u8f93\u51fa\u7ed3\u679c":97,"\u5728\u6d4b\u8bd5\u9636\u6bb5":103,"\u5728\u6e90\u7801\u76ee\u5f55\u6811\u7684\u6839\u76ee\u5f55\u4e2d\u8fd0\u884c":72,"\u5728\u751f\u6210\u65f6":114,"\u5728\u7528\u6237\u4f7f\u7528c":46,"\u5728\u76f8\u5e94\u7684\u4f18\u5316\u7b97\u6cd5\u91cc\u8bbe\u7f6elearning_rate_schedule\u53ca\u76f8\u5173\u53c2\u6570":83,"\u5728\u76f8\u5e94layer\u7684":82,"\u5728\u795e\u7ecf\u7f51\u7edc\u4e2d\u7b49\u4e8e\u4e00\u6b21\u9884\u6d4b\u5904\u7406\u7684\u6837\u672c\u6570":89,"\u5728\u7a0b\u5e8f\u5b9e\u73b0\u4e2d\u90fd\u4f1a\u8f6c\u5316\u4e3a\u4e8c\u7ef4\u77e9\u9635":89,"\u5728\u7b2c\u4e8c\u4e2atab":62,"\u5728\u7ebf\u4e0a\u7cfb\u7edf\u4e2d":91,"\u5728\u7ebf\u6a21\u578b\u9884\u6d4b\u670d\u52a1":12,"\u5728\u7ec4\u5408\u65f6":84,"\u5728\u7ec4\u7ec7\u795e\u7ecf\u7f51\u7edc\u8f93\u5165":90,"\u5728\u7ec4\u7ec7\u795e\u7ecf\u7f51\u7edc\u8f93\u5165\u65f6":89,"\u5728\u7ec8\u7aef\u6267\u884c":90,"\u5728\u7f16\u8bd1\u5bbf\u4e3b\u673a\u7248protoc\u53ef\u6267\u884c\u6587\u4ef6\u548c\u76ee\u6807\u673a\u7248openblas\u5e93\u65f6\u9700\u8981\u7528\u5230":[116,118],"\u5728\u7f51\u7edc\u914d\u7f6e\u4e2d":74,"\u5728\u81ea\u7136\u8bed\u8a00\u5904\u7406\u4efb\u52a1\u4e2d":110,"\u5728\u8bad\u7ec3\u4e2d":114,"\u5728\u8bad\u7ec3\u4e4b\u524d":97,"\u5728\u8bad\u7ec3\u65f6":96,"\u5728\u8bad\u7ec3\u7ed3\u675f\u7684\u65f6\u5019\u518d\u4fdd\u5b58\u4e3apaddlepaddle\u7684\u683c\u5f0f":42,"\u5728\u8bad\u7ec3\u8fc7\u7a0b\u4e2d":97,"\u5728\u8bad\u7ec3\u8fc7\u7a0b\u4e2d\u6bcfshow":103,"\u5728\u8bad\u7ec3\u8fc7\u7a0b\u4e2d\u83b7\u5f97\u53c2\u6570\u7684\u6743\u91cd\u548c\u68af\u5ea6":81,"\u5728\u8bad\u7ec3\u8fc7\u7a0b\u4e2d\u83b7\u5f97\u67d0\u4e00\u4e2alayer\u7684output":81,"\u5728\u8bbe\u7f6e":[116,117,118],"\u5728\u8bc4\u5ba1\u8fc7\u7a0b\u4e2d":62,"\u5728\u8be5\u793a\u4f8b\u4e2d":83,"\u5728\u8be5\u914d\u7f6e\u76847":111,"\u5728\u8c03\u7528":90,"\u5728\u8c03\u7528c":90,"\u5728\u8f6f\u4ef6\u5de5\u7a0b\u7684\u8303\u7574\u91cc":108,"\u5728\u8f93\u51fa\u7684\u8fc7\u7a0b\u4e2d":113,"\u5728\u8fd0\u884c\u5b8c\u6027\u80fd\u5206\u6790\u540e":107,"\u5728\u8fd0\u884c\u65f6\u5c06\u795e\u7ecf\u7f51\u7edc\u7684\u591a\u4e2a\u53ef\u5b66\u4e60\u53c2\u6570\u653e\u5728\u540c\u4e00\u4e2a\u76ee\u5f55\u4e2d":90,"\u5728\u8fd0\u884c\u795e\u7ecf\u7f51\u7edc\u8ba1\u7b97\u56fe\u65f6":76,"\u5728\u8fd9\u4e2a":62,"\u5728\u8fd9\u4e2a\u4f8b\u5b50\u91cc":[74,96],"\u5728\u8fd9\u4e2a\u51fd\u6570\u4e2d":111,"\u5728\u8fd9\u4e2a\u52a8\u6001\u5e93\u4e2d\u4e0d\u5d4c\u5165\u4efb\u4f55\u5176\u4ed6\u8bed\u8a00\u7684\u89e3\u91ca\u5668":45,"\u5728\u8fd9\u4e2a\u6559\u7a0b\u4e2d":108,"\u5728\u8fd9\u4e2a\u6a21\u578b\u4e2d":114,"\u5728\u8fd9\u4e2a\u9636\u6bb5\u7684\u4ee3\u7801\u6b63\u5728\u7ecf\u5386\u56de\u5f52\u6d4b\u8bd5":62,"\u5728\u8fd9\u4e9b\u5934\u6587\u4ef6\u4e2d":46,"\u5728\u8fd9\u4e9b\u6587\u4ef6\u4e2d":46,"\u5728\u8fd9\u4e9blayer\u4e2d":111,"\u5728\u8fd9\u65f6\u771f\u6b63\u7684\u5206\u914d\u5185\u5b58":76,"\u5728\u8fd9\u6bb5\u4ee3\u7801\u4e2d":76,"\u5728\u8fd9\u79cd\u60c5\u51b5\u4e0b":[74,114],"\u5728\u8fd9\u79cd\u7ed3\u6784\u4e2d":113,"\u5728\u8fd9\u7bc7\u6587\u6863\u91cc":96,"\u5728\u8fd9\u7bc7\u6587\u7ae0\u91cc":97,"\u5728\u8fd9\u91cc":113,"\u5728\u8fd9\u91cc\u6211\u4eec\u4f7f\u7528\u5168\u8fde\u63a5\u5c42\u4f5c\u4e3a\u4f8b\u5b50\u6765\u5c55\u793a\u5b9e\u73b0\u65b0\u7f51\u7edc\u5c42\u6240\u9700\u8981\u7684\u56db\u4e2a\u6b65\u9aa4":74,"\u5728\u8fd9\u91cc\u7528eigenvector\u6765\u8868\u793a":76,"\u5728\u8fd9\u91cc\u9700\u8981\u6ce8\u610f\u7684\u662f":76,"\u5728\u8fdb\u884c\u5206\u5e03\u5f0f\u8bad\u7ec3\u65f6":91,"\u5728\u8fdb\u884c\u7f51\u7edc\u914d\u7f6e\u4e4b\u524d":84,"\u5728\u91c7\u7528sgd":83,"\u5728\u91cd\u6784\u524d\u7684paddlepaddle\u4e2d":42,"\u5728\u95ee\u9898\u672c\u8eab\u7684\u8ba1\u7b97\u91cf\u6bd4\u8f83\u5c0f\u7684\u65f6\u5019":41,"\u5728\u96c6\u7fa4\u4e0a\u8bad\u7ec3\u4e00\u4e2a\u7a00\u758f\u6a21\u578b\u9700\u8981\u52a0\u4e0a\u4e0b\u9762\u7684\u53c2\u6570":105,"\u5728\u975e\u5e8f\u5217\u8f93\u5165\u65f6":81,"\u5728android\u5e73\u53f0\u4e0a\u4e0d\u652f\u6301\u901a\u8fc7swig\u8c03\u7528\u6765\u8bad\u7ec3\u6216\u8005\u9884\u6d4b":116,"\u5728android\u5e73\u53f0\u4e0a\u53ea\u652f\u6301\u4f7f\u7528c":116,"\u5728batch":41,"\u5728build\u76ee\u5f55\u4e0b\u6267\u884c":78,"\u5728c":[45,89],"\u5728c\u7684\u5934\u6587\u4ef6":45,"\u5728cmake\u53c2\u6570\u914d\u7f6e\u4e0a":[116,117],"\u5728cmake\u7684\u547d\u4ee4\u884c\u4e2d":1,"\u5728eigen\u4e2d":76,"\u5728ios\u5e73\u53f0\u4e0a\u4e0d\u652f\u6301\u901a\u8fc7swig\u8c03\u7528\u6765\u8bad\u7ec3\u6216\u8005\u9884\u6d4b":117,"\u5728ios\u5e73\u53f0\u4e0a\u53ea\u652f\u6301\u4f7f\u7528c":117,"\u5728main":107,"\u5728openmpi\u96c6\u7fa4\u4e2d\u63d0\u4ea4\u8bad\u7ec3\u4f5c\u4e1a":94,"\u5728packing\u4e0a\u7684\u8017\u65f6":41,"\u5728paddl":97,"\u5728paddle\u4e2d":105,"\u5728paddle\u4e4b\u4e0a\u8fd0\u884c\u7684\u6df1\u5ea6\u5b66\u4e60\u8bad\u7ec3\u8f93\u51fa\u7684\u6a21\u578b\u4f1a\u63d0\u4f9b\u7ed9\u5728\u7ebf\u4eba\u8138\u8bc6\u522b\u7684\u5e94\u7528\u4f7f\u7528":12,"\u5728paddlepaddl":89,"\u5728paddlepaddle\u4e2d":[84,113],"\u5728paddlepaddle\u4e2d\u4f7f\u7528dropout\u6709\u4e24\u79cd\u65b9\u5f0f":82,"\u5728paddlepaddle\u4e2d\u5305\u542b\u4ee5\u4e0b":82,"\u5728paddlepaddle\u5185\u90e8":[89,90],"\u5728paddlepaddle\u7684\u6587\u6863\u4e2d":111,"\u5728paramet":11,"\u5728python\u811a\u672c\u4e2d\u5b9e\u73b0\u4e0e\u524d\u5411operator\u76f8\u540c\u7684\u8ba1\u7b97\u903b\u8f91":75,"\u5728rnn\u7684\u60c5\u51b5\u4e0b":41,"\u5728step\u51fd\u6570\u4e2d\u5b9a\u4e49":113,"\u5728step\u51fd\u6570\u4e2d\u5b9a\u4e49memori":113,"\u5728trainer":105,"\u5728trainer\u4e2d\u53ef\u4ee5\u4f7f\u7528\u4e0b\u9762\u53d6\u6a21\u7684\u65b9\u6cd5\u4e3a\u6bcf\u4e2atrainer\u5206\u914d\u8bad\u7ec3\u6570\u636e\u6587\u4ef6":91,"\u5747\u4f1a\u5b58\u653e\u4e8e":87,"\u5747\u4f1a\u88ab\u5b89\u88c5\u5230includ":46,"\u5747\u5300\u5206\u5e03":83,"\u5747\u5300\u5206\u5e03\u7684\u8303\u56f4\u662f":103,"\u5747\u662f\u5728":46,"\u5747\u6709\u4e09\u4e2a\u5b50\u5e8f\u5217":111,"\u5747\u6709\u4e24\u7ec4\u7279\u5f81":111,"\u57fa\u4e8e\u53cc\u5c42\u5e8f\u5217\u8f93\u5165":113,"\u57fa\u4e8e\u7c98\u6027\u4f1a\u8bdd\u7684\u8d1f\u8f7d\u5747\u8861\u529f\u80fd":28,"\u57fa\u672c\u4f7f\u7528\u6982\u5ff5":[85,90],"\u57fa\u7840\u4e0a":89,"\u57fa\u7c7b":75,"\u586b\u5199":72,"\u589e\u52a0":75,"\u589e\u52a0\u4e86\u4e00\u6761cd\u547d\u4ee4":96,"\u589e\u52a0\u4e86\u8bbe\u5907\u7c7b\u578b":75,"\u589e\u52a0\u5982\u4e0b\u53c2\u6570":105,"\u589e\u52a0\u68af\u5ea6\u68c0\u6d4b\u7684\u5355\u5143\u6d4b\u8bd5":74,"\u5904\u7406\u5668\u6709\u4e24\u4e2a\u5173\u952e\u6027\u80fd\u9650\u5236":108,"\u5904\u7406\u7684\u8f93\u5165\u5e8f\u5217\u4e3b\u8981\u5206\u4e3a\u4ee5\u4e0b\u4e09\u79cd\u7c7b\u578b":113,"\u5907\u6ce8":108,"\u590d\u6742\u5ea6\u6216\u65f6\u95f4\u590d\u6742\u5ea6":108,"\u5916\u5c42\u5e8f\u5217\u5728":89,"\u5916\u5c42memory\u662f\u4e00\u4e2a\u5143\u7d20":111,"\u5916\u5c42outer_step\u4e2d":111,"\u5916\u90e8\u5b58\u50a8":42,"\u591a\u4e2a":90,"\u591a\u4e2a\u503c":12,"\u591a\u4e2a\u5c42\u7684\u8f93\u51fa\u77e9\u9635\u7684\u9ad8\u5ea6\u4e0d\u4e00\u81f4\u5bfc\u81f4\u62fc\u63a5\u5931\u8d25":81,"\u591a\u4e2a\u6392\u6210\u4e00\u5217\u7684\u5143\u7d20":89,"\u591a\u4e2a\u8f93\u51fa\u5c42\u5904\u7406\u591a\u4e2a\u4e0d\u540c\u957f\u5ea6\u7684\u5e8f\u5217":81,"\u591a\u4e2aip\u4f7f\u7528":91,"\u591a\u4e2aparamet":11,"\u591a\u53e5\u8bdd\u8fdb\u4e00\u6b65\u6784\u6210\u4e86\u6bb5\u843d":113,"\u591a\u673a\u8bad\u7ec3":81,"\u591a\u6b21\u8c03\u7528":41,"\u591a\u7528\u4e8e\u81ea\u7136\u8bed\u8a00\u5904\u7406\u4efb\u52a1":90,"\u591a\u8f6e\u5bf9\u8bdd\u7b49\u66f4\u4e3a\u590d\u6742\u7684\u8bed\u8a00\u6570\u636e":113,"\u5927\u4e8e\u7b49\u4e8e\u4e00\u4e2a":90,"\u5927\u591a\u6570\u5c42\u4e0d\u9700\u8981\u8fdc\u7a0b\u7a00\u758f\u8bad\u7ec3\u51fd\u6570":74,"\u5927\u591a\u6570\u5c42\u9700\u8981\u8bbe\u7f6e\u4e3a":74,"\u5927\u591a\u6570\u7f51\u7edc\u5c42\u4e0d\u9700\u8981\u652f\u6301\u8fdc\u7a0b\u7a00\u758f\u66f4\u65b0":74,"\u5927\u591a\u6570\u8bed\u8a00\u90fd\u652f\u6301\u4f7f\u7528c\u8bed\u8a00api":45,"\u5927\u5bb6\u53ef\u4ee5\u7528\u628a\u5f00\u53d1\u5de5\u5177\u5b89\u88c5\u8fdb\u5165":0,"\u5927\u5bb6\u53ef\u4ee5\u901a\u8fc7\u5b83\u9605\u8bfb\u6559\u7a0b":2,"\u5927\u5c0f\u4e0d\u4e00\u6837\u65f6":81,"\u5927\u6982\u82b1\u5341\u5206\u949f\u770b\u4e00\u4e0b":0,"\u5927\u90e8\u5206":107,"\u5934\u4fe1\u606f\u4e2d":83,"\u5934\u6587\u4ef6\u4e2d\u628a\u53c2\u6570\u5b9a\u4e49\u4e3a\u7c7b\u7684\u6210\u5458\u53d8\u91cf":74,"\u5934\u6587\u4ef6\u5982\u4e0b":74,"\u5982":[72,75,105,114],"\u5982\u4e0a\u4e00\u5c0f\u8282\u6240\u793a":76,"\u5982\u4e0b":91,"\u5982\u4e0b\u56fe\u6240\u793a":[108,111],"\u5982\u4e0b\u6240\u793a":105,"\u5982\u4f55\u8d21\u732e\u4ee3\u7801":73,"\u5982\u4f55\u8d21\u732e\u6587\u6863":73,"\u5982\u56fe\u4e2dtrainer":11,"\u5982\u6709":75,"\u5982\u679c\u4e00\u4e2a\u7f51\u7edc\u5c42\u9700\u8981\u914d\u7f6e\u7684\u8bdd":74,"\u5982\u679c\u4e0a\u9762\u4e24\u6b65\u51fa\u73b0\u9519\u8bef":11,"\u5982\u679c\u4e0d\u4e3a0":103,"\u5982\u679c\u4e0d\u4f7f\u7528\u5206\u5e03\u5f0f\u5b58\u50a8":91,"\u5982\u679c\u4e0d\u4f7f\u7528docker":1,"\u5982\u679c\u4e0d\u4f7f\u7528docker\u7f16\u8bd1\u73af\u5883":1,"\u5982\u679c\u4e0d\u60f3\u4f7f\u7528":77,"\u5982\u679c\u4e0d\u6307\u5b9a\u8fd9\u4e2a\u6587\u4ef6":107,"\u5982\u679c\u4e0d\u6536\u655b":83,"\u5982\u679c\u4e0d\u9700\u8981\u5916\u90e8\u5b58\u50a8\u7528\u4e8e\u8f6c\u6362":42,"\u5982\u679c\u4e3a0":103,"\u5982\u679c\u4e3a\u5426\u5219\u662f\u7528openbla":1,"\u5982\u679c\u4e3afals":103,"\u5982\u679c\u4e3atrue":103,"\u5982\u679c\u4e4b\u540e\u60f3\u8981\u91cd\u65b0\u8bbe\u7f6e":1,"\u5982\u679c\u4ec5\u4ec5\u4fee\u6539\u4e00\u4e2a\u6587\u4ef6\u4f46\u63d0\u4ea4\u4e86\u5341\u51e0\u4e2acommit":72,"\u5982\u679c\u4ecd\u7136\u5b58\u5728\u95ee\u9898":4,"\u5982\u679c\u4ed4\u7ec6\u8bbe\u7f6e\u7684\u8bdd":103,"\u5982\u679c\u4f60\u53ea\u9700\u8981\u4f7f\u7528\u7b80\u5355\u7684rnn":114,"\u5982\u679c\u4f60\u60f3\u4f7f\u7528\u8fd9\u4e9b\u7279\u6027":105,"\u5982\u679c\u4f60\u60f3\u8981\u4fdd\u5b58\u67d0\u4e9b\u5c42\u7684\u7279\u5f81\u56fe":103,"\u5982\u679c\u4f60\u66fe\u5728\u6e90\u7801\u76ee\u5f55\u4e0b\u7f16\u8bd1\u8fc7\u5176\u4ed6\u5e73\u53f0\u7684paddlepaddle\u5e93":117,"\u5982\u679c\u4f60\u66fe\u7ecf\u5728\u6e90\u7801\u76ee\u5f55\u4e0b\u7f16\u8bd1\u8fc7\u5176\u4ed6\u5e73\u53f0\u7684paddlepaddle\u5e93":[116,118],"\u5982\u679c\u4f60\u6b63\u5728\u5904\u7406\u5e8f\u5217\u6807\u8bb0\u4efb\u52a1":114,"\u5982\u679c\u4f60\u8981\u4e3a\u4e86\u6d4b\u8bd5\u800c\u589e\u52a0\u65b0\u7684\u6587\u4ef6":74,"\u5982\u679c\u4f7f\u7528":90,"\u5982\u679c\u4f7f\u7528docker\u7f16\u8bd1\u73af\u5883":1,"\u5982\u679c\u4f7f\u7528mkl\u5e76\u4e14\u673a\u5668\u542b\u6709avx2\u6307\u4ee4\u96c6":1,"\u5982\u679c\u4f7f\u7528swig\u6211\u4eec\u9700\u8981\u5c06\u5728interface\u6587\u4ef6\u91cc":45,"\u5982\u679c\u5173\u95edmkl":1,"\u5982\u679c\u51fa\u73b0\u4ee5\u4e0bpython\u76f8\u5173\u7684\u5355\u5143\u6d4b\u8bd5\u90fd\u8fc7\u4e0d\u4e86\u7684\u60c5\u51b5":78,"\u5982\u679c\u53c2\u6570\u4fdd\u5b58\u4e0b\u6765\u7684\u6a21\u578b\u76ee\u5f55":81,"\u5982\u679c\u53d1\u73b0\u6700\u65e9\u7684\u62a5\u9519\u5c31\u662f\u7f51\u7edc\u901a\u4fe1\u7684\u95ee\u9898":79,"\u5982\u679c\u540c\u65f6\u4f7f\u7528":91,"\u5982\u679c\u5728\u4f7f\u7528mkl":42,"\u5982\u679c\u5728\u70b9\u51fb\u4e0b\u9762\u94fe\u63a5\u65f6\u51fa\u73b0\u5982\u4e0b\u767b\u9646\u754c\u9762":4,"\u5982\u679c\u5728\u7f16\u8bd1":87,"\u5982\u679c\u5728\u7f51\u7edc\u914d\u7f6e\u4e2d\u672a\u8bbe\u7f6easync":103,"\u5982\u679c\u5728\u8bad\u7ec3\u671f\u95f4\u540c\u65f6\u53d1\u8d77\u53e6\u5916\u4e00\u4e2a\u8fdb\u7a0b\u8fdb\u884c\u6d4b\u8bd5":103,"\u5982\u679c\u5728\u8bad\u7ec3\u914d\u7f6e\u4e2d\u8bbe\u7f6ebatch":103,"\u5982\u679c\u5728\u8bad\u7ec3nlp\u76f8\u5173\u6a21\u578b\u65f6":83,"\u5982\u679c\u591a\u4e2aop\u4f9d\u8d56\u4e00\u4e9b\u5171\u7528\u7684\u51fd\u6570":75,"\u5982\u679c\u5931\u8d25":62,"\u5982\u679c\u5b58\u5728\u6570\u636e\u6392\u5217\u683c\u5f0f\u4e0d\u4e00\u6837\u7684\u60c5\u51b5\u65f6":42,"\u5982\u679c\u5b58\u5728\u67d0\u4e9btrainer\u6267\u884c\u901f\u5ea6\u8fc7\u6162\u4f1a\u5f71\u54cd\u6574\u4f53\u96c6\u7fa4\u7684\u901f\u5ea6":11,"\u5982\u679c\u5c06\u8fd9\u4e2a\u5185\u5b58\u6c60\u51cf\u5c0f":81,"\u5982\u679c\u5c0f\u4e8e75m":78,"\u5982\u679c\u5df2\u7ecf\u6709pod\u8fd0\u884c":97,"\u5982\u679c\u5df2\u7ecf\u6b63\u5728\u6267\u884c\u4fdd\u5b58\u68c0\u67e5\u70b9\u7684\u7ebf\u7a0b":11,"\u5982\u679c\u5e0c\u671b\u53ef\u4ee5\u5728\u540e\u53f0\u8fd0\u884cpserver\u7a0b\u5e8f":91,"\u5982\u679c\u5f53\u524dmpi\u96c6\u7fa4\u5e76\u4e0d\u652f\u6301\u4efb\u52a1\u72ec\u5360\u6a21\u5f0f":79,"\u5982\u679c\u60a8\u5728\u4f7f\u7528window":2,"\u5982\u679c\u60a8\u60f3\u8981\u66f4\u6df1\u5165\u4e86\u89e3deep":2,"\u5982\u679c\u60a8\u671f\u671b\u5728\u7f16\u8bd1\u5b8c\u6210\u540e\u7acb\u5373\u6267\u884c\u6240\u6709\u7684\u5355\u5143\u6d4b\u8bd5":1,"\u5982\u679c\u60a8\u6ca1\u6709\u542c\u8bf4":0,"\u5982\u679c\u60a8\u7684\u7535\u8111\u4e0d\u652f\u6301avx":2,"\u5982\u679c\u60a8\u7684gpu\u7406\u8bba\u53ef\u4ee5\u8fbe\u52306":108,"\u5982\u679c\u60a8\u9009\u62e9\u4e0d\u4f7f\u7528docker\u955c\u50cf":1,"\u5982\u679c\u60f3\u4f7f\u7528\u53ef\u89c6\u5316\u7684\u5206\u6790\u5668":108,"\u5982\u679c\u60f3\u5f88\u597d\u7684\u7406\u89e3\u7a0b\u5e8f\u7684\u884c\u4e3a":108,"\u5982\u679c\u60f3\u6539\u53d8\u539f\u6709tensor\u7684shape\u4fe1\u606f":76,"\u5982\u679c\u60f3\u8981\u4e86\u89e3\u53cc\u5c42rnn\u5728\u5177\u4f53\u95ee\u9898\u4e2d\u7684\u4f7f\u7528":111,"\u5982\u679c\u60f3\u8981\u542f\u7528paddlepaddle\u7684\u5185\u7f6e\u5b9a\u65f6\u5668":108,"\u5982\u679c\u6211\u4eec\u53ea\u9700\u8981\u7f16\u8bd1\u4e00\u4e2a\u53ea\u652f\u6301":0,"\u5982\u679c\u6211\u77e5\u9053\u5185\u6838\u82b1\u4e8610ms\u6765\u79fb\u52a81gb\u6570\u636e":108,"\u5982\u679c\u6307\u5b9a\u4e862\u4e2alayer\u4f5c\u4e3a\u8f93\u51fa\u5c42":81,"\u5982\u679c\u63d0\u793a\u6b63\u786e":77,"\u5982\u679c\u652f\u6301\u589e\u52a0\u6b64\u53c2\u6570\u63d0\u4ea4":79,"\u5982\u679c\u662f\u4e00\u4e2a\u5e8f\u5217\u8f93\u5165":89,"\u5982\u679c\u662f\u5176\u5b83\u7c7b\u578b":12,"\u5982\u679c\u662f\u7528\u7f16\u8bd1\u65f6\u6307\u5b9acpu\u7248\u672c":87,"\u5982\u679c\u6709\u591a\u4e2a\u8f93\u5165":113,"\u5982\u679c\u6709\u591a\u4e2a\u8f93\u5165\u5e8f\u5217":113,"\u5982\u679c\u6709\u9700\u8981\u4fee\u6539\u7684\u5730\u65b9":72,"\u5982\u679c\u6709bugfix\u7684\u884c\u4e3a":62,"\u5982\u679c\u672a\u8bbe\u7f6e":103,"\u5982\u679c\u672a\u8bbe\u7f6egpu":105,"\u5982\u679c\u673a\u5668\u4e2d\u5df2\u7ecf\u5b89\u88c5\u8fc7paddlepaddl":1,"\u5982\u679c\u67d0\u4e00\u4e2a\u7c7b\u578b\u9700\u8981\u5f15\u7528\u53e6\u4e00\u4e2a\u7c7b\u578b":46,"\u5982\u679c\u67d0\u4e00\u4e2apaddl":46,"\u5982\u679c\u67d0\u4e00\u4e2apaddle\u6982\u5ff5\u5fc5\u987b\u8981\u66b4\u9732":46,"\u5982\u679c\u67d0\u4e00\u5757\u6839\u672c\u5c31\u4e0d\u600e\u4e48\u8017\u65f6":108,"\u5982\u679c\u68c0\u67e5\u5230\u5206\u914d\u5728\u4e0d\u540c\u53c2\u6570\u670d\u52a1\u5668\u4e0a\u7684\u53c2\u6570\u7684\u5206\u5e03\u4e0d\u5747\u5300\u6b21\u6570\u5927\u4e8echeck":103,"\u5982\u679c\u6ca1\u6709\u5b89\u88c5nvidia":2,"\u5982\u679c\u6ca1\u6709\u5b9a\u4e49memori":113,"\u5982\u679c\u6ca1\u8fc7":72,"\u5982\u679c\u6d88\u606f\u6570\u636e\u592a\u5c0f":103,"\u5982\u679c\u6ee1\u8db3\u6761\u4ef6":11,"\u5982\u679c\u7528\u516c\u7528\u7684\u7535\u8111\u5f00\u53d1":0,"\u5982\u679c\u7528\u6237\u4e0d\u9700\u8981\u8bbf\u95eelstm\u7684\u4e2d\u95f4\u53d8\u91cf":82,"\u5982\u679c\u7528\u6237\u60f3\u8981\u81ea\u5b9a\u4e49\u521d\u59cb\u5316\u65b9\u5f0f":83,"\u5982\u679c\u7528\u6237\u8981\u628apaddle\u7684\u9759\u6001\u5e93":45,"\u5982\u679c\u7528\u81ea\u5df1\u7684\u7535\u8111\u5f00\u53d1":0,"\u5982\u679c\u771f\u60f3\u6316\u6398\u5185\u6838\u6df1\u5904\u7684\u67d0\u4e2a\u79d8\u5bc6":108,"\u5982\u679c\u795e\u7ecf\u7f51\u7edc\u6709\u591a\u4e2a\u8f93\u5165\u6216\u8005\u591a\u4e2a\u8f93\u51fa":[89,90],"\u5982\u679c\u7a0b\u5e8f\u5d29\u6e83\u4f60\u4e5f\u53ef\u4ee5\u624b\u52a8\u7ec8\u6b62":93,"\u5982\u679c\u7cfb\u7edf\u5b89\u88c5\u4e86\u591a\u4e2apython\u7248\u672c":78,"\u5982\u679c\u7cfb\u7edf\u652f\u6301":[4,78],"\u5982\u679c\u7cfb\u7edf\u652f\u6301\u7684\u662f":[4,78],"\u5982\u679c\u7f16\u8bd1\u65f6\u6307\u5b9a\u7f16\u8bd1cpu\u7248\u672c":87,"\u5982\u679c\u7f16\u8bd1\u65f6\u6307\u5b9a\u7f16\u8bd1gpu\u7248\u672c":87,"\u5982\u679c\u7f16\u8bd1\u7684\u65f6\u5019\u6211\u4eec\u7528\u4e86":0,"\u5982\u679c\u7f51\u7edc\u5c42\u4e0d\u9700\u8981\u8fdc\u7a0b\u7a00\u758f\u66f4\u65b0":74,"\u5982\u679c\u7f51\u7edc\u67b6\u6784\u7b80\u5355":114,"\u5982\u679c\u8981\u4e0a\u4f20gpu\u7248\u672c\u7684\u5305":62,"\u5982\u679c\u8981\u542f\u7528gpu":101,"\u5982\u679c\u8981\u8fd0\u884c\u6240\u6709\u7684\u5355\u5143\u6d4b\u8bd5":72,"\u5982\u679c\u89e3\u51b3\u4e86\u67d0\u4e2aissue\u7684\u95ee\u9898":72,"\u5982\u679c\u8bad\u7ec3\u4e00\u4e2apass":83,"\u5982\u679c\u8bad\u7ec3\u8fc7\u7a0b\u7684\u7684cost\u660e\u663e\u9ad8\u4e8e\u8fd9\u4e2a\u5e38\u6570\u8f93\u51fa\u7684cost":83,"\u5982\u679c\u8bbe\u7f6e\u8be5\u53c2\u6570":103,"\u5982\u679c\u8bc4\u5ba1\u610f\u89c1\u6bd4\u8f83\u591a":72,"\u5982\u679c\u8c03\u7528\u9759\u6001\u5e93\u53ea\u80fd\u5c06\u9759\u6001\u5e93\u4e0e\u89e3\u91ca\u5668\u94fe\u63a5":45,"\u5982\u679c\u8f93\u5165\u662f\u5e8f\u5217\u6570\u636e":89,"\u5982\u679c\u8f93\u51fa\u662f\u4e00\u4e2a\u5e8f\u5217":89,"\u5982\u679c\u8f93\u51fa\u662fno":2,"\u5982\u679c\u8fd0\u884c":78,"\u5982\u679c\u8fd8\u4e0d\u884c":78,"\u5982\u679c\u9700\u8981":87,"\u5982\u679c\u9700\u8981\u5728c\u7ef4\u5ea6\u8ba1\u7b97softmax":82,"\u5982\u679c\u9700\u8981\u5b89\u88c5\u652f\u6301gpu\u7684\u7248\u672c":[4,86],"\u5982\u679c\u9700\u8981\u624b\u52a8\u7f16\u8bd1":62,"\u5982\u679c\u9700\u8981\u6269\u5927\u77e9\u9635":74,"\u5982\u679c\u9700\u8981\u7f29\u51cf\u77e9\u9635":74,"\u5982\u679c\u9700\u8981\u83b7\u53d6":4,"\u5982\u679ccuda":75,"\u5982\u679clearning_rate\u592a\u5927":83,"\u5982\u679clearning_rate\u592a\u5c0f":83,"\u5982\u679cmkl":42,"\u5982\u679cop\u6ca1\u6709\u5b9e\u73b0cuda":75,"\u5982\u679cop\u7684\u67d0\u4e2a\u8f93\u5165\u4e0d\u53c2\u4e0e\u53cd\u5411\u68af\u5ea6\u7684\u8ba1\u7b97":75,"\u5982\u679cpaddlepaddle\u5305\u5df2\u7ecf\u5728python\u7684sit":78,"\u5982\u679cpaddlepaddle\u5e93\u9700\u8981\u540c\u65f6\u652f\u6301\u771f\u673a\u548c\u6a21\u62df\u5668":117,"\u5982\u679cparamet":11,"\u5982\u6bcf\u4e2a\u6587\u4ef6\u53ea\u6709\u4e00\u4e2a":72,"\u5982\u795e\u7ecf\u5143\u6fc0\u6d3b\u503c\u7b49":81,"\u5982\u8981build\u8fd9\u4e2a\u5f00\u53d1\u955c\u50cf":72,"\u5982\u9ad8\u4eae\u90e8\u5206":108,"\u5982train":91,"\u5b50\u53e5":113,"\u5b50\u53e5\u7684\u5355\u8bcd\u6570\u548c\u6307\u5b9a\u7684\u4e00\u4e2a\u8f93\u5165\u5e8f\u5217\u4e00\u81f4":113,"\u5b50\u76ee\u5f55":0,"\u5b50\u7c7b\u53ea\u9700\u8981\u4f7f\u7528\u5b9a\u4e49\u597d\u7684\u63a5\u53e3":42,"\u5b57\u6bb5\u4e2d":97,"\u5b57\u6bb5\u4e3a\u4f8b":81,"\u5b57\u6bb5\u7684\u53d6\u503c":89,"\u5b57\u6bb5\u8868\u793a\u5bb9\u5668\u7684\u73af\u5883\u53d8\u91cf":97,"\u5b57\u6bb5\u8868\u793a\u8fd9\u4e2ajob\u4f1a\u540c\u65f6\u5f00\u542f3\u4e2apaddlepaddle\u8282\u70b9":97,"\u5b57\u6bb5\u8bbe\u4e3a":62,"\u5b57\u7b26\u4e32":12,"\u5b58\u50a8":[12,89,90],"\u5b58\u50a8\u6d6e\u70b9\u7c7b\u578b\u8f93\u5165":90,"\u5b58\u50a8\u7684\u538b\u7f29\u6587\u4ef6":90,"\u5b58\u6570\u6570\u636e":89,"\u5b66\u4e60":0,"\u5b66\u4e60\u6210\u672c\u9ad8":45,"\u5b66\u4e60\u7387\u4e3a":83,"\u5b83\u4eec\u4e3b\u8981\u662f\u7528\u4e8e":42,"\u5b83\u4eec\u7684\u6587\u4ef6\u540d\u662f":12,"\u5b83\u5305\u542b\u4ee5\u4e0b\u51e0\u6b65":74,"\u5b83\u5305\u542b\u4ee5\u4e0b\u53c2\u6570":74,"\u5b83\u53ea\u4f1a\u5305\u62ec\u751f\u6210\u597d\u7684\u52a8\u6001\u5e93\u548c\u5934\u6587\u4ef6":42,"\u5b83\u53eb\u505a":114,"\u5b83\u53ef\u4ee5\u5e2e\u52a9\u51cf\u5c11\u5206\u53d1\u5ef6\u8fdf":93,"\u5b83\u53ef\u4ee5\u5e2e\u52a9\u6211\u4eec\u683c\u5f0f\u5316\u6e90\u4ee3\u7801":72,"\u5b83\u53ef\u4ee5\u6307\u6d4b\u91cf\u4e00\u4e2a\u7a0b\u5e8f\u7684\u7a7a\u95f4":108,"\u5b83\u53ef\u80fd\u6709\u4e0d\u6b62\u4e00\u4e2a\u6743\u91cd":74,"\u5b83\u5b9a\u4e49\u4e86":114,"\u5b83\u5b9a\u4e49\u89e3\u7801\u7f51\u7edc\u7684":114,"\u5b83\u5c06\u88ab\u5206\u53d1\u5230":93,"\u5b83\u5e76\u4e0d\u662f\u4e00\u4e2a\u5b8c\u6574\u7684recurr":82,"\u5b83\u5e94\u8be5\u6253\u5370\u51fa\u9884\u6d4b\u4f4f\u623f\u6570\u636e\u7684\u6e05\u5355":86,"\u5b83\u652f\u6301\u591a\u7ebf\u7a0b\u66f4\u65b0":74,"\u5b83\u662finteger_value\u7c7b\u578b\u7684":111,"\u5b83\u662finteger_value_sequence\u7c7b\u578b\u7684":111,"\u5b83\u6709\u52a9\u4e8e\u5e2e\u52a9\u9891\u7e41\u4fee\u6539\u548c\u8bbf\u95ee\u5de5\u4f5c\u533a\u6587\u4ef6\u7684\u7528\u6237\u51cf\u5c11\u8d1f\u62c5":93,"\u5b83\u7684":114,"\u5b83\u7684\u529f\u80fd\u662f":75,"\u5b83\u7684\u6bcf\u4e00\u4e2a\u5143\u7d20":110,"\u5b83\u7684\u8f93\u5165\u4e0e\u7ecf\u8fc7\u5b66\u4e60\u7684\u53c2\u6570\u505a\u5185\u79ef\u5e76\u52a0\u4e0a\u504f\u7f6e":74,"\u5b83\u8868\u793a":0,"\u5b83\u8d1f\u8d23\u51b3\u5b9a\u7f16\u8bd1\u65f6\u662f\u5426\u4f7f\u7528mklml\u548cmkl":42,"\u5b83\u9996\u5148\u8c03\u7528\u57fa\u6784\u9020\u51fd\u6570":74,"\u5b89\u88c5":107,"\u5b89\u88c5\u4e0e\u7f16\u8bd1":115,"\u5b89\u88c5\u4e0e\u7f16\u8bd1c":88,"\u5b89\u88c5\u540e":2,"\u5b89\u88c5\u540e\u7684\u76ee\u5f55\u7ed3\u6784\u4e3a":46,"\u5b89\u88c5\u597ddocker\u4e4b\u540e\u53ca\u53ef\u7528\u4ee5\u4e0b\u547d\u4ee4\u542f\u52a8\u5de5\u5177":77,"\u5b89\u88c5\u597ddocker\u4e4b\u540e\u53ef\u4ee5\u4f7f\u7528\u6e90\u7801\u76ee\u5f55\u4e0b\u7684\u811a\u672c\u6784\u5efa\u6587\u6863":77,"\u5b89\u88c5\u5b8c\u6210\u4e4b\u540e":[101,117],"\u5b89\u88c5\u5b8c\u6bd5\u540e":107,"\u5b89\u88c5\u5f00\u53d1\u5de5\u5177\u5230":0,"\u5b89\u88c5\u6587\u6863":84,"\u5b89\u88c5\u65b9\u5f0f\u6765\u5feb\u901f\u5b89\u88c5paddlepaddl":101,"\u5b89\u88c5\u6d41\u7a0b":86,"\u5b8c\u6210":72,"\u5b8c\u6210\u4e00\u4e2a\u4f20\u8f93\u52a8\u4f5c\u5b8c\u6210\u7684\u65f6\u95f4\u4e5f\u6bd4\u8f83\u77ed":28,"\u5b8c\u6210\u4e0a\u8ff0\u51c6\u5907\u4e4b\u540e":90,"\u5b8c\u6210\u4efb\u610f\u7684\u8fd0\u7b97\u903b\u8f91":113,"\u5b8c\u6210\u540evolume\u4e2d\u7684\u6587\u4ef6\u5185\u5bb9\u5927\u81f4\u5982\u4e0b":97,"\u5b8c\u6210\u5728windows\u4e0a\u5b89\u88c5\u548c\u4f7f\u7528dock":2,"\u5b8c\u6210\u5b89\u88c5":4,"\u5b8c\u6210\u5e38\u7528layer\u7684mkl":42,"\u5b8c\u6210\u5e38\u89c1\u6df1\u5ea6\u795e\u7ecf\u7f51\u7edcvgg":42,"\u5b8c\u6210\u6570\u636e\u7684\u9884\u5904\u7406":12,"\u5b8c\u6210\u76f8\u5e94\u7684\u8ba1\u7b97":110,"\u5b8c\u6210\u81ea\u52a8\u5316\u4e8c\u8fdb\u5236\u7f16\u8bd1":62,"\u5b8c\u6210paddlepaddle\u7684\u5b89\u88c5":84,"\u5b8c\u6574\u4ee3\u7801\u53ef\u4ee5\u53c2\u8003\u793a\u4f8b":81,"\u5b8c\u6574\u4ee3\u7801\u53ef\u4ee5\u67e5\u770b":90,"\u5b8c\u6574\u6e90\u7801\u53ef\u53c2\u8003":83,"\u5b8c\u6574\u7684\u53c2\u6570\u77e9\u9635\u88ab\u5206\u5e03\u5728\u4e0d\u540c\u7684\u53c2\u6570\u670d\u52a1\u5668\u4e0a":74,"\u5b8c\u6574\u7684\u914d\u7f6e\u6587\u4ef6\u5728":114,"\u5b98\u65b9\u6587\u6863":1,"\u5b9a\u4e49":42,"\u5b9a\u4e49\u4e00\u4e2a\u65f6\u95f4\u6b65\u4e4b\u5185rnn\u5355\u5143\u5b8c\u6210\u7684\u8ba1\u7b97":113,"\u5b9a\u4e49\u4e00\u4e9b\u9664\u4e86layer\u548cmemory\u76f8\u5173\u7684\u7c7b\u548c\u51fd\u6570":42,"\u5b9a\u4e49\u4e86\u4e00\u4e2a\u53ea\u8bfb\u7684memori":113,"\u5b9a\u4e49\u4e86lstm\u5355\u5143\u5728\u4e00\u4e2a\u65f6\u95f4\u6b65\u5185\u7684\u8ba1\u7b97\u8fc7\u7a0b":82,"\u5b9a\u4e49\u4f4d\u7f6e":75,"\u5b9a\u4e49\u5728\u5916\u5c42":113,"\u5b9a\u4e49\u5f02\u6b65\u8bad\u7ec3\u7684\u957f\u5ea6":103,"\u5b9a\u4e49\u6e90\u8bed\u53e5\u7684\u6570\u636e\u5c42":114,"\u5b9a\u4e49\u7684\u795e\u7ecf\u7f51\u7edc\u7ed3\u6784":90,"\u5b9a\u4e49\u7c7b\u578b":75,"\u5b9a\u4e49\u89e3\u7801\u5668\u7684memori":114,"\u5b9a\u4e49\u8f93\u5165":75,"\u5b9a\u4e49\u8f93\u51fa":75,"\u5b9a\u4e49\u8f93\u51fa\u51fd\u6570":114,"\u5b9a\u4e49\u95e8\u63a7\u5faa\u73af\u5355\u5143\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u5355\u6b65\u51fd\u6570":114,"\u5b9d\u5854\u7684\u5e95\u7aef\u9700\u8981\u575a\u5b9e\u7684\u57fa\u5ea7\u6765\u652f\u6491":84,"\u5b9e\u73b0\u4e24\u4e2a\u5b8c\u5168\u7b49\u4ef7\u7684\u5168\u8fde\u63a5rnn":111,"\u5b9e\u73b0\u5177\u4f53\u7684\u51fd\u6570\u529f\u80fd\u5373\u53ef":42,"\u5b9e\u73b0\u524d\u5411\u4f20\u64ad\u7684\u90e8\u5206\u6709\u4e0b\u9762\u51e0\u4e2a\u6b65\u9aa4":74,"\u5b9e\u73b0\u5355\u6b65\u51fd\u6570":114,"\u5b9e\u73b0\u540e\u5411\u4f20\u64ad\u7684\u90e8\u5206\u6709\u4e0b\u9762\u51e0\u4e2a\u6b65\u9aa4":74,"\u5b9e\u73b0\u5728":75,"\u5b9e\u73b0\u5bf9":76,"\u5b9e\u73b0\u65b0\u7684op\u90fd\u6dfb\u52a0\u81f3\u76ee\u5f55":75,"\u5b9e\u73b0\u6784\u9020\u51fd\u6570":74,"\u5b9e\u73b0\u7684":82,"\u5b9e\u73b0\u7b80\u5355":45,"\u5b9e\u73b0\u7ec6\u8282":74,"\u5b9e\u73b0\u7f51\u7edc\u5c42\u7684\u524d\u5411\u4f20\u64ad":74,"\u5b9e\u73b0\u7f51\u7edc\u5c42\u7684\u540e\u5411\u4f20\u64ad":74,"\u5b9e\u73b0\u8bcd\u8bed\u548c\u53e5\u5b50\u4e24\u4e2a\u7ea7\u522b\u7684\u53cc\u5c42rnn\u7ed3\u6784":113,"\u5b9e\u73b0\u8be5\u5c42\u7684c":74,"\u5b9e\u9645\u4e0a\u4f7f\u7528\u4e86":82,"\u5b9e\u9645\u4e0a\u9700\u8981\u7684\u8f93\u51fa\u7ed3\u679c\u662f\u4e24\u4e2a\u77e9\u9635":81,"\u5bb9\u5668\u8fd0\u884c\u90fd\u8fd0\u884c":97,"\u5bb9\u5668\u9ed8\u8ba4\u6267\u884c":116,"\u5bbd\u5ea6":89,"\u5bbd\u5ea6\u4e3a":89,"\u5bbd\u5ea6\u7b49\u4e8e\u914d\u7f6e\u4e2dlayer\u7684s":81,"\u5bbf\u4e3b\u673a\u7684c":[116,117,118],"\u5bc4\u5b58\u5668\u4f7f\u7528\u60c5\u51b5\u548c\u5171\u4eab\u5185\u5b58\u4f7f\u7528\u60c5\u51b5\u80fd\u8ba9\u6211\u4eec\u5bf9gpu\u7684\u6574\u4f53\u4f7f\u7528\u6709\u66f4\u597d\u7684\u7406\u89e3":108,"\u5bf9":90,"\u5bf9\u4e00\u4e2a5\u7ef4\u975e\u5e8f\u5217\u7684\u7a00\u758f01\u5411\u91cf":84,"\u5bf9\u4e00\u4e2a5\u7ef4\u975e\u5e8f\u5217\u7684\u7a00\u758f\u6d6e\u70b9\u5411\u91cf":84,"\u5bf9\u4e8e":114,"\u5bf9\u4e8e\u4e0d\u540c\u7684\u8bad\u7ec3\u4efb\u52a1":91,"\u5bf9\u4e8e\u4e0d\u540c\u7684\u96c6\u7fa4\u5e73\u53f0":94,"\u5bf9\u4e8e\u4e0d\u540c\u8bed\u8a00":45,"\u5bf9\u4e8e\u4e24\u79cd\u4e0d\u540c\u7684\u8f93\u5165\u6570\u636e\u7c7b\u578b":111,"\u5bf9\u4e8e\u4e60\u60ef\u4f7f\u7528windows\u548cmacos\u7684\u5f00\u53d1\u8005\u6765\u8bf4":0,"\u5bf9\u4e8e\u5355\u5c42rnn":111,"\u5bf9\u4e8e\u5355\u5c42rnn\u7684\u6570\u636e\u4e00\u5171\u6709\u4e24\u4e2a\u6837\u672c":111,"\u5bf9\u4e8e\u53cc\u5c42rnn":111,"\u5bf9\u4e8e\u540c\u4e00\u6bb5c":45,"\u5bf9\u4e8e\u540c\u6837\u7684\u6570\u636e":111,"\u5bf9\u4e8e\u540c\u6837\u8bbe\u7f6e\u7684\u7f51\u7edc\u6a21\u578b":41,"\u5bf9\u4e8e\u56fd\u5185\u7528\u6237":2,"\u5bf9\u4e8e\u591a\u8bed\u8a00\u63a5\u53e3":45,"\u5bf9\u4e8e\u5927\u591a\u6570\u8bed\u8a00":45,"\u5bf9\u4e8e\u5e8f\u5217\u957f\u5ea6":41,"\u5bf9\u4e8e\u6027\u80fd\u7684\u5173\u952e\u8def\u5f84\u90fd\u505a\u51fa\u4e86\u7ea2\u8272\u6807\u8bb0":107,"\u5bf9\u4e8e\u6211\u4eec\u652f\u6301\u7684\u5168\u90e8\u77e9\u9635\u64cd\u4f5c":74,"\u5bf9\u4e8e\u6709\u53c2\u6570\u7684\u5c42":42,"\u5bf9\u4e8e\u672c\u6837\u4f8b\u4ee3\u7801":91,"\u5bf9\u4e8e\u6bb5\u843d\u7684\u6587\u672c\u5206\u7c7b":111,"\u5bf9\u4e8e\u6bcf\u4e00\u4e2a\u5355\u5c42rnn\u7684\u6570\u636e":111,"\u5bf9\u4e8e\u6bcf\u4e00\u4e2a\u65b0\u52a0\u7684rnn":41,"\u5bf9\u4e8e\u6bcf\u79cd\u7c7b\u578b":46,"\u5bf9\u4e8e\u6bcf\u79cdc":46,"\u5bf9\u4e8e\u8fd9\u6837\u7684\u9700\u6c42":90,"\u5bf9\u4e8e\u914d\u5907\u6709\u6ce8\u610f\u529b\u673a\u5236\u7684\u89e3\u7801\u5668":114,"\u5bf9\u4e8enchw":82,"\u5bf9\u4ee3\u7801\u8fdb\u884c\u6027\u80fd\u5206\u6790":108,"\u5bf9\u4f7f\u7528\u7684\u4e2d\u95f4\u53d8\u91cf\u548c\u8d44\u6e90\u8fdb\u884c\u6e05\u7406\u548c\u91ca\u653e":90,"\u5bf9\u5168\u8fde\u63a5\u5c42\u6765\u8bf4":74,"\u5bf9\u52a0\u8f7d\u9884\u8bad\u7ec3\u53c2\u6570\u7684\u5c42":83,"\u5bf9\u53cc\u5c42\u5e8f\u5217\u6765\u8bb2":89,"\u5bf9\u5df2\u7ecfpush\u5230\u8fdc\u7a0b\u4ed3\u5e93\u7684\u591a\u4e2acommit":72,"\u5bf9\u5e94":117,"\u5bf9\u5e94\u4e00\u4e2a\u5b50\u53e5":113,"\u5bf9\u5e94\u4e00\u4e2a\u8bcd":113,"\u5bf9\u5e94\u4e8e\u8c03\u7528c":89,"\u5bf9\u5e94\u7684\u68af\u5ea6op\u8ba1\u7b97\u4e4b\u4e2d":75,"\u5bf9\u5e94\u7740\u4e0a\u6587\u63d0\u5230\u7684\u4e00\u7ef4\u6574\u578b\u6570\u7ec4":89,"\u5bf9\u5e94\u7740\u4e0a\u6587\u63d0\u5230\u7684\u4e8c\u7ef4\u6d6e\u70b9\u578b\u77e9\u9635":89,"\u5bf9\u63a8\u8350\u914d\u7f6e\u4e2d\u7684\u9009\u9879\u5efa\u8bae\u6309\u7167\u8bbe\u7f6e":87,"\u5bf9\u65b0\u7684\u6743\u91cd\u8fdb\u884c\u8f6c\u6362\u7528\u4e8e\u4e0b\u6b21\u8fed\u4ee3":41,"\u5bf9\u6bcf\u4e2a\u8f93\u5165":74,"\u5bf9\u6bcf\u4e2a\u8f93\u5165\u4e58\u4e0a\u53d8\u6362\u77e9\u9635":74,"\u5bf9\u6bd4":45,"\u5bf9\u6bd4\u4f18\u5316\u540elayer\u4e0e\u76f8\u5bf9\u5e94\u7684paddlepaddle\u539f\u6709lay":41,"\u5bf9\u6bd4\u4f18\u5316\u540elayer\u81ea\u8eab":41,"\u5bf9\u6bd4\u53cd\u5411op\u4e0d\u540c\u8bbe\u5907":75,"\u5bf9\u6fc0\u6d3b\u6c42\u5bfc":74,"\u5bf9\u795e\u7ecf\u7f51\u7edc\u6765\u8bf4":89,"\u5bf9\u795e\u7ecf\u7f51\u7edc\u7ed3\u6784\u8fdb\u884c\u5e8f\u5217\u5316":90,"\u5bf9\u8bc4\u5ba1\u610f\u89c1\u4e0d\u540c\u610f\u7684":72,"\u5bf9\u8bc4\u5ba1\u610f\u89c1\u540c\u610f\u4e14\u6309\u5176\u4fee\u6539\u5b8c\u7684":72,"\u5bf9\u8c61":83,"\u5bf9\u8c61\u5206\u914d\u7a7a\u95f4":90,"\u5bf9\u8f93\u5165\u53c2\u6570\u7684\u5b89\u5168\u6027\u8fdb\u884c\u4e86\u5fc5\u8981\u7684\u5224\u65ad":46,"\u5bf9\u8f93\u51fa\u7684\u5408\u5e76":113,"\u5bf9\u8fd9\u4e2a\u7248\u672c\u7684\u63d0\u4ea4":62,"\u5bf9sparse_binary_vector\u548csparse_float_vector":84,"\u5bfb\u627e\u6709\u6ca1\u6709\u5176\u4ed6\u53ef\u4ee5\u4f18\u5316\u7684\u53ef\u80fd":42,"\u5bfb\u627epython\u4e0ec":107,"\u5bfc\u51fa\u8fd9\u4e9b\u63a5\u53e3":46,"\u5bfc\u81f4\u4e86\u6d6e\u70b9\u6570\u6ea2\u51fa":81,"\u5bfc\u81f4\u53c2\u6570\u6536\u655b\u5230\u4e86\u4e00\u4e9b\u5947\u5f02\u7684\u60c5\u51b5":81,"\u5bfc\u81f4\u53c2\u6570\u7d2f\u52a0":81,"\u5bfc\u81f4\u7f16\u8bd1paddlepaddle\u5931\u8d25":78,"\u5bfc\u81f4\u8bad\u7ec3\u65f6\u95f4\u8fc7\u957f":83,"\u5bfc\u81f4mklml\u5e93\u4e0b\u8f7d\u4e0d\u6210\u529f":78,"\u5c01\u88c5\u4e86":108,"\u5c01\u88c5\u8be5\u5c42\u7684python\u63a5\u53e3":74,"\u5c06":[62,83,108],"\u5c06\u4e00\u4e2a\u795e\u7ecf\u7f51\u7edc\u53c2\u6570\u62c6\u5206\u6210\u591a\u4efd":11,"\u5c06\u4e0a\u4e00\u65f6\u95f4\u6b65\u6240\u751f\u6210\u7684\u8bcd\u7684\u5411\u91cf\u6765\u4f5c\u4e3a\u5f53\u524d\u65f6\u95f4\u6b65\u7684\u8f93\u5165":114,"\u5c06\u4f1a\u4f18\u5148\u4f7f\u7528":91,"\u5c06\u4f1a\u59cb\u7ec8\u4f7f\u7528":116,"\u5c06\u4f1a\u5c06\u7528\u6237\u4f20\u8fdb\u6765\u7684\u914d\u7f6e\u53c2\u6570\u4f20\u9012cmake\u7cfb\u7edf":116,"\u5c06\u4f1a\u81ea\u52a8\u8ba1\u7b97\u51fa\u4e00\u4e2a\u5408\u9002\u7684\u503c":103,"\u5c06\u5176\u8bbe\u7f6e\u6210":81,"\u5c06\u53cc\u5c42\u65f6\u95f4\u5e8f\u5217\u6570\u636e\u5148\u53d8\u6362\u6210\u5355\u5c42\u65f6\u95f4\u5e8f\u5217\u6570\u636e":111,"\u5c06\u542b\u6709\u5b50\u53e5":113,"\u5c06\u542b\u6709\u8bcd\u8bed\u7684\u53e5\u5b50\u5b9a\u4e49\u4e3a\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":113,"\u5c06\u56fe\u7247\u5206\u7c7b\u5230":90,"\u5c06\u591a\u53e5\u8bdd\u770b\u6210\u4e00\u4e2a\u6574\u4f53\u540c\u65f6\u4f7f\u7528encoder\u538b\u7f29":111,"\u5c06\u591a\u53f0\u673a\u5668\u7684\u6d4b\u8bd5\u7ed3\u679c\u5408\u5e76":103,"\u5c06\u5927\u91cf\u7684":45,"\u5c06\u5b57\u5178\u7684\u5730\u5740\u4f5c\u4e3aargs\u4f20\u7ed9dataprovid":83,"\u5c06\u5b83\u4eec\u653e\u5728\u540c\u4e00\u76ee\u5f55\u4e2d":90,"\u5c06\u5bf9\u5e94\u6570\u636e\u5c42\u7684\u7ef4\u6570\u8bbe\u7f6e\u6210\u4e00\u4e2a\u5927\u4e8e\u8f93\u5165\u6570\u636e\u7ef4\u6570\u7684\u503c\u7528\u4e8e\u5360\u4f4d\u5373\u53ef":82,"\u5c06\u5e8f\u5217\u5316\u7ed3\u679c\u5199\u5165\u4e00\u4e2a\u6587\u4ef6\u5185":90,"\u5c06\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u7684\u524d\u5411\u548c\u53cd\u5411\u90e8\u5206\u6df7\u5408\u5728\u4e00\u8d77":114,"\u5c06\u6027\u80fd\u5206\u6790\u7ed3\u679c\u4ee5\u7f51\u9875\u7684\u5f62\u5f0f\u5c55\u793a\u51fa\u6765":107,"\u5c06\u6027\u80fd\u5206\u6790\u7ed3\u679c\u6309\u7167tottime\u6392\u5e8f":107,"\u5c06\u6570\u636e\u5207\u5206\u6210\u591a\u4efd":91,"\u5c06\u65b0\u5206\u652f\u7684\u7248\u672c\u6253\u4e0atag":62,"\u5c06\u65b0\u5efa\u7684\u6743\u91cd\u52a0\u5165\u6743\u91cd\u8868":74,"\u5c06\u660e\u6587\u53c2\u6570\u8f6c\u5316\u4e3apaddlepaddle\u53ef\u52a0\u8f7d\u7684\u6a21\u578b\u53c2\u6570\u65f6":83,"\u5c06\u672c\u5730\u7684\u4fee\u6539\u63a8\u9001\u5230":72,"\u5c06\u6b64\u76ee\u5f55\u6302\u8f7d\u4e3a\u5bb9\u5668\u7684":97,"\u5c06\u73af\u5883\u53d8\u91cf\u8f6c\u6362\u6210paddle\u7684\u547d\u4ee4\u884c\u53c2\u6570":97,"\u5c06\u7528\u4e8epython":75,"\u5c06\u7ed3\u679c\u4fdd\u5b58\u5230\u6b64\u76ee\u5f55\u91cc":97,"\u5c06\u7f51\u7edc\u7ed3\u6784\u5b9a\u4e49\u548c\u8bad\u7ec3\u7ed3\u675f\u5b58\u50a8\u4e0b\u6765\u7684\u6a21\u578b\u53c2\u6570\u6587\u4ef6":90,"\u5c06\u8bad\u7ec3\u6587\u4ef6\u4e0e\u5207\u5206\u597d\u7684\u6570\u636e\u4e0a\u4f20\u5230\u5171\u4eab\u5b58\u50a8":97,"\u5c06\u8df3\u8fc7\u5206\u53d1\u9636\u6bb5\u76f4\u63a5\u542f\u52a8\u6240\u6709\u8282\u70b9\u7684\u96c6\u7fa4\u4f5c\u4e1a":93,"\u5c06\u8fd9\u79cd\u8de8\u8d8a\u65f6\u95f4\u6b65\u7684\u8fde\u63a5\u7528\u4e00\u4e2a\u7279\u6b8a\u7684\u795e\u7ecf\u7f51\u7edc\u5355\u5143\u5b9e\u73b0":111,"\u5c06\u8fdc\u7a0b\u4ed3\u5e93":72,"\u5c06\u900f\u660e":93,"\u5c06\u9700\u8981\u8f93\u51fa\u7684\u5c42\u4f5c\u4e3a":81,"\u5c06cuda\u5e93\u548clinux\u8bbe\u5907\u6302\u8f7d\u5230docker\u5bb9\u5668\u5185":2,"\u5c06ip\u6392\u5e8f\u751f\u6210\u7684\u5e8f\u53f7\u4f5c\u4e3atrain":97,"\u5c06master\u5206\u652f\u7684\u5408\u5165commit\u6253\u4e0atag":62,"\u5c06node\u8282\u70b9\u7684ip\u5730\u5740\u4fdd\u5b58\u5230machines\u6587\u4ef6\u4e2d":98,"\u5c06paddlepaddle\u4fdd\u5b58\u7684\u6a21\u578b\u53c2\u6570\u8fd8\u539f\u56de\u660e\u6587\u65f6":83,"\u5c06recurr":82,"\u5c0f\u4e8e\u67d0\u4e2a\u6bd4\u8f83\u5c0f\u7684\u9608\u503c\u8ba4\u4e3a\u901a\u8fc7":42,"\u5c31\u4f1a\u5728\u5b8c\u6210\u7f16\u8bd1\u4e4b\u540e":1,"\u5c31\u53ef\u4ee5\u4e86\u89e3\u5230\u95ee\u9898\u4ee3\u7801\u5728\u54ea\u91cc":107,"\u5c31\u53ef\u4ee5\u4f7f\u7528\u4e0b\u9762\u7684\u547d\u4ee4\u5f00\u59cb\u6267\u884c\u8bad\u7ec3":2,"\u5c31\u53ef\u4ee5\u6309":0,"\u5c31\u5c06\u8fd9\u4e9b\u5c42\u52a0\u5165\u4e00\u4e2apython":90,"\u5c31\u5f88\u5bb9\u6613\u5bfc\u81f4\u5185\u5b58\u8d85\u9650":81,"\u5c31\u662f\u7528\u4e8e\u5c55\u793a\u4e0a\u8ff0\u5206\u6790\u5de5\u5177\u7684\u7528\u6cd5":108,"\u5c31\u662fpaddlepaddle\u4e2d\u6240\u6307\u7684":89,"\u5c31\u8fd9\u4e48\u7b80\u5355":2,"\u5c31\u901a\u5e38\u7684gpu\u6027\u80fd\u5206\u6790\u6765\u8bf4":108,"\u5c31\u9700\u8981\u5bf9\u8fd9\u4e2a\u7b2c\u4e09\u65b9\u8bed\u8a00\u589e\u52a0\u4e00\u4e9b\u5b9a\u4e49":45,"\u5c31\u9700\u8981\u9009\u62e9\u4f7f\u7528no":2,"\u5c3d\u65e9\u62a5\u9519":75,"\u5c42\u524d\u5411\u8ba1\u7b97\u7684\u7ed3\u679c":90,"\u5c42\u548c\u8f93\u5165\u7684\u914d\u7f6e":74,"\u5c42\u6b21\u5316\u7684rnn":113,"\u5c42\u7684\u540d\u79f0\u4e0e":114,"\u5c42\u7684\u5927\u5c0f":74,"\u5c42\u7684\u7c7b\u578b":74,"\u5c42\u7684\u8f93\u51fa\u88ab\u7528\u4f5c\u95e8\u63a7\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u7684":114,"\u5c55\u793a\u4e86\u4e00\u4e2a\u542b\u67094\u4e2a\u5e8f\u5217\u7684":89,"\u5c55\u793a\u7684\u8c03\u7528\u56fe\u4e5f\u53ef\u4ee5\u5e2e\u52a9\u6211\u4eec\u53d1\u73b0\u6027\u80fd\u4e2d\u7684\u95ee\u9898":107,"\u5c5e\u4e8e\u8fd9\u4e00\u7c7b\u7684\u5b9e\u73b0":82,"\u5c5e\u6027":75,"\u5de5\u4f5c\u6a21\u5f0f":103,"\u5de5\u4f5c\u7a7a\u95f4\u4e2d\u7684":93,"\u5de5\u4f5c\u7a7a\u95f4\u5e94\u5982\u4e0b\u6240\u793a":91,"\u5de5\u5177\u4e0a\u4f20\u5373\u53ef":62,"\u5de5\u5177\u5408\u5e76fat\u5e93":117,"\u5de5\u5177\u670d\u52a1\u5668\u5c06\u8bfb\u53d6\u73af\u5883\u53d8\u91cf":77,"\u5de5\u5177\u6765\u7ba1\u7406":72,"\u5de5\u5177\u6765\u7f16\u8bd1\u6587\u6863":77,"\u5de5\u5177\u94fe":116,"\u5de5\u5177\u94fe\u7684android":116,"\u5de6\u53f3\u7684\u8ba1\u7b97\u65f6\u95f4":107,"\u5df2\u6253\u5f00":72,"\u5df2\u7ecf\u5728\u96c6\u7fa4\u63d0\u4ea4\u73af\u5883\u4e2d\u5b8c\u6210\u8bbe\u7f6e":103,"\u5e02\u9762\u4e0a\u5df2\u7ecf\u6709nvidia\u6216\u7b2c\u4e09\u65b9\u63d0\u4f9b\u7684\u4f17\u591a\u5de5\u5177":108,"\u5e0c\u671b\u80fd\u591f\u5c06\u5e8f\u5217\u5316\u540e\u7684\u795e\u7ecf\u7f51\u7edc\u7ed3\u6784\u548c\u8bad\u7ec3\u597d\u7684\u6a21\u578b\u53c2\u6570\u6253\u5305\u8fdb\u4e00\u4e2a\u6587\u4ef6":90,"\u5e26\u6709\u4e0b\u9762\u4e24\u4e2a\u6a21\u677f\u53c2\u6570":75,"\u5e2e\u52a9\u6211\u4eec\u5b8c\u6210\u5bf9\u8f93\u5165\u5e8f\u5217\u7684\u62c6\u5206":113,"\u5e2e\u52a9\u6211\u4eec\u66f4\u597d\u5730\u63cf\u8ff0\u6bb5\u843d":113,"\u5e2e\u52a9\u6211\u4eec\u6784\u9020\u4e00\u4e9b\u590d\u6742\u7684\u8f93\u5165\u4fe1\u606f":110,"\u5e38\u5e38\u51fa\u73b0":78,"\u5e38\u7528\u4e8e\u81ea\u7136\u8bed\u8a00\u5904\u7406\u4efb\u52a1":89,"\u5e38\u7528\u7684cmake\u914d\u7f6e\u5982\u4e0b":[116,117],"\u5e38\u89c1\u7684\u5305\u62ec":107,"\u5e73\u5747\u6545\u969c\u4fee\u590d\u65f6\u95f4":11,"\u5e73\u5747\u6545\u969c\u7387":11,"\u5e76\u4e0d\u4fdd\u8bc1":74,"\u5e76\u4e0d\u662f\u4f7f\u7528\u53cc\u5c42rnn\u89e3\u51b3\u5b9e\u9645\u7684\u95ee\u9898":111,"\u5e76\u4e0d\u662fkubernetes\u4e2d\u7684node\u6982\u5ff5":97,"\u5e76\u4e0d\u771f\u6b63":[89,90],"\u5e76\u4e0d\u771f\u6b63\u7684\u548c":111,"\u5e76\u4e0d\u96be":0,"\u5e76\u4e14":114,"\u5e76\u4e14\u4e5f\u53ef\u4ee5\u5728windows\u7684docker\u4e2d\u8fd0\u884c":2,"\u5e76\u4e14\u4e66\u5199\u4e00\u4efd\u4ee3\u7801":76,"\u5e76\u4e14\u4f1a\u5199\u597d":42,"\u5e76\u4e14\u4f1a\u6839\u636e":116,"\u5e76\u4e14\u4f7f\u7528":46,"\u5e76\u4e14\u5185\u5c42\u7684\u5e8f\u5217\u64cd\u4f5c\u4e4b\u95f4\u72ec\u7acb\u65e0\u4f9d\u8d56":111,"\u5e76\u4e14\u52a0\u4e0a\u4e0b\u9762\u7684\u547d\u4ee4\u884c\u53c2\u6570":105,"\u5e76\u4e14\u5305\u62ecunit":72,"\u5e76\u4e14\u53ea\u9700\u8981\u5728\u5fc5\u8981\u7684\u65f6\u5019\u8f6c\u6362\u8fd9\u79cd\u683c\u5f0f":42,"\u5e76\u4e14\u53ef\u80fd\u4f1a\u52a0\u901f\u8bad\u7ec3\u8fc7\u7a0b":81,"\u5e76\u4e14\u542f\u52a8\u8bad\u7ec3":97,"\u5e76\u4e14\u5728\u5e38\u89c1\u7684\u5e73\u53f0\u4e0a":45,"\u5e76\u4e14\u5c55\u793a\u4e86\u5982\u4f55\u5229\u7528paddlepaddle\u6765\u89e3\u51b3\u4e00\u4e2a\u7ecf\u5178\u7684\u7ebf\u6027\u56de\u5f52\u95ee\u9898":84,"\u5e76\u4e14\u5f3a\u5236\u8bbe\u7f6e\u4e00\u4e9bpaddlepaddle\u53c2\u6570\u7684\u503c":117,"\u5e76\u4e14\u5f53\u7f16\u8bd1\u65f6":41,"\u5e76\u4e14\u628a\u5404\u79cd\u5f00\u53d1\u5de5\u5177\u5b89\u88c5\u8fdb\u53bb":0,"\u5e76\u4e14\u628a\u7cfb\u7edf\u751f\u6210\u7684ca":28,"\u5e76\u4e14\u628a\u7ed3\u679c\u8fd4\u56depfsclient\u7aef":28,"\u5e76\u4e14\u67e5\u8be2paddlepaddle\u5355\u5143\u6d4b\u8bd5\u7684\u65e5\u5fd7":78,"\u5e76\u4e14\u7f16\u8bd1\u65f6\u9700\u8981\u6253\u5f00":75,"\u5e76\u4e14\u7f16\u8bd1\u80fd\u901a\u8fc7\u4ee3\u7801\u6837\u5f0f\u68c0\u67e5":72,"\u5e76\u4e14\u8ba9\u63a5\u53e3\u8131\u79bb\u5b9e\u73b0\u7ec6\u8282":45,"\u5e76\u4e14\u8bbe\u7f6e\u9ed8\u8ba4\u503c\u4e3a1":75,"\u5e76\u4e14\u8f93\u5165\u8f93\u51fa\u90fd\u662f\u5171\u7528\u4e00\u5757\u5185\u5b58":42,"\u5e76\u4e14\u8f93\u51fa\u4e00\u4e2a":72,"\u5e76\u4e14\u8fd0\u884c":0,"\u5e76\u4e14\u9700\u8981\u91cd\u5199\u57fa\u7c7b\u4e2d\u7684\u4ee5\u4e0b\u51e0\u4e2a\u865a\u51fd\u6570":74,"\u5e76\u4e14cpu":75,"\u5e76\u4e14softmax\u5c42\u7684\u4e24\u4e2a\u8f93\u5165\u4e5f\u4f7f\u7528\u4e86\u540c\u6837\u7684\u53c2\u6570":83,"\u5e76\u4f7f\u7528":93,"\u5e76\u4fdd\u5b58\u8f93\u51fa\u5230\u4e00\u4e2a\u65e5\u5fd7\u6587\u4ef6":91,"\u5e76\u521b\u5efa\u4e86\u4e00\u4e2a\u65b0\u6587\u4ef6":72,"\u5e76\u521b\u5efaoptim":84,"\u5e76\u521d\u59cb\u5316":75,"\u5e76\u5220\u9664":62,"\u5e76\u5220\u9664\u66f4\u65e9\u7684\u5feb\u7167":11,"\u5e76\u52a0\u8f7d\u5176\u4e2d\u7684\u53c2\u6570":11,"\u5e76\u53d1\u5e03\u5230pypi":62,"\u5e76\u53ef\u4ee5\u5728\u5927\u591a\u6570\u4e3b\u6d41\u7684linux\u64cd\u4f5c\u7cfb\u7edf\u4ee5\u53camacos\u4e0a\u6267\u884c":4,"\u5e76\u548c\u53c2\u6570\u670d\u52a1\u5668\u901a\u4fe1":92,"\u5e76\u5728\u4e58\u79ef\u7ed3\u679c\u4e0a\u518d\u52a0\u4e0a\u7ef4\u5ea6\u4e3a":74,"\u5e76\u5728\u6700\u5f00\u59cb\u521d\u59cb\u5316\u4e3a\u8d77\u59cb\u8bcd":114,"\u5e76\u5728\u6bcf\u6b21\u6743\u91cd\u66f4\u65b0\u540e":41,"\u5e76\u5728\u7c7b\u6784\u5efa\u51fd\u6570\u4e2d\u628a\u5b83\u653e\u5165\u4e00\u4e2a\u7c7b\u6210\u5458\u53d8\u91cf\u91cc":74,"\u5e76\u5728\u8be5layer\u91cc\u91c7\u7528\u7b2c\u4e00\u79cd\u65b9\u5f0f\u8bbe\u7f6e":82,"\u5e76\u5728\u96c6\u7fa4\u4e2d\u8fd0\u884c\u591a\u4e2a\u5206\u5e03\u5f0f\u6570\u636e\u5904\u7406\u4efb\u52a1":12,"\u5e76\u5728python\u811a\u672c\u4e2d\u5b8c\u6210\u4e0eoperator\u540c\u6837\u7684\u8ba1\u7b97\u903b\u8f91":75,"\u5e76\u5904\u7406\u4e0e\u4e4b\u76f8\u5173\u7684\u6240\u6709\u7ec6\u8282":90,"\u5e76\u5b89\u88c5\u4e86python":78,"\u5e76\u5b89\u88c5\u6700\u65b0":4,"\u5e76\u5b89\u88c5\u6709python2":86,"\u5e76\u5b8c\u6210\u53c2\u6570\u4f18\u5316\u66f4\u65b0":92,"\u5e76\u5bf9\u6bd4\u662f\u5426\u548c\u6b63\u5728\u5b89\u88c5\u7684\u540e\u7f00\u4e00\u81f4":78,"\u5e76\u5bf9\u76f8\u5e94\u7684\u53c2\u6570\u8c03\u7528":74,"\u5e76\u5c06":62,"\u5e76\u5c06\u5176\u6295\u5c04\u5230":114,"\u5e76\u5c06\u8be5layer\u4e0a\u4e00\u65f6\u95f4\u6b65\u7684\u8f93\u51fa\u4f5c\u4e3a\u81ea\u8eab\u5f53\u524d\u65f6\u95f4\u6b65\u7684\u8f93\u51fa":82,"\u5e76\u5c06c":46,"\u5e76\u624b\u52a8\u751f\u6210download\u6210\u529f\u6807\u7b7e":78,"\u5e76\u6267\u884c\u4e0b\u9762\u7684\u547d\u4ee4":2,"\u5e76\u628a\u5feb\u7167\u4fdd\u5b58\u5230\u8fd9\u4e2a\u76ee\u5f55\u4e0b":11,"\u5e76\u628a\u7ed3\u679c\u653e\u5230\u5f53\u524d\u5c42\u7684":42,"\u5e76\u628a\u8fd9\u4e2a\u5305\u542b\u4e86\u8bad\u7ec3\u6570\u636e\u7684container\u4fdd\u5b58\u4e3a\u4e00\u4e2a\u65b0\u7684\u955c\u50cf":96,"\u5e76\u66f4\u6362job":79,"\u5e76\u6839\u636e\u5206\u5e03\u5f0f\u8bad\u7ec3\u5e76\u53d1\u6570":91,"\u5e76\u68c0\u67e5\u548c\u9700\u5b89\u88c5\u7684\u5305\u662f\u5426\u5339\u914d":4,"\u5e76\u6ca1\u6709paddle\u7279\u522b\u9700\u8981\u7684\u7279\u6027":45,"\u5e76\u6dfb\u52a0\u5934\u6587\u4ef6":41,"\u5e76\u6dfb\u52a0\u6ce8\u91ca":75,"\u5e76\u7279\u5316\u6a21\u677f\u53c2\u6570\u4e3a":75,"\u5e76\u7c98\u8d34\u6b64python\u4ee3\u7801":86,"\u5e76\u81ea\u52a8\u4e0b\u8f7d\u5b89\u88c5\u4f9d\u8d56\u8f6f\u4ef6":4,"\u5e76\u81ea\u52a8\u7f16\u8bd1\u5bbf\u4e3b\u673a\u7248protoc\u53ef\u6267\u884c\u6587\u4ef6":118,"\u5e76\u81ea\u52a8\u7f16\u8bd1paddlepaddle\u6240\u9700\u7684\u6240\u6709\u7b2c\u4e09\u65b9\u5e93":116,"\u5e76\u884c\u5730\u6267\u884c\u6a21\u578b\u7684\u8bad\u7ec3":92,"\u5e76\u884c\u5730\u63a5\u6536\u68af\u5ea6\u548c\u66f4\u65b0\u53c2\u6570":92,"\u5e76\u88ab\u5b58\u50a8\u5728\u8bf8\u5982hadoop":12,"\u5e76\u89c2\u5bdf\u7ed3\u679c":108,"\u5e76\u89e3\u91ca\u4e86\u5404\u81ea\u542b\u4e49":75,"\u5e76\u8bb0\u5f55\u5b83\u7684\u7f16\u53f7":72,"\u5e76\u8fdb\u884c\u521d\u59cb\u5316\u64cd\u4f5c":84,"\u5e76\u9002\u5e94github\u7684\u7279\u6027\u505a\u4e86\u4e00\u4e9b\u533a\u522b":62,"\u5e76\u91cd\u65b0\u6253\u5305wheel\u5305":62,"\u5e76\u94fe\u63a5\u5230\u751f\u6210\u7684lib\u5e93\u4e2d":75,"\u5e78\u800cpython\u7684\u4e00\u4e2a\u7b2c\u4e09\u65b9\u5e93":107,"\u5e8f\u5217\u4e2d\u542b\u6709\u5143\u7d20\u7684\u6570\u76ee\u540c":110,"\u5e8f\u5217\u4e2d\u7684\u4e00\u4e2a\u5143\u7d20":89,"\u5e8f\u5217\u4e2d\u7684\u5143\u7d20\u662f\u8bcd\u8bed":89,"\u5e8f\u5217\u4e2d\u7684\u6bcf\u4e00\u4e2a\u5143\u7d20\u53c8\u662f\u4e00\u4e2a\u5e8f\u5217":89,"\u5e8f\u5217\u4e2d\u7684\u6bcf\u4e00\u4e2a\u5143\u7d20\u662f\u975e\u5e8f\u5217":89,"\u5e8f\u5217\u4fe1\u606f":89,"\u5e8f\u5217\u5316\u795e\u7ecf\u7f51\u7edc\u6a21\u578b\u914d\u7f6e":90,"\u5e8f\u5217\u5316\u795e\u7ecf\u7f51\u7edc\u7ed3\u6784\u65f6":90,"\u5e8f\u5217\u5316\u7ed3\u679c\u4f1a\u5199\u5165\u5f53\u524d\u8fd0\u884c\u76ee\u5f55\u4e0b\u7684":90,"\u5e8f\u5217\u6570\u636e\u662f\u81ea\u7136\u8bed\u8a00\u5904\u7406\u4efb\u52a1\u9762\u5bf9\u7684\u4e00\u79cd\u4e3b\u8981\u8f93\u5165\u6570\u636e\u7c7b\u578b":113,"\u5e8f\u5217\u662f\u4e00\u79cd\u5e38\u89c1\u7684\u6570\u636e\u7c7b\u578b":110,"\u5e8f\u5217\u751f\u6210\u4efb\u52a1\u5927\u591a\u9075\u5faaencod":113,"\u5e8f\u5217\u751f\u6210\u4efb\u52a1\u7684\u8f93\u5165":113,"\u5e8f\u5217\u7684\u6bcf\u4e2a\u5143\u7d20\u662f\u539f\u6765\u53cc\u5c42\u5e8f\u5217\u6bcf\u4e2asubseq\u5143\u7d20\u7684\u5e73\u5747\u503c":110,"\u5e8f\u5217\u8f93\u5165":89,"\u5e8f\u5217\u8f93\u5165\u65f6\u7b49\u4e8e":81,"\u5e8f\u5217\u8f93\u5165\u793a\u610f\u56fe":89,"\u5e93\u6709\u81ea\u5df1\u72ec\u7acb\u7684\u52a8\u6001\u5e93\u6587\u4ef6":87,"\u5e94\u7528\u524d\u5411\u5faa\u73af\u795e\u7ecf\u7f51\u7edc":114,"\u5e94\u7528\u53cd\u5411\u9012\u5f52\u795e\u7ecf\u7f51\u7edc":114,"\u5e94\u80fd\u53cd\u6620\u5f53\u524dcommit\u7684\u5185\u5bb9":72,"\u5e94\u8be5\u4e0e\u5b83\u7684memory\u540d\u5b57\u76f8\u540c":114,"\u5e94\u8be5\u8bf4\u8c22\u8c22":72,"\u5e94\u8be5\u8bfb\u53d6\u5f53\u524d\u76ee\u5f55\u4e0b\u7684":0,"\u5e94\u8be5\u964d\u4f4e\u5b66\u4e60\u7387":83,"\u5e95\u5c42\u8fdb\u7a0b":93,"\u5efa\u7acb\u4e00\u4e2a":72,"\u5efa\u8bae":[3,62,72],"\u5efa\u8bae\u5c06\u8be5\u53c2\u6570\u8bbe\u4e3atrue":103,"\u5f00\u53d1\u4e86\u6a21\u578b\u9884\u6d4b\u7684\u6837\u4f8b\u4ee3\u7801":46,"\u5f00\u53d1\u4eba\u5458\u4f7f\u7528":72,"\u5f00\u53d1\u5206\u652f":4,"\u5f00\u53d1\u6807\u51c6":115,"\u5f00\u53d1\u8005\u4f7f\u7528":0,"\u5f00\u53d1\u8005\u4fee\u6539\u81ea\u5df1\u7684\u4ee3\u7801":62,"\u5f00\u53d1\u8005fork\u7684\u7248\u672c\u5e93\u4e2d":62,"\u5f00\u53d1\u8005fork\u7684\u7248\u672c\u5e93\u4f7f\u7528":62,"\u5f00\u53d1\u955c\u50cf":72,"\u5f00\u53d1\u9884\u6d4b\u5e8f":90,"\u5f00\u53d1\u9884\u6d4b\u7a0b\u5e8f\u94fe\u63a5":87,"\u5f00\u542f":1,"\u5f00\u5934":[41,42],"\u5f00\u5934\u7684\u90e8\u5206":91,"\u5f00\u5934\u90e8\u5206\u6307\u5b9a":91,"\u5f00\u59cb\u63d0\u4f9b\u670d\u52a1":11,"\u5f00\u59cb\u6807\u8bb0":114,"\u5f00\u59cb\u795e\u7ecf\u7f51\u7edc\u7684":92,"\u5f00\u59cb\u9636\u6bb5":108,"\u5f02\u6b65\u968f\u673a\u68af\u5ea6\u4e0b\u964d":102,"\u5f15\u5165\u4e86\u4ee5\u4e0b\u56db\u4e2aapi":41,"\u5f15\u5165\u4e86\u7c7b\u578b\u7684\u5934\u6587\u4ef6":46,"\u5f15\u5bfc\u5c42":114,"\u5f15\u7528memory\u5f97\u5230\u8fd9layer\u4e0a\u4e00\u65f6\u523b\u8f93\u51fa":113,"\u5f39\u51fa\u4e0b\u9762\u7684\u9009\u62e9\u6846":62,"\u5f52\u4e00\u5316\u6982\u7387\u5411\u91cf":114,"\u5f53":105,"\u5f53\u4e00\u4e2a":89,"\u5f53\u4e0a\u8ff0\u63a5\u53e3\u7b2c4\u4e2a\u53c2\u6570":89,"\u5f53\u4f60\u6267\u884c\u547d\u4ee4":74,"\u5f53\u4fdd\u5b58\u7684\u7f51\u7edc\u53c2\u6570\u4e3afloat\u7c7b\u578b\u65f6\u4e3a4":83,"\u5f53\u524d\u65f6\u95f4\u6b65\u5904\u7684memory\u7684\u8f93\u51fa\u4f5c\u4e3a\u4e0b\u4e00\u65f6\u95f4\u6b65memory\u7684\u8f93\u5165":114,"\u5f53\u524d\u7684\u5b66\u4e60\u7387\u4e3a\u6240\u8bbe\u7f6e":83,"\u5f53\u524d\u7684\u5b9e\u73b0\u65b9\u5f0f\u4e0b":74,"\u5f53\u524d\u7684\u8f93\u5165y\u548c\u4e0a\u4e00\u4e2a\u65f6\u95f4\u6b65\u7684\u8f93\u51farnn_state\u505a\u4e86\u4e00\u4e2a\u5168\u94fe\u63a5":111,"\u5f53\u524d\u8bad\u7ec3\u4efb\u52a1\u542f\u52a8\u7684pserver\u7684ip\u5217\u8868":91,"\u5f53\u524d\u8bad\u7ec3\u4efb\u52a1pserver\u603b\u6570":91,"\u5f53\u524d\u8bad\u7ec3\u4efb\u52a1trainer\u603b\u6570":91,"\u5f53\u524dtrainer\u7684\u7ebf\u7a0b\u6570\u76ee":91,"\u5f53\u529f\u80fd\u5206\u652f\u5f00\u53d1\u5b8c\u6bd5\u540e":62,"\u5f53\u53ea\u505a\u63a8\u65ad":41,"\u5f53\u5728\u7f51\u7edc\u5c42\u914d\u7f6e\u4e2d\u8bbe\u7f6e":103,"\u5f53\u5728\u8bad\u7ec3\u914d\u7f6e\u4e2d\u8bbe\u7f6e":103,"\u5f53\u5df2\u8bad\u7ec3\u6837\u672c\u6570\u5927\u4e8e1000\u5c0f\u4e8e\u7b49\u4e8e2000\u65f6":83,"\u5f53\u5df2\u8bad\u7ec3\u6837\u672c\u6570\u5927\u4e8e2000\u65f6":83,"\u5f53\u5df2\u8bad\u7ec3\u6837\u672c\u6570\u5c0f\u4e8e\u7b49\u4e8e1000\u65f6":83,"\u5f53\u5df2\u8bad\u7ec3pass\u6570\u5927\u4e8e1\u5c0f\u4e8e\u7b49\u4e8e2\u65f6":83,"\u5f53\u5df2\u8bad\u7ec3pass\u6570\u5927\u4e8e2\u65f6":83,"\u5f53\u5df2\u8bad\u7ec3pass\u6570\u5c0f\u4e8e\u7b49\u4e8e1\u65f6":83,"\u5f53\u5f00\u542f":42,"\u5f53\u6211\u4eec\u505a\u51fa\u6027\u80fd\u4fee\u6b63\u540e":107,"\u5f53\u6240\u6709pod\u90fd\u5904\u4e8erunning\u72b6\u6001":97,"\u5f53\u6253\u5f00":42,"\u5f53\u6570\u636e\u683c\u5f0f\u4e0epaddlepaddle\u9ed8\u8ba4\u7684":42,"\u5f53\u6a21\u578b\u53c2\u6570\u4e0d\u5b58\u5728\u65f6":103,"\u5f53\u6a21\u5f0f\u4e3a":103,"\u5f53\u7136":[2,108],"\u5f53\u7136\u53ef\u4ee5":0,"\u5f53\u7136\u8fd9\u4e24\u8005\u4e5f\u53ef\u4ee5\u76f8\u7b49":42,"\u5f53\u7528\u6237\u4f7f\u7528\u5b8c\u8fd9\u4e2a\u53c2\u6570\u540e":46,"\u5f53\u7528\u6237\u6ca1\u6709\u663e\u5f0f\u8bbe\u5b9a\u65f6":82,"\u5f53\u7f51\u7edc\u51fa\u73b0\u5206\u652f\u4e14\u5728":42,"\u5f53\u7f51\u7edc\u5c42\u7528\u4e00\u4e2a\u6279\u6b21\u505a\u8bad\u7ec3\u65f6":74,"\u5f53\u89e3\u8bfb\u6bcf\u4e00\u4e2a":114,"\u5f53\u8d85\u8fc7\u8be5\u9608\u503c\u65f6":103,"\u5f53\u8f93\u5165\u662f\u7ef4\u5ea6\u5f88\u9ad8\u7684\u7a00\u758f\u6570\u636e\u65f6":105,"\u5f53\u9700\u8981\u5b8c\u6210\u8ba1\u7b97\u65f6":76,"\u5f53\u975e\u5e8f\u5217\u8f93\u5165\u65f6":89,"\u5f53destination\u6587\u4ef6\u4e0d\u5b58\u5728\u6216\u8005\u5927\u5c0f\u548csource\u6587\u4ef6\u4e0d\u4e00\u81f4\u65f6":28,"\u5f53n1":81,"\u5f62\u6210recurr":113,"\u5f62\u6210recurrent\u8fde\u63a5":113,"\u5f88\u591a":0,"\u5f88\u6709\u53ef\u80fd\u5b9e\u9645\u5e94\u7528\u5c31\u662f\u6ca1\u6709\u6309\u7167\u60a8\u7684\u9884\u671f\u60c5\u51b5\u8fd0\u884c":108,"\u5f88\u6709\u53ef\u80fd\u662f\u975e\u72ec\u5360\u65b9\u5f0f\u6267\u884c\u5bfc\u81f4\u7684\u7aef\u53e3\u51b2\u7a81":79,"\u5f88\u96be\u4fdd\u8bc1\u591a\u8bed\u8a00\u4ee3\u7801\u98ce\u683c\u7684\u4e00\u81f4\u6027":45,"\u5f97\u4f7f\u7528":45,"\u5f97\u5230\u8f93\u51fa\u503c":75,"\u5faa\u73af\u5c55\u5f00\u7684\u6bcf\u4e2a\u65f6\u95f4\u6b65\u603b\u662f\u80fd\u591f\u5f15\u7528\u6240\u6709\u8f93\u5165":113,"\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u4e2d":114,"\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u4f5c\u4e3a\u4f7f\u7528":114,"\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u548c":114,"\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u5728\u6bcf\u4e2a\u65f6\u95f4\u6b65\u9aa4\u987a\u5e8f\u5730\u5904\u7406\u5e8f\u5217":114,"\u5faa\u73af\u7f51\u7edc\u4ece":114,"\u5fc5\u8981":46,"\u5fc5\u9009":91,"\u5fc5\u987b":74,"\u5fc5\u987b\u5206\u522b\u4e0e":42,"\u5fc5\u987b\u5c06\u524d\u4e00\u4e2a\u5b50\u53e5\u7684\u6700\u540e\u4e00\u4e2a\u5143\u7d20":111,"\u5fc5\u987b\u6307\u5411\u4e00\u4e2apaddlepaddle\u5b9a\u4e49\u7684lay":113,"\u5fc5\u987b\u6307\u5b9a\u4e3a":90,"\u5fc5\u987b\u662f\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":113,"\u5fc5\u987b\u662f\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217":110,"\u5fc5\u987b\u7531\u53ea\u8bfbmemory\u7684":114,"\u5fc5\u987b\u8bbe\u7f6e\u4e3a":[116,117],"\u5fc5\u987b\u8bbe\u7f6e\u4e3aon":117,"\u5fc5\u987b\u914d\u7f6e\u4e3a":[87,118],"\u5fc5\u987b\u914d\u7f6e\u9009\u9879":87,"\u5feb\u901f\u5f00\u59cb":85,"\u6027\u80fd\u4f18\u5316\u7684\u8fc7\u7a0b\u901a\u5e38\u662f\u4e0d\u65ad\u91cd\u590d\u5730":107,"\u6027\u80fd\u5206\u6790":108,"\u6027\u80fd\u5206\u6790\u5de5\u5177\u662f\u7528\u4e8e\u7ed9\u5e94\u7528\u7a0b\u5e8f\u7684\u6027\u80fd\u505a\u5b9a\u91cf\u5206\u6790\u7684":108,"\u6027\u80fd\u5206\u6790\u662f\u6027\u80fd\u4f18\u5316\u7684\u5173\u952e\u4e00\u6b65":108,"\u6027\u80fd\u548c\u628a\u7f16\u8bd1\u5de5\u5177\u5b89\u88c5\u5728\u672c\u673a\u8fd0\u884c\u4e00\u6837":0,"\u6027\u80fd\u8c03\u4f18":102,"\u6027\u80fdtip":[116,117],"\u60a8\u4e5f\u53ef\u4ee5\u8fdb\u5165\u5230docker\u5bb9\u5668\u4e2d":2,"\u60a8\u4f1a\u5728\u63a5\u4e0b\u6765\u7684\u90e8\u5206\u4e2d\u83b7\u5f97\u66f4\u591a\u7684\u7ec6\u8282\u4ecb\u7ecd":108,"\u60a8\u53ef\u4ee5\u4ece\u4e0b\u9762\u7684\u8868\u683c\u4e2d\u627e\u5230\u9700\u8981\u7684\u7248\u672c":4,"\u60a8\u53ef\u4ee5\u4efb\u610f\u4f7f\u7528\u4e00\u4e2a\u6216\u4e24\u4e2a\u6765\u5bf9\u611f\u5174\u8da3\u7684\u4ee3\u7801\u6bb5\u505a\u6027\u80fd\u5206\u6790":108,"\u60a8\u53ef\u4ee5\u5728":2,"\u60a8\u53ef\u4ee5\u5728\u5bb9\u5668\u4e2d\u6267\u884c":2,"\u60a8\u53ef\u4ee5\u5bfc\u5165":108,"\u60a8\u53ef\u4ee5\u6309\u7167\u4e0b\u9762\u7684\u6b65\u9aa4\u5728openmpi\u96c6\u7fa4\u4e2d\u63d0\u4ea4paddle\u8bad\u7ec3\u4efb\u52a1":98,"\u60a8\u53ef\u4ee5\u91c7\u7528\u4e0b\u9762\u4e94\u4e2a\u6b65\u9aa4":108,"\u60a8\u53ef\u80fd\u9700\u8981\u4fee\u6539":91,"\u60a8\u5c06\u4e86\u89e3\u5982\u4f55":114,"\u60a8\u5c31\u80fd\u83b7\u5f97\u5982\u4e0b\u7684\u5206\u6790\u7ed3\u679c":108,"\u60a8\u6309\u5982\u4e0b\u6b65\u9aa4\u64cd\u4f5c\u5373\u53ef":108,"\u60a8\u6700\u597d\u5148\u786e\u8ba4":108,"\u60a8\u9996\u5148\u9700\u8981\u5728\u76f8\u5173\u4ee3\u7801\u6bb5\u4e2d\u52a0\u5165":108,"\u60c5\u611f\u5206\u6790":62,"\u60f3\u4e86\u89e3\u66f4\u591apaddlepaddl":77,"\u610f\u5473\u7740\u4e0d\u540c\u65f6\u95f4\u6b65\u7684\u8f93\u5165\u90fd\u662f\u76f8\u540c\u7684\u503c":114,"\u610f\u601d\u662f\u4e0d\u4f7f\u7528\u5e73\u5747\u53c2\u6570\u6267\u884c\u6d4b\u8bd5":103,"\u610f\u601d\u662f\u4e0d\u4fdd\u5b58\u7ed3\u679c":103,"\u610f\u601d\u662f\u4f7f\u7528\u7b2ctest":103,"\u610f\u601d\u662f\u5728gpu\u6a21\u5f0f\u4e0b\u4f7f\u75284\u4e2agpu":103,"\u6210\u529f\u7f16\u8bd1\u540e":87,"\u6210\u529f\u8bad\u7ec3\u4e14\u9000\u51fa\u7684pod\u6570\u76ee\u4e3a3\u65f6":97,"\u6210\u5458":75,"\u6210\u719f\u7684\u9ad8\u6027\u80fd\u5e76\u884c\u8ba1\u7b97\u6846\u67b6":94,"\u6211\u4eec\u4e0d\u80fd\u901a\u8fc7\u5e38\u89c4\u7684\u68af\u5ea6\u68c0\u67e5\u7684\u65b9\u5f0f\u6765\u8ba1\u7b97\u68af\u5ea6":74,"\u6211\u4eec\u4e3b\u8981\u4f1a\u4ecb\u7ecdnvprof\u548cnvvp":108,"\u6211\u4eec\u4e5f\u53ef\u4ee5\u786e\u5b9a\u6bcf\u4e00\u4e2a\u53c2\u6570\u7684\u7c7b\u578b":46,"\u6211\u4eec\u4e5f\u5c06mklml\u5373":42,"\u6211\u4eec\u4ec5\u4ec5\u5bf9\u795e\u7ecf\u7f51\u7edc\u7684\u8f93\u5165\u8fdb\u884c\u4e86\u63cf\u8ff0":84,"\u6211\u4eec\u4ec5\u6709\u4e00\u4e2a\u8f93\u5165":74,"\u6211\u4eec\u4ecb\u7ecd\u5982\u4f55\u5728":96,"\u6211\u4eec\u4ecb\u7ecd\u5982\u4f55\u5728kubernetes\u96c6\u7fa4\u4e0a\u8fdb\u884c\u5206\u5e03\u5f0fpaddlepaddle\u8bad\u7ec3\u4f5c\u4e1a":97,"\u6211\u4eec\u4ee5\u624b\u5199\u6570\u5b57\u8bc6\u522b\u4efb\u52a1\u4e3a\u4f8b\u8fdb\u884c\u4ecb\u7ecd":90,"\u6211\u4eec\u4f1a\u4fdd\u8bc1":42,"\u6211\u4eec\u4f1a\u5728\u7f51\u7edc\u8bad\u7ec3\u4e4b\u524d\u628a\u683c\u5f0f\u8f6c\u6362\u4e3amkl":42,"\u6211\u4eec\u4f1a\u5bf9\u6bcf\u4e2a\u8bad\u7ec3\u4efb\u52a1\u90fd\u4f1a\u5728\u6bcf\u4e2a\u8282\u70b9\u4e0a\u521b\u5efa\u4e00\u4e2a\u5de5\u4f5c\u7a7a\u95f4":91,"\u6211\u4eec\u4f1a\u5bf9\u6bd4\u5982\u4e0b2\u4e2a\u65b9\u9762":41,"\u6211\u4eec\u4f1a\u628amkl":42,"\u6211\u4eec\u4f1a\u6dfb\u52a0":[41,42],"\u6211\u4eec\u4f1a\u7ee7\u7eed\u4f7f\u7528\u73b0\u6709\u7684\u5185\u5b58\u5757":74,"\u6211\u4eec\u4f1a\u91cd\u65b0\u5206\u914d\u5185\u5b58":74,"\u6211\u4eec\u4f7f\u7528":74,"\u6211\u4eec\u4f7f\u7528\u4e0d\u540c\u7684layer\u8fdb\u884c\u7ec4\u5408":84,"\u6211\u4eec\u4f7f\u7528\u4e86":111,"\u6211\u4eec\u4f7f\u7528\u52a8\u6001\u5e93\u6765\u5206\u53d1paddl":45,"\u6211\u4eec\u4f7f\u7528paddl":91,"\u6211\u4eec\u5047\u8bbe\u4e00\u53f0\u673a\u5668\u4e0a\u67094\u4e2agpu":105,"\u6211\u4eec\u5148\u8c03\u7528\u6bcf\u4e2a":76,"\u6211\u4eec\u51b3\u5b9a\u4f7f\u7528\u5df2\u6709\u7684":42,"\u6211\u4eec\u5373\u53ef\u5b8c\u6210\u795e\u7ecf\u7f51\u7edc\u7684\u642d\u5efa":84,"\u6211\u4eec\u53ea\u6f14\u793a\u4e00\u4e2a\u5355\u673a\u4f5c\u4e1a":96,"\u6211\u4eec\u53ea\u9700\u8981":0,"\u6211\u4eec\u53ea\u9700\u8981\u4f7f\u7528lstm":111,"\u6211\u4eec\u53ea\u9700\u8981\u8fd0\u884c\u4e0b\u9762\u547d\u4ee4\u628a\u7f16\u8bd1\u597d\u7684paddlepaddle\u6253\u5305\u6210\u4e00\u4e2a":72,"\u6211\u4eec\u53ea\u9700\u8981\u914d\u7f6e":0,"\u6211\u4eec\u53ef\u4ee5":0,"\u6211\u4eec\u53ef\u4ee5\u4f7f\u7528":107,"\u6211\u4eec\u53ef\u4ee5\u4f7f\u7528\u5176\u4ed6layer\u8fdb\u884c\u7ec4\u5408":84,"\u6211\u4eec\u53ef\u4ee5\u4f7f\u7528\u5b83\u6765\u751f\u6210\u5e8f\u5217":114,"\u6211\u4eec\u53ef\u4ee5\u5148\u5b8c\u6210\u5bf9\u539f\u6570\u636e\u7684packing\u64cd\u4f5c":41,"\u6211\u4eec\u53ef\u4ee5\u521b\u5efatrainer\u6765\u5bf9\u7f51\u7edc\u8fdb\u884c\u8bad\u7ec3":84,"\u6211\u4eec\u53ef\u4ee5\u53c2\u8003tensorflow\u7684":76,"\u6211\u4eec\u53ef\u4ee5\u5728":72,"\u6211\u4eec\u53ef\u4ee5\u5728\u547d\u4ee4\u884c\u4e2d\u7b80\u5355\u7684\u770b\u4e00\u4e0b\u751f\u6210\u6548\u679c":107,"\u6211\u4eec\u53ef\u4ee5\u5b9a\u4e49\u5982\u4e0b\u7684layer\u7ec4\u5408":84,"\u6211\u4eec\u53ef\u4ee5\u5b9a\u4e49\u5982\u4e0blayer\u6765\u63cf\u8ff0\u795e\u7ecf\u7f51\u7edc\u7684\u8f93\u5165":84,"\u6211\u4eec\u53ef\u4ee5\u6309\u7167\u5982\u4e0b\u5c42\u6b21\u5b9a\u4e49\u975e\u5e8f\u5217":110,"\u6211\u4eec\u53ef\u4ee5\u67e5\u770b\u6027\u80fd\u5206\u6790\u7684\u7ed3\u679c":107,"\u6211\u4eec\u53ef\u4ee5\u8bbe\u8ba1\u642d\u5efa\u4e00\u4e2a\u7075\u6d3b\u7684":113,"\u6211\u4eec\u53ef\u4ee5\u901a\u8fc7":107,"\u6211\u4eec\u53ef\u4ee5\u901a\u8fc7\u65e5\u5fd7\u67e5\u770b\u5bb9\u5668\u8bad\u7ec3\u7684\u60c5\u51b5":97,"\u6211\u4eec\u5728":76,"\u6211\u4eec\u5728\u51fd\u6570\u7684\u7ed3\u5c3e\u8fd4\u56de":114,"\u6211\u4eec\u5bf9\u6a21\u578b\u8fdb\u884c\u4e86\u4ee5\u4e0b\u66f4\u6539":114,"\u6211\u4eec\u5c06":97,"\u6211\u4eec\u5c06\u4e00\u6bb5\u8bdd\u770b\u6210\u53e5\u5b50\u7684\u6570\u7ec4":111,"\u6211\u4eec\u5c06\u4ecb\u7ecd\u5982\u4f55\u542f\u52a8\u5206\u5e03\u5f0f\u8bad\u7ec3\u4f5c\u4e1a":96,"\u6211\u4eec\u5c06\u4f7f\u7528":114,"\u6211\u4eec\u5c06\u4f7f\u7528\u7b80\u5355\u7684":114,"\u6211\u4eec\u5c06\u539f\u59cb\u6570\u636e\u7684\u6bcf\u4e00\u7ec4":111,"\u6211\u4eec\u5c06\u5b83\u4eec\u5212\u5206\u4e3a\u4e0d\u540c\u7684\u7c7b\u522b":102,"\u6211\u4eec\u5c06\u795e\u7ecf\u7f51\u7edc\u4e00\u6b21\u8ba1\u7b97\u63a5\u53d7\u7684\u6240\u6709\u8f93\u5165\u6837\u672c\u79f0\u4e4b\u4e3a\u4e00\u4e2a":89,"\u6211\u4eec\u5c06\u8bad\u7ec3\u7ed3\u675f\u540e\u5b58\u50a8\u4e0b\u6765\u7684\u6a21\u578b\u8f6c\u6362\u6210\u9884\u6d4b\u6a21\u578b":90,"\u6211\u4eec\u5c31\u5b8c\u6210\u4e86\u4e00\u6b21\u4ee3\u7801\u8d21\u732e\u7684\u8fc7\u7a0b":72,"\u6211\u4eec\u5df2\u7ecf\u5b9e\u73b0\u4e86\u5927\u591a\u6570\u5e38\u7528\u7684\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u67b6\u6784":114,"\u6211\u4eec\u5efa\u8bae\u4f60\u4e3a\u4f60\u7684python\u5c01\u88c5\u5b9e\u73b0\u4e00\u4e2a":74,"\u6211\u4eec\u5efa\u8bae\u4f60\u5728\u5199\u65b0\u7f51\u7edc\u5c42\u65f6\u628a\u6d4b\u8bd5\u4ee3\u7801\u653e\u5165\u65b0\u7684\u6587\u4ef6\u4e2d":74,"\u6211\u4eec\u5efa\u8bae\u4f7f\u7528\u7b2c\u4e8c\u7c7b\u5b9e\u73b0":82,"\u6211\u4eec\u603b\u7ed3\u51fa\u4e00\u4e9b\u7279\u522b\u9700\u8981\u6ce8\u610f\u7684\u70b9":42,"\u6211\u4eec\u628apaddlepaddle\u7684\u4ea4\u53c9\u7f16\u8bd1\u73af\u5883\u6253\u5305\u6210\u4e00\u4e2a\u955c\u50cf":116,"\u6211\u4eec\u63a8\u8350\u4f7f\u7528":[2,101],"\u6211\u4eec\u63a8\u8350\u4f7f\u7528\u6700\u65b0\u7248\u672c\u7684cudnn":1,"\u6211\u4eec\u63a8\u8350\u60a8\u4f7f\u7528paddlepaddl":1,"\u6211\u4eec\u63d0\u4f9b\u4e24\u4e2a\u8f6c\u6362\u65b9\u5f0f":12,"\u6211\u4eec\u63d0\u4f9b\u4e86\u52a0\u901f\u8bbf\u95ee\u7684\u955c\u50cf\u6e90":2,"\u6211\u4eec\u63d0\u4f9b\u53ef\u4ee5\u76f4\u63a5\u8fd0\u884cpaddlepaddl":2,"\u6211\u4eec\u63d0\u51fa\u4e86chunk\u7684\u6982\u5ff5":28,"\u6211\u4eec\u662f\u5bf9\u6bcf\u4e00\u4e2a\u5b50\u5e8f\u5217\u53d6\u6700\u540e\u4e00\u4e2a\u5143\u7d20":111,"\u6211\u4eec\u6700\u7ec8\u7684\u52a8\u6001\u5e93\u4e2d\u4e0d\u5d4c\u5165python\u6216\u8005\u5176\u4ed6\u4efb\u4f55\u8bed\u8a00\u7684\u89e3\u91ca\u5668":45,"\u6211\u4eec\u6709\u4e00\u4e2a\u5e8f\u5217\u4f5c\u4e3a\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u7684\u72b6\u6001":114,"\u6211\u4eec\u7684":0,"\u6211\u4eec\u7684\u6807\u51c6\u5f00\u53d1\u6d41\u7a0b\u662f\u628a\u8fd9\u4e9b\u5de5\u5177\u90fd\u88c5\u8fdb\u4e00\u4e2adocker":72,"\u6211\u4eec\u770b\u4e00\u4e0b\u5355\u5c42rnn\u7684\u914d\u7f6e":111,"\u6211\u4eec\u770b\u4e00\u4e0b\u8bed\u4e49\u76f8\u540c\u7684\u53cc\u5c42rnn\u7684\u7f51\u7edc\u914d\u7f6e":111,"\u6211\u4eec\u771f\u8bda\u5730\u611f\u8c22\u60a8\u7684\u8d21\u732e":72,"\u6211\u4eec\u79f0\u4e4b\u4e3a\u4e00\u4e2a0\u5c42\u7684\u5e8f\u5217":110,"\u6211\u4eec\u8ba1\u5212\u5c06":41,"\u6211\u4eec\u8ba1\u5212\u5c06\u82f1\u7279\u5c14\u6df1\u5ea6\u795e\u7ecf\u7f51\u7edc\u6570\u5b66\u5e93":42,"\u6211\u4eec\u8bbe\u8ba1\u8bf4\u660e\u4e86\u540d\u4e3afilemanager\u7cfb\u7edf":28,"\u6211\u4eec\u8c03\u7528\u4e86eigenvector\u7684flatten\u63a5\u53e3":76,"\u6211\u4eec\u8fd8\u53ef\u4ee5\u767b\u5f55\u5230\u5bbf\u4e3b\u673a\u4e0a\u67e5\u770b\u8bad\u7ec3\u7ed3\u679c":96,"\u6211\u4eec\u8fd8\u5c06\u7f16\u7801\u5411\u91cf\u6295\u5c04\u5230":114,"\u6211\u4eec\u9009\u53d6\u5355\u53cc\u5c42\u5e8f\u5217\u914d\u7f6e\u4e2d\u7684\u4e0d\u540c\u90e8\u5206":111,"\u6211\u4eec\u9009\u62e9":12,"\u6211\u4eec\u901a\u5e38\u501f\u52a9":75,"\u6211\u4eec\u901a\u5e38\u5c06\u4e00\u53e5\u8bdd\u7406\u89e3\u6210\u4e00\u4e2a\u65f6\u95f4\u5e8f\u5217":111,"\u6211\u4eec\u901a\u8fc7\u4f7f\u7528\u65b0\u5f15\u5165\u7684gemm":41,"\u6211\u4eec\u901a\u8fc7\u8bfb\u53d6":97,"\u6211\u4eec\u90fd\u63d0\u4f9bpython\u7684\u8f6c\u6362\u5e93":12,"\u6211\u4eec\u9700\u8981":0,"\u6211\u4eec\u9700\u8981\u5148\u628a\u8f93\u5165tensor\u548c\u8f93\u51fatensor\u8f6c\u6362\u4e3aeigen\u652f\u6301\u7684\u683c\u5f0f":76,"\u6211\u4eec\u9700\u8981\u5236\u4f5c\u4e00\u4e2a\u5305\u542b\u8bad\u7ec3\u6570\u636e\u7684paddlepaddle\u955c\u50cf":96,"\u6211\u4eec\u9700\u8981\u5728\u96c6\u7fa4\u7684\u6240\u6709\u8282\u70b9\u4e0a\u5b89\u88c5":101,"\u6211\u4eec\u9700\u8981\u7b49\u5f0f\u5de6\u8fb9\u7684eigentensor\u8c03\u7528device\u63a5\u53e3":76,"\u6211\u4eec\u9700\u8981\u8ba1\u7b97":74,"\u6211\u4eec\u9996\u5148\u9700\u8981\u6839\u636e\u795e\u7ecf\u7f51\u7edc\u7ed3\u6784\u6765\u521b\u5efa\u6240\u9700\u8981\u4f18\u5316\u7684paramet":84,"\u6211\u5220\u9664\u4e86":72,"\u6211\u53ef\u4ee5\u7528":0,"\u6211\u53ef\u4ee5\u9009\u62e9\u4e0d\u7528docker\u5417":0,"\u6216":[89,108,117],"\u6216\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":110,"\u6216\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217\u7ecf\u8fc7\u8fd0\u7b97\u53d8\u6210\u4e00\u4e2a0\u5c42\u5e8f\u5217":110,"\u6216\u4e00\u4e2a\u5411\u91cf":113,"\u6216\u5355\u5c42\u5e8f\u5217\u7ecf\u8fc7\u8fd0\u7b97\u53d8\u6210\u4e00\u4e2a0\u5c42\u5e8f\u5217":110,"\u6216\u662f\u5728\u81ea\u7136\u8bed\u8a00\u5904\u7406\u4efb\u52a1\u4e2d\u8868\u793a\u8bcd\u8bed\u5728\u5b57\u5178\u4e2d\u7684\u5e8f\u53f7":89,"\u6216\u6700\u5927\u503c":110,"\u6216\u79f0\u4f5cweight":81,"\u6216\u7b2c\u4e00\u4e2a":110,"\u6216\u7b2c\u4e00\u4e2a\u5143\u7d20":110,"\u6216\u7f16\u5199\u7a0b\u5e8f\u65f6":91,"\u6216\u8005":[0,42,45,46,72,75,81,89,107,108,110,111],"\u6216\u8005\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":113,"\u6216\u8005\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217":[110,113],"\u6216\u8005\u4ece\u5de5\u5177\u7684\u754c\u9762\u91cc\u8fd0\u884c\u60a8\u7684\u5e94\u7528":108,"\u6216\u8005\u5236\u4f5c\u548c\u5206\u4eab\u5e26\u6709\u4ee3\u7801":2,"\u6216\u8005\u53cd\u5411\u5730\u4ece":114,"\u6216\u8005\u53ef\u88abdns\u89e3\u6790\u7684\u4e3b\u673a\u540d":101,"\u6216\u8005\u5728cpu\u6a21\u5f0f\u4e0b\u4f7f\u75284\u4e2a\u7ebf\u7a0b":103,"\u6216\u8005\u5c06\u8fd9\u53f0\u8282\u70b9\u8fc1\u79fb\u5230\u53e6\u4e00\u4e2a\u8282\u70b9\u5e76\u542f\u52a8\u5373\u53ef\u6062\u590d\u8bad\u7ec3\u4efb\u52a1":11,"\u6216\u8005\u5df2\u7ecf\u5728\u96c6\u7fa4\u63d0\u4ea4\u73af\u5883\u4e2d\u81ea\u52a8\u8bbe\u7f6e":102,"\u6216\u8005\u5f15\u8d77\u884c\u65f6\u9519\u8bef":89,"\u6216\u8005\u6570\u7ec4\u7684\u6570\u7ec4\u8fd9\u4e2a\u6982\u5ff5":111,"\u6216\u8005\u662f\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217":110,"\u6216\u8005\u662f\u51fd\u6570\u8c03\u7528\u7684\u9891\u7387\u548c\u8017\u65f6\u7b49":108,"\u6216\u8005\u66f4\u65e9":83,"\u6216\u8005\u6bcf\u4e00\u4e2a\u7cfb\u5217\u91cc\u7684\u7279\u5f81\u6570\u636e":111,"\u6216\u8005\u7528tuple\u8868\u793a\u7684\u591a\u4e2a\u503c":12,"\u6216\u8005\u7531\u5b83\u4eec\u7ec4\u6210\u7684list":12,"\u6216\u8005\u76f4\u63a5\u6254\u6389\u975e\u5e38\u957f\u7684\u5e8f\u5217":81,"\u6216\u8005\u76f8\u5bf9\u4e8e\u6784\u5efa\u76ee\u5f55\u7684\u76f8\u5bf9\u8def\u5f84":[116,118],"\u6216\u8005\u8f93\u5165\u6570\u636e\u5c3a\u5ea6\u8fc7\u5927":81,"\u6216\u8005\u8fd0\u884c":78,"\u6216\u8005\u91c7\u7528\u5e76\u884c\u8ba1\u7b97\u6765\u52a0\u901f\u67d0\u4e9b\u5c42\u7684\u66f4\u65b0":105,"\u6216activ":42,"\u6216gpu":103,"\u622a\u65ad\u5bf9\u8c61\u4e0d\u540c":81,"\u6240\u4ee5":[2,42,62,81,107],"\u6240\u4ee5\u4e00\u4e2a\u7248\u672c\u53f7\u7684wheel\u5305\u53d1\u5e03\u4e4b\u540e":62,"\u6240\u4ee5\u4e0d\u5b58\u5728\u8fd9\u4e2a\u95ee\u9898":42,"\u6240\u4ee5\u4e0d\u80fd\u91c7\u7528\u7b2c\u4e00\u79cd\u65b9\u5f0f\u5728\u8fd9\u51e0\u4e2alayer\u91cc\u8bbe\u7f6e":82,"\u6240\u4ee5\u505a\u6cd5\u53ef\u4ee5\u6709\u4e24\u79cd":81,"\u6240\u4ee5\u53ef\u4ee5\u7b80\u5316\u5bf9\u73af\u5883\u7684\u8981\u6c42":96,"\u6240\u4ee5\u5728":42,"\u6240\u4ee5\u5728\u5199\u5165\u5feb\u7167\u7684\u8fc7\u7a0b\u4e2d":11,"\u6240\u4ee5\u5916\u5c42\u8f93\u51fa\u7684\u5e8f\u5217\u5f62\u72b6":111,"\u6240\u4ee5\u5bf9":111,"\u6240\u4ee5\u5f00\u53d1\u8005\u9700\u8981\u6839\u636e\u81ea\u5df1\u8bad\u7ec3\u4efb\u52a1\u7684\u5b9e\u9645\u573a\u666f\u5b8c\u6210\u8bad\u7ec3\u6570\u636e\u7684\u5206\u5272\u548c":91,"\u6240\u4ee5\u6027\u80fd\u4e5f\u5c31\u9010\u6b65\u53d8\u6210\u4e86\u6df1\u5ea6\u5b66\u4e60\u9886\u57df\u6700\u91cd\u8981\u7684\u6307\u6807":108,"\u6240\u4ee5\u6211\u4eec\u53ef\u4ee5\u5728\u8fd9\u4e2a\u57fa\u7840\u4e0a":97,"\u6240\u4ee5\u6211\u4eec\u5b9a\u4e49\u4e86\u4e00\u4e2a":42,"\u6240\u4ee5\u6211\u4eec\u786e\u4fdd\u53d1\u5e03\u7684\u4e8c\u8fdb\u5236\u5305\u53ef\u4ee5\u652f\u6301\u4e3b\u6d41\u7684linux\u64cd\u4f5c\u7cfb\u7edf":4,"\u6240\u4ee5\u6211\u4eec\u9700\u8981\u5c06\u8f93\u5165\u6570\u636e\u6807\u8bb0\u6210":111,"\u6240\u4ee5\u6211\u4eec\u9ed8\u8ba4\u4f7f\u7528cento":4,"\u6240\u4ee5\u6574\u4f53\u4e0a":42,"\u6240\u4ee5\u6dfb\u52a0\u4e86\u5bf9\u5e94\u7684":42,"\u6240\u4ee5\u7528\u6237\u9700\u8981\u9996\u5148\u5728":28,"\u6240\u4ee5\u76f8\u6bd4\u4e8erecurr":82,"\u6240\u4ee5\u8fd9\u4e00\u6b65\u662f\u5fc5\u8981\u7684":74,"\u6240\u4ee5\u9700\u8981\u5f15\u5165\u4e00\u4e2a\u8f6c\u6362\u65b9\u6cd5":42,"\u6240\u4f7f\u7528":117,"\u6240\u4f9d\u8d56\u7684\u7b2c\u4e09\u65b9\u5e93\u540c\u65f6\u4e5f\u88ab\u5b89\u88c5\u5230":116,"\u6240\u5bf9\u5e94\u7684\u8bcd\u8868index\u6570\u7ec4":111,"\u6240\u6709\u4e0e\u7c7b\u578b\u76f8\u5173\u7684\u51fd\u6570":46,"\u6240\u6709\u4ee3\u7801\u5fc5\u987b\u5177\u6709\u5355\u5143\u6d4b\u8bd5":72,"\u6240\u6709\u53c2\u6570\u7f6e\u4e3a\u96f6":103,"\u6240\u6709\u547d\u4ee4\u884c\u9009\u9879\u53ef\u4ee5\u8bbe\u7f6e\u4e3a":93,"\u6240\u6709\u5916\u90e8\u7684\u8f6c\u6362\u5de5\u4f5c\u90fd\u4f1a\u5728reset\u7cfb\u5217\u51fd\u6570\u4e2d\u90fd\u51c6\u5907\u597d":42,"\u6240\u6709\u67b6\u6784":116,"\u6240\u6709\u7684":[41,72,74],"\u6240\u6709\u7684\u5355\u6d4b\u90fd\u4f1a\u88ab\u6267\u884c\u4e00\u6b21":74,"\u6240\u6709\u7684\u63a5\u53e3\u5747\u4e3ac\u63a5\u53e3":46,"\u6240\u6709\u7684\u64cd\u4f5c\u90fd\u662f\u9488\u5bf9\u6bcf\u4e00\u4e2a\u65f6\u95f4\u6b65\u6765\u8fdb\u884c\u7684":111,"\u6240\u6709\u7684python\u5c01\u88c5\u90fd\u4f7f\u7528":74,"\u6240\u6709\u7684python\u5c01\u88c5\u90fd\u5728":74,"\u6240\u6709\u76f8\u5173\u7684":41,"\u6240\u6709\u7c7b\u578b\u540d\u4e3a":46,"\u6240\u6709\u7f51\u7edc\u5c42\u7684\u68af\u5ea6\u68c0\u67e5\u5355\u6d4b\u90fd\u4f4d\u4e8e":74,"\u6240\u6709\u8f93\u5165\u5e8f\u5217\u5e94\u8be5\u6709\u76f8\u540c\u7684\u957f\u5ea6":114,"\u6240\u6709mkl":42,"\u6240\u9700\u652f\u6301\u7684\u6700\u4f4eandroid":116,"\u6240\u9700\u7684\u5f00\u53d1\u5de5\u5177\u548c\u7b2c\u4e09\u65b9\u5e93\u53ef\u4ee5\u53c2\u8003":118,"\u624b\u5199\u591a\u8bed\u8a00\u7ed1\u5b9a":45,"\u624b\u5199\u6570\u5b57\u8bc6\u522b":90,"\u624b\u5199\u6570\u5b57\u8bc6\u522b\u4efb\u52a1\u5b9a\u4e49\u4e86\u4e00\u4e2a\u542b\u6709":90,"\u624b\u52a8\u4e0b\u8f7d\u4e14\u89e3\u538b\u7f29":78,"\u624b\u52a8\u4e0b\u8f7d\u5e76\u5b89\u88c5":78,"\u624d\u53ef\u4ee5\u5b89\u88c5":4,"\u624d\u80fd\u4fdd\u8bc1\u548c\u5355\u5c42\u5e8f\u5217\u7684\u914d\u7f6e\u4e2d":111,"\u624d\u80fd\u53d1\u6325\u5176\u5168\u90e8\u80fd\u529b":108,"\u624d\u80fd\u66f4\u597d\u7684\u53d1\u6325mkl":42,"\u6253\u5f00":108,"\u6253\u5f00\u6d4f\u89c8\u5668\u8bbf\u95ee\u5bf9\u5e94\u76ee\u5f55\u4e0b\u7684index":77,"\u6253\u5f00\u8fd9\u4e2a\u7f16\u8bd1\u9009\u9879":46,"\u6267\u884c":[62,86,87,93],"\u6267\u884c\u4e0a\u8ff0":116,"\u6267\u884c\u4e0a\u8ff0\u4ee3\u7801\u751f\u6210makefile\u6587\u4ef6\u540e":87,"\u6267\u884c\u4e0b\u9762\u7684\u547d\u4ee4":1,"\u6267\u884c\u4e0b\u9762\u7684\u547d\u4ee4\u4ee5\u542f\u52a83\u4e2a\u8282\u70b9\u7684openmpi\u96c6\u7fa4\u548c\u4e00\u4e2a":98,"\u6267\u884c\u4e0b\u9762\u7684\u547d\u4ee4\u5373\u53ef\u5728\u5f53\u524d\u673a\u5668\u4e0a\u5b89\u88c5paddlepaddle\u7684\u8fd0\u884c\u65f6\u73af\u5883":4,"\u6267\u884c\u4e0b\u9762\u7684\u547d\u4ee4\u53ef\u4ee5\u67e5\u770b\u5df2\u7ecf\u5b89\u88c5\u7684\u7248\u672c":101,"\u6267\u884c\u4e0b\u9762\u7684\u547d\u4ee4\u5b8c\u6210\u5feb\u901f\u5b89\u88c5":86,"\u6267\u884c\u4e0b\u9762\u7684\u547d\u4ee4\u6765\u8fd0\u884c\u5355\u5143\u6d4b\u8bd5":75,"\u6267\u884c\u4e0b\u9762\u7684\u547d\u4ee4\u7f16\u8bd1cpu":1,"\u6267\u884c\u4e0b\u9762\u7684\u547d\u4ee4\u83b7\u53d6\u6700\u65b0\u7684paddlepaddl":2,"\u6267\u884c\u4ee5\u4e0b\u547d\u4ee4":[116,117,118],"\u6267\u884c\u4ee5\u4e0b\u547d\u4ee4\u542f\u52a8\u4f7f\u7528python\u7f16\u5199\u7684trainer\u7a0b\u5e8f":91,"\u6267\u884c\u4ee5\u4e0b\u64cd\u4f5c":114,"\u6267\u884c\u4ee5\u4e0b\u7684\u547d\u4ee4\u542f\u52a8\u4e00\u4e2a\u53c2\u6570\u670d\u52a1\u5668\u5e76\u7b49\u5f85\u548c\u8ba1\u7b97\u8282\u70b9\u7684\u6570\u636e\u4ea4\u4e92":91,"\u6267\u884c\u5b8c\u5b89\u88c5\u547d\u4ee4\u540e":[116,117,118],"\u6267\u884c\u60a8\u7684\u4ee3\u7801":108,"\u627e\u5230":[1,94,114],"\u627e\u5230\u6700\u65e9\u62a5\u9519\u7684\u5730\u65b9":79,"\u627e\u5230\u8fd0\u884c\u6162\u7684\u539f\u56e0":108,"\u627e\u5230\u8fd0\u884c\u6162\u7684\u90e8\u5206":108,"\u628a":[12,74],"\u628a\u4e4b\u524d\u793a\u4f8b\u4e2d\u8f6c\u6362\u5b8c\u6bd5\u7684random":12,"\u628a\u4efb\u610f\u7ef4\u5ea6\u7684tensor\u8f6c\u4e3a\u4e86\u4e00\u7ef4\u7684eigenvector":76,"\u628a\u5de5\u5177\u548c\u914d\u7f6e\u90fd\u5b89\u88c5\u5728\u4e00\u4e2a":0,"\u628a\u8bad\u7ec3\u6570\u636e\u76f4\u63a5\u653e\u5728":96,"\u628a\u8fd9\u4e9b\u5de5\u5177\u5b89\u88c5\u5230\u672c\u673a":0,"\u6295\u5c04\u53cd\u5411rnn\u7684\u7b2c\u4e00\u4e2a\u5b9e\u4f8b\u5230":114,"\u6295\u5c04\u7f16\u7801\u5411\u91cf\u5230":114,"\u62c6\u6210\u4ee5\u4e0a\u4e24\u4e2a\u9759\u6001\u94fe\u63a5\u5e93":87,"\u62c6\u89e3":113,"\u62c6\u89e3\u6210\u7684\u6bcf\u4e00\u53e5\u8bdd\u518d\u901a\u8fc7\u4e00\u4e2alstm\u7f51\u7edc":111,"\u62f7\u8d1d\u5230numpi":81,"\u62f7\u8d1d\u5fc5\u8981\u7684\u6587\u4ef6\u5230head\u8282\u70b9":98,"\u62f7\u8d1d\u8bad\u7ec3\u6570\u636e\u5230\u5404\u81ea\u7684\u8282\u70b9":98,"\u62f7\u8d1d\u8bad\u7ec3\u6587\u4ef6\u5230\u5bb9\u5668\u5185":97,"\u62f7\u8d1d\u8bad\u7ec3\u7a0b\u5e8f\u548c\u5b57\u5178\u6587\u4ef6\u5230\u6bcf\u53f0mpi\u8282\u70b9":98,"\u62fc\u63a5":81,"\u6302\u8f7d\u5230\u5bb9\u5668\u5185\u90e8\u7684":2,"\u6302\u8f7d\u6216\u4e0b\u8f7d\u7684\u8bad\u7ec3\u6570\u636e\u5206\u7247":91,"\u6307\u53d1\u73b0\u6027\u80fd\u74f6\u9888":107,"\u6307\u5411\u4e00\u4e2alayer":113,"\u6307\u5b9a":[81,82,113,114],"\u6307\u5b9a\u4e00\u53f0\u673a\u5668\u4e0a\u4f7f\u7528\u7684\u7ebf\u7a0b\u6570":103,"\u6307\u5b9a\u4e3a":89,"\u6307\u5b9a\u4f7f\u75282":81,"\u6307\u5b9a\u524d\u5411\u7f51\u7edc\u6700\u7ec8\u7684\u8f93\u51fa\u76ee\u6807\u53d8\u91cf":75,"\u6307\u5b9a\u52a0\u8f7d\u7684\u65b9\u5f0f":103,"\u6307\u5b9a\u5728\u751f\u6210\u6027\u80fd\u5206\u6790\u6587\u4ef6\u4e4b\u540e":107,"\u6307\u5b9a\u5bf9\u8f93\u5165\u53d8\u91cf":75,"\u6307\u5b9a\u5c06\u5f53\u524d\u8def\u5f84":2,"\u6307\u5b9a\u6267\u884c\u5176\u4e2d\u4e00\u4e2a\u5355\u5143\u6d4b\u8bd5":1,"\u6307\u5b9a\u68c0\u6d4b\u68af\u5ea6\u65f6\u80fd\u5bb9\u5fcd\u7684\u6700\u5927\u9519\u8bef\u503c":75,"\u6307\u5b9a\u7684\u5185\u5bb9\u5b58\u50a8\u5e93\u8fd0\u884c\u547d\u4ee4":77,"\u6307\u5b9a\u7684\u8f93\u5165\u4e0d\u4f1a\u88ab":113,"\u6307\u5b9a\u8981\u8f93\u51fa\u7684\u5b57\u6bb5\u8fdb\u884c\u8f93\u51fa":81,"\u6307\u5b9a\u9700\u8981\u4f7f\u7528\u7684\u5bb9\u5668":2,"\u6307\u5b9acudnn\u7684\u6700\u5927\u5de5\u4f5c\u7a7a\u95f4\u5bb9\u9650":103,"\u6307\u5bf9\u4e8e\u4e00\u4e2a\u65f6\u95f4\u5e8f\u5217\u8f93\u5165\u6570\u636e":111,"\u6307\u5f00\u542fhttp\u670d\u52a1":107,"\u6307\u6d88\u9664\u74f6\u9888":107,"\u6307\u6df1\u5ea6\u5b66\u4e60\u8bad\u7ec3\u4e4b\u540e\u5f97\u5230\u7684\u6240\u6709\u53c2\u6570":11,"\u6307\u793a\u4f7f\u7528\u54ea\u4e2agpu\u6838":103,"\u6307\u793a\u5728\u7b80\u5355\u7684recurrentlayer\u5c42\u7684\u8ba1\u7b97\u4e2d\u662f\u5426\u4f7f\u7528\u6279\u5904\u7406\u65b9\u6cd5":103,"\u6307\u793a\u5f53\u6307\u5b9a\u8f6e\u7684\u6d4b\u8bd5\u6a21\u578b\u4e0d\u5b58\u5728\u65f6":103,"\u6307\u793a\u662f\u5426\u4f7f\u7528\u591a\u7ebf\u7a0b\u6765\u8ba1\u7b97\u4e00\u4e2a\u795e\u7ecf\u7f51\u7edc":103,"\u6307\u793a\u662f\u5426\u5f00\u542f\u53c2\u6570\u670d\u52a1\u5668":103,"\u6307\u793a\u662f\u5426\u663e\u793a\u53c2\u6570\u670d\u52a1\u5668\u4e0a\u7684\u7a00\u758f\u53c2\u6570\u5206\u5e03\u7684\u65e5\u5fd7\u7ec6\u8282":103,"\u6307\u793a\u662f\u5426\u68c0\u67e5\u6240\u6709\u53c2\u6570\u670d\u52a1\u5668\u4e0a\u7684\u7a00\u758f\u53c2\u6570\u7684\u5206\u5e03\u662f\u5747\u5300\u7684":103,"\u6309\u542f\u53d1\u5f0f\u635f\u5931\u7684\u5927\u5c0f\u9012\u589e\u6392\u5e8f":103,"\u6309\u7167\u4e0b\u9762\u6b65\u9aa4\u5373\u53ef":97,"\u6309\u7167\u5176\u5185\u5bb9\u521b\u5efa\u4e00\u4e2a\u540d\u4e3a":0,"\u6309\u7167\u5177\u4f53\u5b9e\u73b0\u65b9\u5f0f\u53ef\u4ee5\u5f52\u7eb3\u4e3a2\u7c7b":82,"\u6309\u7167\u57fa\u672c\u6570\u636e\u7c7b\u578b\u5728paddlepaddle\u5185\u90e8\u7684\u5b9a\u4e49\u548c\u5b9e\u73b0":89,"\u6309\u94ae":[62,72],"\u635f\u5931\u51fd\u6570\u5c42":90,"\u6392\u6210\u4e00\u5217\u7684\u591a\u4e2a\u5143\u7d20":110,"\u63a5\u4e0a\u4e00\u4e2a\u5168\u8fde\u63a5\u5c42":84,"\u63a5\u4e0a\u5e73\u65b9\u8bef\u5dee\u5c42":84,"\u63a5\u4e0b\u6765":75,"\u63a5\u4e0b\u6765\u53ef\u4ee5\u8003\u8651\u4e0b\u65f6\u95f4\u7ebf\u7684\u5206\u6790":108,"\u63a5\u4e0b\u6765\u5c31\u53ef\u4ee5\u4f7f\u7528":108,"\u63a5\u4e0b\u6765\u6211\u4eec\u521b\u5efa\u4e00\u4e2a\u539f\u59cb":72,"\u63a5\u4e0b\u6765\u6211\u4eec\u53d6\u6d88\u5bf9":72,"\u63a5\u4e0b\u6765\u7b49\u5f85":72,"\u63a5\u53d7\u4e00\u4e2a\u8f93\u5165\u53c2\u6570":75,"\u63a5\u53e3":[45,46,75,76,90],"\u63a5\u53e3\u4f1a\u88ab\u8c03\u7528":76,"\u63a5\u53e3\u5b8c\u6210\u795e\u7ecf\u7f51\u7edc\u7684\u524d\u5411\u8ba1\u7b97":90,"\u63a5\u53e3\u5bf9\u795e\u7ecf\u7f51\u7edc\u7ed3\u6784\u548c\u8bad\u7ec3\u597d\u7684\u53c2\u6570\u8fdb\u884c\u5e8f\u5217\u5316":90,"\u63a5\u53e3\u5c42\u505a\u8fc7\u591a\u5c01\u88c5":46,"\u63a5\u53e3\u662f":12,"\u63a5\u53e3\u6700\u7ec8\u4f1a\u8c03\u7528\u5bf9\u5e94":76,"\u63a5\u53e3\u6709\u4e00\u4e2a":81,"\u63a5\u53e3\u7684":81,"\u63a5\u53e3\u8bf4\u660e\u8bf7\u67e5\u770b":89,"\u63a5\u6536\u5904\u7406pfsclient\u7aef\u7684\u6587\u4ef6\u7ba1\u7406\u8bf7\u6c42":28,"\u63a5\u7740\u7f16\u8bd1\u5373\u53ef":78,"\u63a7\u5236":103,"\u63a7\u5236\u662f\u5426\u4f7f\u7528mkl":42,"\u63a7\u5236\u662f\u5426\u4f7f\u7528mklml\u5e93":42,"\u63a7\u5236\u7528\u6237\u6743\u9650":12,"\u63a8\u5bfc\u8be5\u5c42\u524d\u5411\u548c\u540e\u5411\u4f20\u9012\u7684\u65b9\u7a0b":74,"\u63a8\u8350\u4f7f\u7528\u6b64\u65b9\u5f0f":87,"\u63a8\u8350\u4f7f\u7528centos\u7684devtools2":1,"\u63a8\u8350\u6e05\u7406\u6574\u4e2a\u7f16\u8bd1\u76ee\u5f55":1,"\u63a8\u8350\u8bbe\u7f6e\u4e3a":87,"\u63a8\u8350\u914d\u7f6e\u4e3a":87,"\u63a8\u8350\u914d\u7f6e\u9009\u9879":87,"\u63a8\u9001\u5230\u8fdc\u7a0b\u4ed3\u5e93":72,"\u63cf\u8ff0\u7684\u9ed8\u8ba4\u5165\u53e3\u7a0b\u5e8f":0,"\u63cf\u8ff0\u8be5op\u7684\u8f93\u5165":75,"\u63cf\u8ff0\u95ee\u9898":72,"\u63d0\u4ea4\u65b9\u5f0f\u53c2\u89c1":77,"\u63d0\u4ea4pull":72,"\u63d0\u4f9b":93,"\u63d0\u4f9b\u4e03\u5c42\u534f\u8bae\u7684\u53cd\u5411\u4ee3\u7406":28,"\u63d0\u4f9b\u4e86\u4e00\u4e2a\u542f\u52a8\u811a\u672c":97,"\u63d0\u4f9b\u4e86\u547d\u4ee4\u6837\u4f8b\u6765\u8fd0\u884c":93,"\u63d0\u4f9b\u4e86\u65b9\u4fbf\u7684\u548c":107,"\u63d0\u4f9b\u4e86\u81ea\u52a8\u5316\u811a\u672c\u6765\u542f\u52a8\u4e0d\u540c\u8282\u70b9\u4e2d\u7684\u6240\u6709":93,"\u63d0\u4f9b\u51e0\u4e4e\u6240\u6709\u8bad\u7ec3\u7684\u5185\u90e8\u8f93\u51fa\u65e5\u5fd7":93,"\u63d0\u4f9b\u5e38\u7528\u7684\u547d\u4ee4\u884c\u7ba1\u7406\u547d\u4ee4\u7ba1\u7406\u6587\u4ef6\u548c\u76ee\u5f55":28,"\u63d0\u4f9b\u6269\u5c55\u7684\u957f\u5ea6\u4fe1\u606f":110,"\u63d0\u4f9b\u7528\u6237\u7ba1\u7406\u6587\u4ef6\u7684\u547d\u4ee4":28,"\u63d0\u4f9b\u7ed9paddle\u4f5c\u4e3a\u8bad\u7ec3\u6570\u636e":12,"\u63d0\u4f9b\u8bad\u7ec3\u8fc7\u7a0b\u7684":93,"\u63d0\u793a":78,"\u641c\u7d22\u4ee3\u7801\u5e93":77,"\u642d\u5efa\u795e\u7ecf\u7f51\u7edc\u5c31\u50cf\u4f7f\u7528\u79ef\u6728\u642d\u5efa\u5b9d\u5854\u4e00\u6837":84,"\u64cd\u4f5c":111,"\u64cd\u4f5c\u7cfb\u7edf":[0,4],"\u652f\u6301\u4e24\u79cd\u5e8f\u5217\u7c7b\u578b":89,"\u652f\u6301\u4ea4\u53c9\u7f16\u8bd1":118,"\u652f\u6301\u53cc\u5c42\u5e8f\u5217\u4f5c\u4e3a\u8f93\u5165\u7684layer":[112,113],"\u652f\u6301\u5927\u6587\u4ef6\u7684\u65ad\u70b9\u4e0a\u4f20":28,"\u652f\u6301\u5927\u89c4\u6a21\u96c6\u7fa4\u751f\u4ea7\u73af\u5883\u7684\u5b8c\u6574\u96c6\u7fa4\u65b9\u6848":94,"\u652f\u6301\u7684\u6700\u5c0f\u7684android":116,"\u652f\u6301\u7684\u6700\u5c0fandroid":116,"\u652f\u6301\u7ef4\u6570\u53ef\u53d8\u7684\u6570\u636e\u8f93\u5165":82,"\u652f\u6301\u7f16\u8bd1\u5668":116,"\u6539\u53d8\u7ef4\u5ea6\u987a\u5e8f":82,"\u653e\u5728\u8fd9\u4e2a\u76ee\u5f55\u91cc\u7684\u6587\u4ef6\u5176\u5b9e\u662f\u4fdd\u5b58\u5230\u4e86mfs\u4e0a":97,"\u6545\u800c\u662f\u4e00\u4e2a\u5355\u5c42\u65f6\u95f4\u5e8f\u5217":111,"\u6548\u679c\u5982\u4e0b":107,"\u6559\u7a0b":2,"\u6570":113,"\u6570\u5b66\u5e93":87,"\u6570\u5fc5\u987b\u4e25\u683c\u76f8\u7b49":113,"\u6570\u636e":[28,89,90],"\u6570\u636e\u4e2d0":83,"\u6570\u636e\u5206\u7247":92,"\u6570\u636e\u63d0\u4f9b\u5668":102,"\u6570\u636e\u8bfb\u53d6\u5747\u4ea4\u7531\u5176\u4ed6\u8bed\u8a00\u5b8c\u6210":45,"\u6570\u636e\u8f93\u5165":[89,113],"\u6570\u636e\u957f\u5ea6\u53ca\u6821\u9a8c\u503c\u7ec4\u6210":28,"\u6570\u636e\u96c6":90,"\u6570\u636e\u96c6\u9700\u8981\u9884\u5148\u88ab\u8f6c\u6362\u6210paddlepaddle\u5206\u5e03\u5f0f\u8bad\u7ec3\u4f7f\u7528\u7684\u5b58\u50a8\u683c":12,"\u6570\u636e\u9884\u5904\u7406\u4efb\u52a1":12,"\u6570\u76ee":105,"\u6574\u4f53\u4f7f\u7528\u6d41\u7a0b":90,"\u6574\u4f53\u6570\u636e\u548c\u539f\u59cb\u6570\u636e\u5b8c\u5168\u4e00\u6837":111,"\u6574\u4f53\u7684\u7ed3\u6784\u56fe\u5982\u4e0b":97,"\u6574\u578b\u6570\u7ec4":89,"\u6574\u6570":74,"\u6574\u6570\u6807\u7b7e":84,"\u6587\u4ef6":[0,45,72,75,89,96],"\u6587\u4ef6\u4e2d":[75,90,97],"\u6587\u4ef6\u4e2d\u6ce8\u518c\u524d\u5411":75,"\u6587\u4ef6\u4e2d\u6ce8\u518c\u8be5op\u548ckernel":75,"\u6587\u4ef6\u4e2d\u6ce8\u518ccuda":75,"\u6587\u4ef6\u4e3a":81,"\u6587\u4ef6\u4e4b\u5916":72,"\u6587\u4ef6\u4f20\u8f93\u7684\u7684\u5173\u952e\u5728\u4e8e\u9700\u8981pfsclient\u7aef\u5bf9\u6bd4source\u548cdestination\u7684\u6587\u4ef6chunks\u7684checksum\u662f\u5426\u4fdd\u6301\u4e00\u81f4":28,"\u6587\u4ef6\u5185\u5bb9\u4e3a":45,"\u6587\u4ef6\u540d":107,"\u6587\u4ef6\u540d\u4e3a\u4efb\u610f\u6587\u4ef6\u540d":91,"\u6587\u4ef6\u540d\u4e3a\u6b64uuid":11,"\u6587\u4ef6\u547d\u540d\u4ee5":75,"\u6587\u4ef6\u59390":97,"\u6587\u4ef6\u5bf9\u5e94\u7684data":12,"\u6587\u4ef6\u5de5\u5177\u662f\u4f7f\u7528docker":77,"\u6587\u4ef6\u7684\u4e0a\u4f20\u548c\u4e0b\u8f7d\u90fd\u662f\u901a\u8fc7\u5bf9chunk\u7684\u64cd\u4f5c\u6765\u5b9e\u73b0\u7684":28,"\u6587\u4ef6\u7684\u6539\u53d8":72,"\u6587\u4ef6\u7684\u8def\u5f84\u6765\u52a0\u8f7d\u9884\u6d4b\u6a21\u578b":90,"\u6587\u4ef6model":105,"\u6587\u5b57\u7684\u4ea4\u4e92\u5f0f\u6587\u6863":2,"\u6587\u6863":78,"\u6587\u68631":76,"\u6587\u68632":76,"\u6587\u6863\u8f83\u5c11":76,"\u6587\u6863\u90fd\u662f\u901a\u8fc7":77,"\u6587\u7ae0":97,"\u65b0\u5efa\u4e00\u4e2a\u6743\u91cd":74,"\u65b0\u624b\u5165\u95e8":115,"\u65b0\u624b\u5165\u95e8\u7ae0\u8282":62,"\u65b0\u7248\u672c":42,"\u65b9\u4fbf\u5feb\u901f\u5b89\u88c5":3,"\u65b9\u4fbf\u6392\u67e5\u4ee5\u53ca\u5feb\u901f\u5b9a\u4f4d\u95ee\u9898":81,"\u65b9\u4fbf\u6d4b\u8bd5\u4eba\u5458\u6d4b\u8bd5paddlepaddle\u7684\u884c\u4e3a":62,"\u65b9\u4fbf\u7528\u6237\u4e0a\u4f20\u81ea\u5df1\u7684\u8bad\u7ec3\u6570\u636e\u4ee5\u8fdb\u884c\u5206\u5e03\u5f0f\u8bad\u7ec3":28,"\u65b9\u4fbf\u7528\u6237\u5728python\u7aef\u9009\u62e9\u662f\u5426\u542f\u7528\u8fd9\u4e2a\u529f\u80fd":41,"\u65b9\u4fbf\u7528\u6237\u9009\u62e9\u4f7f\u7528mkl":42,"\u65b9\u5f0f1":81,"\u65b9\u5f0f2":81,"\u65b9\u5f0f\u5c06\u795e\u7ecf\u7f51\u7edc\u7ed3\u6784\u548c\u8bad\u7ec3\u597d\u7684\u53c2\u6570\u5e8f\u5217\u5316\u5230\u4e00\u4e2a\u6587\u4ef6":90,"\u65b9\u5f0f\u7c7b\u4f3c\u4e8e":42,"\u65b9\u6cd5\u4e00":105,"\u65b9\u6cd5\u4e09":105,"\u65b9\u6cd5\u4e8c":105,"\u65e0\u5ef6\u8fdf":103,"\u65e0\u6cd5\u505a\u5230\u5bf9\u4e8e\u5404\u79cd\u8bed\u8a00\u9519\u8bef\u5904\u7406\u65b9\u5f0f\u7684\u9002\u914d":45,"\u65e0\u8bba\u5728\u672c\u5730\u8fd8\u662f\u5728\u4e91\u7aef":12,"\u65e0\u8bba\u662f\u4ece":12,"\u65e0\u8bba\u662f\u5728\u672c\u5730\u6216\u662f\u4e91\u7aef\u8f6c\u6362":12,"\u65e0\u8bba\u662f\u91cd\u6784\u524d\u7684layer\u8fd8\u662f\u91cd\u6784\u540e\u7684op":42,"\u65e0\u9700\u5173\u5fc3\u548c\u5904\u7406\u5e8f\u5217\u4fe1\u606f":89,"\u65e0\u9700\u63d0\u4f9b\u975e\u96f6\u5143\u7684\u503c":89,"\u65e0\u9700\u9644\u52a0\u5e8f\u5217\u4fe1\u606f":89,"\u65e0\u9ed8\u8ba4\u503c":[116,118],"\u65e5\u5fd7\u62a5\u9519\u4e3a\u7f51\u7edc\u901a\u4fe1\u7c7b\u9519\u8bef":79,"\u65f6":[11,41,42,74,81,83,87,89,97,103,110,114,116],"\u65f6\u4e00\u8d77\u66f4\u65b0":42,"\u65f6\u4f7f\u7528openblas\u6570\u5b66\u5e93":87,"\u65f6\u5982\u4f55\u7ec4\u7ec7\u8f93\u5165\u6570\u636e":89,"\u65f6\u6709\u6548":117,"\u65f6\u88ab\u8bad\u7ec3\u7684":74,"\u65f6\u8bbe\u5907id\u53f7\u7684\u5206\u914d":105,"\u65f6\u95f4":111,"\u65f6\u95f4\u6b65\u7684\u6982\u5ff5":111,"\u65f6\u987b\u4ece\u7b2c17\u5b57\u8282\u5f00\u59cb":83,"\u6620\u5c04\u4e3a":0,"\u6620\u5c04\u5230\u4e00\u4e2a\u7ef4\u5ea6\u4e3a":74,"\u662f":[4,28,42,78],"\u662f\u4e00\u4e2a\u51681\u7684\u5411\u91cf":74,"\u662f\u4e00\u4e2a\u5185\u7f6e\u7684\u5b9a\u65f6\u5668\u5c01\u88c5":108,"\u662f\u4e00\u4e2a\u52a8\u6001\u7a0b\u5e8f\u5206\u6790\u7684\u672f\u8bed":108,"\u662f\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":110,"\u662f\u4e00\u4e2a\u53cc\u5c42\u7684\u5e8f\u5217":110,"\u662f\u4e00\u4e2a\u591a\u8bed\u8a00\u63a5\u53e3\u7684\u4ee3\u7801\u751f\u6210\u5668":45,"\u662f\u4e00\u4e2a\u5c01\u88c5\u5bf9\u8c61":108,"\u662f\u4e00\u4e2a\u5f88\u6709\u7528\u7684\u53c2\u6570":105,"\u662f\u4e00\u4e2a\u7c7b\u578b\u7684\u6807\u5fd7":46,"\u662f\u4e00\u4e2a\u975e\u7ebf\u6027\u7684":74,"\u662f\u4e00\u4e2apython\u7684\u7b2c\u4e09\u65b9\u5e93":107,"\u662f\u4e00\u4e2aunbound":113,"\u662f\u4e00\u6761\u65f6\u95f4\u5e8f\u5217":84,"\u662f\u4e00\u6b21\u9884\u6d4b\u63a5\u53d7\u7684\u6837\u672c\u6570\u76ee":89,"\u662f\u4e00\u79cd\u4efb\u610f\u590d\u6742\u7684rnn\u5355\u5143":113,"\u662f\u4e0d\u5305\u62ec\u6e90\u7801\u7684":96,"\u662f\u4e0d\u5e38\u89c1\u7684\u505a\u6cd5":45,"\u662f\u4f7f\u5f97\u8981\u5171\u4eab\u7684\u53c2\u6570\u4f7f\u7528\u540c\u6837\u7684":83,"\u662f\u4f7f\u7528mkl\u6570\u5b66\u5e93":87,"\u662f\u504f\u5dee":114,"\u662f\u5404\u4e2a\u5b9e\u73b0\u4e2d\u5171\u4eab\u7684\u5934\u6587\u4ef6":46,"\u662f\u5411\u91cf":74,"\u662f\u5426\u4ec5\u7f16\u8bd1capi":1,"\u662f\u5426\u4ee5\u9006\u5e8f\u5904\u7406\u8f93\u5165\u5e8f\u5217":113,"\u662f\u5426\u4f7f\u7528":117,"\u662f\u5426\u4f7f\u7528\u53cc\u7cbe\u5ea6\u6d6e\u70b9\u6570":1,"\u662f\u5426\u4f7f\u7528\u65e7\u7684remoteparameterupdat":103,"\u662f\u5426\u4f7f\u7528\u6743\u91cd":74,"\u662f\u5426\u4f7f\u7528arm\u6a21\u5f0f":116,"\u662f\u5426\u4f7f\u7528eigen\u5e93\u8fdb\u884c\u77e9\u9635\u8ba1\u7b97":[116,117],"\u662f\u5426\u4f7f\u7528mkl\u6570\u5b66\u5e93":1,"\u662f\u5426\u4f7f\u7528neon\u6307\u4ee4":[116,118],"\u662f\u5426\u4f7f\u80fd":117,"\u662f\u5426\u5185\u5d4cpython\u89e3\u91ca\u5668":1,"\u662f\u5426\u5219\u5171\u4eab\u540c\u4e00\u4e2a":75,"\u662f\u5426\u542f\u7528gpu\u8bad\u7ec3":91,"\u662f\u5426\u5c06\u5168\u5c40\u79cd\u5b50\u5e94\u7528\u4e8e\u672c\u5730\u7ebf\u7a0b\u7684\u968f\u673a\u6570":103,"\u662f\u5426\u5f00\u542f\u5355\u5143\u6d4b\u8bd5":1,"\u662f\u5426\u6253\u5370\u7248\u672c\u4fe1\u606f":103,"\u662f\u5426\u6253\u5f00":41,"\u662f\u5426\u652f\u6301gpu":1,"\u662f\u5426\u663e\u793a":103,"\u662f\u5426\u7a00\u758f":74,"\u662f\u5426\u7f16\u8bd1\u4e2d\u82f1\u6587\u6587\u6863":1,"\u662f\u5426\u7f16\u8bd1\u542b\u6709avx\u6307\u4ee4\u96c6\u7684paddlepaddle\u4e8c\u8fdb\u5236\u6587\u4ef6":1,"\u662f\u5426\u7f16\u8bd1\u65f6\u8fdb\u884c\u4ee3\u7801\u98ce\u683c\u68c0\u67e5":1,"\u662f\u5426\u7f16\u8bd1c":117,"\u662f\u5426\u7f16\u8bd1go\u8bed\u8a00\u7684\u53ef\u5bb9\u9519paramet":1,"\u662f\u5426\u7f16\u8bd1python\u7684swig\u63a5\u53e3":1,"\u662f\u5426\u8fd0\u884c\u65f6\u52a8\u6001\u52a0\u8f7dcuda\u52a8\u6001\u5e93":1,"\u662f\u5426\u9700\u8981\u7b49\u5f85\u8be5\u8f6e\u6a21\u578b\u53c2\u6570":103,"\u662f\u56e0\u4e3a\u8fd9\u4e2a\u6d41\u7a0b\u6bd4\u5176\u4ed6\u65b9\u6cd5\u90fd\u66f4\u7b80\u4fbf":0,"\u662f\u56e0\u4e3ac99\u652f\u6301":45,"\u662f\u5728paddlepaddle\u4e2d\u6784\u9020\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u65f6\u6700\u91cd\u8981\u7684\u6982\u5ff5":114,"\u662f\u5b58\u6709\u4e00\u7cfb\u5217\u53d8\u6362\u77e9\u9635\u7684\u6743\u91cd":74,"\u662f\u5b58\u6709\u504f\u7f6e\u5411\u91cf\u7684\u6743\u91cd":74,"\u662f\u5bf9\u7528\u6237\u6587\u4ef6\u5b58\u50a8\u7a7a\u95f4\u7684\u62bd\u8c61":28,"\u662f\u5bfb\u627e\u74f6\u9888\u7684\u5173\u952e\u6307\u6807":107,"\u662f\u5f00\u542favx\u7f16\u8bd1\u7684":2,"\u662f\u5f85\u6269\u5c55\u7684\u6570\u636e":110,"\u662f\u6211\u4eec":72,"\u662f\u6211\u4eec\u8981\u5206\u6790\u7684\u7a0b\u5e8f":107,"\u662f\u6307":46,"\u662f\u6307\u4e00\u7cfb\u5217\u7684\u7279\u5f81\u6570\u636e":111,"\u662f\u6307recurrent_group\u7684\u591a\u4e2a\u8f93\u5165\u5e8f\u5217":111,"\u662f\u6570\u636e\u8f93\u5165":114,"\u662f\u6709\u610f\u4e49\u7684":111,"\u662f\u6784\u5efa\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u7684\u6700\u91cd\u8981\u7684\u5de5\u5177":114,"\u662f\u6ca1\u6709\u540d\u5b57\u7684":0,"\u662f\u7528\u6237\u4f7f\u7528c":46,"\u662f\u7684":0,"\u662f\u77e9\u9635":74,"\u662f\u795e\u7ecf\u7f51\u7edc\u5b9a\u4e49\u65f6":89,"\u662f\u7f51\u7edc\u5c42\u5b9e\u4f8b\u7684\u540d\u5b57\u6807\u8bc6\u7b26":74,"\u662f\u7f51\u7edc\u5c42\u7684\u6807\u8bc6\u7b26":74,"\u662f\u7f51\u7edc\u5c42\u7684\u7c7b\u578b":74,"\u662f\u7f51\u7edc\u5c42\u8f93\u51fa\u7684\u5927\u5c0f":74,"\u662f\u8be5\u5c42\u7684\u6807\u8bc6\u7b26":74,"\u662f\u8be5\u5c42\u7684\u7c7b\u540d":74,"\u662f\u8be5\u7f51\u7edc\u5c42\u7684":74,"\u662f\u8f93\u5165":114,"\u662f\u8fd9\u4e00\u7c7b\u7684":82,"\u662f\u8fdb\u884c\u8ba1\u7b97\u7684\u57fa\u672c\u5355\u4f4d":89,"\u662f\u9700\u8981\u4e86\u89e3\u54ea\u4e9b\u6b65\u9aa4\u62d6\u6162\u4e86\u6574\u4f53":108,"\u662fc":46,"\u662fdecoder\u7684\u6570\u636e\u8f93\u5165":113,"\u662fnvidia\u6027\u80fd\u5206\u6790\u5de5\u5177":108,"\u662fpaddlepaddle\u4e2d\u5355\u5c42\u5e8f\u5217\u548c\u53cc\u5c42\u5e8f\u5217\u5b58\u50a8\u793a\u610f\u56fe":89,"\u662fpaddlepaddle\u652f\u6301\u7684\u4e00\u79cd\u4efb\u610f\u590d\u6742\u7684rnn\u5355\u5143":113,"\u662fpython\u5c01\u88c5\u7684\u7c7b\u540d":74,"\u662frnn\u72b6\u6001":114,"\u663e\u5f97\u76f8\u5bf9\u6765\u8bf4\u8f83\u4e3a\u8017\u65f6":41,"\u663e\u7136":107,"\u6682\u4e0d\u8003\u8651\u5728\u5185":81,"\u6682\u65e0":4,"\u6682\u65f6\u4e0d\u652f\u6301python3":4,"\u6682\u65f6\u4e0d\u8003\u8651\u591a\u4e2aparamet":11,"\u66b4\u9732\u8fd9\u4e2a\u6982\u5ff5\u5fc5\u8981\u51fd\u6570":46,"\u66f4\u522b\u63d0\u7b80\u5316\u95ee\u9898\u590d\u73b0\u5e26\u6765\u7684\u597d\u5904\u4e86":0,"\u66f4\u591a\u5173\u4e8edocker\u7684\u5b89\u88c5\u4e0e\u4f7f\u7528":78,"\u66f4\u591a\u7684\u8f6c\u6362\u65b9\u6cd5\u8bf7\u53c2\u8003eigen":76,"\u66f4\u597d\u5730\u5b8c\u6210\u4e00\u4e9b\u590d\u6742\u7684\u8bed\u8a00\u7406\u89e3\u4efb\u52a1":113,"\u66f4\u5feb":114,"\u66f4\u65b0":78,"\u66f4\u65b0\u53ef\u80fd\u5bfc\u81f4\u9700\u8981\u65b0\u7684\u5f00\u53d1\u5de5\u5177":0,"\u66f4\u65b0\u6a21\u5f0f":81,"\u66f4\u65b0\u7684\u6587\u6863\u4ee5pr\u7684\u5f62\u5f0f\u63d0\u4ea4\u5230github\u4e2d":77,"\u66f4\u65b0\u7f51\u7edc\u53c2\u6570\u65f6\u5e94\u7528":81,"\u66f4\u65b9\u4fbf\u7684\u8bbe\u7f6e\u65b9\u5f0f":83,"\u66f4\u8be6\u7ec6\u7684\u5b89\u88c5\u548c\u7f16\u8bd1\u65b9\u6cd5\u53c2\u8003":86,"\u66f4\u8fdb\u4e00\u6b65":113,"\u66f4\u9ad8":114,"\u66ff\u6211\u4eec\u5b8c\u6210\u4e86\u539f\u59cb\u8f93\u5165\u6570\u636e\u7684\u62c6\u5206":113,"\u6700\u4e3b\u8981\u7684\u5de5\u4f5c\u5c31\u662f\u89e3\u6790\u51fa":97,"\u6700\u540e":[2,72,74,91],"\u6700\u540e\u4e00\u4e2a":110,"\u6700\u540e\u4e00\u5c42cost\u4e2d\u8bb0\u5f55\u4e86\u795e\u7ecf\u7f51\u7edc\u7684\u6240\u6709\u62d3\u6251\u7ed3\u6784":84,"\u6700\u540e\u518d\u8c03\u7528mutabl":76,"\u6700\u540e\u5220\u9664":62,"\u6700\u540e\u6211\u4eec\u4f7f\u7528\u94fe\u5f0f\u6cd5\u5219\u8ba1\u7b97":74,"\u6700\u540e\u8ba1\u7b97softmax":82,"\u6700\u5c0f\u7684ios\u90e8\u7f72\u7248\u672c":117,"\u6700\u5c11\u663e\u793a\u591a\u5c11\u4e2a\u8282\u70b9":103,"\u6700\u5e38\u89c1\u7684\u9519\u8bef\u5904\u7406\u65b9\u5f0f\u662fexcept":45,"\u6700\u65b0\u7684\u4ee3\u7801":72,"\u6700\u65b0\u7684paddlepaddl":[2,78],"\u6700\u7ec8":74,"\u6700\u7ec8\u5b9e\u73b0\u4e00\u4e2a\u5c42\u6b21\u5316\u7684\u590d\u6742rnn":113,"\u6700\u7ec8\u6211\u4eec\u53ef\u4ee5\u8c03\u7528trainer\u7684train\u65b9\u6cd5\u542f\u52a8\u8bad\u7ec3":84,"\u6700\u7ec8\u7684\u8f93\u51fa\u7ed3\u679c":113,"\u6709\u4e00\u4e9b\u5fc5\u987b\u914d\u7f6e\u7684\u53c2\u6570":[116,117,118],"\u6709\u4e24\u79cd\u65b9\u6cd5":1,"\u6709\u4e9b\u5c42\u53ef\u80fd\u9700\u8981\u9ad8\u7cbe\u5ea6\u6765\u4fdd\u8bc1\u68af\u5ea6\u68c0\u67e5\u5355\u6d4b\u6b63\u786e\u6267\u884c":74,"\u6709\u4e9b\u5c42\u6216\u8005\u6fc0\u6d3b\u9700\u8981\u505a\u5f52\u4e00\u5316\u4ee5\u4fdd\u8bc1\u5b83\u4eec\u7684\u8f93\u51fa\u7684\u548c\u662f\u4e00\u4e2a\u5e38\u6570":74,"\u6709\u4e9b\u7279\u5f81\u7684\u53d6\u503c\u8fbe\u5230\u6570\u767e\u4e07":81,"\u6709\u4eba\u7528\u865a\u62df\u673a\u6765\u7c7b\u6bd4":0,"\u6709\u4ee5\u4e0b\u5efa\u8bae":[116,117],"\u6709\u5173":111,"\u6709\u5173\u53c2\u6570\u914d\u7f6e\u7684\u8be6\u7ec6\u8bf4\u660e\u89c1":116,"\u6709\u5173\u7ebf\u6027\u56de\u5f52\u7684\u5b9e\u9645\u5e94\u7528":84,"\u6709\u52a9\u4e8e\u5728\u8bad\u7ec3\u65f6\u89c2\u5bdf\u5177\u4f53\u6570\u503c":81,"\u6709\u52a9\u4e8e\u8bca\u65ad\u5206\u5e03\u5f0f\u9519\u8bef":93,"\u6709\u591a\u96be":0,"\u6709\u6548\u63d0\u5347paddlepaddle\u5728\u82f1\u7279\u5c14\u67b6\u6784\u4e0a\u7684\u6027\u80fd":[41,42],"\u6709\u65f6\u5019\u6211\u4eec\u4f1a\u5e0c\u671b\u6e05\u7406\u6389\u5df2\u7ecf\u4e0b\u8f7d\u7684\u7b2c\u4e09\u65b9\u4f9d\u8d56\u4ee5\u53ca\u5df2\u7ecf\u7f16\u8bd1\u7684\u4e8c\u8fdb\u5236\u6587\u4ef6":0,"\u6709\u65f6\u5019\u6211\u4eec\u53ea\u60f3\u8fd0\u884c\u4e00\u4e2a\u7279\u5b9a\u7684\u5355\u5143\u6d4b\u8bd5":0,"\u6709\u6807\u51c6\u7684":45,"\u6709\u7684\u65f6\u5019":45,"\u6709\u7684\u65f6\u5019\u7b80\u7b80\u5355\u5355\u7684\u6539\u53d8\u5c31\u80fd\u5728\u6027\u80fd\u4e0a\u4ea7\u751f\u660e\u663e\u7684\u4f18\u5316\u6548\u679c":108,"\u6709\u7684\u8bdd\u9700\u8981\u5148\u5378\u8f7d":78,"\u6709\u975e\u5e38\u5927\u7684\u5dee\u522b":107,"\u670d\u52a1\u5668\u4e4b\u95f4\u53ef\u4ee5\u901a\u8fc7\u5c40\u57df\u7f51":101,"\u672a\u6307\u5b9a\u6309\u7167double\u7cbe\u5ea6\u7f16\u8bd1":83,"\u672a\u8bbe\u7f6e":117,"\u672c\u4f8b\u4e2d\u7684\u539f\u59cb\u6570\u636e\u4e00\u5171\u670910\u4e2a\u6837\u672c":111,"\u672c\u5217\u8868\u8bf4\u660epaddlepaddle\u53d1\u7248\u4e4b\u524d\u9700\u8981\u6d4b\u8bd5\u7684\u529f\u80fd\u70b9":62,"\u672c\u5730":[4,78],"\u672c\u5730\u6d4b\u8bd5":102,"\u672c\u5730\u8bad\u7ec3":[89,102],"\u672c\u5730\u8bad\u7ec3\u4e0e\u9884\u6d4b":80,"\u672c\u5730\u8bad\u7ec3\u7684\u5b9e\u9a8c":105,"\u672c\u6559\u7a0b\u4e3b\u8981\u4ecb\u7ecd\u5e26kernel\u7684op\u5982\u4f55\u5199":75,"\u672c\u6559\u7a0b\u5c06\u6307\u5bfc\u4f60\u5982\u4f55\u5728":114,"\u672c\u6587\u4e2d\u6240\u6709\u7684\u4f8b\u5b50":111,"\u672c\u6587\u4e2d\u7684\u4f8b\u5b50\u91cc":0,"\u672c\u6587\u4e2d\u793a\u4f8b\u6240\u4f7f\u7528\u7684\u5355\u5143\u6d4b\u8bd5\u6587\u4ef6\u662f":111,"\u672c\u6587\u4ee5paddlepaddle\u7684\u53cc\u5c42rnn\u5355\u5143\u6d4b\u8bd5\u4e3a\u793a\u4f8b":111,"\u672c\u6587\u5c06\u4ecb\u7ecd\u5728kubernetes\u5bb9\u5668\u7ba1\u7406\u5e73\u53f0\u4e0a\u5feb\u901f\u6784\u5efapaddlepaddle\u5bb9\u5668\u96c6\u7fa4":97,"\u672c\u6587\u6863\u5c06\u4ee5linux":116,"\u672c\u6587\u6863\u63cf\u8ff0paddl":46,"\u672c\u6587\u7684\u5c06\u4ecb\u7ecd\u5728macos\u4e0a":117,"\u672c\u6b21\u8bad\u7ec3\u6587\u4ef6\u6240\u5728\u76ee\u5f55":97,"\u672c\u6b21\u8bad\u7ec3\u7684yaml\u6587\u4ef6\u53ef\u4ee5\u5199\u6210":97,"\u672c\u6b21\u8bad\u7ec3\u8981\u6c42\u67093\u4e2apaddlepaddle\u8282\u70b9":97,"\u672c\u793a\u4f8b\u4e2d\u4f7f\u7528\u7684\u539f\u59cb\u6570\u636e\u5982\u4e0b":111,"\u672c\u793a\u4f8b\u610f\u56fe\u4f7f\u7528\u5355\u5c42rnn\u548c\u53cc\u5c42rnn\u5b9e\u73b0\u4e24\u4e2a\u5b8c\u5168\u7b49\u4ef7\u7684\u5168\u8fde\u63a5rnn":111,"\u672c\u8282\u5c06\u4ecb\u7ecd\u5982\u4f55\u4f7f\u7528paddlepaddle\u5728\u4e0d\u540c\u7684\u96c6\u7fa4\u6846\u67b6\u4e0b\u5b8c\u6210\u5206\u5e03\u5f0f\u8bad\u7ec3":92,"\u673a\u5668\u4e0a\u4ee5\u53ca":118,"\u673a\u5668\u7684\u8bbe\u5907":105,"\u673a\u5668\u7ffb\u8bd1":62,"\u6743\u91cd\u66f4\u65b0\u7684\u68af\u5ea6":103,"\u6765\u4e3a\u4e00\u4e2a":89,"\u6765\u4ee3\u66ff":72,"\u6765\u4f20\u8f93\u7f51\u7edc\u914d\u7f6e\u6587\u4ef6\u4e2d\u5b9a\u4e49\u7684\u7f51\u7edc\u7ed3\u6784\u548c\u76f8\u5173\u53c2\u6570":90,"\u6765\u4f7f\u7528dropout":82,"\u6765\u4f7f\u7528dropout\u7684":82,"\u6765\u4fdd\u8bc1\u8bad\u7ec3\u8fc7\u7a0b\u53ef\u4ee5\u4ece\u4e2d\u95f4\u72b6\u6001\u91cd\u65b0\u542f\u52a8":11,"\u6765\u505a\u68af\u5ea6\u68c0\u67e5":74,"\u6765\u51b3\u5b9a\u662f\u5426\u5f00\u542fmkl":41,"\u6765\u5206\u6790\u6267\u884c\u6587\u4ef6":108,"\u6765\u521d\u59cb\u5316\u53c2\u6570":83,"\u6765\u542f\u52a8\u548c":0,"\u6765\u5b58\u50a8":89,"\u6765\u5b58\u50a8\u6570\u636e":[89,90],"\u6765\u5b8c\u6210\u524d\u5411\u548c\u53cd\u5411\u8ba1\u7b97":90,"\u6765\u5b8c\u6210\u7f51\u7edc\u7684\u8bad\u7ec3":84,"\u6765\u5b9a\u4e49\u5faa\u73af\u795e\u7ecf\u7f51\u7edc":114,"\u6765\u5b9e\u73b0":42,"\u6765\u5b9e\u9645\u5b58\u50a8\u6570\u636e":[89,90],"\u6765\u5bf9\u6bd4\u5206\u6790\u4e24\u8005\u8bed\u4e49\u76f8\u540c\u7684\u539f\u56e0":111,"\u6765\u5f71\u54cdpaddlepaddle\u7684\u7f16\u8bd1\u8fc7\u7a0b":[116,117],"\u6765\u5f97\u5230\u67d0\u4e2a\u7279\u5b9a\u53c2\u6570\u7684\u68af\u5ea6\u77e9\u9635":74,"\u6765\u6267\u884c":0,"\u6765\u63cf\u8ff0\u7684":76,"\u6765\u63cf\u8ff0\u8be5op\u7684\u8f93\u5165":75,"\u6765\u63cf\u8ff0\u8f93\u5165":89,"\u6765\u642d\u5efa\u795e\u7ecf\u7f51\u7edc":84,"\u6765\u663e\u793a\u6027\u80fd\u5206\u6790\u7ed3\u679c":107,"\u6765\u67e5\u770b\u6027\u80fd\u5206\u6790\u7ed3\u679c":107,"\u6765\u6ce8\u518c\u8be5\u5c42":74,"\u6765\u6df7\u5408\u4f7f\u7528gpu\u548ccpu\u8ba1\u7b97\u7f51\u7edc\u5c42\u7684\u53c2\u6570":105,"\u6765\u6e05\u7406\u8fd9\u4e9b\u5185\u5bb9":0,"\u6765\u7279\u6307":89,"\u6765\u7279\u6307\u8c03\u7528paddlepaddl":90,"\u6765\u7279\u6307paddlepaddl":90,"\u6765\u7279\u6307paddlepaddle\u4e2d\u7684\u4e00\u7ef4\u6574\u578b\u6570\u7ec4":89,"\u6765\u7279\u6307paddlepaddle\u4e2d\u7684\u4e8c\u7ef4\u6d6e\u70b9\u578b\u77e9\u9635":89,"\u6765\u7279\u6307paddlepaddle\u4e2d\u795e\u7ecf\u7f51\u7edc\u8ba1\u7b97\u5c42\u4e00\u4e2a\u8f93\u5165":89,"\u6765\u786e\u4fdd\u628a":45,"\u6765\u786e\u5b9a\u7a00\u758f\u77e9\u9635\u7684\u5185\u5bb9":89,"\u6765\u7f16\u8bd1":0,"\u6765\u83b7\u5f97\u8f93\u51fa\u7684\u68af\u5ea6":74,"\u6765\u8868\u793a":114,"\u6765\u8868\u793a\u95e8\u63a7\u5faa\u73af\u795e\u7ecf\u7f51\u7edc":114,"\u6765\u8868\u793apaddle\u5185\u90e8\u7c7b":45,"\u6765\u89e3\u51b3\u4e0a\u9762\u7684\u95ee\u9898":81,"\u6765\u8ba1\u7b97\u68af\u5ea6":74,"\u6765\u8bb0\u5f55\u8f93\u5165":89,"\u6765\u8bb2\u89e3\u5982\u4f55\u4f7f\u7528\u53cc\u5c42rnn":111,"\u6765\u8bbe\u7f6e":83,"\u6765\u8bbf\u95ee\u7528\u6237\u81ea\u5df1\u7684\u6570\u636e":12,"\u6765\u8bfb\u53d6\u4e00\u4e2a":89,"\u6765\u8c03\u6574":72,"\u6765\u8c03\u7528":0,"\u6765\u8fd0\u884c\u5305\u62ec":0,"\u6765\u8fd0\u884c\u5355\u5143\u6d4b\u8bd5\u4e86":0,"\u6765\u8fd0\u884c\u6027\u80fd\u5206\u6790\u548c\u8c03\u4f18":108,"\u6765\u8fd0\u884c\u955c\u50cf":2,"\u6765\u8fdb\u884c\u8ba8\u8bba":46,"\u6765\u9884\u6d4b\u8fd9\u4e2a\u4e2d\u95f4\u7684\u8bcd":81,"\u6784\u5efa":116,"\u6784\u5efa\u597d\u5f00\u53d1\u955c\u50cf\u540e":116,"\u6784\u5efa\u76ee\u6807\u4e3a":117,"\u6784\u6210\u4e00\u4e2a\u5e8f\u5217":89,"\u6784\u6210\u4e86\u8f93\u51fa\u53cc\u5c42\u5e8f\u5217\u7684\u7b2ci\u4e2a":110,"\u6784\u9020":97,"\u6784\u9020\u51fd\u6570\u542b\u67092\u4e2a\u53c2\u6570":75,"\u6784\u9020\u51fd\u6570\u91cc\u901a\u8fc7":75,"\u67b6\u6784\u7684\u6a21\u62df\u5668\u5e73\u53f0":117,"\u67b6\u6784\u7684iphone\u6216\u8005ipad\u7b49\u7269\u7406\u8bbe\u5907":117,"\u67d0\u4e00\u4e2a\u795e\u7ecf\u5143\u7684\u4e00\u4e2a\u8f93\u5165\u4e3a\u4e0a\u4e00\u4e2a\u65f6\u95f4\u6b65\u7f51\u7edc\u4e2d\u67d0\u4e00\u4e2a\u795e\u7ecf\u5143\u7684\u8f93\u51fa":111,"\u67d0\u4e9b\u53c2\u6570\u53ea\u53ef\u7528\u4e8e\u7279\u5b9a\u7684\u5c42\u4e2d":102,"\u67e5\u770b":72,"\u67e5\u770b\u5305\u7684\u5927\u5c0f":78,"\u67e5\u770b\u5f53\u524d\u72b6\u6001":72,"\u67e5\u770b\u5f53\u524d\u8fdc\u7a0b\u4ed3\u5e93\u7684\u540d\u5b57":72,"\u67e5\u770b\u6587\u4ef6\u5177\u4f53\u88ab\u4fee\u6539\u7684\u5185\u5bb9":72,"\u67e5\u770b\u662f\u5426\u662f\u5176\u4ed6\u9519\u8bef\u5f15\u53d1\u7684\u62a5\u9519":79,"\u67e5\u770bjob\u7684\u8be6\u7ec6\u60c5\u51b5":96,"\u67e5\u770blatest":62,"\u6807\u51c6":4,"\u6807\u51c6\u5dee\u4e3a":83,"\u6807\u51c6\u8868\u793apaddlepaddle\u7248\u672c\u53f7":62,"\u6807\u8bc6\u4e86\u4e00\u4e2a\u8f93\u51fa\u7684\u6587\u4ef6\u540d":107,"\u6807\u8bc6\u6027\u80fd\u5206\u6790\u7684\u7ed3\u679c\u6587\u4ef6":107,"\u6807\u8bc6\u662f\u5426\u4e3a\u8fde\u7eed\u7684batch\u8ba1\u7b97":103,"\u6807\u8bc6\u88ab\u6027\u80fd\u5206\u6790\u7684\u6e90\u6587\u4ef6":107,"\u6807\u8bc6http\u670d\u52a1\u7684\u7aef\u53e3":107,"\u6807\u8bc6http\u670d\u52a1\u7ed1\u5b9a\u7684ip":107,"\u6838\u4e00\u6837\u591a\u7684\u8fdb\u7a0b\u6765\u5e76\u884c\u7f16\u8bd1":0,"\u6838\u5fc3\u4ee3\u7801\u7f16\u8bd1\u6210\u94fe\u63a5\u5e93":87,"\u6839\u636e\u4e2a\u4eba\u7684\u9700\u6c42\u4fee\u6539\u5b9a\u5236docker\u5bb9\u5668\u6240\u6267\u884c\u7684\u811a\u672c":116,"\u6839\u636e\u4f60\u7684\u4efb\u52a1":105,"\u6839\u636e\u524d\u6587\u7684\u63cf\u8ff0":97,"\u6839\u636e\u7f51\u7edc\u914d\u7f6e\u4e2d\u7684":103,"\u6839\u636e\u8f93\u5165tensor\u7684\u5927\u5c0f\u6765\u8bbe\u7f6e\u8f93\u51fatensor\u7684\u5927\u5c0f":76,"\u6839\u636e\u8fd9\u4e9b\u53c2\u6570\u7684\u4f7f\u7528\u573a\u5408":102,"\u6839\u636e\u9ed8\u8ba4\u503c\u9012\u589e":103,"\u6839\u636e\u9ed8\u8ba4\u7aef\u53e3\u53f7\u9012\u589e":103,"\u6839\u636ejob\u5bf9\u5e94\u7684pod\u4fe1\u606f":96,"\u6839\u636eport":91,"\u683c\u5f0f":103,"\u683c\u5f0f\u4e0d\u5339\u914d\u65f6":42,"\u683c\u5f0f\u5b58\u50a8":89,"\u683c\u5f0f\u7684\u6587\u4ef6\u6765\u5b58\u653e":75,"\u6846\u67b6\u63d0\u4f9b\u7684blas\u51fd\u6570\u8fdb\u884c\u77e9\u9635\u8ba1\u7b97":117,"\u6846\u67b6\u8fdb\u884cblas\u77e9\u9635\u8ba1\u7b97":117,"\u68af\u5ea6\u4f1a\u5c31\u5730":74,"\u68af\u5ea6\u4f1a\u6709\u566a\u58f0":92,"\u68af\u5ea6\u53c2\u6570\u7684\u5206\u5757\u6570\u76ee":103,"\u68af\u5ea6\u5c31\u53ef\u4ee5\u901a\u8fc7\u8fd9\u4e2a\u65b9\u7a0b\u8ba1\u7b97\u5f97\u5230":74,"\u68af\u5ea6\u670d\u52a1\u5668\u7684\u6570\u91cf":103,"\u68af\u5ea6\u68c0\u67e5\u5355\u5143\u6d4b\u8bd5\u901a\u8fc7\u6709\u9650\u5dee\u5206\u6cd5\u6765\u9a8c\u8bc1\u4e00\u4e2a\u5c42\u7684\u68af\u5ea6":74,"\u68af\u5ea6\u68c0\u67e5\u7684\u8f93\u5165\u6570\u636e\u7684\u6279\u6b21\u5927\u5c0f":74,"\u68c0\u67e5\u70b9\u4fdd\u5b58\u7a0b\u5e8f\u6d41\u7a0b":11,"\u68c0\u67e5\u8f93\u5165\u6570\u636e\u7ef4\u5ea6":75,"\u6982\u5ff5\u4e0a":90,"\u6982\u5ff5\u4e0a\u53ef\u4ee5\u5c06":89,"\u6a21\u5757\u4e0b\u7684\u76f8\u5173":76,"\u6a21\u578b\u4e00\u76f4\u4e0d\u6536\u655b":81,"\u6a21\u578b\u4e2d\u6240\u6709\u53ef\u5b66\u4e60\u53c2\u6570\u4f1a\u88ab\u5b58\u4e3a\u4e00\u4e2a\u538b\u7f29\u6587\u4ef6":90,"\u6a21\u578b\u53c2\u6570\u68c0\u67e5\u70b9\u901a\u8fc7\u5b9a\u671f\u5411\u78c1\u76d8\u4e0a\u4fdd\u5b58\u4e00\u4efd\u5b58\u50a8\u5728paramet":11,"\u6a21\u578b\u6570\u636e\u68c0\u67e5\u70b9\u7684\u5b9e\u73b0":11,"\u6a21\u578b\u6587\u4ef6\u5c06\u88ab\u5199\u5165\u8282\u70b9":93,"\u6a21\u578b\u6765\u6307\u5bfc\u4f60\u5b8c\u6210\u8fd9\u4e9b\u6b65\u9aa4":114,"\u6a21\u578b\u6f14\u793a\u5982\u4f55\u914d\u7f6e\u590d\u6742\u7684\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u6a21\u578b":114,"\u6a21\u578b\u7684\u4ee3\u7801\u53ef\u4ee5\u5728":114,"\u6a21\u578b\u7684\u7f16\u7801\u5668\u90e8\u5206\u5982\u4e0b\u6240\u793a":114,"\u6a21\u578b\u8bad\u7ec3\u7b49\u4efb\u52a1":84,"\u6a21\u578b\u914d\u7f6e":80,"\u6a21\u578b\u914d\u7f6e\u89e3\u6790":45,"\u6a21\u5f0f\u4e0b\u7684\u6027\u80fd\u6d4b\u8bd5\u662f\u6ca1\u6709\u610f\u4e49\u7684":107,"\u6a2a\u5411\u62fc\u63a5":81,"\u6b21\u8fed\u4ee3\u6267\u884c\u7684\u8f6c\u6362\u6b21\u6570\u4e3a":41,"\u6b22\u8fce\u901a\u8fc7":72,"\u6b63\u5728\u7b49\u5f85\u672a\u5b8c\u6210\u7684\u4efb\u52a1":78,"\u6b63\u5e38\u60c5\u51b5\u4e0b\u662f75m":78,"\u6b63\u786e\u7684\u89e3\u51b3\u65b9\u6cd5\u662f":78,"\u6b63\u8d1f\u5bf9\u9a8c\u8bc1":102,"\u6b64\u547d\u4ee4\u5c06\u5728":116,"\u6b64\u5904\u90fd\u4e3a2":111,"\u6b64\u5916":[0,72,82,116],"\u6b64\u6559\u7a0b\u4f1a\u4ecb\u7ecd\u5982\u4f55\u4f7f\u7528python\u7684cprofile\u5305":107,"\u6b64\u6559\u7a0b\u5c06\u5411\u60a8\u5206\u6b65\u4ecb\u7ecd\u5982\u4f55\u4f7f\u7528\u5185\u7f6e\u7684\u5b9a\u65f6\u5de5\u5177":108,"\u6b64\u65b9\u6cd5\u4e0d\u80fd\u83b7\u53d6":81,"\u6b64\u65f6\u53ea\u9700\u8981":0,"\u6b64\u65f6\u53ef\u4ee5\u5728\u8c03\u7528infer\u63a5\u53e3\u65f6\u901a\u8fc7\u8bbe\u7f6e":81,"\u6b64\u65f6\u53ef\u4ee5\u8df3\u8fc7paddlepaddle\u6a21\u578b\u53c2\u6570\u6587\u4ef6\u7684\u5934\u4fe1\u606f":83,"\u6b64\u65f6\u6bcf\u4e2a\u5c0f\u5206\u652f\u7684":42,"\u6b64\u65f6master\u5c06\u8d1f\u8d23\u542f\u52a8\u4e00\u4e2a\u65b0\u7684train":11,"\u6b64\u76ee\u5f55":90,"\u6b64\u793a\u4f8b":90,"\u6b64\u7c7b\u62a5\u9519\u901a\u5e38\u662f\u7531\u4e8e\u67d0\u4e00\u4e2a\u8282\u70b9\u7684\u9519\u8bef\u5bfc\u81f4\u8fd9\u4e2a\u8282\u70b9\u7684\u8bad\u7ec3\u8fdb\u7a0b\u9000\u51fa":79,"\u6b65\u9aa4":81,"\u6bb5\u843d\u53ef\u4ee5\u770b\u4f5c\u662f\u4e00\u4e2a\u5d4c\u5957\u7684\u53cc\u5c42\u7684\u5e8f\u5217":113,"\u6bb5\u843d\u662f\u7531\u53e5\u5b50\u6784\u6210\u7684\u5e8f\u5217":89,"\u6bcf\u4e00\u4e2a":[62,90],"\u6bcf\u4e00\u4e2a\u5916\u5c42\u5e8f\u5217\u53c8\u542b\u6709\u82e5\u5e72\u4e2a\u5185\u5c42\u5e8f\u5217":89,"\u6bcf\u4e00\u4e2a\u5e8f\u5217\u5728\u6574\u4e2a":89,"\u6bcf\u4e00\u4e2a\u6587\u4ef6\u662f\u6570\u636e\u96c6\u7684\u4e00\u4e2ashard":12,"\u6bcf\u4e00\u4e2a\u65f6\u95f4\u6b65":111,"\u6bcf\u4e00\u4e2a\u65f6\u95f4\u6b65\u4e4b\u95f4\u7684\u795e\u7ecf\u7f51\u7edc\u5177\u6709\u4e00\u5b9a\u7684\u76f8\u5173\u6027":111,"\u6bcf\u4e00\u4e2a\u8282\u70b9\u90fd\u6709\u76f8\u540c\u7684\u65e5\u5fd7\u7ed3\u6784":93,"\u6bcf\u4e00\u4e2a\u8f93\u5165":[89,90],"\u6bcf\u4e00\u4e2alayer\u8f93\u51fa\u77e9\u9635\u7684\u9ad8\u5ea6":81,"\u6bcf\u4e00\u5217\u7684\u542b\u4e49\u662f":107,"\u6bcf\u4e00\u7ec4\u5185\u7684\u6240\u6709\u53e5\u5b50\u548clabel":111,"\u6bcf\u4e00\u884c\u5143\u7d20\u5728":89,"\u6bcf\u4e2a":42,"\u6bcf\u4e2a\u503c\u7684\u7c7b\u578b\u53ef\u4ee5\u662f\u6574\u5f62":12,"\u6bcf\u4e2a\u5143\u7d20\u662f\u4e00\u4e2a0\u5c42\u5e8f\u5217":110,"\u6bcf\u4e2a\u5143\u7d20\u662f\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":110,"\u6bcf\u4e2a\u5355\u5c42rnn":113,"\u6bcf\u4e2a\u53c2\u6570\u670d\u52a1\u5668\u53ea\u4fdd\u5b58\u6574\u4e2a\u795e\u7ecf\u7f51\u7edc\u6240\u6709\u53c2\u6570\u7684\u4e00\u90e8\u5206":92,"\u6bcf\u4e2a\u53e5\u5b50\u53c8\u662f\u5355\u8bcd\u7684\u6570\u7ec4":111,"\u6bcf\u4e2a\u53e5\u5b50\u90fd\u4ee5\u5f00\u59cb\u6807\u8bb0\u5f00\u5934":114,"\u6bcf\u4e2a\u53e5\u5b50\u90fd\u4ee5\u7ed3\u675f\u6807\u8bb0\u7ed3\u5c3e":114,"\u6bcf\u4e2a\u5b50\u5e8f\u5217\u957f\u5ea6\u53ef\u4ee5\u4e0d\u4e00\u81f4":111,"\u6bcf\u4e2a\u5c42\u5728\u5176":74,"\u6bcf\u4e2a\u6279\u6b21\u6570\u636e":103,"\u6bcf\u4e2a\u65f6\u95f4\u6b65\u4e4b\u5185\u7684\u8fd0\u7b97\u662f\u72ec\u7acb\u7684":113,"\u6bcf\u4e2a\u65f6\u95f4\u6b65\u90fd\u7528\u4e86\u4e0a\u4e00\u4e2a\u65f6\u95f4\u6b65\u7684\u8f93\u51fa\u7ed3\u679c":111,"\u6bcf\u4e2a\u6743\u91cd\u5bf9\u5e94\u4e00\u4e2a\u8f93\u5165":74,"\u6bcf\u4e2a\u6837\u672c\u7531\u4e24\u90e8\u5206\u7ec4\u6210":111,"\u6bcf\u4e2a\u6837\u672c\u95f4\u7528\u7a7a\u884c\u5206\u5f00":111,"\u6bcf\u4e2a\u6d4b\u8bd5\u4f1a\u5bf9\u6bd4paddlepaddle\u4e2dcpu\u7b97\u51fa\u7684\u7ed3\u679c\u4e0emkl":42,"\u6bcf\u4e2a\u72b6\u6001":113,"\u6bcf\u4e2a\u7ebf\u7a0b":103,"\u6bcf\u4e2a\u7ebf\u7a0b\u5206\u914d\u5230128\u4e2a\u6837\u672c\u7528\u4e8e\u8bad\u7ec3":103,"\u6bcf\u4e2a\u8bad\u7ec3\u8282\u70b9\u5fc5\u987b\u6307\u5b9a\u4e00\u4e2a\u552f\u4e00\u7684id\u53f7":103,"\u6bcf\u4e2a\u8f93\u5165\u90fd\u662f\u4e00\u4e2a":74,"\u6bcf\u4e2a\u8f93\u51fa\u8282\u70b9\u90fd\u8fde\u63a5\u5230\u6240\u6709\u7684\u8f93\u5165\u8282\u70b9\u4e0a":74,"\u6bcf\u4e2a\u90e8\u5206\u5206\u522b\u7ed9\u6bcf\u4e2atrainer\u4f7f\u7528":92,"\u6bcf\u4e2acommit\u53ea\u505a\u4e86\u5c11\u91cf\u7684\u4fee\u6539":72,"\u6bcf\u4e2adata":12,"\u6bcf\u4e2amkldnnlayer\u90fd\u5305\u542b\u7528\u4e8e\u5185\u90e8\u5b58\u50a8\u548c\u5916\u90e8\u5b58\u50a8\u7684\u4e00\u7cfb\u5217mkldnnmatrix":42,"\u6bcf\u4e2aparamet":11,"\u6bcf\u4e2apod\u5305\u542b\u4e00\u4e2apaddlepaddle\u5bb9\u5668":97,"\u6bcf\u4e2ashard\u5206\u522b\u5b58\u50a8\u5728\u5176\u4e2d\u4e00\u53f0paramet":11,"\u6bcf\u4e2atrainer\u542f\u52a8\u540e\u8bfb\u53d6\u5207\u5206\u597d\u7684\u4e00\u90e8\u5206\u6570\u636e":92,"\u6bcf\u4e2atrainer\u7684\u552f\u4e00id":91,"\u6bcf\u4e2atrainer\u8fdb\u7a0b\u9700\u8981\u80fd\u591f\u8bfb\u53d6\u5c5e\u4e8e\u81ea\u5df1\u7684\u4e00\u4efd\u6570\u636e":91,"\u6bcf\u53f0\u670d\u52a1\u5668\u5177\u6709\u96c6\u7fa4\u4e2d\u552f\u4e00\u7684ip\u5730\u5740":101,"\u6bcf\u5c42\u4e0a\u53ea\u80fd\u4fdd\u5b58\u56fa\u5b9a\u6570\u76ee\u4e2a\u6700\u597d\u7684\u72b6\u6001":103,"\u6bcf\u5c42\u4f7f\u7528\u7684gpu\u53f7\u4f9d\u8d56\u4e8e\u53c2\u6570train":105,"\u6bcf\u6279\u6b21":103,"\u6bcf\u6b21\u63d0\u4ea4\u4ee3\u7801":72,"\u6bcf\u6b21\u63d0\u4ea4\u65f6":72,"\u6bcf\u6b21\u8c03\u7528\u65f6\u5bf9\u539f\u6570\u636e\u7684\u91cd\u590dpacking\u4fbf\u6210\u4e3a\u4e86\u5197\u4f59":41,"\u6bcf\u6b21\u8c03\u7528\u7684\u8017\u65f6\u4e5f\u5f88\u957f":107,"\u6bcf\u6b21\u8f93\u51fa\u4e00\u4e2adata":12,"\u6bcf\u884c\u8868\u793a\u4e00\u4e2a\u6279\u6b21\u4e2d\u7684\u5355\u4e2a\u8f93\u5165":74,"\u6bcf\u8f6e\u4f1a\u5c06\u6570\u636e\u96c6\u4e2d\u7684\u6240\u6709\u8bad\u7ec3\u6837\u672c\u4f7f\u7528\u4e00\u6b21":103,"\u6bcf\u8f6e\u7ed3\u675f\u65f6\u5bf9\u6240\u6709\u6d4b\u8bd5\u6570\u636e\u8fdb\u884c\u6d4b\u8bd5":103,"\u6bcf\u8f6e\u90fd\u4f1a\u4fdd\u5b58\u9884\u6d4b\u7ed3\u679c":103,"\u6bcf\u8fd0\u884c\u591a\u5c11\u4e2a\u6279\u6b21\u6267\u884c\u4e00\u6b21\u7a00\u758f\u53c2\u6570\u5206\u5e03\u7684\u68c0\u67e5":103,"\u6bcf\u969410\u5206\u949f":11,"\u6bcfdot":103,"\u6bcflog":103,"\u6bcfsave":103,"\u6bcftest":103,"\u6bd4\u5982":[0,2,12,42,72,79,81],"\u6bd4\u5982\u4e00\u53e5\u8bdd\u4e2d\u7684\u6bcf\u4e00\u4e2a\u5355\u8bcd":111,"\u6bd4\u5982\u53ef\u80fd\u4f1a\u7528openmp\u6539\u8fdbsgd\u7684\u66f4\u65b0\u6027\u80fd":42,"\u6bd4\u5982\u5728":2,"\u6bd4\u5982\u5982\u679c\u8981build\u4e00\u4e2a\u4e0d\u4f9d\u8d56gpu":72,"\u6bd4\u5982\u5c06":62,"\u6bd4\u5982\u5e0c\u671b\u6700\u5c0f\u5316\u751f\u6210\u5e93\u7684\u5927\u5c0f":117,"\u6bd4\u5982\u5e0c\u671b\u6700\u5c0f\u5316\u751f\u6210\u7684\u5e93\u7684\u5927\u5c0f":[116,118],"\u6bd4\u5982\u6bcf\u969410\u5206\u949f\u6700\u65b0\u7684\u5feb\u7167":11,"\u6bd4\u5982\u6d41\u5f0f\u6570\u636e\u5904\u7406":12,"\u6bd4\u5982\u8282\u70b9\u7684id":94,"\u6bd4\u5982\u8bbe\u7f6e\u4e00\u4e2a\u5168\u8fde\u63a5\u5c42\u7684\u53c2\u6570\u521d\u59cb\u5316\u65b9\u5f0f\u548cbias\u521d\u59cb\u5316\u65b9\u5f0f":83,"\u6bd4\u5982cento":4,"\u6bd4\u5982fpe":79,"\u6bd4\u5982ide\u914d\u7f6e\u91cc":72,"\u6bd4\u5982imagenet\u8fd9\u4e2a\u6570\u636e\u96c6\u53ef\u80fd\u88ab\u5206\u62101000\u4e2ashard":12,"\u6bd4\u5982pil\u5e93\u7b49":91,"\u6bd5\u7adf\u5355\u7ebf\u7a0b\u8c03\u8bd5\u66f4\u5bb9\u6613":107,"\u6ca1\u6709\u5fc5\u8981\u5728\u6bcf\u6b21\u524d\u5411\u4e2d\u6bcf\u4e2a\u65f6\u95f4\u6b65\u7684\u8ba1\u7b97\u65f6\u5bf9\u6743\u91cd\u8fdb\u884c\u91cd\u590d\u7684packing\u64cd\u4f5c":41,"\u6ca1\u6709\u627e\u5230\u548c\u5f53\u524d\u7cfb\u7edf\u5339\u914d\u7684paddlepaddle\u5b89\u88c5\u5305":[4,78],"\u6ca1\u6709\u8bbe\u7f6e":[116,118],"\u6ce8":[2,11,62,89],"\u6ce8\u518c":75,"\u6ce8\u518ccpu":75,"\u6ce8\u518clayer\u7684\u65f6\u5019\u4fdd\u8bc1":[41,42],"\u6ce8\u518cop":75,"\u6ce8\u518cop\u65f6\u7684\u7c7b\u578b\u540d":75,"\u6ce8\u610f":[1,42,74,77,81,84,90,91,97,107,114,116,117,118],"\u6ce8\u610f\u4e0a\u8ff0\u547d\u4ee4\u4e2d":97,"\u6ce8\u610f\u4e8b\u9879":89,"\u6ce8\u610f\u5230\u6211\u4eec\u5df2\u7ecf\u5047\u8bbe\u673a\u5668\u4e0a\u67094\u4e2agpu":105,"\u6ce8\u610fnode":97,"\u6ce8\u91ca":75,"\u6d41\u7a0b\u6765\u63d0\u4ea4\u4ee3\u7801":72,"\u6d4b\u8bd5":72,"\u6d4b\u8bd5\u5206\u4e3a\u6bcf\u4e2alayer":42,"\u6d4b\u8bd5\u65f6\u6307\u5b9a\u7684\u5b58\u50a8\u6a21\u578b\u5217\u8868\u7684\u6587\u4ef6":103,"\u6d4b\u8bd5\u662f":72,"\u6d4b\u8bd5\u672c\u6b21release\u7684\u6b63\u786e\u6027":62,"\u6d4b\u8bd5\u7684\u6027\u80fd\u5bf9\u6bd4\u7ed3\u679c\u4f1a\u5728":42,"\u6d4b\u8bd5\u7684\u6a21\u578b\u5305\u62ec\u4ece\u7b2cm\u8f6e\u5230\u7b2cn":105,"\u6d4b\u8bd5model_list":102,"\u6d4b\u8bd5oper":75,"\u6d4b\u8bd5save_dir":102,"\u6d6e\u70b9\u578b\u6570\u636e":12,"\u6d6e\u70b9\u578b\u7a00\u758f\u77e9\u9635":89,"\u6d6e\u70b9\u578b\u7a20\u5bc6\u77e9\u9635":89,"\u6d6e\u70b9\u5f02\u5e38\u901a\u5e38\u7684\u539f\u56e0\u662f\u6d6e\u70b9\u6570\u6ea2\u51fa":81,"\u6d6e\u70b9\u6570":89,"\u6d6e\u70b9\u6570\u5411\u91cf\u7b49":89,"\u6d6e\u70b9\u7a00\u758f\u6570\u636e":74,"\u6df1\u5165paddlepaddl":42,"\u6df7\u5408\u4ee3\u7801\u7684\u6027\u80fd\u5206\u6790\u6765\u8fdb\u884c\u8c03\u4f18":107,"\u6df7\u5408\u4ee3\u7801\u7684\u6027\u80fd\u74f6\u9888\u4e5f\u662f\u8981\u770b":107,"\u6df7\u5408\u5f53\u524d\u8bcd\u5411\u91cf\u548cattention\u52a0\u6743\u7f16\u7801\u5411\u91cf":114,"\u6dfb\u52a0":41,"\u6dfb\u52a0\u4e86\u4e00\u4e2a\u8f93\u51fa":75,"\u6dfb\u52a0\u542f\u52a8\u811a\u672c":97,"\u6dfb\u52a0\u5e8f\u5217\u4fe1\u606f":89,"\u6dfb\u52a0\u7684\u76f8\u5173\u6587\u4ef6\u548c\u76ee\u5f55\u7ed3\u6784\u5982\u4e0b":[41,42],"\u6dfb\u52a0\u8f93\u5165\u53c2\u6570":75,"\u6dfb\u52a0\u8f93\u51fa\u53c2\u6570":75,"\u6dfb\u52a0op\u7684\u6ce8\u91ca":75,"\u6e05\u7406":0,"\u6e05\u7406\u548c\u7ed3\u675f":90,"\u6e05\u7406\u6389\u8001\u65e7\u7684paddlepaddle\u5b89\u88c5\u5305":78,"\u6e90\u4ee3\u7801\u683c\u5f0f":72,"\u6e90\u5e8f\u5217":114,"\u6e90\u7801\u6811\u6839\u76ee\u5f55":0,"\u6f5c\u5728\u4f1a\u5f15\u8d77\u672a\u5b9a\u4e49\u884c\u4e3a":89,"\u6fc0\u6d3b":74,"\u6fc0\u6d3b\u51fd\u6570\u662f\u72ec\u7acb\u4e8e":42,"\u6fc0\u6d3b\u65b9\u7a0b":74,"\u6fc0\u6d3b\u7684\u7c7b\u578b":74,"\u70b9\u51fb":[4,62],"\u70b9\u51fb\u8fd9\u91cc":77,"\u7136\u540e":[93,108],"\u7136\u540e\u4e0b\u8f7d\u4f18\u5316\u66f4\u65b0\u540e\u7684\u795e\u7ecf\u7f51\u7edc\u53c2\u6570":92,"\u7136\u540e\u4ea4\u7ed9step\u51fd\u6570":113,"\u7136\u540e\u4f7f\u7528":117,"\u7136\u540e\u4f7f\u7528resize\u63a5\u53e3\u8bbe\u7f6etensor\u7684\u5927\u5c0f":76,"\u7136\u540e\u5355\u51fb":72,"\u7136\u540e\u53ef\u4ee5\u4ecehead\u8282\u70b9ssh\u65e0\u5bc6\u7801\u767b\u5f55\u5230openmpi\u7684\u6bcf\u4e2a\u8282\u70b9\u4e0a":98,"\u7136\u540e\u53ef\u4ee5\u4f7f\u7528\u547d\u4ee4\u884c\u5de5\u5177\u521b\u5efajob":97,"\u7136\u540e\u5728\u4e0b\u4e00\u4e2a\u65f6\u95f4\u6b65\u8f93\u5165\u7ed9\u53e6\u4e00\u4e2a\u795e\u7ecf\u5143":111,"\u7136\u540e\u5728\u524d\u5411":41,"\u7136\u540e\u5728\u6d4f\u89c8\u5668\u4e2d\u8f93\u5165\u4ee5\u4e0b\u7f51\u5740":2,"\u7136\u540e\u5728dataprovider\u91cc\u9762\u6839\u636e\u8be5\u5730\u5740\u52a0\u8f7d\u5b57\u5178":83,"\u7136\u540e\u5728etcd\u7684":11,"\u7136\u540e\u5b89\u88c5paddle\u7684python\u73af\u5883":78,"\u7136\u540e\u5b9a\u4e49":114,"\u7136\u540e\u5c06\u6784\u5efa\u6210\u529f\u7684\u955c\u50cf\u4e0a\u4f20\u5230\u955c\u50cf\u4ed3\u5e93":97,"\u7136\u540e\u5c06\u8fd9\u4e9blayer\u7684\u53c2\u6570":82,"\u7136\u540e\u5c31\u53ef\u4ee5\u5e76\u53d1\u5199\u5165\u591a\u4e2achunk":28,"\u7136\u540e\u6240\u6709\u7528":72,"\u7136\u540e\u624d\u80fd\u4f7f\u7528pfsclient":28,"\u7136\u540e\u6253\u5370\u8f93\u51fa":84,"\u7136\u540e\u6309\u7167\u4e0a\u8ff0\u7684\u65b9\u6cd5":62,"\u7136\u540e\u63d0\u4ea4\u65b0\u6dfb\u52a0\u7684":72,"\u7136\u540e\u70b9\u51fb":[62,72],"\u7136\u540e\u7533\u660e\u4e00\u4e2a\u5b58\u50a8\u5377":97,"\u7136\u540e\u89c2\u5bdf\u5230\u8f93\u51fa\u7684\u53d8\u5316\u4e3a":74,"\u7136\u540e\u901a\u8fc7\u51fd\u6570":97,"\u7136\u540e\u901a\u8fc7\u81ea\u8eab\u7684ip\u5730\u5740\u5728":97,"\u7136\u540e\u91cd\u65b0cmake\u5373\u53ef":78,"\u7136\u800c":[103,114],"\u7248\u672c":[0,1,4,117],"\u7248\u672c\u4e3acpu_avx_mkl":2,"\u7248\u672c\u4e3acpu_avx_openbla":[4,86],"\u7248\u672c\u5206\u652f":62,"\u7248\u672c\u53f7":62,"\u7248\u672c\u53f7\u5bf9\u5e94\u7684tag\u5373\u53ef":62,"\u7248\u672c\u53f7rc":62,"\u7248\u672c\u5728":72,"\u7248\u672c\u8bf4\u660e":4,"\u7248\u672cfork\u51fa\u81ea\u5df1\u7684\u529f\u80fd\u5206\u652f":62,"\u7279\u522b\u662f\u5728lstm\u7b49rnn\u4e2d":81,"\u7279\u6307":90,"\u7279\u6709\u7684\u8bbe\u5907id":42,"\u72ec\u7acb\u5b9a\u5236\u7684\u4e8c\u8fdb\u5236\u65f6\u624d\u9700\u8981\u7f16\u8bd1":3,"\u72ec\u7acb\u5de5\u5177\u94fe":116,"\u72ec\u7acb\u5de5\u5177\u94fe\u6240\u5728\u7684\u7edd\u5bf9\u8def\u5f84":116,"\u73af\u5883\u51c6\u5907":92,"\u73af\u5883\u53d8\u91cf":91,"\u73af\u5883\u53d8\u91cf\u4e2d":87,"\u73af\u5883\u53d8\u91cf\u6765\u6307\u5b9a\u7279\u5b9a\u7684gpu":81,"\u73b0\u9636\u6bb5\u7684\u4f18\u5316\u4e3b\u8981\u9488\u5bf9":41,"\u73b0\u9636\u6bb5paddle\u6709\u4e00\u4e2a\u95ee\u9898\u662f":45,"\u7406\u89e3":0,"\u7406\u89e3\u4e3a\u4e00\u4e2a\u4e00\u7ef4\u7684\u6574\u578b\u6570\u7ec4":89,"\u751a\u81f3\u80fd\u89e3\u91ca\u4e3a\u4ec0\u4e48\u67d0\u4e2a\u64cd\u4f5c\u82b1\u4e86\u5f88\u957f\u65f6\u95f4":108,"\u751f\u4ea7\u73af\u5883\u4e2d\u7684\u8bad\u7ec3\u6570\u636e\u96c6\u901a\u5e38\u4f53\u79ef\u5f88\u5927":12,"\u751f\u4ea7\u73af\u5883\u7684\u65e5\u5fd7\u6570\u636e\u4f1a\u901a\u8fc7\u5b9e\u65f6\u6d41\u7684\u65b9\u5f0f":12,"\u751f\u4ea7\u955c\u50cf":72,"\u751f\u6210":97,"\u751f\u6210\u5404\u79cd\u8bed\u8a00\u7684\u7ed1\u5b9a\u4ee3\u7801":45,"\u751f\u6210\u540e\u7684\u6587\u6863\u5206\u522b\u5b58\u50a8\u5728\u7f16\u8bd1\u76ee\u5f55\u7684":77,"\u751f\u6210\u5e8f\u5217\u7684\u6700\u5927\u957f\u5ea6":114,"\u751f\u6210\u6587\u6863":45,"\u751f\u6210\u7684":12,"\u751f\u6210\u7684\u6027\u80fd\u5206\u6790\u6587\u4ef6\u4e3a":107,"\u751f\u6210\u7684\u6570\u636e\u5c06\u4f1a\u5b58\u50a8\u5728\u8fd9\u4e2avolume\u4e0b":97,"\u751f\u6210\u7684\u6570\u636e\u7f13\u5b58\u5728\u5185\u5b58\u91cc":81,"\u751f\u6210\u7ed9\u5b9a":12,"\u751f\u6210\u7f51\u7edc\u5c42\u914d\u7f6e":74,"\u751f\u6210\u81ea\u5df1\u76ee\u5f55\u4e0b\u7684\u4ed3\u5e93":72,"\u751f\u6210\u8c03\u8bd5\u4fe1\u606f":107,"\u751f\u6210\u968f\u673a\u7684\u8f93\u5165\u6570\u636e":75,"\u751f\u6210api\u6587\u6863":45,"\u751f\u6210pfsclient\u548cpfsserver\u7684\u6846\u67b6\u90e8\u5206":28,"\u751f\u6210python\u6027\u80fd\u5206\u6790\u7684\u547d\u4ee4\u5982\u4e0b":107,"\u7528":28,"\u7528\u4e8e\u521d\u59cb\u5316\u53c2\u6570\u548c\u8bbe\u7f6e":74,"\u7528\u4e8e\u5c06\u53c2\u6570\u4f20\u9012\u7ed9\u7f51\u7edc\u914d\u7f6e":105,"\u7528\u4e8e\u6307\u5b9a\u5176\u8981\u5173\u8054\u7684layer":82,"\u7528\u4e8e\u6307\u5b9a\u7f51\u7edc\u914d\u7f6e\u6587\u4ef6":103,"\u7528\u4e8e\u6ce8\u518c\u6ca1\u6709\u53cd\u5411\u7684op":75,"\u7528\u4e8e\u6d4b\u8bd5\u548c\u5bf9\u6bd4\u5728\u4f7f\u7528mkl":42,"\u7528\u4e8e\u7a00\u758f\u7c7b\u578b\u53c2\u6570\u901a\u4fe1\u7684\u7aef\u53e3\u4e2a\u6570":91,"\u7528\u4e8e\u7a00\u758f\u8bad\u7ec3\u4e2d":103,"\u7528\u4e8e\u7ba1\u7406mkl":42,"\u7528\u4e8e\u83b7\u53d6\u7279\u5b9alayer\u4e0a\u4e00\u65f6\u95f4\u6b65\u7684\u8f93\u51fa":82,"\u7528\u4e8e\u8ba1\u7b97\u7f16\u7801\u5411\u91cf\u7684\u52a0\u6743\u548c":114,"\u7528\u4e8e\u8bad\u7ec3\u795e\u7ecf\u7f51\u7edc\u7684\u6570\u636e":92,"\u7528\u4e8e\u9009\u62e9\u662f\u5426\u4f7f\u7528\u76f8\u5173\u529f\u80fd":41,"\u7528\u4e8e\u9009\u62e9\u662f\u5426\u4f7f\u7528mkl":42,"\u7528\u4e8emkl":[41,42],"\u7528\u53cc\u5411\u95e8\u63a7\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u7f16\u7801":114,"\u7528\u591a\u5bf9\u6548\u679c\u5b8c\u5168\u76f8\u540c\u7684":111,"\u7528\u6237\u4e00\u822c\u901a\u8fc7\u8c03\u7528":107,"\u7528\u6237\u4e0a\u4f20\u6570\u636e\u540e":12,"\u7528\u6237\u4e5f\u53ef\u4ee5\u4e0a\u4f20label":12,"\u7528\u6237\u4e5f\u53ef\u4ee5\u4f7f\u7528paddlepaddle\u63d0\u4f9b\u7684\u5b98\u65b9\u5f00\u53d1\u955c\u50cf":116,"\u7528\u6237\u4eceapp":117,"\u7528\u6237\u53ea\u9700\u5b9a\u4e49rnn\u5728\u4e00\u4e2a\u65f6\u95f4\u6b65\u5185\u5b8c\u6210\u7684\u8ba1\u7b97":113,"\u7528\u6237\u53ef\u4ee5\u5206\u522b\u67e5\u770b\u6700\u65b0\u7684":77,"\u7528\u6237\u53ef\u4ee5\u53c2\u8003\u4e0b\u6587":116,"\u7528\u6237\u53ef\u4ee5\u53c2\u8003sphinx\u6559\u7a0b\u8fdb\u884c\u4e66\u5199":77,"\u7528\u6237\u53ef\u4ee5\u5b89\u5168\u7684\u91ca\u653e\u67d0\u4e2ac":46,"\u7528\u6237\u53ef\u4ee5\u628a\u81ea\u5df1\u7684\u6570\u636e\u5206\u4eab\u7ed9\u522b\u4eba":12,"\u7528\u6237\u53ef\u4ee5\u76f4\u63a5\u4f7f\u7528\u8fd9\u4e2a\u52a8\u6001\u5e93\u6765\u5f15\u5165paddl":46,"\u7528\u6237\u53ef\u4ee5\u81ea\u5b9a\u4e49beam":103,"\u7528\u6237\u53ef\u4ee5\u8bbe\u7f6e":105,"\u7528\u6237\u53ef\u5728\u81ea\u5df1\u719f\u6089\u7684\u5f00\u53d1\u5e73\u53f0\u4e0a\u7f16\u8bd1android\u5e73\u53f0\u4e0a\u9002\u7528\u7684paddlepaddle\u5e93":116,"\u7528\u6237\u53ef\u5728\u8c03\u7528cmake\u7684\u65f6\u5019\u8bbe\u7f6e\u5b83\u4eec":1,"\u7528\u6237\u53ef\u5c06":116,"\u7528\u6237\u53ef\u5c06\u5408\u6210\u7684fat\u5e93\u7528\u4e8e\u6df1\u5ea6\u5b66\u4e60\u76f8\u5173\u7684io":117,"\u7528\u6237\u53ef\u6839\u636e\u81ea\u5df1\u7684\u7f16\u8bd1\u76ee\u6807\u67b6\u6784":116,"\u7528\u6237\u53ef\u81ea\u884c\u524d\u5f80\u4e0b\u8f7d\u9884\u7f16\u8bd1\u597d\u7684\u7248\u672c":116,"\u7528\u6237\u53ef\u901a\u8fc7\u5982\u4e0b\u4e24\u79cd\u65b9\u5f0f":116,"\u7528\u6237\u5728\u4f7f\u7528\u8fd9\u4e00\u7c7brecurr":82,"\u7528\u6237\u5728\u4f7f\u7528paddlepaddl":78,"\u7528\u6237\u5728\u672c\u5730\u8f6c\u6362\u597d\u518d\u4e0a\u4f20":12,"\u7528\u6237\u5c06\u53c2\u6570\u8f7d\u5165":83,"\u7528\u6237\u5c06\u914d\u7f6e\u4e0e\u8bad\u7ec3\u6570\u636e\u5207\u5206\u597d\u653e\u5728\u5206\u5e03\u5f0f\u6587\u4ef6\u7cfb\u7edf\u9884\u5148\u5206\u914d\u597d\u7684\u76ee\u5f55\u4e2d":97,"\u7528\u6237\u5f3a\u5236\u6307\u5b9a\u7279\u5b9a\u7684python\u7248\u672c":78,"\u7528\u6237\u6587\u4ef6\u53ef\u80fd\u662f\u6bd4\u8f83\u5927\u7684":28,"\u7528\u6237\u8fd8\u53ef\u6839\u636e\u81ea\u5df1\u7684\u9700\u6c42\u8bbe\u7f6e\u5176\u4ed6\u7f16\u8bd1\u53c2\u6570":[116,117,118],"\u7528\u6237\u901a\u8fc7\u53c2\u6570":[82,83],"\u7528\u6237\u901a\u8fc7c":46,"\u7528\u6237\u9700\u8981\u5728\u7f51\u7edc\u914d\u7f6e\u4e2d\u6307\u5b9a":105,"\u7528\u6237\u9700\u8981\u5728cmake\u65f6\u624b\u52a8\u8bbe\u7f6e\u8fd9\u4e9b\u503c":[116,118],"\u7528\u6237\u9700\u8981\u6307\u5b9a\u672c\u673a\u4e0apython\u7684\u8def\u5f84":78,"\u7528\u6237\u9700\u8981\u63d0\u524d\u51c6\u5907\u597d\u4ea4\u53c9\u7f16\u8bd1\u73af\u5883":116,"\u7528\u672c\u673a\u7684\u7b2c\u4e00\u4e2a":0,"\u7528\u6765\u4ece\u53c2\u6570\u670d\u52a1\u5668\u9884\u53d6\u53c2\u6570\u77e9\u9635\u76f8\u5e94\u7684\u884c":74,"\u7528\u6765\u5b58\u50a8\u672c\u6b21\u6027\u80fd\u5206\u6790\u7684\u7ed3\u679c":107,"\u7528\u8fd9\u4e2a\u955c\u50cf\u521b\u5efa\u7684\u5bb9\u5668\u9700\u8981\u6709\u4ee5\u4e0b\u4e24\u4e2a\u529f\u80fd":97,"\u7528docker\u7f16\u8bd1\u548c\u6d4b\u8bd5paddlepaddl":3,"\u7528web\u6d4f\u89c8\u5668\u8bbf\u95ee\u5bf9\u5e94\u7f51\u5740":107,"\u7531":[82,89,113],"\u7531\u4e8e":87,"\u7531\u4e8e\u5728\u73b0\u6709\u7684\u67d0\u4e9b\u60c5\u51b5\u4e0b":41,"\u7531\u4e8e\u5b83\u5185\u90e8\u5305\u542b\u4e86\u6bcf\u7ec4\u6570\u636e\u4e2d\u7684\u6240\u6709\u53e5\u5b50":111,"\u7531\u4e8e\u5bf9parameters\u7684\u66f4\u65b0\u9700\u8981\u83b7\u53d6parameters\u5185\u5b58\u7684":11,"\u7531\u4e8e\u6211\u4eec\u60f3\u8981\u7684\u53d8\u6362\u662f\u53cc\u5c42\u65f6\u95f4\u5e8f\u5217":111,"\u7531\u4e8e\u6211\u4eec\u652f\u6301\u8bad\u7ec3\u6570\u636e\u6709\u4e0d\u540c\u7684\u6279\u6b21\u5927\u5c0f":74,"\u7531\u4e8e\u96c6\u7fa4\u4e2d\u540c\u65f6\u5b58\u5728\u4e24\u53f0\u673a\u5668\u6545\u969c\u7684\u6982\u7387\u6781\u4f4e":11,"\u7531\u4e8earm64\u67b6\u6784\u8981\u6c42android":116,"\u7531\u4e8ec":45,"\u7531\u4e8echunk\u6bd4\u8f83\u5c0f":28,"\u7531\u4e8eeigen":76,"\u7531\u4e8emkl":42,"\u7531\u4e8epypi":62,"\u7531\u4e8estep":113,"\u7531\u4e8etensor\u7684rank\u662f\u6a21\u677f\u53c2\u6570":76,"\u7531\u5206\u652f\u5904\u7684layer\u8d1f\u8d23\u6c42\u548c":42,"\u7531\u8bcd\u8bed\u6784\u6210\u7684\u53e5\u5b50":110,"\u7531\u94fe\u63a5\u65b9\u5f0f\u51b3\u5b9a":87,"\u7533\u8bf7\u7528\u6237\u7a7a\u95f4":28,"\u767b\u5f55\u5230head\u8282\u70b9":98,"\u7684":[0,4,72,76,89,90,93,97,117],"\u7684\u4e00\u4e2a\u5b50\u96c6":42,"\u7684\u4e00\u4e2a\u7b80\u5355\u8c03\u7528\u5982\u4e0b":113,"\u7684\u4e3a0":103,"\u7684\u4efb\u4e00\u4e00\u79cd":81,"\u7684\u4f5c\u7528\u662f\u5ef6\u8fdf\u5206\u914d\u5185\u5b58":76,"\u7684\u4f7f\u7528\u793a\u4f8b\u5982\u4e0b":110,"\u7684\u4fe1\u606f":42,"\u7684\u503c":[116,117,118],"\u7684\u503c\u81ea\u52a8\u63a8\u5bfc\u5f97\u5230":116,"\u7684\u504f\u7f6e\u5411\u91cf":74,"\u7684\u5171\u4eab\u5df2\u7ecf\u52a0\u8f7d\u7684\u9884\u6d4b\u6a21\u578b":90,"\u7684\u5177\u4f53\u8ba1\u7b97\u903b\u8f91":75,"\u7684\u5185\u5b58":81,"\u7684\u5185\u5bb9\u6765\u5b9a\u5236imag":97,"\u7684\u5185\u6838block\u4f7f\u7528\u60c5\u51b5":108,"\u7684\u5355\u5143\u6d4b\u8bd5":75,"\u7684\u5355\u5143\u6d4b\u8bd5\u548c\u7b80\u5355\u7f51\u7edc\u7684\u6574\u4f53\u6d4b\u8bd5":42,"\u7684\u53cd\u5411\u4f20\u64ad\u5c06\u4f1a\u6253\u5370\u65e5\u5fd7\u4fe1\u606f":103,"\u7684\u53d8\u6362\u77e9\u9635":74,"\u7684\u540d\u79f0\u76f8\u540c":114,"\u7684\u5411\u91cf":74,"\u7684\u542f\u52a8\u53c2\u6570":97,"\u7684\u542f\u52a8\u53c2\u6570\u5e76\u6267\u884c\u8fdb\u7a0b":97,"\u7684\u547d\u4ee4\u548c\u4e00\u822c\u7684":107,"\u7684\u547d\u540d\u98ce\u683c\u5e76\u4e0d\u80fd\u9002\u5e94\u5176\u4ed6\u7b2c\u4e09\u65b9\u8bed\u8a00":45,"\u7684\u5730\u65b9":72,"\u7684\u5747\u5300\u5206\u5e03":83,"\u7684\u57fa\u672c\u903b\u8f91":42,"\u7684\u591a\u79cd\u5b89\u88c5\u65b9\u5f0f":101,"\u7684\u5934\u6587\u4ef6":45,"\u7684\u5b50\u7c7b\u53ea\u9700\u8981\u4f7f\u7528\u5185\u90e8\u5b58\u50a8\u5c31\u53ef\u4ee5\u4e86":42,"\u7684\u5b9e\u73b0":75,"\u7684\u5de5\u4f5c\u6d41\u7a0b\u5982\u56fe1\u6240\u793a":90,"\u7684\u5e73\u5747\u503c":110,"\u7684\u5e8f\u5217":89,"\u7684\u5e8f\u5217\u5f62\u72b6\u4e00\u81f4":111,"\u7684\u5f00\u53d1\u5de5\u4f5c\u90fd\u5e94\u8be5\u5728\u4e00\u4e2a\u65b0\u7684\u5206\u652f\u4e0a\u5b8c\u6210":72,"\u7684\u5f00\u53d1\u6d41\u7a0b":0,"\u7684\u5f00\u59cb\u8bf7\u52a0\u4e0a\u5b8f\u5b9a\u4e49":75,"\u7684\u6027\u80fd\u5206\u6790\u4e0e\u8c03\u4f18\u5206\u4e3a\u4e24\u4e2a\u90e8\u5206":107,"\u7684\u6027\u80fd\u5206\u6790\u5de5\u5177\u975e\u5e38\u591a":107,"\u7684\u6027\u80fd\u6709\u95ee\u9898":107,"\u7684\u60c5\u51b5\u4e0b":41,"\u7684\u63a5\u53e3\u6837\u5f0f":45,"\u7684\u63a5\u53e3\u8bf7\u67e5\u770b":89,"\u7684\u63cf\u8ff0\u8bf4\u660e\u4e2d":72,"\u7684\u64cd\u4f5c":76,"\u7684\u6570\u636e\u6d41\u56fe":12,"\u7684\u6570\u76ee\u4e00\u81f4":110,"\u7684\u6587\u4ef6\u4e5f\u5e26\u5230\u65b0\u5206\u652f\u4e0a":72,"\u7684\u65b9\u7a0b":74,"\u7684\u65f6\u5019":42,"\u7684\u65f6\u95f4\u6b65\u4fe1\u606f\u6210\u6b63\u6bd4":81,"\u7684\u66f4\u8be6\u7ec6\u51c6\u786e\u7684\u5b9a\u4e49":111,"\u7684\u6700\u5c0f\u503c":103,"\u7684\u6700\u65b0\u4ee3\u7801\u5e76\u66f4\u65b0\u5f53\u524d\u5206\u652f":72,"\u7684\u6784\u9020\u51fd\u6570":75,"\u7684\u67b6\u6784\u7684\u793a\u4f8b":114,"\u7684\u6837\u5f0f":72,"\u7684\u6838\u5fc3\u662f\u8bbe\u8ba1step\u51fd\u6570\u7684\u8ba1\u7b97\u903b\u8f91":113,"\u7684\u6839\u76ee\u5f55":117,"\u7684\u683c\u5f0f\u59cb\u7ec8\u662f":42,"\u7684\u683c\u5f0f\u5b58\u50a8":42,"\u7684\u6982\u5ff5":42,"\u7684\u6bb5\u843d\u5b9a\u4e49\u4e3a\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217":113,"\u7684\u6bcf\u4e2a\u8fdb\u7a0b\u90fd\u53ef\u4ee5\u4ececeph\u8bfb\u53d6\u6570\u636e":96,"\u7684\u6e90\u7801\u4ee5\u53ca\u751f\u6210\u6587\u6863\u9700\u8981\u591a\u79cd\u5f00\u53d1\u5de5\u5177":72,"\u7684\u6e90\u7801\u91cc\u4f7f\u7528\u4e86":45,"\u7684\u7248\u672c":[0,62,118],"\u7684\u72b6\u6001":113,"\u7684\u72ec\u7acb\u5de5\u5177\u94fe":116,"\u7684\u77e9\u9635":[74,81],"\u7684\u7a20\u5bc6\u5411\u91cf\u4f5c\u4e3a\u8f93\u5165":74,"\u7684\u7a20\u5bc6\u77e9\u9635":89,"\u7684\u7a20\u5bc6\u77e9\u9635\u662f\u4e00\u4e2a\u7531":89,"\u7684\u7b2c\u4e00\u4e2a\u53c2\u6570":90,"\u7684\u7b2ci\u4e2a\u503c":74,"\u7684\u7b2cj\u4e2a\u503c":74,"\u7684\u7cfb\u7edf":0,"\u7684\u7ed3\u679c":41,"\u7684\u7f16\u5199":91,"\u7684\u7f16\u8bd1\u5de5\u5177\u94fe":116,"\u7684\u7f29\u5199":28,"\u7684\u7f51\u7edc\u6a21\u578b":41,"\u7684\u89c4\u8303":45,"\u7684\u89d2\u5ea6":12,"\u7684\u8ba1\u7b97\u4ee3\u7801":76,"\u7684\u8ba1\u7b97\u8fc7\u7a0b\u4e66\u5199\u66f4\u52a0\u7b80\u5355":75,"\u7684\u8bdd":81,"\u7684\u8be6\u7ec6\u4fe1\u606f":107,"\u7684\u8f93\u5165":113,"\u7684\u8f93\u51fa":[81,108],"\u7684\u8f93\u51fa\u4fe1\u606f\u5165\u624b\u662f\u4e2a\u4e0d\u9519\u7684\u9009\u62e9":108,"\u7684\u8f93\u51fa\u51fd\u6570\u8fd4\u56de\u7684\u662f\u4e0b\u4e00\u4e2a\u65f6\u523b\u8f93\u51fa\u8bcd\u7684":114,"\u7684\u8f93\u51fa\u683c\u5f0f":111,"\u7684\u8f93\u51fa\u88ab\u7528\u4f5c":114,"\u7684\u8f93\u51fab\u662f\u4e00\u4e2a":81,"\u7684\u8fd0\u884c\u73af\u5883":0,"\u7684\u8fdc\u7a0b\u4ed3\u5e93\u7684\u540d\u5b57":72,"\u7684\u914d\u7f6e\u5199\u5230\u914d\u7f6e\u6587\u4ef6\u4e2d":12,"\u7684\u96c6\u88c5\u7bb1\u6280\u672f":0,"\u7684\u9875\u9762\u5220\u9664\u8fdc\u7a0b\u4ed3\u5e93\u7684\u5206\u652f":72,"\u7684cpu":75,"\u7684docker\u955c\u50cf":2,"\u7684flag":[41,42],"\u7684linux\u670d\u52a1\u5668\u7ec4\u6210":101,"\u7684paddlepaddle\u5e93":116,"\u7684vanilla":41,"\u76d1\u542c\u7684\u7aef\u53e3\u4e2a\u6570":91,"\u76ee\u524d":113,"\u76ee\u524d\u4f7f\u7528":72,"\u76ee\u524d\u53ea\u8003\u8651":42,"\u76ee\u524d\u53ea\u8003\u8651\u52a8\u6001\u6269\u5bb9trainer\u6570\u91cf":11,"\u76ee\u524d\u5728paddlepaddle\u4e2d":42,"\u76ee\u524d\u5728paddlepaddle\u4e2d\u6570\u636e\u90fd\u662f\u4ee5":42,"\u76ee\u524d\u5d4c\u5165python\u89e3\u91ca\u5668":45,"\u76ee\u524d\u5fc5\u987b\u8bbe\u7f6e\u6210":118,"\u76ee\u524d\u6211\u4eec\u7528cephfs\u6765\u642d\u5efa":28,"\u76ee\u524d\u63d0\u4f9b\u4e09\u79cd\u94fe\u63a5\u65b9\u5f0f":87,"\u76ee\u524d\u652f\u6301":116,"\u76ee\u524d\u652f\u6301\u4e24\u79cd":110,"\u76ee\u524d\u652f\u6301cento":86,"\u76ee\u524d\u652f\u6301fail":103,"\u76ee\u524d\u7684\u4f18\u5316":42,"\u76ee\u524d\u8be5\u53c2\u6570\u4ec5\u7528\u4e8eaucvalidationlayer\u548cpnpairvalidationlayer\u5c42":103,"\u76ee\u524d\u8fd8\u672a\u652f\u6301":113,"\u76ee\u524dpaddle\u7684\u8fdb\u7a0b\u6a21\u578b\u662fc":45,"\u76ee\u524dpaddlepaddle\u7684develop\u5206\u652f\u7684\u6587\u6863\u662f\u81ea\u52a8\u89e6\u53d1\u66f4\u65b0\u7684":77,"\u76ee\u524dpaddlepaddle\u91c7\u7528\u4e86":41,"\u76ee\u5f55":[0,2,93,96,97,116,117,118],"\u76ee\u5f55\u4e0b":[46,74,93],"\u76ee\u5f55\u4e0b\u5bf9\u5e94\u7684\u5730\u65b9":42,"\u76ee\u5f55\u4e0b\u65b0\u589e\u7684":75,"\u76ee\u5f55\u4e0b\u6700\u65b0\u7684":117,"\u76ee\u5f55\u4e0b\u7684\u4ee3\u7801\u793a\u4f8b":90,"\u76ee\u5f55\u4e0b\u7684\u751f\u6210\u6587\u4ef6\u7528\u4e8e\u6df1\u5ea6\u5b66\u4e60\u76f8\u5173android":116,"\u76ee\u5f55\u4e0b\u7684python\u5305":78,"\u76ee\u5f55\u4e2d":[87,90,93],"\u76ee\u5f55\u4e2d\u4f1a\u5305\u542b":[116,118],"\u76ee\u5f55\u4e2d\u4f1a\u5305\u542b\u4ee5\u4e0b\u5185\u5bb9":117,"\u76ee\u5f55\u4e2d\u7684":108,"\u76ee\u5f55\u4e2dpaddl":97,"\u76ee\u5f55\u548c":[116,117,118],"\u76ee\u5f55\u5c31\u6210\u4e3a\u4e86\u5171\u4eab\u5b58\u50a8":97,"\u76ee\u5f55\u751f\u6210\u4e00\u5957\u72ec\u7acb\u7f16\u8bd1\u5de5\u5177\u94fe":116,"\u76ee\u5f55\u91cc\u627e\u5230\u4ea4\u53c9\u7f16\u8bd1\u5668":118,"\u76ee\u6807\u5411\u91cf":114,"\u76ee\u6807\u5de5\u5177\u94fe":116,"\u76ee\u6807\u673a\u7248protobuf\u5e93":118,"\u76ee\u6807\u67b6\u6784":117,"\u76ee\u6807\u67b6\u6784abi":116,"\u76f4\u5230\u8bad\u7ec3\u6536\u655b\u4e3a\u6b62":83,"\u76f4\u63a5\u4f7f\u7528\u4e0a\u8ff0\u5b89\u88c5\u6d41\u7a0b":3,"\u76f4\u63a5\u4f7f\u7528c\u8bed\u8a00\u7684":45,"\u76f4\u63a5\u5220\u9664\u8fd9\u4e2a\u53c2\u6570\u5373\u53ef":46,"\u76f4\u63a5\u5347\u7ea7\u5230\u66f4\u65b0\u7684\u7248\u672c":1,"\u76f4\u63a5\u5bfc\u51fa\u5230c\u7684\u63a5\u53e3\u6bd4\u8f83\u56f0\u96be":45,"\u76f4\u63a5\u8c03\u7528\u76f8\u5e94\u63a5\u53e3\u5373\u53ef":75,"\u76f4\u63a5\u8fd0\u884c":2,"\u76f8\u5173\u5c42":41,"\u76f8\u540c\u540d\u5b57\u7684\u53c2\u6570":83,"\u76f8\u6bd4":75,"\u770b\u5f53\u524dmpi\u96c6\u7fa4\u662f\u5426\u652f\u6301resourc":79,"\u77a7":86,"\u77e9\u9635":102,"\u77e9\u9635\u4e2d\u6bcf\u4e2a\u5143\u7d20\u7684\u503c\u968f\u673a\u751f\u6210":89,"\u77e9\u9635\u4e58\u6cd5\u7684\u516c\u5f0f":75,"\u77e9\u9635\u5927\u5c0f\u662f":41,"\u77e9\u9635\u662f\u5426\u662f\u4e00\u4e2a\u5e8f\u5217":89,"\u77e9\u9635\u7684\u9ad8\u5ea6":89,"\u77e9\u9635\u91cc\u7684\u5143\u7d20\u662f\u6d6e\u70b9\u6570":89,"\u786e\u4fdd\u7f16\u8bd1\u5668\u9009\u9879":72,"\u78c1\u76d8\u4e0d\u591f":0,"\u78c1\u76d8\u7a7a\u95f4\u4e0d\u8db3\u7b49":79,"\u793a\u4f8b":[81,83,90],"\u793a\u4f8b3\u5bf9\u4e8e\u5355\u5c42rnn\u548c\u53cc\u5c42rnn\u6570\u636e\u5b8c\u5168\u76f8\u540c":111,"\u793a\u4f8b3\u7684\u914d\u7f6e\u4f7f\u7528\u4e86\u5355\u5c42rnn\u548c\u53cc\u5c42rnn":111,"\u793a\u4f8b3\u7684\u914d\u7f6e\u5206\u522b\u4e3a":111,"\u793a\u4f8b\u4ee3\u7801\u5982\u4e0b":[81,90],"\u793a\u4f8b\u5982\u4e0b":83,"\u793a\u4f8b\u7a0b\u5e8f":91,"\u793e\u533a\u53c2\u4e0e\u56f0\u96be":45,"\u793e\u533a\u8d21\u732e\u4ee3\u7801\u5b66\u4e60\u6210\u672c\u9ad8":45,"\u795e\u7ecf\u7f51\u7edc\u4e2d\u4e00\u4e2a\u8ba1\u7b97\u5c42\u7684\u8f93\u5165":89,"\u795e\u7ecf\u7f51\u7edc\u4e2d\u4e00\u4e2a\u8ba1\u7b97\u5c42\u7684\u8f93\u5165\u8f93\u51fa\u88ab\u7ec4\u7ec7\u4e3a\u4e00\u4e2a":90,"\u795e\u7ecf\u7f51\u7edc\u4e2d\u7684\u53c2\u6570":11,"\u795e\u7ecf\u7f51\u7edc\u4e5f\u9700\u8981\u4e00\u4e9b\u7279\u5b9a\u7684layer\u4f5c\u4e3a\u8f93\u5165\u63a5\u53e3":84,"\u795e\u7ecf\u7f51\u7edc\u53c2\u6570\u4ee5\u53ca\u8fed\u4ee3\u65b9\u7a0b":84,"\u795e\u7ecf\u7f51\u7edc\u5728\u8bad\u7ec3\u7684\u65f6\u5019":81,"\u795e\u7ecf\u7f51\u7edc\u672c\u8d28\u4e0a\u662f\u4e00\u4e2a\u8ba1\u7b97\u56fe":76,"\u795e\u7ecf\u7f51\u7edc\u6a21\u578b\u7ed3\u6784\u548c\u8bad\u7ec3\u597d\u7684\u6a21\u578b\u5c06\u88ab\u5e8f\u5217\u5316\u5408\u5e76\u5165\u4e00\u4e2a\u6587\u4ef6":90,"\u795e\u7ecf\u7f51\u7edc\u7684\u7f51\u7edc\u7ed3\u6784\u4e2d\u5177\u6709\u6709\u5411\u73af\u7ed3\u6784":111,"\u795e\u7ecf\u7f51\u7edc\u7684\u8bad\u7ec3\u672c\u8eab\u662f\u4e00\u4e2a\u975e\u5e38\u6d88\u8017\u5185\u5b58\u548c\u663e\u5b58\u7684\u5de5\u4f5c":81,"\u79bb\u7ebf\u6279\u5904\u7406":12,"\u79f0\u4e3a":[72,114],"\u79f0\u4e3a\u5f00\u53d1\u955c\u50cf":116,"\u79f0\u4e4b\u4e3a":89,"\u79f0\u4e4b\u4e3a\u53cc\u5c42\u5e8f\u5217\u7684\u4e00\u4e2a\u5b50\u5e8f\u5217":110,"\u79f0\u4e4b\u4e3a\u96c6\u675f\u5927\u5c0f":103,"\u79f0\u4f5c\u6709kernel":75,"\u79f0\u4f5ckernel":75,"\u79fb\u52a8\u7aef\u9884\u6d4b":89,"\u7a00\u758f\u6570\u636e\u7684\u683c\u5f0f":74,"\u7a00\u758f\u66f4\u65b0\u7684\u7aef\u53e3\u6570\u91cf":97,"\u7a00\u758f\u768401\u5411\u91cf":84,"\u7a00\u758f\u7684\u5411\u91cf":84,"\u7a00\u758f\u77e9\u9635":89,"\u7a00\u758f\u77e9\u9635\u4f7f\u7528":89,"\u7a00\u758f\u77e9\u9635\u53ca\u76f8\u5173\u7684\u63a5\u53e3":89,"\u7a00\u758f\u77e9\u9635\u5b58\u50a8\u793a\u610f\u56fe":89,"\u7a00\u758f\u77e9\u9635\u7684\u4e58\u79ef\u5e94\u7528\u4e8e\u524d\u5411\u4f20\u64ad\u8fc7\u7a0b":105,"\u7a0b\u5e8f\u4ece\u6b64\u76ee\u5f55\u62f7\u8d1d\u6587\u4ef6\u5230\u5bb9\u5668\u5185\u8fdb\u884c\u8bad\u7ec3":97,"\u7a0b\u5e8f\u4f9d\u8d56":91,"\u7a0b\u5e8f\u505c\u6b62":103,"\u7a0b\u5e8f\u662f\u4e00\u6837\u7684":107,"\u7a0b\u5e8f\u76f4\u63a5\u9000\u51fa":103,"\u7a20\u5bc6\u5411\u91cf":74,"\u7a20\u5bc6\u66f4\u65b0\u7684\u7aef\u53e3\u6570\u91cf":97,"\u7a20\u5bc6\u7684\u6d6e\u70b9\u6570\u5411\u91cf":84,"\u7a20\u5bc6\u77e9\u9635":89,"\u7acb\u523b\u9000\u51fa":81,"\u7acb\u5373\u6267\u884c\u5355\u5143\u6d4b\u8bd5":1,"\u7ae0\u8282":116,"\u7aef\u53e3":79,"\u7aef\u6570\u636e\u7c7b\u578b":89,"\u7aef\u7684":107,"\u7aef\u8bfb\u53d6\u6570\u636e":81,"\u7b2c\u4e00\u4e2a":72,"\u7b2c\u4e00\u4e2a\u53c2\u6570":75,"\u7b2c\u4e00\u4e2a\u6837\u672c\u540c\u65f6encode\u4e24\u6761\u6570\u636e\u6210\u4e24\u4e2a\u5411\u91cf":111,"\u7b2c\u4e00\u4e2atag\u4e3a":62,"\u7b2c\u4e00\u6b65\u9700\u8c03\u7528":90,"\u7b2c\u4e00\u7ae0\u8282":84,"\u7b2c\u4e09\u4e2a\u53c2\u6570":75,"\u7b2c\u4e09\u65b9\u4f9d\u8d56\u5e93\u9700\u8981\u6309\u7167\u4e0e\u65b9\u5f0f2\u540c\u6837\u65b9\u6cd5\u663e\u793a\u5730\u8fdb\u884c\u94fe\u63a5":87,"\u7b2c\u4e09\u65b9\u94fe\u63a5\u5e93\u548c\u5934\u6587\u4ef6":87,"\u7b2c\u4e09\u6b65\u5b8c\u6210\u540e":62,"\u7b2c\u4e8c\u4e2a":81,"\u7b2c\u4e8c\u4e2a\u4e3a":62,"\u7b2c\u4e8c\u4e2a\u53c2\u6570":75,"\u7b2c\u4e8c\u7c7b":82,"\u7b2ci\u884c\u7b2cj\u5217\u7684\u6570\u503c":74,"\u7b49":[42,46,75,79,90],"\u7b49\u4e8e\u6837\u672c\u6570":81,"\u7b49\u5168\u90e8\u9759\u6001\u5e93\u4e2d\u7684\u76ee\u6807\u6587\u4ef6\u5168\u90e8\u6253\u5305\u540e\u4ea7\u751f\u7684\u6587\u4ef6":46,"\u7b49\u53c2\u6570":97,"\u7b49\u5f85\u7f16\u8bd1\u5b8c\u6210\u540e":62,"\u7b49\u6587\u4ef6":46,"\u7b49\u7b2c\u4e09\u65b9\u5e93":87,"\u7b80\u5199":75,"\u7b80\u5355\u4ecb\u7ecd\u9700\u8981\u7528\u5230\u57fa\u7c7b":75,"\u7b80\u5355\u603b\u7ed3op\u9700\u8981\u5305\u542b\u7684\u5185\u5bb9\u5982\u4e0b":75,"\u7b80\u5355\u6765\u8bf4":108,"\u7b80\u5355\u7684\u5168\u8fde\u63a5\u7f51\u7edc":83,"\u7b80\u5355\u7684\u6027\u80fd\u5206\u6790":108,"\u7b80\u5355\u7684yaml\u6587\u4ef6\u5982\u4e0b":96,"\u7b97\u6cd5":[81,114],"\u7b97\u6cd5\u4e2d\u7684beam\u5927\u5c0f":114,"\u7ba1\u7406\u4e86\u6bcf\u4e2a\u8ba1\u7b97\u5c42\u8f93\u51fa\u7684\u5b58\u50a8\u7a7a\u95f4":90,"\u7c7b\u4f3c":[46,110],"\u7c7b\u4f5c\u4e3a\u53c2\u6570\u7684\u62bd\u8c61":74,"\u7c7b\u522b\u4e2d\u7684\u53c2\u6570\u53ef\u7528\u4e8e\u6240\u6709\u573a\u5408":102,"\u7c7b\u522b\u6807\u7b7e\u4e4b\u4e00":90,"\u7c7b\u522b\u6807\u7b7e\u5c42":90,"\u7c7b\u540d\u548cc":45,"\u7c7b\u578b":[45,75,89,103],"\u7c7b\u578b\u4e3a":75,"\u7c7b\u578b\u4ecd\u7136\u4e3aeigenvector":76,"\u7c7b\u578b\u53ef\u4ee5\u662fpaddlepaddle\u652f\u6301\u7684\u4efb\u610f\u8f93\u5165\u6570\u636e\u7c7b\u578b":110,"\u7c7b\u578b\u540d\u4e3a":75,"\u7c7b\u578b\u662fnumpy\u7684ndarrai":81,"\u7c7b\u578b\u662fsparse_binary_vector":84,"\u7c7b\u578b\u662fsparse_float_vector":84,"\u7c7b\u578b\u7684":111,"\u7c7b\u578b\u7b49\u662f\u5426\u5408\u6cd5":75,"\u7c7b\u578b\u8fd8\u662f":89,"\u7c7b\u7684\u5b9a\u4e49\u5199\u5728":75,"\u7c7b\u7684\u5bf9\u8c61":90,"\u7c7b\u7684\u6784\u9020\u51fd\u6570\u548c\u6790\u6784\u51fd\u6570":74,"\u7c7b\u91cd\u5199":75,"\u7c7b\u9700\u8981\u5b9e\u73b0\u521d\u59cb\u5316":74,"\u7cfb\u6570":75,"\u7cfb\u7edf\u4e2d\u7684\u74f6\u9888\u53ef\u80fd\u548c\u7a0b\u5e8f\u5458\u5f00\u53d1\u8fc7\u7a0b\u4e2d\u60f3\u8c61\u7684\u74f6\u9888\u76f8\u53bb\u751a\u8fdc":107,"\u7cfb\u7edf\u4f1a\u5bf9\u65b0\u589e\u7684op\u81ea\u52a8\u7ed1\u5b9apython":75,"\u7cfb\u7edf\u4f1a\u63d0\u4f9b\u4e00\u4e2a\u5206\u5e03\u5f0f\u5b58\u50a8\u670d\u52a1":91,"\u7cfb\u7edf\u4f1a\u6839\u636e\u6587\u4ef6\u540d\u81ea\u52a8\u6784\u5efaop\u548c\u5176\u5bf9\u5e94\u7684python\u6269\u5c55":75,"\u7ebf\u7a0bid\u53f7":105,"\u7ec6\u8282\u63cf\u8ff0":104,"\u7ecf\u5e38\u4f1a\u6d88\u8017\u657010gb\u7684\u5185\u5b58\u548c\u6570gb\u7684\u663e\u5b58":81,"\u7ed3\u5c3e":75,"\u7ed3\u675f\u6807\u8bb0":114,"\u7ed3\u675f\u9884\u6d4b\u4e4b\u540e":90,"\u7ed3\u6784\u4f53":[89,90],"\u7ed3\u679c\u4f1a\u5199\u5165\u5f53\u524d\u8fd0\u884c\u76ee\u5f55\u4e0b\u7684":90,"\u7ed3\u679c\u5982\u4e0b\u56fe\u6240\u793a":107,"\u7ed3\u679c\u8f93\u51fa\u5230":0,"\u7ed3\u8bba":45,"\u7ed9\u4e2a\u7b80\u5355\u7684":72,"\u7ed9\u5b9aencoder\u8f93\u51fa\u548c\u5f53\u524d\u8bcd":113,"\u7edf\u4e00\u7528":12,"\u7ee7\u627f\u81ea":75,"\u7ee7\u627f\u81eaoperatorbas":75,"\u7ef4\u57fa\u767e\u79d1\u4e2d\u6587\u9875\u9762":111,"\u7ef4\u57fa\u767e\u79d1\u9875\u9762":111,"\u7ef4\u7a7a\u95f4":114,"\u7ef4\u7a7a\u95f4\u5b8c\u6210":114,"\u7f13\u5b58\u6c60\u7684\u51cf\u5c0f":81,"\u7f16\u5199":2,"\u7f16\u5199\u4e86\u4e00\u4e2apaddlepaddle\u7684\u7a0b\u5e8f":2,"\u7f16\u5199\u5b8cyaml\u6587\u4ef6\u540e":97,"\u7f16\u5199\u672c\u6b21\u8bad\u7ec3\u7684yaml\u6587\u4ef6":97,"\u7f16\u5199\u6df1\u5ea6\u5b66\u4e60\u7a0b\u5e8f":107,"\u7f16\u5199\u7684\u90e8\u5206":4,"\u7f16\u5199\u96c6\u7fa4\u4efb\u52a1\u63d0\u4ea4\u548c\u7ba1\u7406\u811a\u672c":94,"\u7f16\u53f7\u4ece0\u5f00\u59cb":81,"\u7f16\u7801\u5411\u91cf":114,"\u7f16\u7801\u5668\u8f93\u51fa":114,"\u7f16\u7801\u6e90\u5e8f\u5217":114,"\u7f16\u8bd1":[0,2,72,116],"\u7f16\u8bd1\u51fa\u7684paddlepaddle\u9884\u6d4b\u5e93\u548c\u5934\u6587\u4ef6":87,"\u7f16\u8bd1\u540e\u7684\u6587\u4ef6\u5c06\u88ab\u5b58\u50a8\u5728\u5de5\u4f5c\u76ee\u5f55":77,"\u7f16\u8bd1\u548c\u5b89\u88c5paddlepaddl":118,"\u7f16\u8bd1\u548c\u5b89\u88c5paddlepaddle\u9884\u6d4b\u5e93":[116,117],"\u7f16\u8bd1\u5668":[116,117,118],"\u7f16\u8bd1\u5668\u6ca1\u6709":45,"\u7f16\u8bd1\u5668\u8981\u6c42\u7cfb\u7edf\u652f\u6301":116,"\u7f16\u8bd1\u578b\u8bed\u8a00":45,"\u7f16\u8bd1\u5b89\u88c5\u4e0e\u5355\u5143\u6d4b\u8bd5":80,"\u7f16\u8bd1\u5b89\u88c5\u7ed3\u675f\u4e4b\u540e":116,"\u7f16\u8bd1\u5b8c\u6210\u4e4b\u540e":77,"\u7f16\u8bd1\u5b8c\u6210\u540e\u4f1a\u5728build":1,"\u7f16\u8bd1\u5de5\u5177\u94fe":116,"\u7f16\u8bd1\u5de5\u5177\u94fe\u6240\u5728\u7684\u7edd\u5bf9\u8def\u5f84":118,"\u7f16\u8bd1\u6027\u80fd\u4f1a\u548c":107,"\u7f16\u8bd1\u6210\u529f\u540e":75,"\u7f16\u8bd1\u6210\u529f\u540e\u5728":87,"\u7f16\u8bd1\u6210\u52a8\u6001\u5e93":103,"\u7f16\u8bd1\u65f6\u4e00\u5b9a\u8981\u5f00\u542f\u4f18\u5316":107,"\u7f16\u8bd1\u65f6\u4f1a\u628a\u5bf9\u5e94\u7684\u5934\u6587\u4ef6\u548c\u5e93\u653e\u5728":42,"\u7f16\u8bd1\u65f6\u53ef\u80fd\u4f1a\u53bb\u6389\u8c03\u8bd5\u4fe1\u606f":107,"\u7f16\u8bd1\u65f6\u6307\u5b9a":107,"\u7f16\u8bd1\u751f\u6210":77,"\u7f16\u8bd1\u8fd9\u4e2a\u7248\u672c\u7684docker\u53d1\u884c\u955c\u50cf":62,"\u7f16\u8bd1\u8fd9\u4e2a\u7248\u672c\u7684python":62,"\u7f16\u8bd1c":46,"\u7f16\u8bd1paddlepaddl":1,"\u7f51\u7edc\u5c42\u53ef\u4ee5\u6709\u591a\u4e2a\u8f93\u5165":74,"\u7f51\u7edc\u5c42\u7684\u6807\u8bc6\u7b26\u4e3a":74,"\u7f51\u7edc\u5c42\u7684\u7c7b\u578b":74,"\u7f51\u7edc\u5c42\u7684\u7ec6\u8282\u53ef\u4ee5\u901a\u8fc7\u4e0b\u9762\u8fd9\u4e9b\u4ee3\u7801\u7247\u6bb5\u6765\u6307\u5b9a":74,"\u7f51\u7edc\u5c42\u7684\u8f93\u51fa\u662f\u7ecf\u8fc7\u6fc0\u6d3b\u51fd\u6570\u4e4b\u540e\u7684\u503c":103,"\u7f51\u7edc\u5c42\u914d\u7f6e\u5305\u542b\u4ee5\u4e0b\u51e0\u9879":74,"\u7f51\u7edc\u63a5\u53d7\u4e00\u5e45\u56fe\u7247\u4f5c\u4e3a\u8f93\u5165":90,"\u7f51\u7edc\u7ed3\u6784\u7684\u5e8f\u5217\u5316\u7ed3\u679c\u548c\u6a21\u578b\u53c2\u6570\u5b58\u50a8\u76ee\u5f55":90,"\u7f51\u7edc\u901a\u4fe1":74,"\u7f51\u901f\u6216ssl\u94fe\u63a5\u539f\u56e0":78,"\u800c":[82,107,114],"\u800c\u4e0d\u4f1a\u6539\u53d8\u539f\u6709tensor\u7684shape\u4fe1\u606f":76,"\u800c\u4e0d\u5fc5\u5728\u610fpaddl":46,"\u800c\u4e0d\u652f\u6301pypy\u89e3\u91ca\u5668":45,"\u800c\u4e0d\u662f\u5728layer\u91cc\u5b9e\u73b0":82,"\u800c\u4e0d\u662f\u6e90\u7801\u76ee\u5f55\u91cc":78,"\u800c\u4e0d\u662f\u7279\u5f81\u7684\u96c6\u5408":111,"\u800c\u4e0d\u662f\u76f8\u5bf9":89,"\u800c\u4e0d\u662fc":89,"\u800c\u4e0d\u66b4\u9732\u6982\u5ff5\u7684\u5b9e\u73b0":46,"\u800c\u4e14\u4e2a\u6570\u5e76\u4e0d\u786e\u5b9a":91,"\u800c\u4e14\u5305\u542b\u4e86c":4,"\u800c\u4e14\u5728\u4f20\u8f93\u7684\u8fc7\u7a0b\u4e2d\u4e5f\u53ef\u80fd\u51fa\u73b0\u7f51\u7edc\u4e0d\u7a33\u5b9a\u7684\u60c5\u51b5":28,"\u800c\u4e14cento":4,"\u800c\u4e4b\u524d\u7684\u53c2\u6570\u5c06\u4f1a\u88ab\u5220\u9664":103,"\u800c\u4ece\u5e94\u7528\u7684\u89d2\u5ea6":108,"\u800c\u4f18\u5316\u6027\u80fd\u7684\u9996\u8981\u4efb\u52a1":108,"\u800c\u5176\u4ed6\u5c42\u4f7f\u7528cpu\u8ba1\u7b97":105,"\u800c\u51fa\u73b0\u9636\u6bb5\u6027\u7684\u8fd0\u884c\u505c\u6ede":11,"\u800c\u53cc\u5c42rnn\u662f\u53ef\u4ee5\u5904\u7406\u8fd9\u79cd\u8f93\u5165\u6570\u636e\u7684\u7f51\u7edc\u7ed3\u6784":111,"\u800c\u53cd\u5411\u6d4b\u8bd5\u4e2d":75,"\u800c\u53ea\u9700\u8981\u83b7\u5f97recurr":82,"\u800c\u5728\u8ba1\u7b97\u7ed3\u675f\u4e4b\u540e":76,"\u800c\u5728cpp\u91cc\u9762\u5b9e\u73b0\u8fd9\u4e2ac\u7684\u63a5\u53e3":45,"\u800c\u591a\u8bed\u8a00\u63a5\u53e3\u9700\u8981\u76f4\u63a5\u8bfb\u53d6\u751f\u6210\u7684\u4e8c\u8fdb\u5236":45,"\u800c\u5b89\u88c5\u5305":[4,78],"\u800c\u5b89\u88c5\u5305\u662f":[4,78],"\u800c\u5bf9\u4e8e\u53cc\u5c42\u5e8f\u5217":111,"\u800c\u5bf9\u4e8e\u6bcf\u4e00\u4e2a\u5185\u5c42\u7279\u5f81\u6570\u636e\u800c\u8a00":111,"\u800c\u5bf9\u4e8egolang":45,"\u800c\u5bf9\u4e8egolang\u9519\u8bef\u5904\u7406\u5e94\u8be5\u4f7f\u7528\u8fd4\u56de\u503c":45,"\u800c\u5c06\u8fd9\u4e2a\u6bb5\u843d\u7684\u6bcf\u4e00\u53e5\u8bdd\u7528lstm\u7f16\u7801\u6210\u4e00\u4e2a\u5411\u91cf":111,"\u800c\u5f53\u524d\u5df2\u7ecf\u67095":108,"\u800c\u662f\u5c06\u8f93\u5165":[89,90],"\u800c\u662f\u76f4\u63a5\u4ece\u5185\u5b58\u7684\u7f13\u5b58\u91cc\u8bfb\u53d6\u6570\u636e":81,"\u800c\u662f\u76f4\u63a5\u4fee\u6539paddl":46,"\u800c\u662f\u76f4\u63a5\u7528api\u7684\u63a5\u53e3\u8fdc\u7a0b\u8bbf\u95ee":12,"\u800c\u66f4\u6df1\u5165\u7684\u5206\u6790":108,"\u800c\u6709\u4e9b\u53c2\u6570\u9700\u8981\u5728\u96c6\u7fa4\u591a\u673a\u8bad\u7ec3\u4e2d\u4f7f\u7528\u7b49":102,"\u800c\u6e90\u5e8f\u5217\u7684\u7f16\u7801\u5411\u91cf\u53ef\u4ee5\u88ab\u65e0\u8fb9\u754c\u7684memory\u8bbf\u95ee":114,"\u800c\u795e\u7ecf\u7f51\u7edc\u662f\u6211\u4eec\u8981\u642d\u5efa\u7684\u5b9d\u5854":84,"\u800c\u7a00\u758f\u66f4\u65b0\u5728\u53cd\u5411\u4f20\u64ad\u4e4b\u540e\u7684\u6743\u91cd\u66f4\u65b0\u65f6\u8fdb\u884c":105,"\u800c\u8ba1\u7b97\u8fc7\u7a0b\u662f\u7531":76,"\u800c\u8fd9\u4e00\u53e5\u8bdd\u5c31\u53ef\u4ee5\u8868\u793a\u6210\u8fd9\u4e9b\u4f4d\u7f6e\u7684\u6570\u7ec4":111,"\u800c\u8fd9\u6bcf\u4e00\u4e2a\u6570\u7ec4\u5143\u7d20":111,"\u800c\u975e\u76f4\u63a5\u56de\u590d\u7684\u65b9\u5f0f":72,"\u800c\u975e\u9759\u6001\u52a0\u8f7dcuda\u52a8\u6001\u5e93":1,"\u800ceigenvector":76,"\u800crnn\u662f\u6700\u6d41\u884c\u7684\u9009\u62e9":113,"\u800cswig\u53ea\u80fd\u7b80\u5355\u7684\u66b4\u9732c":45,"\u800ctrainer\u9700\u8981\u8bfb\u53d6\u8bad\u7ec3\u6570\u636e\u8fdb\u884c\u8bad\u7ec3":84,"\u800cy_predict\u662f\u63a5\u6536x\u4f5c\u4e3a\u8f93\u5165":84,"\u8054\u901a":101,"\u80fd\u591f\u5904\u7406\u53cc\u5c42\u5e8f\u5217":113,"\u80fd\u591f\u5bf9\u53cc\u5411\u5e8f\u5217\u8fdb\u884c\u5904\u7406\u7684\u6709":113,"\u80fd\u591f\u8bb0\u5f55\u4e0a\u4e00\u4e2asubseq":113,"\u80fd\u591f\u9488\u5bf9cpu\u548cgpu\u7684\u8ba1\u7b97\u505a\u66f4\u591a\u4f18\u5316":82,"\u80fd\u83b7\u53d6":93,"\u811a\u672c":[0,90,116],"\u811a\u672c\u5f00\u59cb\u65f6":97,"\u811a\u672c\u96c6\u6210\u4e86\u5e8f\u5217\u5316\u795e\u7ecf\u7f51\u7edc\u7ed3\u6784\u7684\u8fc7\u7a0b":90,"\u81ea\u52a8\u5173\u95ed\u5bf9\u5e94\u7684":72,"\u81ea\u52a8\u5730\u5c06\u8fd9\u4e9b\u9009\u9879\u5e94\u7528\u5230":93,"\u81ea\u52a8\u5b8c\u6210\u8fd9\u4e00\u8fc7\u7a0b":113,"\u81ea\u52a8\u6302\u8f7d\u5206\u5e03\u5f0f\u5b58\u50a8\u76ee\u5f55":11,"\u81ea\u52a8\u6784\u5efa\u72ec\u7acb\u5de5\u5177\u94fe":116,"\u81ea\u52a8\u751f\u6210":77,"\u81ea\u52a8\u83b7\u53d6\u4e0a\u4e00\u4e2a\u751f\u6210\u7684\u8bcd":114,"\u81ea\u52a8\u9009\u62e9":117,"\u81ea\u6b64":[116,117],"\u81ea\u7136\u4e5f\u5c31\u6709\u7ba1\u7406\u5458\u6743\u9650":0,"\u81ea\u7136\u8bed\u8a00\u4e2d\u7684\u53e5\u5b50\u662f\u4e00\u4e2a\u5e8f\u5217":89,"\u81ea\u7136\u8bed\u8a00\u4e2d\u7684\u6bb5\u843d\u662f\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217":89,"\u81ea\u7136\u8bed\u8a00\u5904\u7406\u7b49":105,"\u81f3\u4e8e\u4e3a\u4ec0\u4e48\u9700\u8981c":46,"\u81f3\u5c11\u5305\u542bgcc_3":4,"\u81f3\u5c11\u5305\u542bglibcxx_3":4,"\u81f3\u6b64":[72,111],"\u826f\u597d\u7684\u6587\u6863":45,"\u8282\u70b9":[98,101],"\u8282\u7701\u4e86\u4e0d\u5fc5\u8981\u7684\u64cd\u4f5c":42,"\u82e5":74,"\u82e5\u5728paddlepaddle\u7f16\u8bd1\u65f6":83,"\u82e5\u5e0c\u671b\u5f97\u5230\u6700\u5feb\u7684\u6267\u884c\u901f\u5ea6":117,"\u82e5\u5e0c\u671b\u6700\u5feb\u7684\u6267\u884c\u901f\u5ea6":[116,118],"\u82e5\u5e72\u4e2a\u53e5\u5b50\u6784\u6210\u4e00\u4e2a\u6bb5\u843d":110,"\u82e5\u6709\u4e0d\u4e00\u81f4\u4e4b\u5904":108,"\u82e5\u6709\u5fc5\u8981":74,"\u82e5\u672a\u663e\u5f0f\u6307\u5b9a":117,"\u82e5\u6ca1\u6709\u663e\u5f0f\u8bbe\u7f6e":116,"\u82e5\u73af\u5883\u53d8\u91cf":[116,117,118],"\u82e5\u8981\u5bf9\u8fd9\u51e0\u4e2alayer\u4f7f\u7528dropout":82,"\u82e5\u8f93\u51fa\u662f\u5355\u5c42\u5e8f\u5217":110,"\u82e5\u8f93\u51fa\u662f\u53cc\u5c42\u5e8f\u5217":110,"\u82f1\u6587\u6587\u6863":77,"\u82f1\u6587\u6587\u6863\u76ee\u5f55":77,"\u8303\u56f4":105,"\u83b7\u53d6":72,"\u83b7\u53d6\u53ef\u9009\u7684tag":2,"\u83b7\u53d6\u5f53\u524d\u7cfb\u7edf\u652f\u6301\u7684\u5b89\u88c5\u5305\u683c\u5f0f":4,"\u83b7\u53d6\u5f53\u524d\u7cfb\u7edf\u652f\u6301\u7684python\u5305\u7684\u540e\u7f00":78,"\u83b7\u53d6\u6700\u65b0\u7684\u68c0\u67e5\u70b9\u7684\u6587\u4ef6uuid":11,"\u83b7\u53d6\u6e90\u7801":0,"\u83b7\u53d6\u8f93\u51fa\u65f6":90,"\u83b7\u53d6trainer":97,"\u83b7\u5f97\u53c2\u6570\u5c3a\u5bf8":74,"\u83b7\u5f97\u5728\u6a21\u578b\u914d\u7f6e\u4e2d\u67d0\u4e00\u5c42\u7684name":81,"\u83b7\u5f97\u57fa\u672c\u7684docker\u5b89\u88c5\u548c\u4f7f\u7528\u65b9\u6cd5":2,"\u83b7\u5f97\u5f53\u524dmini":81,"\u83b7\u5f97\u7684\u503c\u7c7b\u578b\u5747\u4e3a":81,"\u83b7\u5f97\u8ba1\u7b97\u7ed3\u679c":90,"\u83b7\u5f97\u8fd9\u4e9b\u8282\u70b9\u7684ip\u5730\u5740":93,"\u83b7\u5f97head\u548cnode\u8282\u70b9\u7684ip\u5730\u5740":98,"\u865a\u62df\u673a\u4e0a":0,"\u867d\u7136\u4e0d\u9f13\u52b1\u8fd9\u6837":46,"\u867d\u7136\u5f02\u6b65sgd\u65b9\u5f0f\u4f1a\u63d0\u9ad8\u53c2\u6570\u66f4\u65b0\u5e76\u884c\u5ea6":92,"\u867d\u7136paddle\u770b\u8d77\u6765\u5305\u542b\u4e86\u4f17\u591a\u53c2\u6570":102,"\u884c":89,"\u884c\u504f\u79fb":89,"\u884c\u53f7":107,"\u8865\u5145\u4e0a\u6b21\u7684commit":72,"\u8868\u660e\u4e86\u8fd9\u4e9b\u884c\u7684\u6807\u53f7":74,"\u8868\u660e\u8fd9\u4e2a\u5c42\u7684\u4e00\u4e2a\u5b9e\u4f8b\u662f\u5426\u9700\u8981\u504f\u7f6e":74,"\u8868\u793a":75,"\u8868\u793a\u4e3adeviceid":105,"\u8868\u793a\u5bf9\u8f93\u5165\u6570\u636e":42,"\u8868\u793a\u5c06\u5916\u5c42\u7684outer_mem\u4f5c\u4e3a\u5185\u5c42memory\u7684\u521d\u59cb\u72b6\u6001":111,"\u8868\u793a\u5f53\u524d\u96c6\u7fa4\u4f5c\u4e1a\u7684\u8282\u70b9":93,"\u8868\u793a\u6570\u636e\u7c7b\u578b":75,"\u8868\u793a\u7684\u504f\u79fb\u662f\u4ee5":89,"\u8868\u793a\u8bbe\u5907\u7c7b\u578b":75,"\u8868\u793a\u8bcd\u8bed\u5728\u8bcd\u5178\u4e2d\u7684\u5e8f\u53f7":89,"\u8868\u793a\u8bfb\u8005\u6240\u4f7f\u7528\u7684docker\u955c\u50cf\u4ed3\u5e93\u5730\u5740":97,"\u8868\u793a\u8fd9\u4e2ajob\u7684\u540d\u5b57":97,"\u8868\u793a\u9700\u8981\u6784\u5efa\u63a8\u7406\u5e93":118,"\u88ab":72,"\u88ab\u5207\u5206\u6210\u591a\u4e2a\u90e8\u5206":92,"\u88ab\u6269\u5c55\u4e3a\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":110,"\u88ab\u653e\u5728":74,"\u88ab\u79f0\u4e3a":114,"\u8981\u4f7f\u7528\u547d\u4ee4\u884c\u5206\u6790\u5de5\u5177":108,"\u8981\u5728\u5df2\u6709\u7684kubernetes\u96c6\u7fa4\u4e0a\u8fdb\u884cpaddlepaddle\u7684\u5206\u5e03\u5f0f\u8bad\u7ec3":97,"\u8981\u6c42\u5355\u5c42\u5e8f\u5217\u542b\u6709\u5143\u7d20\u7684\u6570\u76ee":110,"\u8981\u751f\u6210\u7684\u76ee\u6807\u5e8f\u5217":113,"\u8981\u8c03\u7528":74,"\u89c6\u9891\u7b49":89,"\u89e3\u51b3\u529e\u6cd5\u662f":78,"\u89e3\u51b3\u65b9\u6848\u662f":83,"\u89e3\u6790\u73af\u5883\u53d8\u91cf\u5f97\u5230":97,"\u89e3\u7801\u5668\u4f7f\u7528":114,"\u89e3\u7801\u5668\u57fa\u4e8e\u7f16\u7801\u6e90\u5e8f\u5217\u548c\u6700\u540e\u751f\u6210\u7684\u76ee\u6807\u8bcd\u9884\u6d4b\u4e0b\u4e00\u76ee\u6807\u8bcd":114,"\u89e3\u7801\u5668\u662f\u95e8\u63a7\u5faa\u73af\u795e\u7ecf\u7f51\u7edc":114,"\u89e3\u91ca\u578b\u8bed\u8a00\u53ea\u80fd\u8c03\u7528\u52a8\u6001\u5e93":45,"\u89e3\u91ca\u6027\u8bed\u8a00\u5b9e\u9645\u8fd0\u884c\u7684\u4e8c\u8fdb\u5236\u662f\u89e3\u91ca\u5668\u672c\u8eab":45,"\u8ba1\u5212\u5728":[41,42],"\u8ba1\u7b97":[92,114],"\u8ba1\u7b97\u504f\u7f6e\u7684\u68af\u5ea6":74,"\u8ba1\u7b97\u53cd\u5411rnn\u7684\u7b2c\u4e00\u4e2a\u5b9e\u4f8b":114,"\u8ba1\u7b97\u53d8\u6362\u77e9\u9635\u7684\u5927\u5c0f\u548c\u683c\u5f0f":74,"\u8ba1\u7b97\u5f53\u524d\u5c42\u6743\u91cd\u7684\u68af\u5ea6":74,"\u8ba1\u7b97\u6548\u7387\u66f4\u9ad8":82,"\u8ba1\u7b97\u6bcf\u4e2a\u8bcd\u7684\u8bcd\u5411\u91cf":114,"\u8ba1\u7b97\u6fc0\u6d3b\u51fd\u6570\u7684\u68af\u5ea6":74,"\u8ba1\u7b97\u7684\u7ec6\u8282\u5c06\u5728\u4e0b\u9762\u7684\u5c0f\u8282\u7ed9\u51fa":74,"\u8ba1\u7b97\u8282\u70b9":92,"\u8ba1\u7b97\u8282\u70b9\u4e4b\u95f4\u4e5f\u4e0d\u4f1a\u76f8\u4e92\u4f9d\u8d56":92,"\u8ba1\u7b97\u8f6c\u6362\u77e9\u9635\u548c\u8f93\u5165\u7684\u68af\u5ea6":74,"\u8ba1\u7b97\u8f93\u5165\u548c\u53c2\u6570\u7684\u68af\u5ea6":74,"\u8ba1\u7b97\u8f93\u5165\u5c42\u7684\u504f\u5dee":74,"\u8ba1\u7b97\u8f93\u51fa":74,"\u8ba1\u7b97\u8fd9\u4e2a\u6587\u4ef6\u7684md5":11,"\u8ba1\u7b97\u96c6\u7fa4\u901a\u5e38\u7531\u4e00\u7ec4":101,"\u8ba1\u7b97\u9700\u8981\u7684\u6570\u636e\u5b58\u653e\u5728":76,"\u8ba9paddle\u6838\u5fc3\u4e2d":46,"\u8bad\u7ec3":102,"\u8bad\u7ec3\u4efb\u52a1\u7684\u8fd0\u884c\u53ef\u80fd\u4f1a\u5360\u6ee1trainer\u548cparamet":11,"\u8bad\u7ec3\u548c\u7eaf\u4f7f\u7528":62,"\u8bad\u7ec3\u5931\u8d25\u65f6\u53ef\u4ee5\u68c0\u67e5\u9519\u8bef\u65e5\u5fd7":93,"\u8bad\u7ec3\u597d\u4e00\u4e2a\u6df1\u5c42\u795e\u7ecf\u7f51\u7edc\u901a\u5e38\u8981\u8017\u8d39\u975e\u5e38\u957f\u7684\u65f6\u95f4":108,"\u8bad\u7ec3\u597d\u7684\u6a21\u578b\u9ed8\u8ba4\u4fdd\u5b58\u5728\u5f53\u524d\u8fd0\u884c\u76ee\u5f55\u4e0b\u7684":90,"\u8bad\u7ec3\u6570\u636e\u6709\u95ee\u9898":81,"\u8bad\u7ec3\u6570\u636e\u683c\u5f0f\u548c\u8bad\u7ec3\u7a0b\u5e8f\u7684":91,"\u8bad\u7ec3\u65f6":97,"\u8bad\u7ec3\u6a21\u578b\u540e":114,"\u8bad\u7ec3\u6a21\u578b\u6b63\u786e\u6027":62,"\u8bad\u7ec3\u7a0b\u5e8f":91,"\u8bad\u7ec3\u7ed3\u675f\u540e\u67e5\u770b\u8f93\u51fa\u7ed3\u679c":97,"\u8bad\u7ec3\u8282\u70b9\u6570\u91cf":97,"\u8bad\u7ec3\u8bed\u8a00\u6a21\u578b\u8ddd\u79bb":81,"\u8bad\u7ec3\u8fc7\u7a0b\u4e2d\u53c2\u6570\u6216\u8005\u8bad\u7ec3\u8fc7\u7a0b\u4e2d\u7684\u68af\u5ea6\u5c3a\u5ea6\u8fc7\u5927":81,"\u8bad\u7ec3\u8fc7\u7a0b\u4e2d\u6d4b\u8bd5test_period":102,"\u8bad\u7ec3\u8fc7\u7a0b\u662f\u5426\u4e3a\u672c\u5730\u6a21\u5f0f":103,"\u8bad\u7ec3\u8fc7\u7a0b\u662f\u5426\u4f7f\u7528gpu":103,"\u8bad\u7ec3\u914d\u7f6e\u4e2d\u7684\u8bbe\u5907\u5c5e\u6027\u5c06\u4f1a\u65e0\u6548":103,"\u8bad\u7ec3dot_period":102,"\u8bb0\u5f55\u4e0b\u6240\u6709\u5931\u8d25\u7684\u4f8b\u5b50":62,"\u8bb0\u5fc6\u6a21\u5757":114,"\u8bbe\u4e3a\u5df2\u90e8\u7f72\u7684\u5de5\u4f5c\u7a7a\u95f4\u76ee\u5f55":93,"\u8bbe\u4e3a\u672c\u5730":93,"\u8bbe\u5b9a":82,"\u8bbe\u7f6e":[1,46,81,82,116,117],"\u8bbe\u7f6e\u4e3a":74,"\u8bbe\u7f6e\u4e3a\u4e0d\u540c\u7684\u503c":82,"\u8bbe\u7f6e\u4e3atrue\u4f7f\u7528\u672c\u5730\u8bad\u7ec3\u6216\u8005\u4f7f\u7528\u96c6\u7fa4\u4e0a\u7684\u4e00\u4e2a\u8282\u70b9":103,"\u8bbe\u7f6e\u4e3atrue\u4f7f\u7528gpu\u6a21\u5f0f":103,"\u8bbe\u7f6e\u4e86\u76f8\u540c\u7684\u53d6\u503c":82,"\u8bbe\u7f6e\u5176\u53c2\u6570\u5c5e\u6027":83,"\u8bbe\u7f6e\u53c2\u6570\u7684\u540d\u5b57":83,"\u8bbe\u7f6e\u547d\u4ee4\u884c\u53c2\u6570":81,"\u8bbe\u7f6e\u5b66\u4e60\u7387\u8870\u51cf\u56e0\u5b50\u5206\u6bb5\u51fd\u6570":83,"\u8bbe\u7f6e\u5e8f\u5217\u4fe1\u606f\u7684\u63a5\u53e3":89,"\u8bbe\u7f6e\u6210":83,"\u8bbe\u7f6e\u6210\u4e00\u4e2a\u5c0f\u4e00\u4e9b\u7684\u503c":81,"\u8bbe\u7f6e\u8f93\u51fa\u7684\u5c3a\u5bf8":74,"\u8bbe\u7f6e\u8f93\u51fatensor\u7684\u5f62\u72b6":75,"\u8bbe\u7f6e\u9ed8\u8ba4\u8bbe\u5907\u53f7\u4e3a0":105,"\u8bbe\u7f6egpu":103,"\u8bbf\u95ee\u5bf9\u5e94\u7684\u7f51\u5740":107,"\u8bbf\u95eekubernetes\u7684\u63a5\u53e3\u6765\u67e5\u8be2\u6b64job\u5bf9\u5e94\u7684\u6240\u6709pod\u4fe1\u606f":97,"\u8bc4\u5ba1\u4eba\u4e00\u822c\u4e0d\u505a\u8bc4\u5ba1":72,"\u8bc4\u5ba1\u4eba\u7684\u6bcf\u4e2a\u610f\u89c1\u90fd\u5fc5\u987b\u56de\u590d":72,"\u8bc4\u5ba1\u4eba\u9700\u8981\u9010\u4e00\u67e5\u770b\u6bcf\u4e2acommit\u624d\u80fd\u77e5\u9053\u505a\u4e86\u54ea\u4e9b\u4fee\u6539":72,"\u8bc4\u8bba\u6846\u4e2d\u52a0\u4e0a":72,"\u8bc6\u522b\u6570\u5b57":62,"\u8bcd\u5411\u91cf":62,"\u8bd5\u7740\u8ba9\u8f93\u51fa\u7684\u5206\u6790\u6570\u636e\u548c\u7406\u8bba\u503c\u5bf9\u5e94":108,"\u8be5\u53c2\u6570\u5728\u7f51\u7edc\u914d\u7f6e\u7684output":103,"\u8be5\u53c2\u6570\u5728\u96c6\u7fa4\u63d0\u4ea4\u73af\u5883\u4e2d\u81ea\u52a8\u8bbe\u7f6e":103,"\u8be5\u53c2\u6570\u5df2\u7ecf\u5728\u96c6\u7fa4\u63d0\u4ea4\u73af\u5883\u4e2d\u5b8c\u6210\u8bbe\u7f6e":103,"\u8be5\u53c2\u6570\u5fc5\u987b\u80fd\u88abflag":103,"\u8be5\u53c2\u6570\u6307\u793a\u662f\u5426\u6253\u5370\u65e5\u5fd7\u622a\u65ad\u4fe1\u606f":103,"\u8be5\u53c2\u6570\u6307\u793a\u662f\u5426\u6253\u5370\u9519\u8bef\u622a\u65ad\u65e5\u5fd7":103,"\u8be5\u53c2\u6570\u7528\u4e8e\u6307\u5b9a\u52a8\u6001\u5e93\u8def\u5f84":103,"\u8be5\u53c2\u6570\u7684\u610f\u601d\u662f\u8bad\u7ec3num":103,"\u8be5\u53c2\u6570\u9ed8\u8ba4\u4e3anull":103,"\u8be5\u5c42\u4ec5\u9700\u8981\u8fd9\u4e9b\u975e\u96f6\u6837\u672c\u4f4d\u7f6e\u6240\u5bf9\u5e94\u7684\u53d8\u6362\u77e9\u9635\u7684\u90a3\u4e9b\u884c":74,"\u8be5\u622a\u65ad\u4f1a\u5f71\u54cd":103,"\u8be5\u6279\u6b21\u7684\u8f93\u5165\u4e2d\u4ec5\u6709\u4e00\u4e2a\u5b50\u96c6\u662f\u975e\u96f6\u7684":74,"\u8be5\u63a5\u53e3\u53ef\u7528\u4e8e\u9884\u6d4b\u548c\u5b9a\u5236\u5316\u8bad\u7ec3":1,"\u8be5\u63a5\u53e3\u63a5\u53d7\u4e24\u4e2a\u53c2\u6570":90,"\u8be5\u6570\u76ee\u662f\u63d0\u524d\u5b9a\u4e49\u597d\u7684":103,"\u8be5\u6587\u4ef6\u5bf9\u76f8\u5173gemm":41,"\u8be5\u65f6\u95f4\u53bb\u9664\u6389\u672c\u51fd\u6570\u8c03\u7528\u5176\u4ed6\u51fd\u6570\u7684\u65f6\u95f4":107,"\u8be5\u6a21\u578b\u7684\u8bf4\u660e\u5982\u4e0b\u56fe\u6240\u793a":114,"\u8be5\u7c7b\u7684":75,"\u8be5\u7c7b\u7684\u5b9e\u73b0\u7ec6\u8282\u5728":74,"\u8be5\u7c7b\u7ee7\u627f\u4e8epaddlepaddle\u7684\u57fa\u7c7b":42,"\u8be5\u811a\u672c\u4e2d\u8bb0\u5f55\u4e86\u4ea4\u53c9\u7f16\u8bd1android\u7248paddlepaddle\u5e93\u5e38\u7528\u7684cmake\u914d\u7f6e":116,"\u8be5\u8bed\u53e5\u4f1a\u4e3a\u6bcf\u4e2a\u5c42\u521d\u59cb\u5316\u5176\u6240\u9700\u8981\u7684\u53d8\u91cf\u548c\u8fde\u63a5":74,"\u8be5layer\u662f\u901a\u8fc7\u53c2\u6570":82,"\u8be6\u7ec6\u4ecb\u7ecd\u53ef\u4ee5\u53c2\u8003":111,"\u8be6\u7ec6\u4ecb\u7ecd\u8bf7\u53c2\u8003\u8bbe\u8ba1\u6587\u6863":75,"\u8be6\u7ec6\u4fe1\u606f\u8bf7\u68c0\u67e5":93,"\u8be6\u7ec6\u53c2\u8003":1,"\u8be6\u7ec6\u53ef\u53c2\u8003":72,"\u8be6\u7ec6\u6587\u6863\u53c2\u8003":81,"\u8be6\u7ec6\u7684cmake\u4f7f\u7528\u65b9\u6cd5\u53ef\u4ee5\u53c2\u8003":1,"\u8be6\u7ec6\u89c1":110,"\u8be6\u7ec6\u8bbe\u8ba1":28,"\u8bed\u610f\u89d2\u8272\u6807\u6ce8":62,"\u8bed\u8a00\u91cd\u6784\u540e\u7684":107,"\u8bf4\u660e":[1,4,11,89],"\u8bf4\u660e\u63d0\u4ea4\u7684\u4ee3\u7801\u5b58\u5728\u95ee\u9898":72,"\u8bf4\u660e\u8fd9\u4e2a\u5c42\u7684\u8f93\u5165":74,"\u8bf7\u4e0d\u8981\u521b\u5efa\u7a7a\u7684":75,"\u8bf7\u4e0d\u8981\u5fd8\u8bb0\u63d0\u524d\u5728\u7269\u7406\u673a\u4e0a\u5b89\u88c5gpu\u6700\u65b0\u9a71\u52a8":2,"\u8bf7\u4fdd\u8bc1travi":72,"\u8bf7\u5148\u4f7f\u7528":[116,117,118],"\u8bf7\u53c2\u7167\u7f51\u7edc\u914d\u7f6e\u7684\u6587\u6863\u4e86\u89e3\u66f4\u8be6\u7ec6\u7684\u4fe1\u606f":105,"\u8bf7\u53c2\u8003":[46,74,75,78,81,84,90,111],"\u8bf7\u53c2\u8003\u6b64":90,"\u8bf7\u53c2\u89c1":72,"\u8bf7\u53c2\u9605":114,"\u8bf7\u5728\u8be5pull":72,"\u8bf7\u5728\u8f93\u5165\u65f6\u8fdb\u884c\u5408\u6cd5\u6027\u68c0\u67e5":89,"\u8bf7\u60a8\u6bcf\u6b21\u63d0\u4ea4\u4ee3\u7801\u65f6":72,"\u8bf7\u60a8\u9075\u5b88\u4ee5\u4e0b\u7ea6\u5b9a":72,"\u8bf7\u6307\u5b9a\u7684paddlepaddle\u5de5\u4f5c\u76ee\u5f55\u7ed9\u73af\u5883\u53d8\u91cf":77,"\u8bf7\u6307\u5b9a\u8be5\u76ee\u5f55":103,"\u8bf7\u663e\u793a\u5730\u8c03\u7528":75,"\u8bf7\u68c0\u67e5python\u7248\u672c\u662f\u5426\u4e3a2":4,"\u8bf7\u6ce8\u610f":[75,96,114],"\u8bf7\u6ce8\u610f\u662f\u5426\u9700\u8981\u4fee\u6539\u7f51\u7edc\u7ed3\u6784":90,"\u8bf7\u6ce8\u610f\u6bcf\u4e2acommit\u7684\u540d\u79f0":72,"\u8bf7\u6ce8\u610f\u8fd9\u4e2a\u547d\u4ee4\u7ed3\u5c3e\u5904\u7684":0,"\u8bf7\u6ce8\u610fcommit\u7684\u6570\u91cf":72,"\u8bf7\u76f4\u63a5\u586b\u51450":83,"\u8bf7\u770b\u4e0b\u9762\u7684\u4f8b\u5b50":105,"\u8bf7\u786e\u4fdd":72,"\u8bf7\u7ed9\u51fa\u603b\u4f53\u7684\u4fee\u6539\u60c5\u51b5":72,"\u8bf7\u7ed9\u51fa\u60a8\u81ea\u5df1\u7684\u53cd\u9a73\u7406\u7531":72,"\u8bf7\u9009\u62e9\u5408\u9002\u7684\u8bcd\u6c47":72,"\u8bf7\u9009\u62e9\u6b63\u786e\u7684\u7248\u672c":78,"\u8bf7\u9075\u5b88":72,"\u8bf7\u91c7\u7528":72,"\u8bf8\u5982\u56fe\u50cf\u5206\u7c7b":105,"\u8bfb\u53d6\u9700\u8981\u7684\u7ed3\u679c\u5373\u53ef":89,"\u8bfb\u53d6volume\u4e2d\u7684\u6570\u636e\u8fdb\u884c\u8fd9\u6b21\u5206\u5e03\u5f0f\u8bad\u7ec3":97,"\u8bfb\u8005\u53ef\u4ee5\u67e5\u770b":97,"\u8bfb\u8005\u9700\u8981\u66ff\u6362\u6210\u81ea\u5df1\u4f7f\u7528\u7684\u4ed3\u5e93\u5730\u5740":97,"\u8c03\u7528":[74,90,117],"\u8c03\u7528\u5bf9\u5e94":76,"\u8c03\u7528\u65b9\u6cd5\u89c1c":[116,117],"\u8c03\u7528\u7528":107,"\u8c03\u7528\u7684\u4e00\u4e9b\u7528\u6237\u5b9a\u4e49\u7684\u5e93\u51fd\u6570":91,"\u8c03\u7528\u7684\u51fd\u6570\u662f\u5426\u652f\u6301\u4e0d\u540c\u8bbe\u5907":75,"\u8c03\u7528\u8be5\u51fd\u6570\u540e":74,"\u8c03\u7528c":[89,90],"\u8d21\u732e\u6587\u6863":77,"\u8d77\u59cb\u5b58\u50a8\u5730\u5740\u4ee5\u6570\u636e\u7684\u5b58\u50a8\u5927\u5c0f\u4e3a\u5355\u4f4d\u7684\u504f\u79fb":89,"\u8df3\u8f6c\u5230":72,"\u8df3\u8fc7":81,"\u8f6c\u5316\u65b9\u6cd5\u5728\u76f8\u5e94\u7684\u9886\u57df\u90fd\u6709\u901a\u7528\u89e3\u51b3\u65b9\u6848":89,"\u8f6c\u6362\u5185\u5b58\u7684\u5de5\u4f5c":42,"\u8f6c\u6362\u5197\u4f59":41,"\u8f6c\u6362\u51fd\u6570":42,"\u8f6c\u6362\u751f\u6210\u7684\u6587\u4ef6\u540d\u4f1a\u662f\u4ee5\u4e0b\u683c\u5f0f":12,"\u8f6c\u6362\u8017\u65f6":41,"\u8f93\u5165":[88,90,110,114],"\u8f93\u5165\u4e86\u6027\u80fd\u5206\u6790\u7ed3\u679c":107,"\u8f93\u5165\u548c\u8f93\u51fa\u90fd\u662f\u5355\u5c42\u5e8f\u5217":113,"\u8f93\u5165\u548c\u8f93\u51fa\u90fd\u662f\u53cc\u5c42\u5e8f\u5217":113,"\u8f93\u5165\u5e8f\u5217\u4e2d\u5143\u7d20\u7684\u603b\u6570":81,"\u8f93\u5165\u6570\u636e\u4e3a\u4e00\u4e2a\u5b8c\u6574\u7684\u65f6\u95f4\u5e8f\u5217":111,"\u8f93\u5165\u6570\u636e\u4e3a\u5728\u5355\u5c42rnn\u6570\u636e\u91cc\u9762":111,"\u8f93\u5165\u6570\u636e\u53ef\u5206\u4e3a":89,"\u8f93\u5165\u6570\u636e\u6574\u4f53\u4e0a\u662f\u4e00\u4e2a\u65f6\u95f4\u5e8f\u5217":111,"\u8f93\u5165\u6570\u636e\u7684\u5b57\u5178\u7ef4\u6570\u662f1\u767e\u4e07":105,"\u8f93\u5165\u6570\u636e\u7c7b\u578b":89,"\u8f93\u5165\u662f\u5426\u662f\u8f6c\u7f6e\u7684":74,"\u8f93\u5165\u662f\u7531\u4e00\u4e2alist\u4e2d\u7684\u7f51\u7edc\u5c42\u5b9e\u4f8b\u7684\u540d\u5b57\u7ec4\u6210\u7684":74,"\u8f93\u5165\u68af\u5ea6":42,"\u8f93\u5165\u7684\u540d\u5b57":74,"\u8f93\u5165\u7684\u5927\u5c0f":74,"\u8f93\u5165\u7684\u7c7b\u578b":74,"\u8f93\u5165\u9700\u8981\u9884\u6d4b\u7684\u5411\u91cf\u7ec4":84,"\u8f93\u51fa":[75,90,110,114],"\u8f93\u51fa\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":113,"\u8f93\u51fa\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217":113,"\u8f93\u51fa\u4fe1\u606f\u6709\u673a\u5730\u7ec4\u7ec7\u5728\u4e00\u8d77":89,"\u8f93\u51fa\u51fd\u6570":114,"\u8f93\u51fa\u521b\u5efa":[89,90],"\u8f93\u51fa\u5e8f\u5217\u7684\u7c7b\u578b":110,"\u8f93\u51fa\u5e8f\u5217\u7684\u8bcd\u8bed\u6570\u548c\u8f93\u5165\u5e8f\u5217\u4e00\u81f4":113,"\u8f93\u51fa\u6240\u643a\u5e26\u7684\u5e8f\u5217\u4fe1\u606f":89,"\u8f93\u51fa\u6570\u636e\u548c\u8f93\u51fa\u68af\u5ea6":42,"\u8f93\u51fa\u6570\u636e\u548c\u8f93\u51fa\u68af\u5ea6\u7684\u8f6c\u6362":42,"\u8f93\u51fa\u6570\u636e\u662f\u5728\u4e0a\u6587\u4ecb\u7ecd\u7684":89,"\u8f93\u51fa\u6570\u636e\u6709\u673a\u5730\u7ec4\u7ec7\u5728\u4e00\u8d77":90,"\u8f93\u51fa\u6570\u636e\u7ec4\u7ec7":[88,90],"\u8f93\u51fa\u7531":89,"\u8f93\u51fa\u7684\u5e8f\u5217\u4fe1\u606f":89,"\u8f93\u51fa\u7684\u68af\u5ea6":103,"\u8f93\u51fa\u7ed3\u679c\u53ef\u80fd\u4f1a\u968f\u7740\u5bb9\u5668\u7684\u6d88\u8017\u800c\u88ab\u5220\u9664":96,"\u8f93\u51fa\u88ab\u7ec4\u7ec7\u4e3a":89,"\u8f93\u51fa\u88ab\u7ec4\u7ec7\u4e3a\u4e00\u4e2a":89,"\u8f93\u51fa\u90fd\u4f1a\u5bf9\u5e94\u6709\u81ea\u5df1\u7684":[89,90],"\u8fbe\u5230\u5bb9\u707e\u7684\u76ee\u7684":11,"\u8fc7\u4e86\u4e00\u4e2a\u5f88\u7b80\u5355\u7684recurrent_group":111,"\u8fc7\u5b8c\u6240\u6709\u8bad\u7ec3\u6570\u636e\u5373\u4e3a\u4e00\u4e2apass":81,"\u8fc7\u7a0b\u4e2d\u6240\u6709\u65f6\u95f4\u6b65":41,"\u8fd0\u884c":90,"\u8fd0\u884c\u4e00\u4e2a":0,"\u8fd0\u884c\u4e0b\u9762\u547d\u4ee4\u53ef\u4ee5\u8fdb\u884c\u7f16\u8bd1":75,"\u8fd0\u884c\u5355\u5143\u6d4b\u8bd5":0,"\u8fd0\u884c\u5355\u5143\u6d4b\u8bd5\u6d4b\u65f6\u9700\u8981\u7f16\u8bd1\u6574\u4e2a\u5de5\u7a0b":75,"\u8fd0\u884c\u5931\u8d25":105,"\u8fd0\u884c\u5b8c\u6210\u540e":93,"\u8fd0\u884c\u5b8c\u6bd5\u540e\u8f93\u51fa":107,"\u8fd0\u884c\u6027\u80fd\u5206\u6790\u7684\u65f6\u5019":107,"\u8fd0\u884c\u65e5\u5fd7":93,"\u8fd0\u884c\u65f6\u4e5f\u53ef\u80fd\u56e0\u4e3a\u591a\u7ebf\u7a0b\u4ea7\u751f\u6df7\u4e71\u4e0d\u53ef\u8bfb\u7684\u6027\u80fd\u5206\u6790\u7ed3\u679c":107,"\u8fd0\u884c\u65f6\u4f1a\u81ea\u52a8\u627e\u5230\u7cfb\u7edf\u4e2d\u5b89\u88c5\u7684cuda\u548ccudnn\u5e93\u8fdb\u884c\u7f16\u8bd1\u548c\u6267\u884c":1,"\u8fd0\u884c\u65f6c":90,"\u8fd0\u884c\u7684\u4e00\u4e9b\u53c2\u6570\u901a\u8fc7\u8fd9\u79cd\u65b9\u5f0f\u4f20\u9012\u5230\u5bb9\u5668\u5185":97,"\u8fd0\u884c\u8be5\u7f16\u8bd1\u5de5\u5177\u94fe\u9700\u8981\u4e00\u53f0":118,"\u8fd1\u671f\u76ee\u6807":42,"\u8fd4\u56de\u7684\u662f":84,"\u8fd4\u56de\u7b2c\u4e8c\u6b65":62,"\u8fd4\u56de\u7b2ci\u4e2a\u8f93\u5165\u77e9\u9635":74,"\u8fd4\u56depython\u7aef\u7684\u8ba1\u7b97\u7ed3\u679c":75,"\u8fd8\u4f1a\u4e0b\u8f7dmkl":1,"\u8fd8\u4f1a\u5f3a\u5236\u8bbe\u7f6e\u4e00\u4e9bpaddlepaddle\u53c2\u6570\u7684\u503c":116,"\u8fd8\u4f1a\u8f93\u51fa\u4e00\u4e2a":72,"\u8fd8\u53ef\u4ee5\u901a\u8fc7\u51cf\u5c0f\u5b66\u4e60\u7387\u6216\u8005\u5bf9\u6570\u636e\u8fdb\u884c\u5f52\u4e00\u5316\u5904\u7406\u6765\u89e3\u51b3\u8fd9\u7c7b\u95ee\u9898":81,"\u8fd8\u662f\u4ece":12,"\u8fd8\u662f\u865a\u62df\u673a":0,"\u8fd8\u9700\u8981\u5728\u8282\u70b9\u4e0a\u5b89\u88c5\u5bf9\u5e94\u7684gpu\u9a71\u52a8\u4ee5\u53cacuda":101,"\u8fd8\u9700\u8981\u91cd\u5199":75,"\u8fd9":81,"\u8fd98\u79cdlearning_rate_schedule\u53ca\u5176\u5bf9\u5e94\u5b66\u4e60\u7387\u8ba1\u7b97\u65b9\u5f0f\u5982\u4e0b":83,"\u8fd9\u4e00\u4e2a\u5e93":87,"\u8fd9\u4e00\u5757\u7684\u8017\u65f6\u6bd4\u4f8b\u771f\u7684\u592a\u9ad8":108,"\u8fd9\u4e00\u5c42\u8fdb\u884c\u5c01\u88c5":46,"\u8fd9\u4e00\u6570\u636e\u683c\u5f0f\u7684\u8f6c\u6362\u64cd\u4f5c":41,"\u8fd9\u4e00\u6982\u5ff5\u4e0d\u518d\u7410\u788e":46,"\u8fd9\u4e00\u8282\u5bf9\u56fe1\u4e2d\u9884\u6d4b\u4ee3\u7801\u7f16\u5199\u76845\u4e2a\u6b65\u9aa4\u8fdb\u884c\u4ecb\u7ecd\u548c\u8bf4\u660e":90,"\u8fd9\u4e00\u8ba1\u7b97\u5355\u5143":82,"\u8fd9\u4e00\u8fc7\u7a0b\u5bf9\u7528\u6237\u662f\u5b8c\u5168\u900f\u660e\u7684":113,"\u8fd9\u4e09\u4e2a\u5206\u652f":62,"\u8fd9\u4e24\u4e2a\u6307\u6807\u4ee3\u8868\u4e86\u67d0\u4e00\u4e2a\u51fd\u6570\u771f\u5b9e\u7684\u8fd0\u884c\u65f6\u95f4":107,"\u8fd9\u4e2a":[0,4],"\u8fd9\u4e2a\u4efb\u52a1\u7684\u914d\u7f6e\u4e3a":81,"\u8fd9\u4e2a\u4efb\u52a1\u7684dataprovider\u4e3a":81,"\u8fd9\u4e2a\u4f8b\u5b50\u6709\u4e24\u5904\u4e0d\u540c":75,"\u8fd9\u4e2a\u51fd\u6570\u672c\u8eab\u4f1a\u5728\u8ba1\u7b97\u524d\u5c06\u539f\u6570\u636e\u8f6c\u6362\u4e3a\u66f4\u9002\u5408\u82f1\u7279\u5c14\u5e73\u53f0\u7684\u5185\u90e8\u683c\u5f0f":41,"\u8fd9\u4e2a\u51fd\u6570\u7684":114,"\u8fd9\u4e2a\u51fd\u6570\u8fdb\u884c\u53d8\u6362":111,"\u8fd9\u4e2a\u51fd\u6570\u9700\u8981\u8bbe\u7f6e":114,"\u8fd9\u4e2a\u52a8\u6001\u5e93\u7684\u8fde\u63a5\u53c2\u6570\u4e0epaddle\u7684\u5176\u4ed6\u4e8c\u8fdb\u5236":46,"\u8fd9\u4e2a\u53c2\u6570\u4e5f\u4e0d\u4f1a\u4e00\u5e76\u5220\u9664":46,"\u8fd9\u4e2a\u5730\u5740\u6765\u8868\u793a\u6b64\u6b65\u9aa4\u6240\u6784\u5efa\u51fa\u7684\u955c\u50cf":97,"\u8fd9\u4e2a\u57fa\u7c7b":74,"\u8fd9\u4e2a\u5934\u6587\u4ef6\u4e0d\u5047\u8bbe\u5176\u4ed6\u6587\u4ef6\u7684\u5f15\u7528\u987a\u5e8f":46,"\u8fd9\u4e2a\u5e8f\u5217\u7684\u6bcf\u4e2a\u5143\u7d20\u53c8\u662f\u4e00\u4e2a\u5e8f\u5217":113,"\u8fd9\u4e2a\u60c5\u51b5\u4e0b\u6240\u6709\u7684\u6587\u4ef6\u4f1a\u5b58\u5728\u6574\u7406\u8fc7\u7684\u7684\u6587\u4ef6\u76ee\u5f55":77,"\u8fd9\u4e2a\u63a5\u53e3\u9700\u8981\u505a\u5230":45,"\u8fd9\u4e2a\u6570\u636e\u4e5f\u88ab\u5355\u5c42rnn\u7f51\u7edc\u76f4\u63a5\u4f7f\u7528":111,"\u8fd9\u4e2a\u6587\u4ef6\u5177\u6709\u72ec\u7279\u7684\u8bed\u6cd5":45,"\u8fd9\u4e2a\u662f\u76ee\u524d\u63a8\u8350\u7684\u4f7f\u7528\u65b9\u6cd5":77,"\u8fd9\u4e2a\u73af\u5883\u53d8\u91cf\u5173\u95edopenmp\u4f18\u5316":107,"\u8fd9\u4e2a\u76ee\u5f55\u4e2d\u9664\u4e86":46,"\u8fd9\u4e2a\u793a\u4f8b":90,"\u8fd9\u4e2a\u795e\u7ecf\u7f51\u7edc\u5355\u5143\u5c31\u53ebmemori":111,"\u8fd9\u4e2a\u7c7b\u7684\u53c2\u6570\u5305\u62ec":74,"\u8fd9\u4e2a\u7c7b\u9700\u8981\u7ee7\u627f":74,"\u8fd9\u4e2a\u7ed3\u6784\u4f53\u4e2d\u7684\u53e6\u4e00\u4e2a\u9879\u76ee\u662f":46,"\u8fd9\u4e2a\u7ed3\u6784\u4f53\u5305\u542b\u4e24\u4e2a\u9879\u76ee":46,"\u8fd9\u4e2a\u811a\u672c\u8c03\u7528":0,"\u8fd9\u4e2a\u8f93\u5165\u4e0d\u53c2\u4e0e":75,"\u8fd9\u4e2a\u8fc7\u7a0b\u5bf9\u7528\u6237\u4e5f\u662f\u900f\u660e\u7684":113,"\u8fd9\u4e2a\u8fc7\u7a0b\u9664\u4e86\u7f16\u8bd1paddlepaddle\u4e3a":72,"\u8fd9\u4e2a\u9009\u62e9":[41,42],"\u8fd9\u4e2a\u95e8\u63a7\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u751f\u6210\u4e00\u7cfb\u5217\u6743\u91cd":114,"\u8fd9\u4e2a\u9759\u6001\u5e93\u5305\u542b\u4e86paddle\u7684\u5168\u90e8\u7b26\u53f7":46,"\u8fd9\u4e2ainstance\u53ef\u4ee5\u662f\u5355\u4e2a\u503c":12,"\u8fd9\u4e2aissu":0,"\u8fd9\u4e2ajob\u624d\u7b97\u6210\u529f\u7ed3\u675f":97,"\u8fd9\u4e2alayer\u7684\u8f93\u51fa\u4f1a\u4f5c\u4e3a\u6574\u4e2a":113,"\u8fd9\u4e5f\u4f1a\u6781\u5927\u51cf\u5c11\u6570\u636e\u8bfb\u5165\u7684\u8017\u65f6":81,"\u8fd9\u4e9b\u4f1a\u5728":[41,42],"\u8fd9\u4e9b\u4f8b\u5b50\u90fd\u53ef\u4ee5\u5728":94,"\u8fd9\u4e9b\u51fd\u6570\u4f1a\u5c06\u5bf9\u5e94\u5185\u5bb9\u6dfb\u52a0\u5230":75,"\u8fd9\u4e9b\u51fd\u6570\u4f1a\u6839\u636e\u8f93\u5165\u53c2\u6570\u91cd\u65b0\u8bbe\u7f6e\u5185\u90e8\u548c\u5916\u90e8\u5b58\u50a8":42,"\u8fd9\u4e9b\u5206\u5e03\u5f0f\u5b58\u50a8\u670d\u52a1\u901a\u5e38\u4f1a\u628a\u6570\u636e\u5207\u5272\u6210\u591a\u4e2a\u5206\u7247\u5206\u5e03\u5f0f\u7684\u5b58\u50a8\u5728\u591a\u4e2a\u8282\u70b9\u4e4b\u4e0a":12,"\u8fd9\u4e9b\u53c2\u6570\u53ef\u4ee5\u901a\u8fc7":91,"\u8fd9\u4e9b\u53c2\u6570\u7684\u5177\u4f53\u63cf\u8ff0":97,"\u8fd9\u4e9b\u540d\u5b57\u5fc5\u987b\u8981\u5199\u5bf9":74,"\u8fd9\u4e9b\u6570\u636e\u4f1a\u88ab\u7528\u6765\u66f4\u65b0\u53c2\u6570":81,"\u8fd9\u4e9b\u6570\u636e\u4f7f\u7528\u7684\u5185\u5b58\u4e3b\u8981\u548c\u4e24\u4e2a\u53c2\u6570\u6709\u5173\u7cfb":81,"\u8fd9\u4e9b\u7279\u5f81\u6570\u636e\u4e4b\u95f4\u7684\u987a\u5e8f\u662f\u6709\u610f\u4e49\u7684":111,"\u8fd9\u4e9b\u955c\u50cf\u4e5f\u53ef\u4ee5\u4ece":62,"\u8fd9\u4efd\u6559\u7a0b\u5c55\u793a\u4e86\u5982\u4f55\u5728paddlepaddle\u4e2d\u5b9e\u73b0\u4e00\u4e2a\u81ea\u5b9a\u4e49\u7684\u7f51\u7edc\u5c42":74,"\u8fd9\u4f1a\u63d0\u793a\u5f53\u524d\u76ee\u5f55\u7684\u4e00\u4e9b\u53d8\u5316":72,"\u8fd9\u4f1a\u7ed9\u8bc4\u5ba1\u4eba\u5e26\u6765\u5f88\u5927\u56f0\u6270":72,"\u8fd9\u4f1a\u81ea\u52a8\u8fdb\u884c\u7f51\u7edc\u914d\u7f6e\u4e2d\u58f0\u660e\u7684\u6fc0\u6d3b\u64cd\u4f5c":74,"\u8fd9\u4fbf\u662f\u4e00\u79cd\u53cc\u5c42rnn\u7684\u8f93\u5165\u6570\u636e":111,"\u8fd9\u51e0\u4e2a\u7f16\u8bd1\u9009\u9879\u7684\u8bbe\u7f6e":1,"\u8fd9\u53e5\u8868\u793a\u4f7f\u7528\u57fa\u7c7b":75,"\u8fd9\u53ef\u4ee5\u5e2e\u60a8\u7701\u6389\u82b1\u4e00\u5c0f\u65f6\u5b89\u88c5\u548c\u914d\u7f6e\u5404\u79cd\u5f00\u53d1\u5de5\u5177":0,"\u8fd9\u53ef\u4ee5\u8ba9\u5176\u4ed6\u4eba\u77e5\u9053\u8fd9\u6b21\u63d0\u4ea4\u505a\u4e86\u54ea\u4e9b\u6539\u53d8":72,"\u8fd9\u53ef\u4ee5\u901a\u8fc7":72,"\u8fd9\u548c\u5355\u5c42rnn\u7684\u914d\u7f6e\u662f\u7b49\u4ef7\u7684":111,"\u8fd9\u56db\u4e2a\u5e8f\u5217\u53c8\u5206\u522b\u542b\u67093":89,"\u8fd9\u56db\u6761\u6570\u636e\u540c\u65f6\u5904\u7406\u7684\u53e5\u5b50\u6570\u91cf\u4e3a":111,"\u8fd9\u5728\u6784\u9020\u975e\u5e38\u590d\u6742\u7684\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u65f6\u662f\u6709\u7528\u7684":114,"\u8fd9\u5bf9\u4e8e\u901a\u5e38\u7684java\u7684\u5f00\u53d1\u8005\u6765\u8bf4":45,"\u8fd9\u5c06\u4f1a\u5bfc\u81f4\u5355\u5143\u6d4b\u8bd5\u51fa\u9519":75,"\u8fd9\u5c06\u4f1a\u5bfc\u81f4\u7f16\u8bd1\u51fa\u9519":75,"\u8fd9\u610f\u5473\u7740":114,"\u8fd9\u610f\u5473\u7740\u9664\u4e86\u6307\u5b9adevic":105,"\u8fd9\u65f6":[81,90],"\u8fd9\u65f6\u5728\u4f7f\u7528":83,"\u8fd9\u65f6\u7684":89,"\u8fd9\u65f6\u7684\u9700\u8981\u540c\u65f6\u63d0\u4f9b":89,"\u8fd9\u65f6\u884c\u504f\u79fb\u548c\u5217\u53f7\u6307\u5b9a\u7684\u5143\u7d20\u9ed8\u8ba4\u5176\u503c\u4e3a1":89,"\u8fd9\u65f6\u8fdb\u884c\u77e9\u9635\u4e58\u6cd5\u8fd0\u7b97\u5c31\u53ef\u80fd\u5bfc\u81f4\u6d6e\u70b9\u6570\u6ea2\u51fa":81,"\u8fd9\u65f6\u9700\u8981\u8c03\u7528\u521b\u5efa\u5e8f\u5217\u4fe1\u606f\u548c\u4e3a":89,"\u8fd9\u662f\u4e00\u79cd\u6309\u5df2\u8bad\u7ec3\u6837\u672c\u6570\u5206\u6bb5\u53d6\u503c\u7684\u5b66\u4e60\u7387\u9000\u706b\u65b9\u6cd5":83,"\u8fd9\u662f\u4e00\u79cd\u6309\u5df2\u8bad\u7ec3pass\u6570\u5206\u6bb5\u53d6\u503c\u7684\u5b66\u4e60\u7387\u9000\u706b\u65b9\u6cd5":83,"\u8fd9\u662f\u4e00\u79cd\u975e\u5e38\u7075\u6d3b\u7684\u6570\u636e\u7ec4\u7ec7\u65b9\u5f0f":110,"\u8fd9\u662f\u56e0\u4e3a":45,"\u8fd9\u662f\u5f00\u6e90\u793e\u533a\u7684\u57fa\u672c\u793c\u8c8c":72,"\u8fd9\u662f\u666e\u901a\u7684\u5355\u5c42\u65f6\u95f4\u5e8f\u5217\u7684dataprovider\u4ee3\u7801":111,"\u8fd9\u662f\u76ee\u524dcmake\u5bfb\u627epython\u7684\u903b\u8f91\u5b58\u5728\u7f3a\u9677":78,"\u8fd9\u6837":[46,92],"\u8fd9\u6837\u4e0b\u4e00\u4e2acpu":42,"\u8fd9\u6837\u4fdd\u5b58\u5728\u5206\u5e03\u5f0f\u5b58\u50a8\u4e2d\u7684\u6570\u636e\u53ef\u4ee5\u88ab\u96c6\u7fa4\u4e2d\u7684\u6bcf\u4e2a\u8282\u70b9\u8bfb\u53d6\u5230":91,"\u8fd9\u6837\u4fdd\u8bc1":62,"\u8fd9\u6837\u4fdd\u8bc1\u8fd0\u884c\u7ed3\u675f\u4e4b\u540e\u7684":0,"\u8fd9\u6837\u505a\u53ef\u4ee5\u6781\u5927\u7684\u51cf\u5c11\u5185\u5b58\u5360\u7528":81,"\u8fd9\u6837\u53ef\u4ee5\u514d\u53bb\u5355\u72ec\u5b89\u88c5\u7f16\u8bd1\u4f9d\u8d56\u7684\u6b65\u9aa4":1,"\u8fd9\u6837\u53ef\u4ee5\u51cf\u5c0fgpu\u5185\u5b58":105,"\u8fd9\u6837\u5982\u679c\u9047\u5230\u95ee\u9898":0,"\u8fd9\u6837\u5bb9\u5668\u7684":97,"\u8fd9\u6837\u5c31\u53ef\u4ee5\u5728\u4e91\u7aef\u6267\u884c\u591a\u79cd\u6570\u636e\u7c7b\u8ba1\u7b97\u4efb\u52a1":12,"\u8fd9\u6837\u5df2\u7ecf\u4f20\u8f93\u6210\u529f\u7684\u90e8\u5206\u5c31\u4e0d\u7528\u91cd\u65b0\u4f20\u8f93\u4e86":28,"\u8fd9\u6837\u5e26\u6765\u7684\u597d\u5904\u5c31\u662f\u4e0d\u9700\u8981\u4e00\u76f4\u6e05\u7a7amemori":42,"\u8fd9\u6837\u5f53\u8be5pull":72,"\u8fd9\u6837\u65e2\u4f7f\u5f97\u6700\u7ec8\u4fdd\u5b58\u7684\u53c2\u6570\u683c\u5f0f\u4e0epaddlepaddle\u4e00\u81f4":42,"\u8fd9\u6837\u6781\u5927\u5730\u63d0\u9ad8\u4e86\u8ba1\u7b97\u7684\u5e76\u884c\u6027":92,"\u8fd9\u6837\u7684\u88c5\u9970\u5668":74,"\u8fd9\u6837\u7684\u8bdd":96,"\u8fd9\u6837\u8bad\u7ec3\u6587\u4ef6\u7684\u4e2a\u6570\u4f1a\u6bd4\u8f83\u591a":91,"\u8fd9\u6b63\u662f\u5b83\u4eec\u901f\u5ea6\u5feb\u7684\u539f\u56e0":108,"\u8fd9\u7528\u4e8e\u5728\u591a\u7ebf\u7a0b\u548c\u591a\u673a\u4e0a\u66f4\u65b0\u53c2\u6570":74,"\u8fd9\u79cd\u521d\u59cb\u5316\u65b9\u5f0f\u5728\u4e00\u822c\u60c5\u51b5\u4e0b\u4e0d\u4f1a\u4ea7\u751f\u5f88\u5dee\u7684\u7ed3\u679c":83,"\u8fd9\u79cd\u60c5\u51b5\u4e0b\u4e0d\u9700\u8981\u91cd\u5199\u8be5\u51fd\u6570":74,"\u8fd9\u79cd\u60c5\u51b5\u591a\u51fa\u73b0\u5728\u4f7f\u7528\u591a\u7ebf\u7a0b\u9884\u6d4b\u65f6":90,"\u8fd9\u79cd\u60c5\u51b5\u5e38\u5e38\u53d1\u751f\u5728":81,"\u8fd9\u79cd\u65b9\u5f0f\u5bf9\u5185\u5b58\u6d88\u8017\u8f83\u5927":82,"\u8fd9\u79cd\u65b9\u5f0f\u5fc5\u987b\u4f7f\u7528paddle\u5b58\u50a8\u7684\u6a21\u578b\u8def\u5f84\u683c\u5f0f":105,"\u8fd9\u79cd\u65b9\u5f0f\u6700\u4e3a\u7b80\u4fbf":87,"\u8fd9\u79cd\u751f\u6210\u6280\u672f\u53ea\u7528\u4e8e\u7c7b\u4f3c\u89e3\u7801\u5668\u7684\u751f\u6210\u8fc7\u7a0b":114,"\u8fd9\u79cd\u7c7b\u578b\u7684\u8f93\u5165\u5fc5\u987b\u901a\u8fc7":113,"\u8fd9\u79cd\u94fe\u63a5\u65b9\u5f0f\u4e3b\u8981\u7528\u4e8e\u79fb\u52a8\u7aef\u9884\u6d4b":87,"\u8fd9\u79cd\u96c6\u7fa4\u8282\u70b9\u7ba1\u7406\u65b9\u5f0f\u4f1a\u5728\u5c06\u6765\u4f7f\u7528":97,"\u8fd9\u7bc7":2,"\u8fd9\u7bc7\u6587\u6863":72,"\u8fd9\u7bc7\u6587\u6863\u4e4b\u540e\u90e8\u5206\u4f1a\u4f7f\u7528":90,"\u8fd9\u7bc7\u6587\u6863\u4e4b\u540e\u90e8\u5206\u4f1a\u7edf\u4e00\u4f7f\u7528":89,"\u8fd9\u7bc7\u6587\u6863\u4e4b\u540e\u90e8\u5206\u5c06\u4f1a\u7edf\u4e00\u4f7f\u7528":89,"\u8fd9\u7bc7\u6587\u6863\u4ecb\u7ecd":90,"\u8fd9\u7bc7\u6587\u6863\u4ecb\u7ecd\u5728":118,"\u8fd9\u7bc7\u6587\u6863\u4ecb\u7ecd\u5728\u4f7f\u7528":89,"\u8fd9\u7bc7\u6587\u6863\u4ecb\u7ecd\u57fa\u4e8e":0,"\u8fd9\u7bc7\u6587\u6863\u7684\u4e4b\u540e\u90e8\u5206\u4f1a\u4f7f\u7528":90,"\u8fd9\u7bc7\u6587\u7ae0":0,"\u8fd9\u7ec4\u8bed\u4e49\u76f8\u540c\u7684\u793a\u4f8b\u914d\u7f6e\u5982\u4e0b":111,"\u8fd9\u884c\u547d\u4ee4\u4e2d":107,"\u8fd9\u901a\u8fc7\u83b7\u5f97\u53cd\u5411\u5faa\u73af\u7f51\u7edc\u7684\u7b2c\u4e00\u4e2a\u5b9e\u4f8b":114,"\u8fd9\u90fd\u9700\u8981\u8fd9\u4e2a\u63a5\u53e3\u6309\u7167\u7ea6\u5b9a\u4fd7\u6210\u7684\u89c4\u5219\u6765\u6ce8\u91ca\u5b8c\u5907":45,"\u8fd9\u91cc":[1,42,72,83,97,114],"\u8fd9\u91cc\u4e0d\u518d\u8d58\u8ff0":75,"\u8fd9\u91cc\u4ecb\u7ecdc":90,"\u8fd9\u91cc\u4f7f\u7528\u4e86\u7528":107,"\u8fd9\u91cc\u4f7f\u7528\u4e86paddlepaddle\u9884\u5b9a\u4e49\u597d\u7684rnn\u5904\u7406\u51fd\u6570":111,"\u8fd9\u91cc\u4f7f\u7528\u7b80\u5355\u7684":81,"\u8fd9\u91cc\u5c06\u4ecb\u7ecdpaddlepaddle\u7684\u57fa\u672c\u4f7f\u7528\u6982\u5ff5":84,"\u8fd9\u91cc\u6211\u4eec\u5c55\u793a\u4e00\u4efd\u7b80\u5316\u8fc7\u7684\u4ee3\u7801":74,"\u8fd9\u91cc\u6211\u4eec\u901a\u8fc7\u5728kubernetes\u96c6\u7fa4\u4e0a\u542f\u52a8\u4e00\u4e2ajob\u6765\u4e0b\u8f7d\u5e76\u5207\u5272\u6570\u636e":97,"\u8fd9\u91cc\u6709\u4e24\u79cd\u6709\u6548\u7684\u89e3\u51b3\u65b9\u6cd5":81,"\u8fd9\u91cc\u68c0\u9a8c\u8fd0\u884c\u65f6\u95f4\u6a21\u578b\u7684\u6536\u655b":93,"\u8fd9\u91cc\u7684dockerimage\u4f5c\u4e3a\u7f16\u8bd1\u73af\u5883\u4ee5\u652f\u6301\u66f4\u591a\u7684linux":62,"\u8fd9\u91cc\u7684eigentensor\u4e4b\u95f4\u7684\u8fd0\u7b97\u53ea\u662f\u6539\u53d8\u4e86\u539f\u6709tensor\u4e2d\u7684\u6570\u636e":76,"\u8fd9\u91cc\u9009\u62e90":62,"\u8fd9\u91cc\u9700\u8981\u7528\u6237\u989d\u5916\u6ce8\u610f":11,"\u8fd9\u9700\u8981\u8054\u5408\u6211\u4eec\u7b2c\u4e8c\u8282":107,"\u8fdb\u4e00\u6b65\u4f18\u5316":42,"\u8fdb\u4e3b\u4ed3\u5e93\u540e":72,"\u8fdb\u5165":62,"\u8fdb\u5165\u5bb9\u5668":96,"\u8fdb\u5165\u5bf9\u5e94\u7684\u76ee\u5f55":78,"\u8fdb\u7a0b\u542f\u52a8\u7684\u5fc5\u8981\u53c2\u6570":97,"\u8fdb\u7a0b\u7684":93,"\u8fdb\u7a0b\u7684\u542f\u52a8\u53c2\u6570":97,"\u8fdb\u7a0b\u7684\u8fd0\u884c\u73af\u5883":97,"\u8fdb\u7a0b\u9700\u8981\u7684":97,"\u8fdb\u800c\u591a\u673a":107,"\u8fdb\u800c\u6211\u4eec\u53ef\u4ee5\u4f7f\u7528\u5982\u4e0b\u547d\u4ee4\u5f00\u542f\u4e00\u4e2ahttp\u670d\u52a1":107,"\u8fdb\u800c\u6307\u5b9a\u4e86python\u53ef\u6267\u884c\u6587\u4ef6\u7684\u8def\u5f84":107,"\u8fdb\u800c\u8fdb\u884c\u4ee3\u7801\u8bc4\u5ba1":62,"\u8fdb\u884c\u4e86":111,"\u8fdb\u884c\u5206\u5e03\u5f0f\u8bad\u7ec3\u7684\u65b9\u6848":97,"\u8fdb\u884c\u5206\u5e03\u5f0f\u8bad\u7ec3\u7684\u65b9\u6cd5":97,"\u8fdb\u884c\u524d\u5411\u8ba1\u7b97":90,"\u8fdb\u884c\u56de\u590d":72,"\u8fdb\u884c\u5e8f\u5217\u5316":90,"\u8fdb\u884c\u5f00\u53d1":72,"\u8fdb\u884c\u62c6\u89e3":111,"\u8fdb\u884c\u6fc0\u6d3b\u64cd\u4f5c":74,"\u8fdb\u884c\u7f16\u8bd1\u548c\u5b89\u88c5":116,"\u8fdb\u884c\u8bad\u7ec3":90,"\u8fdb\u884c\u8bbe\u7f6e":75,"\u8fdb\u884c\u94fe\u63a5":87,"\u8fdb\u884c\u9884\u6d4b\u4f9d\u8d56\u4e8e\u5c06":87,"\u8fdb\u884c\u9884\u6d4b\u65f6":90,"\u8fdb\u884cpython\u4e0ec":107,"\u8fdb\u9636\u4f7f\u7528":115,"\u8fdb\u9636\u6307\u5357":84,"\u8fde\u63a5":113,"\u8fde\u63a5\u5230pserver\u7684\u7aef\u53e3":91,"\u8fde\u63a5\u5230pserver\u7684\u7aef\u53e3\u4e2a\u6570":91,"\u9000\u51fa\u5bb9\u5668":96,"\u9009\u62e9\u4e0b\u8f7d\u4f7f\u7528\u4e0d\u540c\u7684blas\u5e93\u7684docker\u955c\u50cf":2,"\u9009\u62e9\u662f\u5426\u7f16\u8bd1mkl":42,"\u9009\u62e9\u76ee\u6807\u5206\u652f":72,"\u9009\u62e9\u8def\u5f84\u6765\u52a8\u6001\u52a0\u8f7dnvidia":103,"\u9009\u62e9\u9700\u8981\u53d1\u5e03\u7684\u7248\u672c":62,"\u9009\u9879":[0,1],"\u900f\u4f20\u7528\u6237\u8eab\u4efd\u7684\u529e\u6cd5":28,"\u9012\u5f52\u795e\u7ecf\u7f51\u7edc":102,"\u901a\u5e38":[46,75,107],"\u901a\u5e38\u4f1a\u4f7f\u7528\u73af\u5883\u53d8\u91cf\u914d\u7f6ejob\u7684\u914d\u7f6e\u4fe1\u606f":97,"\u901a\u5e38\u4f1a\u4f7f\u7528mapreduce\u4efb\u52a1\u7684\u8f93\u51fa\u7ed3\u679c\u4f5c\u4e3a\u8bad\u7ec3\u7ed3\u679c":91,"\u901a\u5e38\u4f7f\u7528\u7a00\u758f\u8bad\u7ec3\u6765\u52a0\u901f\u8ba1\u7b97\u8fc7\u7a0b":105,"\u901a\u5e38\u4f7f\u7528cento":4,"\u901a\u5e38\u505a\u6cd5\u662f\u4ece\u4e00\u4e2a\u6bd4\u8f83\u5927\u7684learning_rate\u5f00\u59cb\u8bd5":83,"\u901a\u5e38\u5305\u542b\u4e00\u4e2acpu\u7248\u672c\u548c\u4e00\u4e2agpu\u7248\u672c":62,"\u901a\u5e38\u540d\u5b57\u662f":72,"\u901a\u5e38\u60c5\u51b5\u4e0b":108,"\u901a\u5e38\u6211\u4eec\u4f1a\u5b89\u88c5ceph\u7b49\u5206\u5e03\u5f0f\u6587\u4ef6\u7cfb\u7edf\u6765\u5b58\u50a8\u8bad\u7ec3\u6570\u636e":96,"\u901a\u5e38\u6307\u5c06\u4e00\u4e2a\u6574\u4f53\u62c6\u5206\u6210\u591a\u4efd\u7684\u5176\u4e2d\u7684\u4e00\u4efd":11,"\u901a\u5e38\u6709\u4e24\u4e2a\u65b9\u6cd5\u6765\u6784\u5efa\u57fa\u4e8e":118,"\u901a\u5e38\u7528\u4e8e\u8868\u793a\u79bb\u6563\u7684\u7c7b\u522b\u6807\u7b7e":89,"\u901a\u5e38\u7684\u505a\u6cd5\u662f\u4f7f\u7528":114,"\u901a\u5e38\u7684\u505a\u6cd5\u662f\u5c06\u914d\u7f6e\u5b58\u4e8e":74,"\u901a\u5e38\u8981\u6c42\u65f6\u95f4\u6b65\u4e4b\u95f4\u5177\u6709\u4e00\u4e9b\u4f9d\u8d56\u6027":111,"\u901a\u5e38\u89c2\u5bdf\u70ed\u70b9\u51fd\u6570\u95f4\u7684\u8c03\u7528\u5173\u7cfb":107,"\u901a\u5e38\u90fd\u4f1a\u4f7f\u7528\u4e0b\u9762\u8fd9\u4e9b\u547d\u4ee4\u884c\u53c2\u6570":105,"\u901a\u5e38\u9700\u8981\u53bb\u6389\u7f51\u7edc\u4e2d\u7684":90,"\u901a\u7528":102,"\u901a\u8fc7":[72,74,75,81,89,111],"\u901a\u8fc7\u4e24\u4e2a\u5d4c\u5957\u7684":113,"\u901a\u8fc7\u4f7f\u7528":1,"\u901a\u8fc7\u4f7f\u7528\u8fd9\u4e9bapi":41,"\u901a\u8fc7\u51fd\u6570":97,"\u901a\u8fc7\u547d\u4ee4\u884c\u53c2\u6570":81,"\u901a\u8fc7\u591a\u4e2a\u7ebf\u7a0b\u5171\u4eab\u540c\u4e00\u4e2a\u6a21\u578b\u6765\u51cf\u5c11\u5185\u5b58\u5f00\u9500":90,"\u901a\u8fc7\u5f15\u7528memory\u5f97\u5230\u8fd9\u4e2alayer\u4e0a\u4e00\u4e2a\u65f6\u523b\u7684\u8f93\u51fa":113,"\u901a\u8fc7\u5f15\u7528memory\u5f97\u5230\u8fd9\u4e2alayer\u4e0a\u4e00\u4e2a\u65f6\u523b\u8f93\u51fa":113,"\u901a\u8fc7\u6240\u6709\u5355\u5143\u6d4b\u8bd5":72,"\u901a\u8fc7\u6a21\u578b\u63a8\u65adapi\u7684\u5b9e\u73b0\u4f5c\u4e3a\u4e00\u4e2a\u6837\u4f8b":46,"\u901a\u8fc7\u7075\u6d3b\u4f7f\u7528\u4ee5\u4e0a\u4e24\u4e2a\u63a5\u53e3":90,"\u901a\u8fc7\u7ec4\u5408\u4e0d\u540c\u7684layer":84,"\u901a\u8fc7\u7f51\u7edc\u5c42\u7684\u6807\u8bc6\u7b26\u6765\u6307\u5b9a":74,"\u901a\u8fc7\u8ba1\u7b97\u8282\u70b9\u548c\u53c2\u6570\u670d\u52a1\u5668\u7684\u5206\u5e03\u5f0f\u534f\u4f5c":92,"\u901a\u8fc7\u8be5\u53c2\u6570\u53ef\u83b7\u53d6\u5230\u8f93\u5165\u8f93\u51fa\u4ee5\u53ca\u5c5e\u6027":75,"\u901a\u8fc7\u8c03\u7528":[89,90],"\u901a\u8fc7\u8c03\u7528\u4ee5\u4e0b\u63a5\u53e3\u521b\u5efa\u7a00\u758f\u77e9\u9635":89,"\u901a\u8fc7data":113,"\u901a\u8fc7ssh\u7b49\u65b9\u5f0f\u767b\u5f55\u5230raspberri":118,"\u903b\u8f91\u4e0a\u9ad8\u4e8e\u4e8c\u7ef4\u7684\u6570\u636e":89,"\u903b\u8f91\u5212\u4e0a\u6587\u4ef6\u5206\u5757\u7684\u5355\u4f4d":28,"\u9047\u5230\u8be5\u9519\u8bef\u65f6":82,"\u9075\u5b88\u4ee5\u4e0b\u7ea6\u5b9a":72,"\u9075\u5faa\u4ee5\u4e0b\u6d41\u7a0b":62,"\u90a3\u4e48":[46,74,113],"\u90a3\u4e480\u5c42\u5e8f\u5217\u5373\u4e3a\u4e00\u4e2a\u8bcd\u8bed":113,"\u90a3\u4e48\u4f1a\u643a\u5e26\u6709":89,"\u90a3\u4e48\u53ef\u4ee5\u8ba4\u4e3a\u8bad\u7ec3\u4e0d\u6536\u655b":83,"\u90a3\u4e48\u5728":75,"\u90a3\u4e48\u5982\u4f55\u5224\u65ad\u8bad\u7ec3\u4e0d\u6536\u655b\u5462":83,"\u90a3\u4e48\u5bf9\u5e94\u7684\u5185\u90e8\u5b58\u50a8\u4e5f\u4f1a\u4e0e\u5b83\u4eec\u5171\u4eab\u5185\u5b58":42,"\u90a3\u4e48\u5c31\u4f1a\u4f7f":42,"\u90a3\u4e48\u5e38\u6570\u8f93\u51fa\u6240\u80fd\u8fbe\u5230\u7684\u6700\u5c0fcost\u662f":83,"\u90a3\u4e48\u6211\u4eec\u4e5f\u5c31\u4e0d\u9700\u8981":0,"\u90a3\u4e48\u6211\u4eec\u53ef\u4ee5\u5224\u65ad\u4e3a\u8bad\u7ec3\u4e0d\u6536\u655b":83,"\u90a3\u4e48\u63a8\u8350\u4f7f\u7528":114,"\u90a3\u4e48\u63a8\u8350\u4f7f\u7528\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u7684\u65b9\u6cd5":114,"\u90a3\u4e48\u6536\u655b\u53ef\u80fd\u5f88\u6162":83,"\u90a3\u4e48\u6700\u597d\u5c06\u6570\u636e\u6587\u4ef6\u5728\u6bcf\u6b21\u8bfb\u53d6\u4e4b\u524d\u505a\u4e00\u6b21shuffl":81,"\u90a3\u4e48\u7528\u6237\u9700\u8981\u62c9\u53d6\u6240\u6709\u7684\u8fdc\u7a0b\u5206\u652f\u5230\u672c\u673a":78,"\u90a3\u4e48\u7f16\u8bd1\u8fc7\u7a0b\u53ea\u4f1a\u4ea7\u751f":0,"\u90a3\u4e48\u8bad\u7ec3\u6709\u53ef\u80fd\u4e0d\u6536\u655b":83,"\u90a3\u4e48\u8be5\u4f18\u5316\u7b97\u6cd5\u81f3\u5c11\u9700\u8981":81,"\u90a3\u4e48fc1\u548cfc2\u5c42\u5c06\u4f1a\u4f7f\u7528\u7b2c1\u4e2agpu\u6765\u8ba1\u7b97":105,"\u90a3\u4e5f\u5c31\u4e0d\u9700\u8981\u6025\u7740\u4f18\u5316\u6027\u80fd\u5566":108,"\u90a3\u4f30\u8ba1\u8fd9\u91cc\u7684\u6f5c\u529b\u5c31\u6ca1\u5565\u597d\u6316\u7684\u4e86":108,"\u90a3\u51cf\u5c11\u5b66\u4e60\u738710\u500d\u7ee7\u7eed\u8bd5\u9a8c":83,"\u90a3\u6211\u4f1a\u671f\u671b\u5206\u6790\u5de5\u5177\u7edf\u8ba1\u5230\u901f\u5ea6\u662f100gb":108,"\u90a3\u7a0b\u5e8f\u5206\u6790\u5de5\u5177\u662f\u5fc5\u4e0d\u53ef\u5c11\u7684\u5229\u5668":108,"\u90fd\u4e0d\u4f1a\u60f3\u8981\u77e5\u9053next":42,"\u90fd\u4e0d\u9700\u8981":0,"\u90fd\u4f1a\u4ea7\u751f\u5f53\u524d\u5c42\u72b6\u6001\u7684\u6240\u6709\u7ee7\u627f\u7ed3\u679c":103,"\u90fd\u4f1a\u7ba1\u7406\u7ef4\u62a4\u4e00\u4efd\u8bad\u7ec3\u597d\u7684\u6a21\u578b":90,"\u90fd\u4f1a\u9020\u6210\u8bad\u7ec3\u4e2d\u7684\u6570\u636e\u4ecec":81,"\u90fd\u4f7f\u7528":89,"\u90fd\u53ea\u662f\u4ecb\u7ecd\u53cc\u5c42rnn\u7684api\u63a5\u53e3":111,"\u90fd\u53ef\u4ee5\u8fd0\u884c":0,"\u90fd\u53ef\u4ee5\u901a\u8fc7\u8c03\u7528\u4e0b\u9762\u7684\u63a5\u53e3\u4e3a\u539f\u6709\u7684\u6570\u636e\u8f93\u5165\u9644\u52a0\u4e0a\u5e8f\u5217\u4fe1\u606f":89,"\u90fd\u5e94\u4f7f\u7528c":89,"\u90fd\u662f\u4e94\u4f4d\u7684\u6570\u5b57":12,"\u90fd\u662f\u4ee5ext\u5f00\u5934":42,"\u90fd\u662f\u5bf9layer1\u5143\u7d20\u7684\u62f7\u8d1d":110,"\u90fd\u662f\u5c06\u6bcf\u4e00\u53e5\u5206\u597d\u8bcd\u540e\u7684\u53e5\u5b50":111,"\u90fd\u662fabi\u8c03\u7528\u6807\u51c6\u7684":45,"\u90fd\u7528":72,"\u90fd\u7ee7\u627f\u4e8epaddlepaddle\u7684\u57fa\u7c7b":41,"\u90fd\u9700\u8981\u5199\u63d0\u4ea4\u8bf4\u660e":72,"\u90fd\u9700\u8981\u8c03\u7528\u4e00\u6b21":74,"\u914d\u5236\u7f16\u8bd1\u9009\u9879":87,"\u914d\u7f6e\u6253\u5f00":108,"\u914d\u7f6e\u6587\u4ef6\u63a5\u53e3\u662ffc_layer":74,"\u914d\u7f6e\u6587\u4ef6\u91cc\u52a0\u4e24\u884c":0,"\u914d\u7f6e\u7684\u65b9\u6cd5\u53c2\u8003":28,"\u914d\u7f6e\u7b80\u5355\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u7684\u4f8b\u5b50":114,"\u914d\u7f6e\u7f51\u7edc\u5c42\u7684\u8f93\u5165":74,"\u914d\u7f6eapi":110,"\u91c7\u7528\u5747\u5300\u5206\u5e03\u6216\u8005\u9ad8\u65af\u5206\u5e03\u521d\u59cb\u5316":103,"\u91c7\u7528multi":83,"\u91ca\u653e\u5bf9paramters\u5185\u5b58\u7684\u9501\u5b9a":11,"\u91cc":0,"\u91cc\u53ef\u4ee5\u6807\u51c6\u5316\u7f16\u8bd1\u73af\u5883":0,"\u91cc\u5b8c\u6210":75,"\u91cc\u6240\u6709\u7684\u7b26\u53f7\u90fd\u5199\u5165\u81ea\u5df1\u7684\u7a0b\u5e8f\u7684\u4e8c\u8fdb\u5236\u6587\u4ef6\u91cc":45,"\u91cc\u7684":0,"\u91cc\u7684\u65e5\u5fd7":93,"\u91cc\u7684\u6e90\u7801":0,"\u91cc\u8fd0\u884c\u7684\u7f16\u8bd1\u5de5\u5177\u5b9e\u9645\u4e0a\u90fd\u662f\u5728\u672c\u673a\u7684":0,"\u91cc\u9009\u62e9\u9700\u8981\u53d1\u5e03\u7684\u5206\u652f":62,"\u91cc\u9762":75,"\u91cc\u9762\u6db5\u76d6\u4e86\u4ea4\u53c9\u7f16\u8bd1android\u7248paddlepaddle\u5e93\u9700\u8981\u7684\u6240\u6709\u7f16\u8bd1\u5de5\u5177":116,"\u91cc\u9762\u6dfb\u52a0":42,"\u91ccstep\u7684\u5185\u5bb9":81,"\u91cd\u5199\u7236\u7c7blayer\u7684":42,"\u91cd\u547d\u540d\u6210":45,"\u91cd\u65b0\u7f16\u8bd1paddlepaddl":108,"\u9488\u5bf9\u4e0d\u540c\u7684":117,"\u9488\u5bf9\u4efb\u52a1\u8fd0\u884c\u5b8c\u6210\u540e\u5bb9\u5668\u81ea\u52a8\u9000\u51fa\u7684\u573a\u666f":96,"\u9488\u5bf9\u5185\u5b58\u548c\u663e\u5b58":81,"\u94fe\u63a5":87,"\u94fe\u63a5\u4e2d\u627e\u5230":4,"\u94fe\u63a5\u4f55\u79cdblas\u5e93\u7b49":1,"\u94fe\u63a5\u5230\u81ea\u5df1\u7684\u7a0b\u5e8f\u91cc":45,"\u94fe\u63a5\u76f8\u5bf9\u5bb9\u6613":87,"\u94fe\u63a5\u9009\u9879":87,"\u94fe\u63a5\u9759\u6001\u5e93":87,"\u9519\u8bef":78,"\u9519\u8bef\u5904\u7406":45,"\u9519\u8bef\u5904\u7406\u65b9\u5f0f\u662f\u8fd4\u56de\u503c":45,"\u9519\u8bef\u5904\u7406\u7684\u65b9\u5f0f\u4e5f\u4e0d\u5c3d\u76f8\u540c":45,"\u9519\u8bef\u7684define_py_data_sources2\u7c7b\u4f3c":83,"\u952e\u6765\u542f\u52a8\u7f16\u8bd1\u4e86":0,"\u955c\u50cf\u91cc\u6709paddlepaddle\u7684\u6e90\u7801\u4e0edemo":96,"\u957f\u5ea6":81,"\u95e8\u63a7\u5faa\u73af\u5355\u5143\u5355\u6b65\u51fd\u6570\u548c\u8f93\u51fa\u51fd\u6570":114,"\u95e8\u63a7\u5faa\u73af\u5355\u5143\u7684\u8f93\u51fa\u88ab\u7528\u4f5c\u8f93\u51famemori":114,"\u9644\u52a0\u4e0a\u5e8f\u5217\u4fe1\u606f":89,"\u9650\u5236\u5957\u63a5\u5b57\u53d1\u9001\u7f13\u51b2\u533a\u7684\u5927\u5c0f":103,"\u9650\u5236\u5957\u63a5\u5b57\u63a5\u6536\u7f13\u51b2\u533a\u7684\u5927\u5c0f":103,"\u9664\u4e86\u53ef\u4ee5\u81ea\u52a8\u7f16\u8bd1\u6587\u6863":77,"\u9664\u4e86boot_lay":111,"\u9664\u6784\u9020\u67d0\u79cd\u7c7b\u578b\u7684\u51fd\u6570":46,"\u9664\u6b64\u4e4b\u5916":81,"\u9664\u96f6\u7b49\u95ee\u9898":81,"\u968f\u540e\u53ef\u4ee5\u7528\u8fd9\u4e2a\u5f00\u53d1\u955c\u50cf\u5f00\u59cbbuild":72,"\u968f\u673a\u6570\u7684\u79cd\u5b50":103,"\u968f\u673a\u6570seed":102,"\u9694\u5f00":91,"\u96c6\u6210\u5230":41,"\u96c6\u6210\u5230paddlepaddl":42,"\u96c6\u675f\u641c\u7d22\u4f7f\u7528\u5e7f\u5ea6\u4f18\u5148\u641c\u7d22\u7684\u65b9\u5f0f\u6784\u5efa\u67e5\u627e\u6811":103,"\u96c6\u7fa4\u4e0a\u542f\u52a8\u4e00\u4e2a\u5355\u673a\u4f7f\u7528cpu\u7684paddlepaddle\u8bad\u7ec3\u4f5c\u4e1a":96,"\u96c6\u7fa4\u4e2d\u7684\u6bcf\u53f0\u8ba1\u7b97\u673a\u901a\u5e38\u88ab\u6210\u4e3a\u4e00\u4e2a":101,"\u96c6\u7fa4\u4efb\u52a1":93,"\u96c6\u7fa4\u4f5c\u4e1a\u5c06\u4f1a\u5728\u51e0\u79d2\u540e\u542f\u52a8":93,"\u96c6\u7fa4\u6d4b\u8bd5":102,"\u96c6\u7fa4\u7ba1\u7406\u5de5\u5177":94,"\u96c6\u7fa4\u8bad\u7ec3":102,"\u96c6\u7fa4\u8bad\u7ec3\u4e0e\u9884\u6d4b":80,"\u96c6\u7fa4\u8fdb\u7a0b":93,"\u9700\u52a0\u8be5\u6a21\u677f\u53c2\u6570":75,"\u9700\u5728nvvp\u754c\u9762\u4e2d\u9009\u4e0a\u624d\u80fd\u5f00\u542f":108,"\u9700\u6307\u5b9a":87,"\u9700\u63d0\u4f9b\u975e\u96f6\u5143\u7684\u503c":89,"\u9700\u6ce8\u610f":87,"\u9700\u8981":[0,12,75,90],"\u9700\u8981\u4e3a":75,"\u9700\u8981\u4f7f\u7528":81,"\u9700\u8981\u4f7f\u7528\u5176\u5236\u5b9a\u7684\u65b9\u5f0f\u6302\u8f7d\u540e\u5e76\u5bfc\u5165\u6570\u636e":97,"\u9700\u8981\u4f7f\u7528\u6700\u65b0\u7684pip":4,"\u9700\u8981\u4f7f\u7528\u8005\u81ea\u5df1\u4e86\u89e3\u5e76\u5b8c\u6210\u8f6c\u5316":89,"\u9700\u8981\u4fdd\u6301\u5f53\u524d\u5206\u652f\u76ee\u5f55":72,"\u9700\u8981\u4fee\u6539build":62,"\u9700\u8981\u521b\u5efa\u5e76\u586b\u5199":89,"\u9700\u8981\u5347\u7ea7pip\u7248\u672c\u5230\u6700\u65b0":[4,78],"\u9700\u8981\u5355\u72ec":2,"\u9700\u8981\u53ef\u4ee5\u8de8\u5e73\u53f0\u6267\u884c":28,"\u9700\u8981\u540c\u65f6\u63d0\u4f9b\u6bcf\u4e00\u4e2a\u5185\u5c42\u5e8f\u5217\u5728\u6574\u4e2a":89,"\u9700\u8981\u540c\u6b65\u539f\u4ed3\u5e93":72,"\u9700\u8981\u542f\u52a8\u7684\u8282\u70b9\u4e2a\u6570\u4ee5\u53ca":97,"\u9700\u8981\u548c\u8be5op\u7684\u540d\u5b57\u4e00\u6837":75,"\u9700\u8981\u54ea\u4e9b\u5c42\u7684\u8ba1\u7b97\u7ed3\u679c\u4f5c\u4e3a\u8f93\u51fa":90,"\u9700\u8981\u5728":75,"\u9700\u8981\u5728\u521b\u5efa\u5bb9\u5668\u524d\u6302\u8f7d\u5377\u4ee5\u4fbf\u6211\u4eec\u4fdd\u5b58\u8bad\u7ec3\u7ed3\u679c":96,"\u9700\u8981\u5728\u7cfb\u7edf\u91cc\u5148\u5b89\u88c5\u597ddocker\u5de5\u5177\u5305":77,"\u9700\u8981\u5728cmake\u7684\u65f6\u5019":46,"\u9700\u8981\u5728macos\u7cfb\u7edf\u4e0a\u8fdb\u884c":117,"\u9700\u8981\u5c06\u5176parameter\u8bbe\u7f6e\u6210":81,"\u9700\u8981\u5c06\u7f51\u7edc\u7ed3\u6784\u4f7f\u7528":90,"\u9700\u8981\u5c06bugfix\u7684\u5206\u652f\u540c\u65f6merge\u5230":62,"\u9700\u8981\u5c06cuda\u76f8\u5173\u7684\u5e93\u8bbe\u7f6e\u5230":87,"\u9700\u8981\u5c06paddl":87,"\u9700\u8981\u5f15\u7528":46,"\u9700\u8981\u5f3a\u8c03\u7684\u662f":0,"\u9700\u8981\u601d\u8003\u5b8c\u6210\u4ee5\u4e0b\u5de5\u4f5c":[89,90],"\u9700\u8981\u624b\u52a8\u8fdb\u884c\u89e3\u538b":90,"\u9700\u8981\u6267\u884c":[1,4,86],"\u9700\u8981\u6307\u5b9a":87,"\u9700\u8981\u6307\u5b9a\u4e0e\u67d0\u4e00\u4e2a\u8f93\u5165\u7684\u5e8f\u5217\u4fe1\u606f\u662f\u4e00\u81f4\u7684":111,"\u9700\u8981\u6307\u5b9alayer\u7684\u8f93\u5165\u6765\u6e90":84,"\u9700\u8981\u660e\u786e\u6307\u5b9a":103,"\u9700\u8981\u663e\u5f0f\u5730\u94fe\u63a5":87,"\u9700\u8981\u663e\u793a\u5730\u94fe\u63a5":87,"\u9700\u8981\u663e\u793a\u5730\u94fe\u63a5mkl\u7684\u52a8\u6001\u5e93":87,"\u9700\u8981\u6709\u7a33\u5b9a\u7684\u5bfc\u51fa\u7b26\u53f7":45,"\u9700\u8981\u6839\u636e\u4e0d\u540c\u7684\u5206\u5e03\u5f0f\u5b58\u50a8\u6765\u7ed1\u5b9a\u4e00\u4e2a":97,"\u9700\u8981\u6ce8\u610f":75,"\u9700\u8981\u6ce8\u610f\u7684\u662f":[42,62,81,103],"\u9700\u8981\u6ce8\u610f\u7684\u662f\u68af\u5ea6\u68c0\u67e5\u4ec5\u4ec5\u9a8c\u8bc1\u4e86\u68af\u5ea6\u7684\u8ba1\u7b97":74,"\u9700\u8981\u6ce8\u610f\u7684\u662fpaddlepaddle\u76ee\u524d\u53ea\u652f\u6301\u5b50\u5e8f\u5217\u6570\u76ee\u4e00\u6837\u7684\u591a\u8f93\u5165\u53cc\u5c42rnn":111,"\u9700\u8981\u7528\u5230\u7684\u7f16\u8bd1\u5de5\u5177\u548c\u7cfb\u7edf\u5e93":116,"\u9700\u8981\u7528\u6237\u663e\u5f0f\u8bbe\u5b9a":82,"\u9700\u8981\u7d2f\u52a0\u4e0d\u540clayer\u4f20\u8fc7\u6765\u7684\u68af\u5ea6":42,"\u9700\u8981\u81ea\u5df1\u94fe\u63a5mkl\u94fe\u63a5\u5e93":87,"\u9700\u8981\u88ab\u66b4\u9732\u5230\u5176\u4ed6\u8bed\u8a00":46,"\u9700\u8981\u8bf7\u7ba1\u7406\u5458\u5b89\u88c5\u548c\u914d\u7f6e\u597d":0,"\u9700\u8981\u9075\u5faa\u4ee5\u4e0b\u7ea6\u5b9a":113,"\u9700\u8981\u91cd\u547d\u540dwheel\u5305\u4e2dplatform\u76f8\u5173\u7684\u540e\u7f00":62,"\u9700\u8981\u989d\u5916\u6ce8\u610f\u7684\u662f":76,"\u9700\u9644\u52a0\u53cc\u5c42\u5e8f\u5217\u4fe1\u606f":89,"\u9700\u9644\u52a0\u5e8f\u5217\u4fe1\u606f":89,"\u975e\u5e38\u6570":74,"\u975e\u5e8f\u5217\u8f93\u5165\u4e0d\u643a\u5e26":89,"\u975e\u5e8f\u5217\u8f93\u5165\u65e0\u9700\u6784\u9020":89,"\u975e\u96f6\u5143\u4e2a\u6570":89,"\u975e\u96f6\u5143\u7d20\u7684\u503c":89,"\u975e\u96f6\u5143\u7d20\u7684\u5217\u53f7":89,"\u975e\u96f6\u6570\u5b57\u7684\u4e2a\u6570":74,"\u9762\u5411\u67b6\u6784\u4e3a32\u4f4darm\u67b6\u6784":116,"\u9762\u5411\u67b6\u6784\u4e3a64\u4f4darm64\u67b6\u6784":116,"\u9879\u76ee\u5728\u52aa\u529b\u5f00\u59cb\u652f\u6301\u5176\u4ed6\u4e0d\u9700\u8981":0,"\u987a\u5e8f":111,"\u9884\u63d0\u4ea4\u94a9\u5b50":72,"\u9884\u6d4b\u4ee3\u7801\u66f4\u591a\u8be6\u7ec6\u793a\u4f8b\u4ee3\u7801\u8bf7\u53c2\u8003":90,"\u9884\u6d4b\u4f7f\u7528\u7684\u7f51\u7edc\u7ed3\u6784\u5f80\u5f80\u4e0d\u540c\u4e8e\u8bad\u7ec3":90,"\u9884\u6d4b\u65f6":90,"\u9884\u6d4b\u65f6\u53ea\u9700\u52a0\u8f7d\u4e00\u4e2a\u6587\u4ef6\u4fbf\u4e8e\u53d1\u5e03":90,"\u9884\u6d4b\u7a0b\u5e8f\u5f00\u53d1\u4e24\u5927\u90e8\u5206":90,"\u9996\u5148":[74,111,114],"\u9996\u5148\u5728\u7cfb\u7edf\u8def\u5f84":1,"\u9996\u5148\u5b89\u88c5\u5e76\u5728\u5f53\u524d\u76ee\u5f55\u8fd0\u884c\u5b83":72,"\u9996\u5148\u5b9a\u4e49":75,"\u9996\u5148\u5bf9\u8f93\u5165\u505a\u4e00\u4e2a\u5c0f\u7684\u6270\u52a8":74,"\u9996\u5148\u6211\u4eec\u9700\u8981\u63a8\u5bfc\u8be5\u7f51\u7edc\u5c42\u7684":74,"\u9996\u5148\u6784\u9020\u5934\u4fe1\u606f":83,"\u9996\u5148\u901a\u8fc7":72,"\u9996\u5148\u9700\u8981\u52a0\u8f7d\u76f8\u5e94\u7684python\u5e93":84,"\u9a71\u52a8":77,"\u9ad8\u4eae\u90e8\u5206":111,"\u9ad8\u5ea6":89,"\u9ad8\u5ea6\u652f\u6301\u7075\u6d3b\u548c\u9ad8\u6548\u7684\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u914d\u7f6e":114,"\u9ad8\u65af\u5206\u5e03":83,"\u9ed8\u8ba4":103,"\u9ed8\u8ba40":91,"\u9ed8\u8ba41":91,"\u9ed8\u8ba4127":91,"\u9ed8\u8ba4256k":28,"\u9ed8\u8ba47164":91,"\u9ed8\u8ba4\u4e0d\u663e\u793a":103,"\u9ed8\u8ba4\u4e0d\u8bbe\u7f6e":113,"\u9ed8\u8ba4\u4e3a0":[103,105],"\u9ed8\u8ba4\u4e3a1":[89,105],"\u9ed8\u8ba4\u4e3a100":105,"\u9ed8\u8ba4\u4e3a4096mb":103,"\u9ed8\u8ba4\u4e3a\u7b2c\u4e00\u4e2a\u8f93\u5165":113,"\u9ed8\u8ba4\u4e3anull":103,"\u9ed8\u8ba4\u4f1a\u5c06a\u548cb":81,"\u9ed8\u8ba4\u4f7f\u7528concurrentremoteparameterupdat":103,"\u9ed8\u8ba4\u4f7f\u7528mkl":1,"\u9ed8\u8ba4\u503c":[1,105,110,117],"\u9ed8\u8ba4\u503c\u4e3a":[116,117,118],"\u9ed8\u8ba4\u503c\u4e3a\u73af\u5883\u53d8\u91cf":117,"\u9ed8\u8ba4\u521d\u59cb\u72b6\u4e3a0":113,"\u9ed8\u8ba4\u60c5\u51b5\u4e0b":[83,93],"\u9ed8\u8ba4\u60c5\u51b5\u4e0b\u6309\u7167float\u7cbe\u5ea6\u8ba1\u7b97":83,"\u9ed8\u8ba4\u6307\u5b9a\u7b2c\u4e00\u4e2a\u8f93\u5165":111,"\u9ed8\u8ba4\u662f\u4f7f\u7528mkl\u7684\u955c\u50cf":2,"\u9ed8\u8ba4\u6ca1\u6709\u5b89\u88c5vim":2,"\u9ed8\u8ba4\u7684paddlepaddle\u751f\u4ea7\u73af\u5883\u955c\u50cf":96,"\u9ed8\u8ba4\u7f16\u8bd1\u6240\u6709\u67b6\u6784":117,"\u9ed8\u8ba4\u8bbe\u7f6e\u4e3a":41,"\u9ed8\u8ba4\u8bbe\u7f6e\u4e3a\u771f":105,"\u9ed8\u8ba4\u8bbe\u7f6e\u6210\u73af\u5883\u53d8\u91cf":[116,118],"\u9ed8\u8ba4\u8c03\u7528":0,"\u9ed8\u8ba4fals":91,"abi\u7684paddlepaddle\u5e93":116,"abstract":[19,20,27,31,52,61,63],"android\u5b98\u65b9\u63d0\u4f9b\u7684":116,"android\u5e73\u53f0\u4e0a\u4f7f\u7528\u7684c":116,"android\u5e73\u53f0\u53ef\u9009\u914d\u7f6e\u53c2\u6570":116,"android\u7684docker\u5f00\u53d1\u955c\u50cf\u5411\u7528\u6237\u63d0\u4f9b\u4e24\u4e2a\u53ef\u914d\u7f6e\u7684\u53c2\u6570":116,"api\u4e0d\u4f1a\u76f4\u63a5\u52a0\u8f7d":90,"api\u4e0d\u5c0f\u4e8e21":116,"api\u4e2d":89,"api\u4e2d\u4f7f\u7528":45,"api\u4e2d\u7684\u4e00\u7ef4\u6570\u7ec4":89,"api\u4e2d\u7684\u77e9\u9635\u6765\u8868\u793a":89,"api\u4e2d\u795e\u7ecf\u7f51\u7edc\u7684\u4e00\u4e2a\u8f93\u5165":90,"api\u4f7f\u7528\u4e2d\u7684\u4e00\u4e2a\u91cd\u8981\u6982\u5ff5":90,"api\u4f7f\u7528\u6d41\u7a0b":88,"api\u4f7f\u7528\u6d41\u7a0b\u793a\u610f\u56fe":90,"api\u4f7f\u7528\u793a\u4f8b":90,"api\u521b\u5efa\u7684gradientmachine\u7c7b\u7684\u5bf9\u8c61":90,"api\u53ef\u4ee5\u901a\u8fc7\u5206\u522b\u6307\u5b9a\u5e8f\u5217\u5316\u540e\u7684\u7f51\u7edc\u7ed3\u6784\u6587\u4ef6\u548c\u53c2\u6570\u76ee\u5f55\u6765\u52a0\u8f7d\u8bad\u7ec3\u597d\u7684\u6a21\u578b":90,"api\u53ef\u4ee5\u901a\u8fc7\u6307\u5b9a":90,"api\u5b8c\u6210\u5206\u5e03\u5f0f\u8bad\u7ec3":91,"api\u5bf9\u6bd4\u4ecb\u7ecd":112,"api\u5bfc\u51fa\u7684\u52a8\u6001\u5e93":46,"api\u5bfc\u51fa\u7684\u9759\u6001\u5e93":46,"api\u5e93\u5c06\u88ab\u5b89\u88c5\u5230":116,"api\u5f00\u53d1\u5305\u5e76\u5b89\u88c5":4,"api\u5f00\u53d1\u9884\u6d4b\u7a0b\u5e8f\u65f6":87,"api\u5f00\u53d1\u9884\u6d4b\u7a0b\u5e8f\u9700\u8981\u4e00\u4e2a\u8bad\u7ec3\u597d\u7684\u6a21\u578b":90,"api\u6240\u9700\u7684\u4f9d\u8d56":87,"api\u63a5\u53d7\u7684\u7c7b\u578b\u5168\u662f":46,"api\u63a5\u53e3":28,"api\u63a5\u53e3\u751f\u6210":75,"api\u63a5\u53e3\u7684\u53c2\u6570\u8f6c\u53d1\u7ed9":46,"api\u63a5\u53e3\u7684\u751f\u6210":75,"api\u63d0\u4f9b\u7684":90,"api\u652f\u6301\u7684\u6240\u6709\u8f93\u5165\u6570\u636e\u7c7b\u578b\u548c\u4ed6\u4eec\u7684\u7ec4\u7ec7\u65b9\u5f0f":90,"api\u6587\u6863":[116,117],"api\u65f6":46,"api\u65f6\u4e3a\u8f93\u51fa":90,"api\u65f6\u6240\u552f\u4e00\u9700\u8981\u5f15\u5165\u7684\u5934\u6587\u4ef6":46,"api\u662f\u591a\u8bed\u8a00api\u7684\u57fa\u7840\u90e8\u5206":46,"api\u66b4\u9732\u7684\u7c7b\u578b":46,"api\u6765\u9884\u6d4b":[116,117],"api\u751f\u6210\u7684\u4e8c\u8fdb\u5236\u6587\u4ef6\u4f1a\u88ab\u5b89\u88c5\u5230":46,"api\u7684\u5934\u6587\u4ef6":[116,117,118],"api\u7684\u5b9e\u4f8b":46,"api\u7684\u5b9e\u73b0\u7ec6\u8282":46,"api\u7684\u63a5\u53e3":46,"api\u7684\u65f6\u5019\u63a8\u8350paddle\u4e0d\u5d4c\u5165python\u89e3\u91ca\u5668":46,"api\u7684\u7f16\u8bd1\u9009\u9879\u9ed8\u8ba4\u5173\u95ed":46,"api\u76ee\u5f55\u7ed3\u6784\u5982\u4e0a\u56fe\u8868\u6240\u793a":46,"api\u76f8\u5173\u63a5\u53e3":89,"api\u7ea7\u522b":116,"api\u7ea7\u522b\u4e3a21":116,"api\u83b7\u5f97\u4e86\u795e\u7ecf\u7f51\u7edc\u7684\u53c2\u6570\u5b9e\u4f8b":46,"api\u8bad\u7ec3":90,"api\u9700\u8981\u521b\u5efa\u7684\u6570\u636e\u7c7b\u578b":89,"api\u9759\u6001\u5e93":117,"api\u9884\u6d4b\u5e93":[106,117],"api\u9884\u6d4b\u65f6":90,"apis\u505a\u4e86\u5c01\u88c5":41,"app\u4e2d":[116,117],"apple\u5b98\u65b9\u4e3aios\u5f00\u53d1\u63d0\u4f9b\u4e86\u5b8c\u6574\u7684\u4ea4\u53c9\u7f16\u8bd1\u5de5\u5177\u548c\u96c6\u6210\u5f00\u53d1\u73af\u5883":117,"async_sgd\u8fdb\u884c\u8bad\u7ec3\u65f6":83,"avx\u662f\u4e00\u79cdcpu\u6307\u4ee4\u96c6":2,"avx\u7248\u672c":2,"avx\u7684\u955c\u50cf":2,"batch\u4e2d\u5305\u542b":81,"batch\u7684\u6743\u91cd":81,"batches\u4e2a\u6279\u6b21\u4fdd\u5b58\u4e00\u6b21\u53c2\u6570":103,"batches\u6b21":103,"block\u6784\u6210\u4e00\u4e2amodel":11,"book\u4e00\u5b9a\u662f\u60a8\u6700\u597d\u7684\u9009\u62e9":2,"book\u4e2d\u6240\u6709\u7ae0\u8282\u529f\u80fd\u7684\u6b63\u786e\u6027":62,"book\u662f\u4e3a\u7528\u6237\u548c\u5f00\u53d1\u8005\u5236\u4f5c\u7684\u4e00\u4e2a\u4ea4\u4e92\u5f0f\u7684jupyt":2,"book\u7684":84,"book\u7684docker\u955c\u50cf":2,"boolean":[27,29,37,45,68],"break":[9,66,68,70,71],"bugfix\u5206\u652f\u4e5f\u662f\u5728\u5f00\u53d1\u8005\u81ea\u5df1\u7684fork\u7248\u672c\u5e93\u7ef4\u62a4":62,"bugfix\u5206\u652f\u9700\u8981\u5206\u522b\u7ed9\u4e3b\u7248\u672c\u5e93\u7684":62,"byte":[28,44,83],"c99\u662f\u76ee\u524dc\u6700\u5e7f\u6cdb\u7684\u4f7f\u7528\u6807\u51c6":45,"c\u6709\u6807\u51c6\u7684abi":45,"c\u8bed\u8a00\u662f\u6709\u5bfc\u51fa\u7b26\u53f7\u7684\u6807\u51c6\u7684":45,"case":[13,19,21,22,27,31,40,46,52,56,58,59,68,95,108,119],"cc\u4e2d\u7684":76,"cells\u7b49":82,"char":15,"ci\u73af\u5883\u4f7f\u7528":62,"ci\u7f16\u8bd1wheel\u5b8c\u6210\u540e\u4f1a\u81ea\u52a8\u5c06docker\u955c\u50cfpush\u5230dockerhub":62,"class":[5,8,19,20,21,22,25,26,30,31,32,33,35,36,38,40,45,49,50,54,55,59,60,61,63,64,65,67,70,74,75,76,83,109],"cmake\u4e2d\u5c06":108,"cmake\u5b98\u65b9\u5bf9android\u5e73\u53f0\u7684\u4ea4\u53c9\u7f16\u8bd1\u63d0\u4f9b\u4e86\u901a\u7528\u7684\u652f\u6301":116,"cmake\u627e\u5230\u7684python\u5e93\u548cpython\u89e3\u91ca\u5668\u7248\u672c\u53ef\u80fd\u6709\u4e0d\u4e00\u81f4\u73b0\u8c61":78,"cmake\u7cfb\u7edf\u5bf9\u4ea4\u53c9\u7f16\u8bd1\u63d0\u4f9b\u4e86\u652f\u6301":116,"cmake\u7f16\u8bd1\u65f6":1,"cmake\u7f16\u8bd1\u7684\u76ee\u6807\u5e73\u53f0":[116,117,118],"cmake\u914d\u7f6e\u4e2d\u5c06":108,"cmake\u914d\u7f6e\u5b8c\u6210\u540e":[116,117,118],"compute\u51fd\u6570":41,"const":[8,13,15,20,30,32,38,39,53,54,56,60,63,65,67,69,70,74,75,76],"container\u4e2d":96,"core\u4e2d\u7684\u6a21\u578b\u8fd8\u5728\u4f7f\u7528\u8fd9\u4e2a\u53c2\u6570":46,"core\u4e2d\u8fd9\u4e00\u7c7b\u578b\u63a5\u53e3\u7684\u667a\u80fd\u6307\u9488":46,"core\u662f\u5426\u8fd8\u5728\u4f7f\u7528\u8fd9\u4e2a\u5b9e\u4f8b":46,"core\u6982\u5ff5":46,"cost\u63a5\u6536y_predict\u4e0ey\u4f5c\u4e3a\u8f93\u5165":84,"cost\u8fd8\u5927\u4e8e\u8fd9\u4e2a\u6570":83,"count\u4e2agpu\u4e0a\u4f7f\u7528\u6570\u636e\u5e76\u884c\u6765\u8ba1\u7b97\u67d0\u4e00\u5c42":105,"count\u548cgpu":105,"csr\u5b58\u50a8\u683c\u5f0f\u901a\u8fc7":89,"cuda\u5171\u4eabkernel\u5b9e\u73b0\u5728":75,"cuda\u5b9e\u73b0\u5171\u4eab\u540c\u4e00\u4e2a":75,"cuda\u5b9e\u73b0\u5728":75,"cuda\u5e93":103,"cuda\u7684\u4ee3\u7801\u53ef\u4ee5\u590d\u7528":75,"cuda\u76f8\u5173\u5e93\u4f1a\u5728\u9884\u6d4b\u7a0b\u5e8f\u8fd0\u884c\u65f6\u52a8\u6001\u88c5\u8f7d":87,"cudnn\u5e93":[1,103],"cumtime\u7684\u6bcf\u6b21\u8c03\u7528\u5e73\u5747\u65f6\u95f4":107,"data\u5230\u5206\u5e03\u5f0f\u5b58\u50a8\u8865\u5145\u8bad\u7ec3\u6570\u636e":12,"data\u63a5\u53e3\u5206\u914d\u5b9e\u9645\u7684\u5185\u5b58":76,"data\u76ee\u5f55\u4e2d\u5b58\u653e\u5207\u5206\u597d\u7684\u6570\u636e":97,"dataprovider\u5171\u8fd4\u56de\u4e24\u4e2a\u6570\u636e":111,"dataprovider\u5171\u8fd4\u56de\u4e24\u7ec4\u6570\u636e":111,"dataprovider\u7f13\u51b2\u6c60\u5185\u5b58":81,"decoder\u5faa\u73af\u5c55\u5f00\u7684\u6bcf\u4e00\u4e2a\u65f6\u95f4\u6b65\u4f1a\u5f15\u7528\u5168\u90e8\u7ed3\u679c":113,"decoder\u63a5\u53d7\u4e24\u4e2a\u8f93\u5165":113,"decoder\u6bcf\u6b21\u9884\u6d4b\u4ea7\u751f\u4e0b\u4e00\u4e2a\u6700\u53ef\u80fd\u7684\u8bcd\u8bed":113,"decoer\u67b6\u6784":113,"default":[5,8,9,19,21,25,34,38,44,47,48,56,57,63,64,65,68,71,95,96,97,105,116,119],"device\u5c31\u80fd\u62ff\u5230\u6b63\u786e\u7684\u6570\u636e":42,"dist\u76ee\u5f55\u4e0b\u751f\u6210\u8f93\u51fa\u7684whl\u5305":1,"dnn\u4e09\u8005\u5173\u7cfb\u5982\u4e0b\u8868":42,"dnn\u4e2d\u7684":42,"dnn\u4e2d\u7684\u6392\u5217\u65b9\u5f0f\u4e0d\u6b62\u8fd9\u4e00\u79cd":42,"dnn\u4f1a\u4f5c\u4e3a\u7b2c\u4e09\u65b9\u5e93\u96c6\u6210\u8fdbpaddlepaddl":42,"dnn\u4f1a\u7528\u5230":42,"dnn\u5171\u540c\u4f7f\u7528":42,"dnn\u524d\u540e\u7684cnn\u7f51\u7edc\u6027\u80fd":42,"dnn\u5728\u53d1\u5e03":42,"dnn\u5b9e\u73b0":42,"dnn\u5e0c\u671b\u7684\u683c\u5f0f":42,"dnn\u6570\u5b66\u5e93":1,"dnn\u6570\u636e\u7684\u4e0d\u540c\u683c\u5f0f\u4ee5\u53ca\u76f8\u4e92\u4e4b\u95f4\u7684\u8f6c\u6362":42,"dnn\u7684":42,"dnn\u7684\u5e93\u76ee\u524d\u53ea\u6709\u52a8\u6001\u5e93":42,"dnn\u7684\u6027\u80fd":42,"dnn\u7684\u60c5\u51b5\u4e0b":42,"dnn\u7684\u64cd\u4f5c\u90fd\u662f\u76f4\u63a5\u8986\u76d6\u7684\u5f62\u5f0f":42,"dnn\u7684\u6d4b\u8bd5":42,"dnn\u7684\u73af\u5883\u4e0b":42,"dnn\u7684\u76f8\u5173\u529f\u80fd":42,"dnn\u7684\u7ed3\u679c":42,"dnn\u7684\u9ad8\u6027\u80fd\u683c\u5f0f\u4e0epaddlepaddle\u539f\u6709\u7684":42,"dnn\u7684layer":42,"dnn\u7684layers\u90fd\u4f1a\u7ee7\u627f\u4e8e":42,"docker\u5b89\u88c5\u65b9\u5f0f\u53ef\u4ee5\u8fdb\u5165docker\u5bb9\u5668\u6267\u884c":101,"docker\u5b89\u88c5\u8bf7\u53c2\u8003":77,"docker\u5b89\u88c5\u8bf7\u53c2\u8003docker\u7684\u5b98\u7f51":77,"docker\u5b98\u7f51":2,"docker\u5bb9\u5668\u4e2d\u5c06\u9ed8\u8ba4\u4f7f\u7528":116,"docker\u7684\u5b98\u7f51":77,"docker\u7f16\u8bd1\u73af\u5883\u955c\u50cf\u5b8c\u6210\u7f16\u8bd1":1,"docker\u80fd\u5728\u6240\u6709\u4e3b\u8981\u64cd\u4f5c\u7cfb\u7edf":116,"docker\u955c\u50cf":2,"docker\u955c\u50cf\u4e3a\u4e86\u51cf\u5c0f\u4f53\u79ef":2,"docker\u955c\u50cf\u9ed8\u8ba4":2,"dockerhub\u7f51\u7ad9":2,"double\u7c7b\u578b\u65f6\u4e3a8":83,"dropout\u7684\u6bd4\u4f8b":74,"eigenscalar\u7684\u8f6c\u6362":76,"encode\u6210\u7684\u6700\u540e\u4e00\u4e2a\u5411\u91cf":111,"encoder\u548cdecoder\u53ef\u4ee5\u662f\u80fd\u591f\u5904\u7406\u5e8f\u5217\u7684\u4efb\u610f\u795e\u7ecf\u7f51\u7edc\u5355\u5143":113,"encoder\u8f93\u51fa":113,"entropy\u4f5c\u4e3acost":83,"enum":[13,15,21,47,54,55,64,65,71],"export":[2,31,36,77,78,91],"f\u4ee3\u8868\u4e00\u4e2a\u6d6e\u70b9\u6570":84,"fc1\u548cfc2\u5c42\u5728gpu\u4e0a\u8ba1\u7b97":105,"fc3\u5c42\u4f7f\u7528cpu\u8ba1\u7b97":105,"final":[6,7,22,36,48,49,66,70],"flatten\u65b9\u6cd5\u662f\u628apaddle\u4e2d\u7684\u4e00\u4e2atensor\u8fdb\u884creshape\u64cd\u4f5c":76,"float":[25,30,38,65,67,69,75,76,89,108],"float\u7b49":105,"forward\u7684output\u7684\u503c":81,"from\u65b9\u6cd5\u662f\u628apaddle\u4e2d\u7684\u4e00\u7ef4tensor\u8f6c\u4e3aeigen\u7684\u4e00\u7ef4tensor":76,"from\u662feigentensor\u6a21\u677f\u63d0\u4f9b\u7684\u4e00\u4e2a\u63a5\u53e3":76,"full\u53c2\u6570\u63d0\u4ea4":79,"function":[5,7,8,10,14,15,16,18,19,20,21,22,25,26,30,32,35,38,43,48,49,52,53,54,55,56,58,59,60,61,63,65,70,107,114,119],"function\u4f7f\u7528":82,"git\u6d41\u5206\u652f\u6a21\u578b":72,"github\u9996\u9875":72,"glibc\u81f3\u5c11\u5305\u542bglibc_2":4,"golang\u53ef\u4ee5\u4f7f\u7528":45,"golang\u7684":45,"google\u5f00\u6e90\u7684\u5bb9\u5668\u96c6\u7fa4\u7684\u8c03\u5ea6\u6846\u67b6":94,"gpu\u4e8c\u8fdb\u5236\u6587\u4ef6":1,"gpu\u5219\u8fd8\u9700\u8981\u9ad8\u5e76\u884c\u6027":108,"gpu\u6027\u80fd\u8c03\u4f18":106,"gpu\u6267\u884c":76,"gpu\u6838\u5728\u8bad\u7ec3\u914d\u7f6e\u4e2d\u6307\u5b9a":103,"gpu\u7684docker\u955c\u50cf\u7684\u65f6\u5019":78,"gpu\u7b49":62,"group\u6559\u7a0b":112,"group\u7684\u5b9e\u73b0\u65b9\u5f0f":82,"gru\u6216lstm":114,"h\u5e76\u4e0d\u56f0\u96be":45,"html\u5373\u53ef\u8bbf\u95ee\u672c\u5730\u6587\u6863":77,"i\u4ee3\u8868\u4e00\u4e2a\u6574\u6570":84,"id\u6307\u5b9a\u4f7f\u7528\u54ea\u4e2agpu\u6838":103,"id\u6307\u5b9a\u7684gpu":105,"id\u65e0\u6548":103,"image\u91cc":96,"images\u6570\u636e\u96c6\u4e0a\u4f20\u5230\u4e91\u7aef\u7684":12,"imikolov\u6570\u636e\u96c6":91,"import":[4,5,8,9,19,21,24,32,34,36,37,43,48,49,55,63,66,75,84,86,90,91,95],"infer\u63a5\u53e3\u7684\u8fd4\u56de\u503c\u662f\u4e00\u4e2apython":81,"ingress\u9700\u8981\u628apfsclient\u7684\u8eab\u4efd\u4fe1\u606f\u4f20\u7ed9pfsserv":28,"instance\u4e0e\u751f\u6210\u6570\u636e\u96c6\u65f6":12,"instance\u5305\u6db5\u4e24\u4e2a\u503c":12,"instance\u662f\u4e00\u6a21\u4e00\u6837\u7684":12,"int":[7,8,13,14,15,18,19,21,23,37,38,41,42,43,45,46,54,55,57,58,64,65,67,70,71,74,76,89,91,105],"interface\u6587\u4ef6\u7684\u5199\u6cd5\u975e\u5e38":45,"ios\u5e73\u53f0\u53ef\u9009\u914d\u7f6e\u53c2\u6570":117,"ip\u548c\u4efb\u52a1\u8282\u70b9\u4e2a\u6570\u7b49":94,"issue\u7f16\u53f7":72,"job\u662f\u672c\u6b21\u8bad\u7ec3\u5bf9\u5e94\u7684job":97,"job\u7684\u540d\u5b57":97,"kernel\u5b9e\u73b0":75,"kernel\u6ce8\u518ccpu\u5b9e\u73b0\u5728":75,"kernel\u7684\u5b9e\u73b0\u57fa\u4e8eeigen":75,"kubernetes\u4e3a\u8fd9\u6b21\u8bad\u7ec3\u521b\u5efa\u4e863\u4e2apod\u5e76\u4e14\u8c03\u5ea6\u5230\u4e863\u4e2anode\u4e0a\u8fd0\u884c":97,"kubernetes\u5206\u5e03\u5f0f\u8bad\u7ec3":94,"kubernetes\u5355\u673a\u8bad\u7ec3":94,"kubernetes\u53ef\u4ee5\u901a\u8fc7yaml\u6587\u4ef6\u6765\u521b\u5efa\u76f8\u5173\u5bf9\u8c61":97,"kubernetes\u5c31\u4f1a\u521b\u5efa3\u4e2apod\u4f5c\u4e3apaddlepaddle\u8282\u70b9\u7136\u540e\u62c9\u53d6\u955c\u50cf":97,"kubernetes\u6709job\u7c7b\u578b\u7684\u8d44\u6e90\u6765\u652f\u6301":96,"label\u662f\u539f\u59cb\u6570\u636e\u4e2d\u5bf9\u4e8e\u6bcf\u4e00\u53e5\u8bdd\u7684\u5206\u7c7b\u6807\u7b7e":111,"labels\u662f\u6bcf\u7ec4\u5185\u6bcf\u4e2a\u53e5\u5b50\u7684\u6807\u7b7e":111,"layer1\u5fc5\u987b\u662f\u4e00\u4e2a0\u5c42\u5e8f\u5217":110,"layer1\u5fc5\u987b\u662f\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":110,"layer\u4f5c\u4e3a\u4e00\u4e2a\u6574\u4f53\u6765\u5b9e\u73b0":82,"layer\u62ff\u5230\u7684\u7528\u6237\u8f93\u5165":113,"layer\u65f6":[42,82],"layer\u662f\u6211\u4eec\u7684\u79ef\u6728":84,"layer\u7684\u540e\u9762\u63a5\u6709cpu":42,"layer\u7c7b\u53ef\u4ee5\u81ea\u52a8\u8ba1\u7b97\u4e0a\u9762\u7684\u5bfc\u6570":74,"layer\u8ba1\u7b97\u7684\u8f93\u51fa":82,"linux\u4e2d":2,"list\u4e2d":90,"list\u4f5c\u4e3a\u68c0\u67e5\u5217\u8868":62,"list\u5982\u4e0b\u6240\u793a":105,"list\u6307\u5b9a\u6d4b\u8bd5\u7684\u6a21\u578b\u5217\u8868":105,"long":21,"memory\u4e0d\u80fd\u72ec\u7acb\u5b58\u5728":113,"memory\u4e5f\u53ef\u4ee5\u5177\u6709":114,"memory\u4e5f\u53ef\u4ee5\u662f\u5e8f\u5217":114,"memory\u53ea\u80fd\u5728":113,"memory\u53ef\u4ee5\u7f13\u5b58\u4e0a\u4e00\u4e2a\u65f6\u523b\u67d0\u4e00\u4e2a\u795e\u7ecf\u5143\u7684\u8f93\u51fa":111,"memory\u6307\u5411\u4e00\u4e2alay":113,"memory\u662f\u5728\u5355\u6b65\u51fd\u6570\u4e2d\u5faa\u73af\u4f7f\u7528\u7684\u72b6\u6001":114,"memory\u662fpaddlepaddle\u5b9e\u73b0rnn\u65f6\u5019\u4f7f\u7528\u7684\u4e00\u4e2a\u6982\u5ff5":111,"memory\u7684":114,"memory\u7684\u521d\u59cb\u72b6\u6001":113,"memory\u7684\u65f6\u95f4\u5e8f\u5217\u957f\u5ea6\u4e00\u81f4\u7684\u60c5\u51b5":111,"memory\u7684\u66f4\u591a\u8ba8\u8bba\u8bf7\u53c2\u8003\u8bba\u6587":113,"memory\u7684\u8f93\u51fa\u5b9a\u4e49\u5728":114,"memory\u7684i":113,"memory\u9ed8\u8ba4\u521d\u59cb\u5316\u4e3a0":113,"mkl\u5e93\u7684":41,"mklml\u4ee5\u53camkl":42,"mklml\u53ef\u4ee5\u4e0emkl":42,"mklml\u7684\u5e93\u76ee\u524d\u90fd\u662f\u52a8\u6001\u5e93":42,"mnist\u624b\u5199\u6570\u5b57\u8bc6\u522b\u76ee\u5f55":90,"mode\u4e0b\u7684\u7ed3\u679c":41,"model\u505a\u5206\u652f\u7ba1\u7406":62,"name\u7ec4\u5408\u53ef\u4ee5\u627e\u5230\u672c\u6b21\u8bad\u7ec3\u9700\u8981\u7684\u6587\u4ef6\u8def\u5f84":97,"ndarray\u7c7b\u578b\u7684\u503c\u548c\u6574\u578b\u7684\u503c":12,"ndk\u4e2d\u5305\u542b\u4e86\u6240\u6709android":116,"new":[6,7,8,9,10,13,14,15,16,17,20,21,22,25,30,31,40,41,43,47,49,52,57,58,59,61,65,66,70,72,74,95,119],"note\u7684\u4e66\u5199":62,"null":[36,74,89,103],"num\u51b3\u5b9a\u603b\u7aef\u53e3\u4e2a\u6570":91,"num_gradient_servers\u53c2\u6570":97,"num_samples_processed\u4e3a\u5df2\u8bad\u7ec3\u6837\u672c\u6570":83,"only\u7684\u4e8c\u8fdb\u5236":1,"op\u4e0d\u9700\u8981\u5b9a\u4e49opprotomak":75,"op\u5355\u5143\u6d4b\u8bd5\u7ee7\u627f\u81ea":75,"op\u5b9a\u4e49":75,"op\u6709\u8ba1\u7b97\u51fd\u6570":75,"op\u6ce8\u518c\u5b9e\u73b0\u5728":75,"op\u7684\u4fe1\u606f":42,"op\u8ba1\u7b97\u51fd\u6570\u7684\u57fa\u7c7b":75,"openmp\u7528\u4e8e\u63d0\u9ad8mklml\u7684\u6027\u80fd":42,"opprotomake\u5b9a\u4e49":75,"org\u5de5\u5177\u7684\u8be6\u7ec6\u4fe1\u606f":77,"org\u76ee\u524d\u9075\u5faa":62,"outer_mem\u662f\u4e00\u4e2a\u5b50\u53e5\u7684\u6700\u540e\u4e00\u4e2a\u5411\u91cf":111,"output\u53ef\u4ee5\u662f\u4efb\u610f\u7ef4\u5ea6\u7684tensor":76,"output\u6587\u4ef6\u5939\u5b58\u653e\u8bad\u7ec3\u7ed3\u679c\u4e0e\u65e5\u5fd7":97,"output\u7684\u539f\u6709shape\u4fe1\u606f\u4e0d\u53d8":76,"packages\u91cc\u9762":78,"packages\u91cc\u9762\u7684python\u5305":78,"packed\u4f18\u5316\u540elayer\u7684\u6d4b\u8bd5":41,"packed\u76f8\u5173\u529f\u80fd":41,"paddepaddle\u901a\u8fc7\u7f16\u8bd1\u65f6\u6307\u5b9a\u8def\u5f84\u6765\u5b9e\u73b0\u5f15\u7528\u5404\u79cdbla":1,"paddle\u4e00\u4e2a\u52a8\u6001\u5e93\u53ef\u4ee5\u5728\u4efb\u4f55linux\u7cfb\u7edf\u4e0a\u8fd0\u884c":45,"paddle\u4e2d\u7ecf\u5e38\u4f1a\u5c06\u65f6\u95f4\u5e8f\u5217\u6210\u4e3a":111,"paddle\u4e8c\u8fdb\u5236\u5728\u8fd0\u884c\u65f6\u6355\u83b7\u4e86\u6d6e\u70b9\u6570\u5f02\u5e38":81,"paddle\u5185\u5d4c\u7684python\u89e3\u91ca\u5668\u548c\u5916\u90e8\u4f7f\u7528\u7684python\u5982\u679c\u7248\u672c\u4e0d\u540c":45,"paddle\u5185\u90e8\u7684\u7c7b\u4e3ac":45,"paddle\u7684\u591a\u8bed\u8a00\u63a5\u53e3\u5b9e\u73b0\u5305\u62ec\u4e00\u4e0b\u51e0\u4e2a\u65b9\u9762":45,"paddle\u7684\u7c7b\u578b\u5168\u90e8\u9000\u5316\u6210":46,"paddle\u7684\u94fe\u63a5\u65b9\u5f0f\u6bd4\u8f83\u590d\u6742":45,"paddle\u7684c":46,"paddle\u8bad\u7ec3\u4efb\u52a1":12,"paddle\u8def\u5f84\u4e0b":46,"paddle\u9700\u8981\u4e00\u4e2a\u591a\u8bed\u8a00\u63a5\u53e3":45,"paddle\u9700\u8981\u66b4\u9732\u7684api\u5f88\u591a":46,"paddle\u9759\u6001\u5e93\u94fe\u63a5\u590d\u6742":45,"paddle_\u7c7b\u578b\u540d":46,"paddle_\u7c7b\u578b\u540d_\u51fd\u6570\u540d":46,"paddlepaddle\u4e2d":[110,113],"paddlepaddle\u4e2d\u4e00\u4e2a\u8ba1\u7b97\u5c42\u7684\u8f93\u51fa\u6570\u636e\u7ec4\u7ec7\u65b9\u5f0f\u548c\u8f93\u5165\u6570\u636e\u7ec4\u7ec7\u65b9\u5f0f\u5b8c\u5168\u76f8\u540c":89,"paddlepaddle\u4e2d\u7684\u8bb8\u591alayer\u5e76\u4e0d\u5728\u610f\u8f93\u5165\u662f\u5426\u662f\u65f6\u95f4\u5e8f\u5217":111,"paddlepaddle\u4e2d\u7684cudnn\u90e8\u5206\u4f7f\u7528\u7684\u4e5f\u662f":42,"paddlepaddle\u4e2d\u795e\u7ecf\u7f51\u7edc\u8ba1\u7b97\u5c42\u8f93\u5165":89,"paddlepaddle\u4e2d\u8fd8\u5305\u542b":82,"paddlepaddle\u4e2d\u901a\u8fc7reader\u6765\u52a0\u8f7d\u6570\u636e":84,"paddlepaddle\u4e3a\u4ea4\u53c9\u7f16\u8bd1\u63d0\u4f9b\u4e86\u5de5\u5177\u94fe\u914d\u7f6e\u6587\u6863":[116,117],"paddlepaddle\u4e3a\u6df1\u5ea6\u5b66\u4e60\u7814\u7a76\u4eba\u5458\u63d0\u4f9b\u4e86\u4e30\u5bcc\u7684api":84,"paddlepaddle\u4e3ano":2,"paddlepaddle\u4e3b\u8981\u4f7f\u7528":1,"paddlepaddle\u4f1a\u81ea\u52a8\u8bbe\u5b9a":82,"paddlepaddle\u4f7f\u7528\u540c\u6b65\u5c4f\u969c":92,"paddlepaddle\u4f7f\u7528\u5747\u503c0":83,"paddlepaddle\u4f7f\u7528avx":78,"paddlepaddle\u4f7f\u7528git":62,"paddlepaddle\u4fdd\u5b58\u7684\u6a21\u578b\u53c2\u6570\u6587\u4ef6\u5185\u5bb9\u753116\u5b57\u8282\u5934\u4fe1\u606f\u548c\u7f51\u7edc\u53c2\u6570\u4e24\u90e8\u5206\u7ec4\u6210":83,"paddlepaddle\u4fdd\u5b58\u7684\u6a21\u578b\u53c2\u6570\u6587\u4ef6\u524d16\u5b57\u8282\u4e3a\u5934\u4fe1\u606f":83,"paddlepaddle\u53d1\u5e03\u7684\u5b89\u88c5\u5305\u4f1a\u5c3d\u91cf\u5bf9\u9f50":4,"paddlepaddle\u53ef\u4ee5\u4f7f\u7528\u591a\u79cd\u5206\u5e03\u5f0f\u8ba1\u7b97\u5e73\u53f0\u6784\u5efa\u5206\u5e03\u5f0f\u8ba1\u7b97\u4efb\u52a1":94,"paddlepaddle\u53ef\u4ee5\u4f7f\u7528\u5e38\u7528\u7684python\u5305\u7ba1\u7406\u5de5\u5177":4,"paddlepaddle\u53ef\u4ee5\u4f7f\u7528cudnn":1,"paddlepaddle\u53ef\u4ee5\u540c\u65f6\u652f\u6301\u540c\u6b65\u968f\u673a\u68af\u5ea6\u4e0b\u964d":92,"paddlepaddle\u53ef\u4ee5\u6bd4\u8f83\u7b80\u5355\u7684\u5224\u65ad\u54ea\u4e9b\u8f93\u51fa\u662f\u5e94\u8be5\u8de8\u8d8a\u65f6\u95f4\u6b65\u7684":111,"paddlepaddle\u53ef\u4ee5\u901a\u8fc7\u8be5\u673a\u5236\u5224\u65ad\u662f\u5426\u5df2\u7ecf\u6536\u96c6\u9f50\u6240\u6709\u7684\u68af\u5ea6":74,"paddlepaddle\u5728\u5b9e\u73b0rnn\u7684\u65f6\u5019":111,"paddlepaddle\u5728\u6fc0\u6d3b\u51fd\u6570\u91cc\u5b9e\u73b0dropout":82,"paddlepaddle\u5728\u7f16\u8bd1\u65f6":1,"paddlepaddle\u5b58\u7684\u662f\u6709\u503c\u4f4d\u7f6e\u7684\u7d22\u5f15":84,"paddlepaddle\u5b89\u88c5\u5305\u7531\u4e8e\u4e0d\u4ec5\u4ec5\u5305\u542b":4,"paddlepaddle\u5c06\u4f1a\u6839\u636e":117,"paddlepaddle\u5c06\u4f1a\u81ea\u52a8\u9009\u62e9":117,"paddlepaddle\u5c06\u6839\u636e":116,"paddlepaddle\u5c06\u81ea\u52a8\u4e0b\u8f7d\u548c\u7f16\u8bd1\u6240\u6709\u7b2c\u4e09\u65b9\u4f9d\u8d56\u5e93":[116,117,118],"paddlepaddle\u5e93\u5df2\u7ecf\u5b89\u88c5\u5b8c\u6210":117,"paddlepaddle\u5f00\u53d1\u8fc7\u7a0b\u4f7f\u7528":62,"paddlepaddle\u63d0\u4f9b":3,"paddlepaddle\u63d0\u4f9b\u4e13\u7528\u7684":12,"paddlepaddle\u63d0\u4f9b\u7684":82,"paddlepaddle\u652f\u6301":1,"paddlepaddle\u652f\u6301\u4e0d\u540c\u7c7b\u578b\u7684\u8f93\u5165\u6570\u636e":84,"paddlepaddle\u652f\u6301\u4f7f\u7528pip\u5feb\u901f\u5b89\u88c5":86,"paddlepaddle\u652f\u6301\u975e\u5e38\u591a\u7684\u4f18\u5316\u7b97\u6cd5":81,"paddlepaddle\u652f\u6301sparse\u7684\u8bad\u7ec3":81,"paddlepaddle\u6587\u6863\u4f7f\u7528":77,"paddlepaddle\u662f\u6e90\u4e8e\u767e\u5ea6\u7684\u4e00\u4e2a\u6df1\u5ea6\u5b66\u4e60\u5e73\u53f0":84,"paddlepaddle\u6bcf\u6b21\u53d1\u65b0\u7684\u7248\u672c":62,"paddlepaddle\u6bcf\u6b21\u53d1\u7248\u672c\u9996\u5148\u8981\u4fdd\u8bc1paddlepaddl":62,"paddlepaddle\u7684":96,"paddlepaddle\u7684\u4e3b\u7248\u672c\u5e93\u9075\u5faa":62,"paddlepaddle\u7684\u5185\u5b58\u5360\u7528\u4e3b\u8981\u5206\u4e3a\u5982\u4e0b\u51e0\u4e2a\u65b9\u9762":81,"paddlepaddle\u7684\u53c2\u6570\u4f7f\u7528\u540d\u5b57":83,"paddlepaddle\u7684\u5404\u7248\u672c\u955c\u50cf\u53ef\u4ee5\u53c2\u8003":96,"paddlepaddle\u7684\u5b89\u88c5\u53ef\u4ee5\u53c2\u8003":101,"paddlepaddle\u7684\u5df2\u7ecf\u5b89\u88c5\u5b8c\u6210":116,"paddlepaddle\u7684\u6240\u6709layer\u90fd\u6709\u552f\u4e00\u7684nam":82,"paddlepaddle\u7684\u6587\u6863\u5305\u62ec\u82f1\u6587\u6587\u6863":77,"paddlepaddle\u7684\u6587\u6863\u6784\u5efa\u6709\u4e09\u79cd\u65b9\u5f0f":77,"paddlepaddle\u7684\u6e90\u7801":72,"paddlepaddle\u7684\u7f16\u8bd1\u9009\u9879":1,"paddlepaddle\u7684activation\u4f1a\u76f4\u63a5\u4f7f\u7528":42,"paddlepaddle\u7684bas":74,"paddlepaddle\u7684c":116,"paddlepaddle\u7684cmake\u7cfb\u7edf\u4f1a\u81ea\u52a8\u7f16\u8bd1\u6240\u6709\u7684\u7b2c\u4e09\u65b9\u4f9d\u8d56\u5e93":117,"paddlepaddle\u7684cmake\u7cfb\u7edf\u5c06\u6839\u636e\u8be5\u503c\u81ea\u52a8\u63a8\u5bfc\u548c\u8bbe\u7f6e\u9700\u8981\u4f7f\u7528\u7684\u4ea4\u53c9\u7f16\u8bd1\u5668":116,"paddlepaddle\u7684cmake\u7cfb\u7edf\u5c06\u6839\u636e\u8be5\u503c\u81ea\u52a8\u8bbe\u7f6e\u9700\u8981\u4f7f\u7528\u7684\u4ea4\u53c9\u7f16\u8bd1\u5668":118,"paddlepaddle\u7684cmake\u7cfb\u7edf\u624d\u8ba4\u4e3a\u5728\u662f\u5728\u4ea4\u53c9\u7f16\u8bd1raspberri":118,"paddlepaddle\u7684cmake\u7cfb\u7edf\u624d\u8ba4\u4e3a\u662f\u5728\u4ea4\u53c9\u7f16\u8bd1android\u7cfb\u7edf\u7684\u7248\u672c":116,"paddlepaddle\u7684dock":96,"paddlepaddle\u7684softmax\u4e0d\u80fd\u6307\u5b9a\u8ba1\u7b97\u7ef4\u5ea6":82,"paddlepaddle\u76ee\u524d\u53ea\u652f\u6301\u5728\u6bcf\u4e2a\u65f6\u95f4\u6b65\u4e2d":111,"paddlepaddle\u76ee\u524d\u63d0\u4f9b\u4e24\u79cd\u53c2\u6570\u521d\u59cb\u5316\u7684\u65b9\u5f0f":83,"paddlepaddle\u76ee\u524d\u652f\u63018\u79cdlearning_rate_schedul":83,"paddlepaddle\u7f16\u8bd1\u9700\u8981\u4f7f\u7528\u5230\u4e0b\u9762\u7684\u4f9d\u8d56":1,"paddlepaddle\u82e5\u68c0\u6d4b\u5230\u7528\u6237\u4f7f\u7528\u7684cmake\u7248\u672c\u4e0d\u4f4e\u4e8e3":116,"paddlepaddle\u8d1f\u8d23\u5b8c\u6210\u4fe1\u606f\u548c\u68af\u5ea6\u5728\u65f6\u95f4\u5e8f\u5217\u4e0a\u7684\u4f20\u64ad":113,"paddlepaddle\u8d1f\u8d23\u5b8c\u6210\u4fe1\u606f\u548c\u8bef\u5dee\u5728\u65f6\u95f4\u5e8f\u5217\u4e0a\u7684\u4f20\u64ad":113,"paddlepaddle\u955c\u50cf\u9700\u8981\u63d0\u4f9b":97,"pass\u4e2a\u6a21\u578b\u5230\u7b2c":103,"pass\u5c06\u4e0d\u8d77\u4f5c\u7528":103,"pass\u8f6e\u5f00\u59cb\u8bad\u7ec3":103,"pass\u8f6e\u7684\u6a21\u578b\u7528\u4e8e\u6d4b\u8bd5":103,"passes\u8f6e":103,"patch\u53f7":62,"patch\u53f7\u52a0\u4e00":62,"path\u6307\u5b9a\u6d4b\u8bd5\u7684\u6a21\u578b":105,"perftools\u6765\u8fdb\u884c\u6027\u80fd\u5206\u6790":107,"period\u4e2a\u6279\u6b21\u5bf9\u6240\u6709\u6d4b\u8bd5\u6570\u636e\u8fdb\u884c\u6d4b\u8bd5":103,"period\u4e2a\u6279\u6b21\u6253\u5370\u65e5\u5fd7\u8fdb\u5ea6":103,"period\u4e2a\u6279\u6b21\u8f93\u51fa\u53c2\u6570\u7edf\u8ba1":103,"period\u4e2a\u6279\u6b21\u8f93\u51fa\u7b26\u53f7":103,"period\u6574\u9664":103,"period\u8f6e\u4fdd\u5b58\u8bad\u7ec3\u53c2\u6570":103,"pfsclient\u9700\u8981\u548cingress\u4e4b\u95f4\u505a\u53cc\u5411\u9a8c\u8bc1":28,"pfsclient\u9700\u8981\u5728\u4f20\u8f93\u5b8c\u6bd5\u6700\u540e\u4e00\u4e2achunk\u7684\u65f6\u5019\u68c0\u67e5destination\u6587\u4ef6\u7684md5\u503c\u662f\u5426\u548csource\u6587\u4ef6\u4e00\u81f4":28,"pfsserver\u63d0\u4f9brest":28,"pi\u5e73\u53f0\u4e0a\u9002\u7528\u7684paddlepaddle\u7684\u65b9\u6cd5\u548c\u6b65\u9aa4":118,"pi\u7248\u672c\u7684\u5e93":118,"pi\u7248\u672cpaddlepaddle\u5e93\u65f6":118,"pi\u7684\u914d\u7f6e\u4fe1\u606f\u5728":118,"pi\u7cfb\u7edf\u4e0a\u6765\u6784\u5efa":118,"pi\u7cfb\u7edf\u7684\u7248\u672c":118,"pip\u548cdocker\u7684\u5b89\u88c5\u65b9\u5f0f":3,"pserver\u5730\u5740\u7b49\u53c2\u6570\u4f7ftrainer\u53ef\u4ee5\u6b63\u786e\u8fde\u63a5\u5230pserv":91,"pserver\u76d1\u542c\u7684\u8d77\u59cb\u7aef\u53e3":91,"public":[8,20,30,33,38,54,60,63,65,66,67,70,74,75,76,95,96],"pwd\u53d8\u91cf\u4f1a\u5c55\u5f00\u4e3a\u5f53\u524d\u8def\u5f84\u7684\u7edd\u5bf9\u8def\u5f84":2,"py\u4e2d":62,"py\u7a0b\u5e8f":4,"pydataprovider\u4f7f\u7528\u7684\u662f\u5f02\u6b65\u52a0\u8f7d":81,"pypi\u4e0a\u7684package\u540d\u79f0\u4e3apaddlepaddle\u548cpaddlepaddl":62,"pypi\u4e0d\u652f\u6301\u8986\u76d6\u4e0a\u4f20":62,"pypi\u5b89\u88c5\u5305\u53ef\u4ee5\u5728":4,"python\u5b89\u88c5\u5305\u652f\u6301linux":78,"python\u5c01\u88c5\u7684\u5b9e\u73b0\u4f7f\u5f97\u6211\u4eec\u53ef\u4ee5\u5728\u914d\u7f6e\u6587\u4ef6\u4e2d\u4f7f\u7528\u65b0\u5b9e\u73b0\u7684\u7f51\u7edc\u5c42":74,"python\u5e93yep":107,"python\u6807\u51c6\u5e93\u4e2d\u63d0\u4f9b\u4e86\u6027\u80fd\u5206\u6790\u7684\u5de5\u5177\u5305":107,"reader\u7684\u4f7f\u7528\u65b9\u5f0f\u90fd\u662f\u4e00\u81f4\u7684":12,"reader\u8f93\u51fa\u7684data":12,"recommendation\u6587\u4ef6\u5939\u5185\u5b58\u653e\u8bad\u7ec3\u6587\u4ef6":97,"request\u524d":72,"request\u7684":72,"request\u88ab\u5408\u5e76\u540e":72,"resnet\u7684mkl":42,"return":[5,6,7,8,12,13,15,18,19,20,21,26,30,32,33,34,36,38,39,40,43,48,49,50,54,55,56,60,63,65,67,70,74,76,81,83,84,95,97,114],"rnn\u5373\u65f6\u95f4\u9012\u5f52\u795e\u7ecf\u7f51\u7edc":111,"rnn\u5bf9\u4e8e\u6bcf\u4e00\u4e2a\u65f6\u95f4\u6b65\u901a\u8fc7\u4e86\u4e00\u4e2alstm\u7f51\u7edc":111,"rnn\u603b\u662f\u5f15\u7528\u4e0a\u4e00\u65f6\u523b\u9884\u6d4b\u51fa\u7684\u8bcd\u7684\u8bcd\u5411\u91cf":113,"rnn\u6a21\u578b":106,"rnn\u90e8\u5206\u4e2d":41,"rnn\u914d\u7f6e":112,"root\u66ff\u6362\u4e3apaddlepaddle\u9884\u6d4b\u5e93\u7684\u5b89\u88c5\u8def\u5f84":87,"s3\u4e4b\u7c7b\u7684\u5206\u5e03\u5f0f\u5b58\u50a8\u4e4b\u4e0a":12,"search\u7684\u65b9\u6cd5":103,"sentences\u662f\u53cc\u5c42\u65f6\u95f4\u5e8f\u5217\u7684\u6570\u636e":111,"seq\u53c2\u6570\u5fc5\u987b\u4e3afals":113,"server\u4e2a\u6279\u6b21\u6253\u5370\u65e5\u5fd7\u8fdb\u5ea6":103,"server\u4e4b\u4e0a":11,"server\u4e4b\u95f4\u7684\u7f51\u7edc\u5e26\u5bbd":11,"server\u4f1a\u6682\u505c\u53c2\u6570\u66f4\u65b0\u5e76\u7b49\u5f85":11,"server\u4f1a\u83b7\u53d6parameters\u5185\u5b58\u7684":11,"server\u5185\u5b58\u4e2d\u7684\u6a21\u578b\u6570\u636e\u7684\u5b8c\u6574\u955c\u50cf":11,"server\u540c\u6b65\u7684\u4fdd\u5b58\u4e00\u4e2a\u7279\u5b9a\u65f6\u95f4\u70b9\u7684\u5168\u5c40\u68c0\u67e5\u70b9":11,"server\u5728\u96c6\u7fa4\u4e2d\u542f\u52a8\u540e":11,"server\u6545\u969c\u540e\u88abkubernetes\u91cd\u65b0\u542f\u52a8":11,"server\u6b64\u65f6\u8fd8\u9700\u8981\u901a\u8fc7\u7f51\u7edc\u8bbf\u95ee\u5206\u5e03\u5f0f\u5b58\u50a8\u4ee5\u4fdd\u5b58\u5feb\u7167":11,"server\u751f\u6210\u4e00\u4e2auuid":11,"server\u7684\u5355\u70b9\u6216\u591a\u70b9\u540c\u65f6\u6545\u969c":11,"server\u7684\u6570\u636e\u5feb\u7167":11,"server\u7684\u68c0\u67e5\u70b9\u5404\u81ea\u72ec\u7acb\u4fdd\u5b58":11,"server\u7b2c\u4e00\u6b21\u542f\u52a8\u6216\u4efb\u610f\u65f6\u95f4paramet":11,"short":[30,34,57,63,66,70],"simd\u6307\u4ee4\u63d0\u9ad8cpu\u6267\u884c\u6548\u7387":78,"size\u4e3a512":103,"size\u53ef\u80fd\u4f1a\u5bf9\u8bad\u7ec3\u7ed3\u679c\u4ea7\u751f\u5f71\u54cd":81,"size\u672c\u8eab\u662f\u795e\u7ecf\u7f51\u7edc\u7684\u8d85\u53c2\u6570":81,"softmax\u6fc0\u6d3b\u7684\u8f93\u51fa\u7684\u548c\u603b\u662f1":74,"sparse\u8bad\u7ec3\u9700\u8981\u8bad\u7ec3\u7279\u5f81\u662f":81,"static":[15,46,63,65,95,119],"step\u51fd\u6570\u4e2d\u7684memori":113,"step\u51fd\u6570\u5185\u90e8\u53ef\u4ee5\u81ea\u7531\u7ec4\u5408paddlepaddle\u652f\u6301\u7684\u5404\u79cdlay":113,"store\u4e0b\u8f7d\u5b89\u88c5xcode\u5373\u53ef":117,"subseq\u7684\u6bcf\u4e2a\u5143\u7d20\u662f\u4e00\u4e2a0\u5c42\u5e8f\u5217":110,"super":[57,74],"swig\u652f\u6301\u7684\u8bed\u8a00\u6216\u8005\u89e3\u91ca\u5668\u6709\u5c40\u9650":45,"swig\u66b4\u9732\u7684\u63a5\u53e3\u4fdd\u7559\u4e86c":45,"swig\u751f\u6210\u7684\u4ee3\u7801\u4e0d\u80fd\u4fdd\u8bc1\u591a\u8bed\u8a00\u4ee3\u7801\u98ce\u683c\u7684\u4e00\u81f4\u6027":45,"swig\u76f4\u63a5\u8bfb\u53d6c":45,"swig\u9700\u8981\u5199\u4e00\u4e2ainterface\u6587\u4ef6":45,"switch":[8,46,95],"tag\u4e3a":62,"tag\u53ef\u4ee5\u662flatest\u6216latest":62,"tag\u7684\u66f4\u65b0\u65f6\u95f4\u662f\u5426\u5728\u4e0a\u8ff0\u7f16\u8bd1wheel\u5305\u5b8c\u6210\u540e\u662f\u5426\u6700\u65b0":62,"tensor\u5230\u5bf9eigentensor\u7684\u8f6c\u6362":76,"tensor\u5230eigentensor":76,"tensor\u5b9a\u4e49\u5728framework\u76ee\u5f55\u4e0b":76,"tensor\u662f\u4e00\u4e2a\u6b63\u5728\u5f00\u53d1\u4e2d\u7684\u6a21\u5757":76,"tensor\u6a21\u5757\u5bf9el":76,"tensor\u6a21\u5757\u6765\u5b9e\u73b0":75,"tensor\u6a21\u5757\u7684\u6587\u6863\u8f83\u5c11":76,"tensor\u6a21\u5757\u7684\u8be6\u7ec6\u4ecb\u7ecd\u8bf7\u53c2\u8003":76,"tests\u7684paddlepaddl":72,"tflops\u4e86":108,"throw":95,"tottime\u7684\u6bcf\u6b21\u8c03\u7528\u5e73\u5747\u65f6\u95f4":107,"trainer\u542f\u52a8\u9700\u8981\u4f20\u5165\u7aef\u53e3":91,"trainer\u63a5\u6536\u4e09\u4e2a\u53c2\u6570":84,"trainer\u8282\u70b9\u4e2a\u6570":91,"trainer\u9700\u8981\u548cpserver\u4fdd\u6301\u7f51\u7edc\u8054\u901a\u4ee5\u5b8c\u6210\u8bad\u7ec3":91,"true":[5,7,8,13,31,37,41,50,55,56,57,58,62,65,70,74,81,83,89,90,95,97,105,114],"true\u8868\u793a\u53cd\u5411\u5faa\u73af\u795e\u7ecf\u7f51\u7edc":114,"try":[9,10,13,14,15,31,36,40,43,58,63,66,78],"type\u5b57\u6bb5\u5747\u4e0d\u5c3d\u76f8\u540c":46,"type\u6307\u5b9a\u4e3a":107,"ubuntu\u4e0b\u5b89\u88c5\u547d\u4ee4\u4e3a":107,"unit\u5728\u4e00\u4e2a\u65f6\u95f4\u6b65\u5185\u8ba1\u7b97\u5f97\u5230\u7684\u4e2d\u95f4\u503c":82,"unsupported\u6a21\u5757":75,"update\u53c2\u6570\u65f6\u624d\u6709\u6548":103,"v1\u7248\u672c":78,"var":[7,8,19,20,21,25,32,33,35,37,50,55,56,57,59,63,68,69,70,77],"vector\u662frank\u4e3a1\u7684tensor":76,"void":[8,13,15,20,27,30,32,33,38,43,44,45,46,55,56,64,65,67,69,74,75,76],"wheel\u5305":62,"while":[8,17,20,21,31,36,39,40,49,52,53,58,61,63,67,97],"wise\u8ba1\u7b97\u63d0\u4f9b\u4e86\u5f3a\u5927\u7684\u652f\u6301":76,"wmt14\u6570\u636e\u7684\u63d0\u4f9b\u6587\u4ef6\u5728":114,"words\u5373\u4e3a\u8fd9\u4e2a\u6570\u636e\u4e2d\u7684\u5355\u5c42\u65f6\u95f4\u5e8f\u5217":111,"words\u662f\u539f\u59cb\u6570\u636e\u4e2d\u7684\u6bcf\u4e00\u53e5\u8bdd":111,"x86_64\u548cmaco":78,"x\u4e0ey\u4e3a\u4e4b\u524d\u63cf\u8ff0\u7684\u8f93\u5165\u5c42":84,"x\u548cwindow":116,"y\u8868\u793a\u8f93\u5165\u6570\u636e\u662f\u4e00\u4e2a\u7ef4\u5ea6\u4e3a1\u7684\u7a20\u5bc6\u5411\u91cf":84,"yaml\u6587\u4ef6\u4e2d\u5404\u4e2a\u5b57\u6bb5\u7684\u5177\u4f53\u542b\u4e49":97,"yaml\u6587\u4ef6\u63cf\u8ff0\u4e86\u8fd9\u6b21\u8bad\u7ec3\u4f7f\u7528\u7684docker\u955c\u50cf":97,"zero\u4e09\u79cd\u64cd\u4f5c":103,AGE:[95,96],AWS:[12,94,99,100],Added:66,And:[13,17,18,27,34,36,47,51,54,58,63,67,95],But:[6,33,39,47,54,63,78,119],For:[5,7,8,14,15,16,18,19,20,22,25,26,31,32,33,35,38,40,44,47,48,49,52,53,54,55,56,57,58,59,60,61,64,65,66,67,69,71,108,119],IDE:0,IDs:[17,21,49],IRs:22,Into:95,Its:[32,64,95],K8s:119,NOT:57,Not:[5,10,40,66,119],OPs:[22,24],One:[6,17,44,47,63,66,69],Ops:[59,61,65],PFS:28,QoS:96,Such:[38,57,66,70],TLS:[5,28,95],That:[20,51],The:[5,6,7,9,10,14,16,17,18,20,21,22,24,25,26,29,30,32,36,39,40,43,44,46,48,49,51,52,54,55,56,57,58,61,63,64,65,66,67,69,70,71,74,75,76,89,95,97,109],Their:10,Then:[19,22,33,38,40,51,54,56,95],There:[5,8,9,10,15,17,18,21,22,29,30,31,36,40,47,48,49,52,53,54,57,61,63,64,67,95],These:[7,8,20,25,30,35,50,61,64,65,66],Use:[5,23,29,58,59,66,95],Used:[59,67],Uses:40,Using:[10,31,52,58,59,61,63],VPS:95,Will:84,With:[19,20,25,31,51,55,66,70],YES:18,Yes:[2,42],___embedding_0__:97,___embedding_1__:97,___fc_layer_0__:95,__align__:30,__cuda_align__:30,__device__:30,__doc__:65,__file__:18,__forceinline__:30,__fp16:30,__global__:30,__hadd:30,__half:30,__half_raw:30,__impl__:65,__init__:[25,26,34,40,50,57,70,74,107],__main__:34,__name__:34,__rnn_step__:114,__square_error_cost_0__:97,__va_args__:60,__x:30,_addup_repetitive_outputs_:7,_append_backward_ops_:[7,25],_append_backward_vars_:7,_binari:9,_create_global_var:57,_def:40,_dtype:36,_filer:43,_filter:43,_fwd:43,_fwd_pd:43,_input:43,_librari:9,_live_in:40,_live_out:40,_loss:34,_op:[36,75],_output:43,_presucessor:40,_program:40,_recurrent_group:114,_remove_no_grad_branch_:7,_reorder_input:43,_source_language_embed:114,_src_input:43,_sucessor:40,_target_language_embed:114,_test:9,_update_op:26,_use:40,_value_index:36,a75:30,a_op:75,a_prev:66,aaaaa:12,aaaaaaaaaaaaa:95,abil:34,abl:[5,7,20,21,22,38,50,54,57,119],about:[6,8,9,18,24,29,32,40,48,58,63,65,66,67,95],abov:[5,6,7,8,9,10,14,19,21,22,30,31,32,33,35,43,48,49,50,51,52,54,55,57,65,66,68,69,70,95,108,119],abs:[6,34,81],abs_numerical_grad:6,absolut:[6,81],acc:22,acceler:[11,42,51,52],accept:[5,59],access:[5,9,14,17,18,19,21,22,57],accessmod:95,accessor:57,accord:[6,7,15,22,24,35,49,59,70],account:[59,119],accoust:66,accrodingli:13,accumul:[10,15,26,51,52,66],accur:[6,17,54],accuraci:[26,66],achiev:[20,24,51,52,66,67],acquir:31,across:[7,22,48,66],act1:36,act2:36,act:[8,20,22,36,49,57,70,81,84,86,109,114],act_output:65,act_typ:36,action:[21,95],activ:[9,36,40,49,54,57,61,65,81,84,86,114],actual:[13,25,31,34,36,43,47,52,65,67,69],actual_layout:43,adadelta:81,adagrad:[52,64],adagradoptim:50,adam:[5,15,22,34,83],adapt:[54,69],add:[6,7,8,9,13,17,20,21,22,24,26,30,33,37,39,50,52,56,57,59,61,63,67,68,72,76,78,109],add_activ:57,add_bia:57,add_depend:9,add_execut:9,add_input:[48,74],add_memori:48,add_output:48,add_scalar:[8,49,55],add_sum:57,add_test:[9,74],add_to:82,add_two:[8,48],add_unittest_without_exec:74,addattr:[65,75],addbia:74,addcom:[65,75],added:[8,24,25,30,47,51,52,61,72],adding:61,addinput:[65,75],addit:[7,21,51,54,59,61,70],addition:48,addmemori:43,addop:33,addoutput:75,addprimit:43,addprimitivedesc:43,addr:10,address:[10,15,19,22,89,119],addrow:74,addtyp:65,adjust:[7,25],admin:119,administr:[17,119],adopt:[30,34],advanc:6,advantag:[6,30,31,52,58],adversari:[34,58],affect:8,affili:49,afford:14,aforement:9,after:[7,8,9,14,15,17,22,23,24,25,27,29,30,40,43,51,53,54,57,66,72,95],aftern:54,again:[5,6,10,52],against:95,age:97,agg_level:[110,111],aggreg:[26,51,95],aggregatelevel:[110,111],ago:9,agre:[81,84],ahead:66,alexnet_pass1:105,alexnet_pass2:105,algo:43,algo_hrnn_demo:111,algorithm:[7,14,25,40,43,49,52,61,66,69],all:[5,7,8,9,10,13,15,17,18,19,20,21,22,23,25,27,29,31,34,35,36,39,40,43,44,46,47,48,49,50,51,52,54,55,57,59,65,66,67,78,81,84,95,97,109,113,119],all_output_nam:7,alloc:[15,18,40,43,67,76,109],allow:[5,15,19,20,22,25,31,52,61,95],allow_only_one_model_on_one_gpu:[102,103,105],allreduc:51,alpha:[9,61],alreadi:[9,10,31,43,57,63,78,95],also:[5,7,8,9,13,16,20,21,22,30,31,33,34,35,36,39,40,47,48,49,52,53,54,55,56,57,58,61,63,65,66,67,70,71,108,119],although:[7,51],altogeth:119,alwai:[9,21,44,64,95,97],amazon:[95,96],amazonaw:95,amazonec2fullaccess:95,amazonelasticfilesystemfullaccess:95,amazonroute53domainsfullaccess:95,amazonroute53fullaccess:95,amazons3fullaccess:95,amazonvpcfullaccess:95,ambigu:[58,66],amd64:95,amd:47,amend:72,amodei:66,among:95,amort:51,analys:54,analysi:54,analyz:40,ancestor:[55,57],andd:95,andrew:40,android:116,android_abi:116,android_api:116,android_arm_neon:116,android_native_api_level:116,android_standalone_toolchain:116,android_toolchain:116,androideabi:116,ani:[5,9,10,15,17,18,19,21,22,27,30,31,38,40,44,49,51,52,57,58,60,61,66,69,81,84,95],announc:30,anoth:[5,7,8,18,20,21,31,32,43,49,57,63,65,67,69,95],anroid_arm_mod:116,ans:95,answer:[19,31,95],anymor:51,anyth:[49,58,95],anytim:34,apach:[42,81,84],api:[4,5,7,9,15,16,18,19,20,26,28,33,34,36,48,53,54,59,62,70,71,87,89,90,91,95,97,107,108,116,119],api_pydataprovider2:81,api_shar:9,api_test:9,api_trainer_config_helpers_lay:114,api_v2:110,apiserv:95,apivers:[95,96,97],appar:7,appear:[19,31,35,67],appel:40,append:[7,25,26,49,57,58,66,91,97,114],append_backward:[7,50,107],append_clip_op:25,append_op:[25,39,57],append_oper:57,appleyard:108,appli:[34,35,51,54,63],applic:[19,21,30,31,32,35,57,59,81,84,95,96,108,119],applyl1:13,appreci:66,approach:[22,23,24,51,52,53,61,66,119],approxim:52,apt:[2,107],arbitrari:[22,44],arch:116,archetectur:66,architectur:[30,66],archiv:[45,46,87],area:34,arg:[7,36,50,65,75,83,97],argpars:97,args_ext:97,argu:56,argument:[7,8,13,14,22,50,53,56,57,87,89,90,97,116],argumentpars:97,arithmet:30,arm64:[116,117],arm64_standalone_toolchain:116,arm:[30,116,117,118],arm_standalone_toolchain:116,armeabi:116,armv7:[30,117],armv8:30,arn:95,around:[17,40,57,95,119],arrai:[15,19,21,35,49,55,57,58,59,70,75,81,83,84,89],arrang:70,arrari:89,array_to_lod_tensor:40,arrow:34,articl:[32,35,72],artifact:[62,95],artifici:40,arxiv:[34,66],as_step_input:8,asgd:52,ask:[7,10,17],asr:66,assgin:40,assign:[7,14,19,23,25,30,32,51,66,89,95,119],assigne:66,assignmemt:40,associ:[53,60],assum:[8,22,43],assumpt:22,ast:19,astyp:[58,75],asyc:10,async:[10,24,102],async_count:[102,103],async_lagged_grad_discard_ratio:103,async_lagged_ratio_default:[102,103],async_lagged_ratio_min:[102,103],asynchron:[10,21,51,54],atom:23,attr:[8,19,36,39,43,55,56,57,65,75,81,82,83,114],attr_map:65,attrdesc:55,attribu:43,attribut:[7,8,24,25,39,55,57,59,63,65,70],attributemap:75,attrproto:65,attrtyp:[55,65,75],attrvalu:65,auc:[26,102],audio:66,augment:66,authent:95,author:[28,66,81,84,95],auto:[1,8,13,23,32,43,45,56,59,63,69,70,74,75,76,108],autom:95,automat:[5,7,15,22,24,25,33,50,59,65,66,95],avail:[10,15,24,30,31,40,95,119],averag:[14,81],average_test_period:[102,103],avg:[108,110],avg_cost:[22,109],avoid:[6,8,10,21,22,39,43,51,52,53,108],avx:2,awai:31,await:96,awar:[5,19,21,26,32,48,57,95],awk:98,awni:66,aws:28,aws_account_id:95,awsaccountid:95,awskeymanagementservicepowerus:95,axi:81,axiom:21,b363:96,b8561f5c79193550d64fa47418a9e67ebdd71546186e840f88de5026b8097465:96,ba5f:95,back:[7,10,22,30,34,52],background:[61,66],backpropag:[6,7],backward:[6,8,13,15,25,34,41,42,50,52,53,56,60,61,68,74,75,109],backward_first:114,backward_op:6,backwardactiv:74,bacth:20,baidu:[31,66,96],bake:22,balanc:[24,51,95],bandwidth:[30,51],bare:[96,119],barrier:92,barrierstatset:108,basci:36,base:[0,5,14,20,25,26,30,31,38,43,47,50,51,52,54,59,60,61,67,70,95,109],baseerrorclipattr:25,baselin:66,basematrix:74,bash:[0,1,2,72,95,96,97,101],basi:[81,84],basic:[22,36,43,54,55,59,60,66,70],batch:[5,8,10,12,13,20,21,22,26,27,31,34,37,47,48,49,51,52,66,70,81,84,89,95,96,97],batch_id:[34,81,84],batch_im:34,batch_label:34,batch_norm:[34,66],batch_read:[12,20,58],batch_siz:[22,34,41,49,81,84],batch_szi:34,batch_z:34,batchnorm:[34,66],batchread:20,batchsiz:74,bazel:9,bbbbb:12,bcm2708:118,bdist_wheel:62,beacus:36,beam:114,beam_gen:114,beam_search:[49,113,114],beam_siz:[49,102,103,105,114],becaus:[5,6,8,9,10,15,30,49,53,57,58,61,63,64,68,69,70,71,95],becom:[23,24,63,67],been:[7,9,14,21,31],befor:[7,10,17,21,25,29,32,35,47,52,53,54,58,61,75,78,81,95,119],begin:[7,13,15,20,26,29,35,49,51],beginiter:5,beginn:114,beginpass:5,begintrain:5,behavior:21,behind:[31,70],being:[7,17,25,31,56,58],belong:[20,22,63],below:[8,10,15,22,24,30,31,44,53,58,61,70,71,95],benchmark:[44,66],benefit:[17,18,49],besid:[22,40,47,51],best:[9,43],besteffort:96,beta:34,better:[9,31,40,43,49,69,95,119],between:[7,9,10,15,22,24,30,31,43,46,51,53,60,63,95],bia:[49,57,74],bias_attr:[57,81,83,114],biases_:74,biasparameter_:74,biassiz:74,bidi:96,bidirect:66,bidirectional_lstm:82,big:[19,24,40,119],bigger:10,bilinearfwdbwd:108,bin:[2,90,91,95,96,97,101],binari:[9,18,22,30,32,34,44,90,95],bind:[19,21,30,33,63,67],bit:30,bitcod:117,black:34,blank:95,block0:40,block1:40,block2:40,block:[7,11,13,15,19,21,22,23,24,25,26,27,31,38,40,47,48,50,67,71,76],block_expand:66,block_id:[19,27],blockdesc:[8,35,57,59],blockdescbind:38,blockingcount:23,blueprint:49,book:[2,59,66,77,109,114],bool:[8,20,30,37,39,41,42,43,56,57,64,65,70,71,74,89,103,105],boost:[47,66,67],boot:[113,114,119],boot_lay:114,boot_stat:70,bootstrapp:119,borrow:[34,70],bos_id:114,both:[5,8,9,10,17,20,21,22,24,30,31,34,38,40,47,49,51,54,56,64,66,67,95],bottl:51,bottleneck:54,bottom:66,bound:40,boundari:22,box:34,brace:[8,35],brain:17,branch:[5,8,9,22,31,37,55,62,68,72],break_if:70,brief:[9,15,30,67,76],bring:[31,40],broadcast:[10,51,59,119],broken:72,browser:95,bsd:[0,21,51],bsp:21,bucket_nam:95,buf:13,buf_siz:22,buffer:[13,21,43,44,52,58,63,109],buffer_s:21,buffered_read:58,bug:[72,95],build:[0,1,9,18,22,35,36,40,42,52,61,62,65,66,72,77,78,87,95,97,99,100,101,107,116,117,118],build_doc:77,build_model:34,buildtool:62,built:[9,19,22,30,32,40,47,51,65,66,70,107,108,119],bulk:21,bunch:44,button:95,c11:45,c703c041:72,c99:46,c99e:95,cach:[30,81],cache_pass_in_mem:81,cachetyp:81,cacul:26,caff:[8,31],caffe2:[8,19,21,31],caffe_poli:83,calcul:[6,7,10,15,23,26,30,40],calcut:40,calendar:54,call:[5,6,7,8,13,14,15,16,18,19,21,22,25,32,34,35,40,48,49,50,54,57,59,60,63,65,67,70,95,97,107,108],callback:[25,74],caller:[6,95],can:[5,6,7,8,9,10,13,14,17,18,19,20,21,22,24,25,27,30,31,32,33,34,35,36,38,39,40,43,47,48,49,50,51,52,54,55,56,57,58,59,60,61,65,67,69,70,71,95,108,119],cancel:17,candid:[49,66],cannot:[20,59,63,69,70,78],cantain:36,capabl:[30,53,59],capac:[61,95],capi:[45,87],capi_priv:87,capi_prvi:46,caption:49,card:51,care:[18,40,58,66,67,119],carefulli:66,carpedm20:34,cast:[30,69],cast_to_op_attr:65,cat:[2,97,98],categori:10,categoryfil:96,caus:[10,29],caution:95,cbla:[41,87],cc_:9,cc_binari:9,cc_test:9,cclient:16,cduadevicecontext:[47,67],cento:[4,119],central:61,ceph:12,cephf:[12,18,28],cer:66,certain:[20,39,47,50,54,63,67],certif:[5,28,78,95],cffi:45,cfg:[40,96],cgo:45,ch1:21,ch2:21,chain:[7,35],challeng:[6,10,31,37,67],chan:21,chanc:[5,30],chang:[9,14,18,22,31,43,53,55,58,60,62,63,66,72,95],changes:43,channel:[19,108],chapter:[48,49,66],chapter_data:48,chapter_out:48,charact:[21,66],check:[7,8,9,25,43,56,59,68,72,74,78,83,89,95,103],check_attr:65,check_eq:74,check_grad:[6,75],check_l:74,check_output:75,check_sparse_distribution_batch:[102,103],check_sparse_distribution_in_pserv:[102,103],check_sparse_distribution_ratio:[102,103],check_sparse_distribution_unbalance_degre:[102,103],checker:[6,59],checkgrad:103,checkgrad_ep:103,checkmark:119,checkout:72,checkpoint:[24,56],checksum:28,child:8,chip:31,chmod:95,choic:[9,31],choos:[21,39],chosen:[34,47],chunk:[14,28],circl:35,circular:21,circumst:67,claim:95,claimnam:[95,97],clang:[30,45,72,116],clariti:49,classic:[40,66],classif:35,classifi:34,classification_cost:81,claster:95,clean:[8,9,27,53,59,72,78],clear:[9,49,53,63,69],clearer:[53,57],clearli:63,cli:95,click:95,client:[13,16,59],clip:103,clip_op:25,clip_op_desc:25,clone:[0,1,77,87,107,116,118],close:[21,58,72],close_channel:21,cloud:[9,10,18,28,29,59,119],cludform:95,cluster:[5,8,10,15,22,66,91,93,97],cluster_test_fil:91,cluster_train:[81,93],cluster_train_fil:91,cluster_train_v2:[93,94,98],cm469:95,cmake:[0,1,46,72,75,77,78,87,108,116,117,118],cmake_build_typ:[116,117,118],cmake_c:[116,117],cmake_system_nam:[116,117,118],cmakefil:78,cmakelist:[9,41,42,74],cmatrix:[45,46],cname:95,cnn:96,coars:33,code:[5,7,9,17,20,21,22,24,27,30,33,34,35,39,44,47,50,52,53,54,56,58,59,60,61,65,70,74,95,96],codebas:59,coded_stream:83,codedinputstream:83,colindic:89,collabor:10,collect:54,collectbia:74,colum:89,column:[35,58,89],com:[0,1,2,9,34,62,72,77,78,87,95,96,107,109,116,118,119],combin:[40,50,59,63],come:[22,26,40,55,66,70],comma:15,command:[0,9,13,18,29,74,95,96,97,99,100,105],commandlin:[97,108],comment:[9,36,65,66,97],commit:[9,96],common:[12,61,67],commonli:[29,61],commun:[10,15,16,21,22,24,51,95],compani:31,compar:[6,9,19,59],comparison:[9,31],compat:[30,33,51],compil:[0,9,22,31,36,38,40,47,51,60,64,65,71,101,116,117,118],complaint:9,complet:[7,8,10,14,15,25,28,35,44,47,59,95,96,97,119],complex:[17,21,40,49,59],complianc:[81,84],complic:[22,33,58,69,70],compon:[21,22,36,66,70,71],compos:[5,21,33,36,48,57,59],composit:33,compress:[14,89],compris:7,comput:[5,6,10,21,22,24,27,30,31,32,36,40,44,47,50,51,52,54,60,63,66,67,69,71,75,76,95,109],computationgraph:36,con:51,concat:[34,114],concaten:[34,48,70,81],concentr:59,concept:[5,19,20,21,31,33,34,36,43,48,49,52,53,55,63,70,71],conceptu:[21,27,31,34,36],concern:[5,21,26],concis:[34,70],concret:[59,67],concurr:[10,17,24,54],cond:[8,31,37,55],condit:[14,22,31,37,43,66,68,81,84,96],condtion:34,conf:[83,93,97,111],conf_paddle_gradient_num:[95,97],conf_paddle_n:[95,97],conf_paddle_port:[95,97],conf_paddle_ports_num:[95,97],conf_paddle_ports_num_spars:[95,97],config:[12,29,49,74,84,87,95,96,97,102,103,105,119],config_:[13,103],config_arg:[102,103,105],config_lay:74,config_len:15,config_pars:[41,42,74],config_proto:15,configmap:22,configprotostr:83,configur:[7,13,15,17,18,22,24,31,36,39,57,66,67,69,74,86,119],confirm:29,conflict:[63,72],confus:[34,39],connect:[18,19,22,24,66,79,95,96,119],consid:[7,56,67,119],consider:[47,66],consist:[14,20,21,32,44,55,58,59,60,65,66,71],consol:95,consolid:8,constant:[36,38,39,47,83],constraint:63,construct:[5,27,36,40,48,57,59,63,65],constructbackwardgraph:35,constructoptimizationgraph:35,constructor:[25,30,54,57,59,63,65],consum:10,consumpt:40,contact:17,contain:[0,5,7,8,14,27,34,36,43,44,47,53,54,57,59,60,63,64,65,66,70,71,95,96,97],containerport:95,content:[15,29,44,49,77],content_dir:77,content_len:15,context:[25,43,63,64,67,75,76,81,109,114],contin:95,continu:[7,10,44,66],contrib:61,contribut:[61,66],contributor:59,control:[8,19,21,68,95,96,119],controlflowgraph:40,conv2d:34,conv:[34,43,69],conv_fwd:43,conv_pool_2:22,conveni:[5,7,36,50,65,66],convent:[7,15],convers:[30,31],convert:[12,22,23,24,30,31,32,43,58,60,66],convlut:66,convolut:[34,47,57,67],convolution_algorithm_opt:43,cool:72,cooper:66,coordin:[10,15],copi:[5,14,17,29,35,48,49,51,52,70,81,84,95],copy_from:25,copyright:[81,84],copyvariablewithtensor:69,core:[7,36,39,46,52,53,70,109],coreo:[95,119],corner:59,corpu:66,correct:[6,7,30,51,95],correctli:[7,30,34],corresond:30,correspoind:5,correspond:[5,7,8,9,25,30,36,37,43,47,48,49,57,59,60,61,65,67,68,83],corss_entropi:5,cortex:30,cos:65,cosin:65,cosineop:65,cosineopproto:65,cosineopprotomak:65,cost:[5,7,22,35,50,51,55,56,69,81,84,109],cost_np:56,could:[5,6,14,19,21,22,23,24,30,31,32,48,50,52,53,55,57,58,60,68,95],count:[10,18,26,56,58,66,91,96,103,105,108],counter:[10,14,23,35],cours:[18,47],cover:[31,66],cp27:4,cp27m:[4,62],cp27mu:[4,62],cpp:[6,13,33,41,42,45,46,53,59,71,74,83,97,108,111],cprofil:107,cprofilev:107,cpu:[0,6,18,30,39,47,52,53,54,59,61,62,67,69,75,76,96,105,108,109],cpu_avx_mkl:4,cpu_avx_openbla:4,cpu_kernel:39,cpu_noavx_openbla:4,cpu_ns_:54,cpu_per_pserv:22,cpu_per_train:22,cpudevicecontext:[47,67,75],cpuelapsedu:54,cpuengin:42,cpuinfo:2,cpuplac:[22,39,43,47,67,69,75,76,109],cpusparsematrix:46,crash:[10,108],creat:[5,6,8,10,15,19,20,23,25,26,27,28,29,30,31,33,34,35,43,47,48,50,51,52,53,57,60,61,66,72,74,77,81,83,84,89,96,97,98,119],create_backward_pass:50,create_bias_paramet:74,create_block:57,create_doc_str:65,create_input_paramet:74,create_local_scop:27,create_oper:33,create_optimization_pass:50,create_paramet:57,create_python_ops_creatation_funct:65,create_rnn:8,create_rnn_op:48,create_tmp_var:57,create_tmp_vari:57,create_var:57,create_whileloop:70,creategradientoper:60,creatememori:43,createop:65,createoper:8,createprimitivedesc:43,createstack:95,createvari:8,creation:[33,95],creationd:95,creator:[12,59,60],creator_:60,credenti:29,crf:[67,69],critic:34,crlf:72,crop:67,crop_grad:67,cropgradkernel:67,cropkernel:67,cross:[57,83,116,117,118],cross_entropi:[5,22,34,40,69],crt:28,csc:74,csr:[74,89],csv:83,ctc_error_evalu:66,ctest:[0,1,72,75],ctor:57,ctrl:[0,93],ctx:[43,69,75,76],cubla:47,cublas_handle_:67,cublashandle_t:67,cuda7:[4,86],cuda8:[1,2,4],cuda:[0,9,32,47,54,59,67,75,103,108],cuda_context:32,cuda_dir:[102,103],cuda_fp16:30,cuda_so:[2,78],cuda_visible_devic:81,cudaconfigurecal:108,cudadevicecontext:[32,47,67,75],cudadevicegetattribut:108,cudaelapsedu:54,cudaevent_t:54,cudaeventcr:108,cudaeventcreatewithflag:108,cudafre:108,cudagetdevic:108,cudagetdevicecount:108,cudagetdeviceproperti:108,cudagetlasterror:108,cudahostalloc:108,cudalaunch:108,cudamalloc:108,cudamemcpi:108,cudaplac:[47,67,69],cudaprofilerstart:108,cudaprofilerstop:108,cudaprofilestop:108,cudaruntimegetvers:108,cudasetdevic:108,cudasetupargu:108,cudastream_t:67,cudastreamcr:108,cudastreamcreatewithflag:108,cudastreamsynchron:108,cudeviceget:108,cudevicegetattribut:108,cudevicegetcount:108,cudevicegetnam:108,cudevicetotalmem:108,cudnn:[9,39,43,47,67,69],cudnn_conv_workspace_limit_in_mb:[102,103],cudnn_dir:[102,103],cudnn_kernel:39,cudnnv5:1,cudrivergetvers:108,cuinit:108,cumtim:107,cur_mem:49,curl:95,curli:[8,35],current:[7,8,9,10,13,15,19,24,26,31,39,47,48,49,52,53,54,57,63,69,70,77,95],current_block:[55,57],current_oper:55,current_word:[81,114],curv:5,custom:[5,18,30,34,49,52,59,66,95],custom_batch_read:58,cut:70,cxx:[116,117],cxx_compil:[116,117,118],cxx_flag:[116,117],cxxabi_1:4,cycl:10,cython:45,d3e0:95,d_b0:34,d_b1:34,d_b2:34,d_block:34,d_f:34,d_g:34,d_h0:34,d_h0_bn:34,d_h0_relu:34,d_h1:34,d_h1_bn:34,d_h1_relu:34,d_h2:34,d_loss:34,d_loss_fak:34,d_loss_real:34,d_optim:34,d_step:34,d_t:34,d_w0:34,d_w1:34,d_w2:34,dandroid_abi:116,dandroid_arm_mod:116,dandroid_arm_neon:116,dandroid_standalone_toolchain:116,dario:66,darwin:95,dash:34,dat:12,data:[5,6,8,12,13,14,21,24,26,28,30,31,34,35,36,38,39,40,43,44,47,48,49,50,51,52,53,55,57,59,61,63,64,65,66,67,70,71,76,81,84,86,89,92,96,97,99,102,109,114],data_batch:81,data_i:34,data_lay:[13,81],data_layout_:69,data_read:58,data_reader_creator_random_imag:58,data_shar:70,data_typ:[44,64,66,69,71,82,84,86,89,114],data_type_:[39,47,69],data_x:34,datacent:[12,29],datacenter1:12,datacenter2:12,datacenter_1:12,datacenter_2:12,datacenter_nam:12,datafeed:109,dataflow:36,dataflow_analysi:40,datalayout:69,dataparallel:22,dataprovid:[81,83,97],dataprovider_convert:66,dataset:[12,18,22,52,58,66,84,86,91,107,114],datatransform:69,datatyp:[39,43,64,66,69,71],dcgan:34,dcmake_build_typ:[77,87],dcmake_install_prefix:[87,116,117,118],dcmake_system_nam:[116,117,118],dcuda_arch_nam:1,dcudnn_root:1,ddim:[20,47,67,76],dead:10,deal:[7,119],deb:72,debug:[6,7,22,29,31,57,77,107],debug_str:36,decayr:13,decent:14,decid:[5,17,34,44,52,60,61,64],declar:[8,34,48],decod:[66,113,114],decoder_boot:114,decoder_dim:49,decoder_group_nam:114,decoder_input:[49,81,114],decoder_mem:[49,114],decoder_s:[81,114],decoder_st:114,deconv:34,decor:20,decrement:23,decrementcount:23,decrypt:95,deduc:59,deep:[7,17,21,27,34,35,40,42,54,59,61,66,67,108],deeper:32,deepspeech2:41,def:[5,6,7,12,18,25,26,33,34,36,39,40,48,49,50,57,58,65,70,74,75,81,83,84,97,114],def_block:34,default_block:34,default_decor:97,default_devic:105,default_main_program:109,default_param_attr:57,default_st:70,default_startup_program:109,default_valu:105,defaultdict:40,defaultinfervartyp:38,defect:53,defer:17,defin:[5,7,8,9,10,17,19,20,23,24,25,30,31,32,33,34,36,39,40,47,48,51,55,57,58,59,63,65,67,70,75,81,84,109],define_py_data_sources2:83,definit:[7,8,10,14,22,27,32,39,55,60,65,70,109],definiton:33,delai:[52,67],delet:[18,28,72],deletestack:95,delimit:83,deliv:119,delta:6,demand:[10,67],demo:[59,96,99],dens:[15,16,64,66,95],dense_arrai:82,dense_vector:[84,86,89],dense_vector_sequ:89,dense_vector_sub_sequ:89,densescann:66,dep:9,depart:66,depend:[8,9,10,18,20,21,22,24,36,51,56,64,119],dependent_var:56,deploi:119,deploy:[36,44,59,95,119],deprec:66,depth:[8,31,66],dequeu:24,deriv:[5,20,22,25,37,50],desc:[8,25,43,44,57,65,70],desc_:8,descend:70,descent:[10,52],descproto:44,describ:[5,7,8,9,14,19,22,27,32,39,43,44,48,49,53,55,57,59,64,65,69,71,95,96],describestack:95,describestackev:95,describestackresourc:95,descripotor:43,descript:[8,9,38,42,44,47,60,64,66,69,71,95,97],descriptor:[21,43,69],deseri:[44,53],deserializ:59,desgin:35,design:[7,13,20,39,40,45,52,54,61,119],desir:[10,22,52,95,96],destin:[15,29],destroi:[8,27],destruct:63,destructor:54,detail:[6,7,14,18,22,24,29,31,34,36,40,43,44,47,48,54,57,61,63,67,69,70,71,95,119],detect:[38,72],determin:[8,22,40,47,59],dev:[0,2,59,72,78,107,116,119],dev_ctx:[8,43,54],devel:62,develop:[7,9,31,38,53,54,57,60,62,66,72,109,117],devic:[2,6,19,22,26,30,36,42,43,47,51,53,54,59,69,76,78,105,109],device_:54,device_context:[43,75],devicecontext:[8,47,54,75],deviceid:[42,105],deviceid_:42,deviceplac:67,devot:66,dhcp:119,diagram:48,diamond:34,dict:[7,57,83,97],dict_dim:81,dict_siz:[13,49],dictionari:[5,6,57,81],did:53,diff:[72,81],diff_mat:6,differ:[6,7,8,9,10,15,17,20,22,23,24,25,26,27,30,31,34,36,37,40,43,47,49,51,52,54,56,60,63,66,68,69,70,71,95],differenti:33,difficult:[6,31],dig:95,digraph:36,dilat:43,dim0:75,dim1:75,dim:[13,43,44,48,59,64,67,71,74,75,76],dim_:[67,76],dimens:[34,59,64,66,67,70,76,81],dimension:89,dios_arch:117,dios_enable_bitcod:117,dios_platform:117,dios_use_veclib_for_bla:117,dir:[78,97,116],direcit:66,direct:[31,40,52,66],directli:[9,16,18,20,22,30,39,53,65,69,70],directori:[9,12,17,28,29,67,72,77,96,108],disabl:[54,83],disadvantag:[52,57],discard:[10,14,49,72,103],discexp:83,discov:10,discoveri:95,discrim:34,discuss:[5,8,14,15,16,22,43,66],disk:44,dispatch:[22,53],displai:[18,29],dist:[1,62,78],dist_train:[5,18],distinguish:9,distribut:[8,14,15,16,17,19,21,26,32,51,59,66,71,81,84,94,99,100,103,119],distribute_test:[102,103],distributedli:22,disucss:5,divid:[7,26,65,71],diy_beam_search_prob_so:[102,103],dnn:[43,66,78],dns:95,do_forward_backward:58,doc:[36,48,70,75,77,91,93,97],doc_cn:77,docker:[1,2,62,72,77,78,95,96,97,99,100,101,116,119],docker_build:5,docker_clust:[93,98],docker_push:5,dockerfil:[0,72,97,116,118],document:[6,20,22,28,35,48,49,54,59,66],doe:[10,14,15,17,18,19,20,22,24,27,30,36,40,48,53,57,59,60,61,109],doesn:[5,8,19,21,58],doing:[13,17,22,35],domain:95,don:[5,9,33,35,40,58,66,95],done:[7,9,10,14,15,22,23,38,40,44,52,60,61,66,72,95,97,108],dot:75,dot_period:[97,103,105],doubl:[22,30,35,54,69,75,103],down:[66,108],download:[9,10,13,17,28,78,96,119],doxygen:72,dozen:9,dpython_execut:78,dpython_include_dir:78,dpython_librari:78,draw:49,drive:63,drop:[20,49],drop_fc:82,drop_rat:82,dropout:82,dropout_r:82,drpi_arm_neon:118,drpi_toolchain:118,drwxr:96,ds2:66,dst:[15,43],dst_primitive_desc:43,dtoh:108,dtype:[21,22,36,57,83,109],due:[14,17,34,40,49,57,107],dummi:14,dump:[44,90],dump_config:90,dump_v2_config:90,duplic:24,durat:14,dure:[7,8,10,14,17,18,26,31,40,51,52,54,57,59,66,71,95,119],duse_eigen_for_bla:116,dwith_c_api:[46,87,116,117,118],dwith_doc:77,dwith_golang:87,dwith_gpu:[1,77,87,118],dwith_mkl:[77,87],dwith_profil:108,dwith_python:[46,87,118],dwith_swig_pi:[46,87,116,117,118],dwith_test:[1,75,117],dwith_tim:108,dynam:[15,46,48,57,58],dynamic_cast:74,dynamic_recurrent_op:70,e2e:119,each:[6,7,9,10,13,14,15,17,18,19,20,21,22,25,26,27,32,35,38,40,43,47,48,49,51,53,54,56,57,58,59,60,63,64,65,66,67,68,69,70,71,95,119],eager:31,earli:[30,32],eas:38,easi:[6,7,49,52,58,59,61],easier:[5,24,30,31,58,68,70],easili:[5,34,51,54,58,60,63,67],echo:[2,78],edg:40,edit:[21,95],editor:57,edu:[95,96],eeoi3ezpr86c:95,effect:95,effici:[22,44,58,66,67],effort:[22,66],efs:95,efs_dns_nam:95,efsvol:95,egd:40,eigen:[30,47,52,59,61,67,75],eigen_device_:67,eigen_use_gpu:75,eigenmatrix:76,eigentensor:76,eigenvector:76,either:[5,22,34,37,38,48,52,61,81,84],elabor:66,elb:95,elbapis:95,electr:40,electron:96,element:[6,14,21,24,36,49,59,75],element_typ:15,elementari:59,elif:[5,65,68],els:[2,5,13,18,21,22,24,25,31,34,37,38,39,40,63,65,68,74],elsewher:54,emac:0,emailweixu:9,emb1:13,emb2:[13,111],emb:[81,83,96],emb_para:83,emb_param_fil:83,emb_sum:81,embed:[5,8,13,24,38,49,64,70,83,114],embedding_lay:[13,81,111],embedding_nam:114,embedding_s:114,emplace_back:74,emploi:[7,25,65],empti:[7,10,20,21,49],emul:30,enabl:[0,8,9,14,19,24,25,36,54,95,108],enable_grad_shar:[102,103],enable_parallel_vector:103,enc_proj:114,enc_vec:114,encapsul:15,encod:[14,49],encoded_proj:114,encoded_sequ:114,encoded_vector:114,encoder_ctx:49,encoder_ctx_expand:49,encoder_ctx_proj:49,encoder_dim:49,encoder_out_seq:49,encoder_s:114,encount:13,encourag:[22,27],encrypt:95,encrypt_decrypt:95,end2end:119,end:[7,8,22,25,32,36,40,49,53,54,58,63,66,68,72,114],end_pass:5,endforwardbackward:81,endian:44,endif:[47,54],enditer:[5,81,84],endpass:[5,84],endpoint:[12,95],endtrain:5,engin:[18,42,43,66],english:66,enough:[7,8,39,40,47],enqueu:24,ensur:[10,43,51,63],enter:[8,27],enterpris:59,entir:[15,17],entiti:[8,63],entranc:27,entri:[14,18,38,95],entropi:57,entry_point:18,enumer:[47,83],env:[77,81,95,97,107],environ:[5,20,22,78,95,96,108],environmenterror:91,eol:72,eos_id:114,epoch:34,epol:21,equal:[10,70,75],equat:[40,75],equival:[5,8,19,21,25,31,37,65,119],eras:20,erlang:21,error:[5,6,14,29,30,31,43,63,66,78,83,87,95,103],error_clip:25,error_clip_callback:25,error_clipping_threshold:81,errorclipbyvalu:25,especi:42,essenc:[5,7],essenti:[5,27,30],establish:19,estim:[5,24,52],eta:96,etc:[8,21,22,26,43,51,52,58,63,66,95,119],etcd:[10,14,15,17],etcd_addr:15,eth0:[95,97],etyp:21,eval:[8,26,34,59],eval_program:26,eval_result:26,evalu:[17,36,56,66,90,108,109],even:[5,30,51,57,58],evenli:[15,95],event:[81,84,96],event_:54,event_block:54,event_handl:[5,81,84],eventkind:54,eventlist:54,eventu:[22,70],everi:[5,10,14,15,17,25,26,35,36,38,40,43,47,48,51,57,63,65,69,84,109],everyth:[22,24,34],evid:53,evolv:31,exactli:[20,81,95],exampl:[8,18,20,22,24,26,29,31,32,33,34,35,36,38,40,43,47,48,49,53,54,55,57,58,59,60,61,64,67,68,69,70,95,109],exc_path:78,except:[17,19,31,35,54,66,70,84],excess:40,exchang:53,exe:[22,109],execut:[9,10,14,18,19,20,21,22,26,27,32,34,36,40,43,51,54,60,71,95],executioncontext:[43,69,75,76],executor:[19,22,26,30,31,32,34,50,55,57,69,71,107,109],exist:[5,8,10,20,29,31,49,57,58,60,65,67,70,76,95],exit:[15,29,96],exp:83,expand:49,expand_a:110,expand_level:110,expandlevel:110,expect:69,expected_desc:43,expected_kernel_kei:69,experi:[44,66],expert:9,expir:10,explain:[10,19,31,33,35],explan:[18,19,22,63,69],explicit:[20,54,70,74],explicitli:[5,22,27],explod:25,explor:[49,61],expos:[7,16,21,43,44,67,70,95],express:[5,24,26,36,40,81,84,95],extend:[52,70],extens:[17,24,49],extent:46,extern:[9,42,45,46,59,66],extern_mklml:78,external_librari:9,extingrad_:42,extinval_:42,extoutgrad_:42,extoutval_:42,extra:[22,61,67,119],extraattr:105,extract:[31,53,66,95],extralayerattribut:[81,82],extrem:[19,31],f1205:83,f120da72:96,f7e3:95,fa0wx:96,fabric:[93,94],face:[9,61],fact:[19,31,51,55,57],factori:45,fail:[10,14,49,78,83,96,103],failur:[10,15],fake:34,fake_imag:58,faked_imag:34,fall:[30,56],falloc:28,fals:[6,7,8,31,37,39,41,48,55,56,58,64,71,74,75,81,84,86,89,91,96,105,114],false_block:[8,37,55],false_label:58,false_neg:26,false_posit:26,false_read:58,familiar:21,faq:115,far:[25,70],fashion:22,fast:[14,31,108],faster:[10,31],fastest:31,father:7,fault:[14,59],fbd1f2bb71f4:96,fc1:[36,74,105],fc1_bia:36,fc1_weight:36,fc2:[36,105],fc3:[36,105],fc4:105,fc8a365:95,fc8a:95,fc_layer:[57,65,81,83,105],fc_op:65,fc_out:8,fc_output:65,fc_without_b:8,fclayer:74,fcop:33,feasibl:52,featur:[7,22,30,36,51,54,66,72],feed:[5,22,35,48,61,84,109],feed_dict:34,feed_list:109,feeder:[22,109],fetch:[10,13,20,22,56,72,78,109],fetch_list:[22,57,109],fetch_op:56,few:[9,10,21,22,40,52,58,64,66],fewer:[21,57],fft:66,field:[8,36,38,44,56,57,60,64,65,81,95],fifth:35,figur:[5,9,22,24,34,42,48,54,57,66],file:[5,7,9,10,12,14,15,17,18,20,21,28,29,31,32,36,44,46,58,59,66,67,71,72,75,81,84,109,119],file_nam:83,filelist:66,filenam:[12,57,81,107],fileoffset:28,filesystem:[17,18,22,28,95],fill:[10,14,47,57,89,95],fill_zero_grad:59,fill_zeros_like_op:7,filter:[25,43],find:[8,10,17,21,30,36,43,49,63,69],find_var:6,findmemori:43,findop:8,findprimit:43,findprimitivedesc:43,findvar:[8,63],fine:[14,33],fingerprint:95,finish:[10,14,17,18,27,40,51,65,95,96],first:[5,7,8,10,14,17,18,19,22,27,29,31,34,35,36,43,48,49,55,56,57,59,64,65,66,67,68,70,75,76,89,95,119],first_seq:114,firstseen:96,fit:[30,39,40,44,49,59],five:55,fix:[22,40,45,57,66,72,89],flag:[41,42,54],flatten0:36,flatten:[36,55,57,76],flatten_result:81,flexibl:[5,15,22,31,35,39,48,49,52,58,67,70],flist:91,fliud:19,float16:21,float16_t:30,float32:[22,30,33,34,57,58,75,83,109],float_to_half_rn:30,floor:83,flow:[8,19,21,48,54,62,68],fluid:[7,20,22,24,27,47,54,57,67,68,69,107],fluid_cuda_create_tensor:32,fluid_cuda_mult:32,fluid_cuda_read:32,fly:7,fmt:[21,83],fname:83,fnt03:95,focu:[21,36],folder:[9,12,18,29,95],follow:[5,6,7,8,9,10,14,18,19,20,21,22,24,27,30,31,32,33,34,35,36,37,38,40,43,47,48,49,51,52,54,55,56,57,58,59,60,61,63,64,65,66,67,68,69,70,95,99,100,109,119],footprint:32,forbid:5,forc:[51,57,69],force_cpu:39,force_cudnn:39,force_load:45,forest:8,forev:21,forget:5,form:[20,21,26],formal:69,format:[6,14,20,22,30,31,47,49,66,70,72,74,86,89,95],former:[5,9,31,40,52],formula:[6,40],forth:34,forward:[6,7,8,13,15,25,31,34,41,42,43,44,50,53,55,58,59,60,61,64,74],forward_infer:43,forward_list:54,forward_op:6,forward_train:43,forwardactiv:74,found:[30,55,61,63],four:[21,26,31,35,43,47],foward:56,fp16:[30,59,71],fp32:[47,59,69,71],fp64:[47,71],fparam:83,fpga:[47,109],fpgadevicecontext:67,fpgaengin:42,fpgaplac:[47,67],frame:[27,59,66,70],framework:[5,7,8,21,25,26,30,31,36,47,51,52,54,55,59,61,63,65,67,75,107,109],free:[32,67,119],freememoryop:32,frequenc:66,frequent:[14,58,59,61,67],fresh:17,friend:63,friendli:34,from:[6,7,8,9,10,12,13,14,15,19,20,21,22,24,25,26,29,30,31,33,34,35,36,37,39,40,43,48,49,50,51,53,55,57,58,59,60,63,66,67,68,69,70,75,76,78,90,95,96,107,108,113,119],from_no_sequ:110,from_sequ:110,from_tar:84,fromfil:[58,83],fromstr:83,front:[36,40],fulfil:108,full:[10,17,21,48,51,52,119],full_matrix_project:114,fulli:[22,24,66,119],fullsiz:13,fullyconnect:[36,57],fullyconnectedlay:74,func:[14,19,32,60],functor:[33,36],fundament:[20,21,24,30,59],further:[20,65,119],futur:[17,22,30,40,48,59],fvs:65,fwd_desc:43,fwd_op:60,fwd_primit:43,fwd_primitive_desc:43,fwd_var:25,g_b0:34,g_b1:34,g_b2:34,g_block:34,g_command_config_arg:[41,42],g_h0:34,g_h0_bn:34,g_h0_relu:34,g_h1:34,g_h1_bn:34,g_h1_relu:34,g_h2:34,g_im:34,g_loss:34,g_optim:34,g_program:57,g_state:54,g_step:34,g_w0:34,g_w1:34,g_w2:34,gan:5,gangliao:9,gatedrecurrentlay:41,gather:[7,40,51,53,75],gaussian_normal_random:34,gcc:[0,1,30,32,45,59,116,118],gcc_3:4,gcreators_:65,gemm:41,gen_proto_pi:77,gen_rand_param:83,gender:97,gendrated_id:49,gener:[5,6,7,8,9,10,12,14,15,17,19,22,31,33,38,40,43,47,51,52,55,56,57,58,59,60,64,65,66,67,68,70,84,89,95,97,105,108],generated_id:49,generated_scor:49,generatedinput:[113,114],genr:97,get:[2,6,7,8,9,10,14,15,17,18,20,28,31,34,36,39,40,41,42,43,47,48,49,54,57,59,60,63,65,69,70,74,81,89,93,95,96,98,107],get_all_op_proto:65,get_block:57,get_config_arg:105,get_data:96,get_dim:6,get_float_el:6,get_grad:81,get_grad_op_desc:7,get_input_lay:74,get_numeric_gradi:6,get_numerical_gradi:6,get_output:6,get_program:40,get_sample_from_lin:81,get_support:[4,78],get_symbol:36,get_tensor:6,get_vari:8,get_worker_addr:19,getactualkerneltyp:39,getattr:25,getbatchs:74,geteigendevic:76,getengin:43,getenv:[5,18,91,97],getexpectedkerneltyp:[39,43,69],gethostbynam:97,gethostnam:97,getidmap:97,getinfervartyp:38,getinput:74,getinputgrad:74,getinputvalu:74,getkerneltyp:30,getkerneltypeforvar:69,getlayeroutput:81,getlibrari:43,getmat:13,getoptconfig:13,getoutputgrad:74,getoutputvalu:74,getparam:13,getparameterconfig:13,getparameterptr:74,getparameterspars:13,getparametersremot:13,getplac:[43,67,75,76],getpodlist:97,getsiz:74,gettask:14,gettempl:95,gettensor:69,gettranspos:74,getw:74,getweight:74,getwgrad:74,gflag:87,gflags_complet:87,gflags_declar:87,git:[0,1,62,72,77,78,87,116,118],github:[0,1,9,34,47,62,72,77,78,87,107,109,116,118],give:[10,48,57,59,69,95],given:[7,15,17,21,24,25,31,33,34,49,58,61,70],glibc:[116,118],glibc_2:4,glibcxx_3:4,glide:9,global:[0,5,8,9,10,32,36,39,53,54,59,63,65,67,69,95,108],global_block:57,globalstat:108,globalstatinfo:108,glog:87,gnueabihf:118,go_librari:9,go_test:9,goal:[20,21,24,30,35,51,59,66],gob:14,godep:9,godoc:45,goe:[10,31,37,63,109],going:[7,33,52,119],golang:9,good:[21,34,52,57,58,61,119],googl:[5,54,59,83,87,107,116],googleapi:95,googlenet:42,goroutin:[19,21],got:[39,63],govern:[81,84],gpg2:95,gpg:95,gprof:107,gprotos_:65,gpu:[0,2,4,6,18,21,26,30,40,47,51,52,53,54,59,61,62,67,69,78,86,89,91,105,108,109,119],gpu_id:[81,103,105],gpu_per_train:22,gpudevic:67,gpugpu_id:102,gpukernel:59,grab:10,grad:[6,7,15,25,42,57,64,81,103],grad_info_map:7,grad_n:25,grad_nam:25,grad_op:25,grad_op_class:59,grad_op_desc:25,grad_op_maker_:60,grad_op_typ:[59,60],grad_op_type_:60,grad_s_block:7,grad_share_block_num:[102,103],grad_to_var:[7,25],grad_var_nam:6,gradient:[10,14,21,23,25,35,38,50,51,52,53,57,59,64,90,91,92,97,103],gradient_clipping_threshold:81,gradient_flat:6,gradient_machin:[46,87],gradientmachin:[46,53,97],gradientmachine_:13,gradopdescmak:[38,60],gradopdescmakerbas:60,gradopmak:60,grain:33,gram:66,grant:95,graph:[7,8,9,10,19,21,22,23,24,26,31,34,48,51,52,55],great:[24,66,119],greater:[25,52,89],greaterthan:65,greedi:66,green:[19,34],grep:[2,98],groudtruth:114,group:[14,36,43,67,119],group_input1:114,group_input2:114,group_input:114,grpc:119,gru:[49,66],gru_decod:114,gru_decoder_with_attent:114,gru_out:49,gru_step:[49,114],grumemori:[82,114],gserver:[41,42,74],gsizex:108,gtx:40,guarante:[43,57],guard:13,guest:4,guid:[28,40,59,95,96],gzip:[14,96],h0_bn:34,h_prev:8,hadoop:5,half:[30,95],half_to_float:30,hand:[40,59,66,67],handi:9,handl:[5,7,18,19,22,36,40,43,47,53,58,63,67,70,109],handler:8,hannun:66,happen:[14,65],hard:[22,31,49,66,70,95],hardwar:[31,32,67],has:[5,6,7,8,9,10,14,15,17,20,21,22,24,25,26,30,31,34,36,40,44,47,49,51,54,55,59,64,65,67,69,89,95,108,109,119],has_kei:[7,25],has_var_recurs:7,hasdependentvar:56,hash:[47,51],hasn:31,hasnext:20,have:[5,6,7,8,9,10,14,15,17,18,20,21,22,24,25,27,30,31,32,33,34,35,39,40,43,44,47,48,49,51,52,53,54,55,57,58,59,60,63,64,66,67,69,71,95,119],haven:31,hdf:12,head:[75,98],header:[15,44,46,59,67,83],headip:98,height:[8,45,58,74,75,83,89],height_:64,held:10,hello:5,help:[8,29,31,36,43,49,58,59,70,72],helper:[22,43,60,70],henc:[22,52,57,60,61,63],here:[5,9,10,16,21,24,25,27,29,31,35,36,43,47,48,58,61,65,89,95,119],heterogen:[22,24,54],heurist:[24,49],hidden:[50,57,82,83,95],hidden_a:83,hidden_b:83,hidden_out:8,hierach:113,hierarch:[55,57,59],hierarchi:59,high:[30,51,66,67,119],higher:[33,48,70],highest:8,highli:[66,70],him:5,hint:39,histor:33,hl_get_sync_flag:74,hold:[5,7,10,14,16,20,21,30,34,36,38,40,63,65,67,69,76,95],holder_:[67,76],home:[2,12,29,95,96,97,98,107],honor:14,host:[9,18,54,95,96],host_c:[116,117,118],hostfil:98,hostnam:95,hostnetwork:97,hostpath:[96,97],hostport:95,hous:86,how:[5,8,10,14,19,20,21,22,27,29,31,33,36,39,43,48,49,53,54,61,65,69,95],howev:[6,7,17,21,22,27,31,40,47,52,53,57,58,60,61,64,65,66,67,69,95],howto:[91,93,97],hpp:[30,45],htod:108,http:[0,1,2,9,18,34,62,72,77,78,81,84,87,95,96,107,109,116,118,119],hub:62,huge:52,human:[54,66],hyper:34,hyperparamet:61,i1116:97,i1117:108,i386:117,iOS:117,iamfullaccess:95,iamusersshkei:95,icc:32,icml:66,id_rsa:98,idea:[9,21,31,32,52,58,61],ideal:[22,69],ident:[60,95],identifi:[37,47],idmap:97,ids:[49,81,89],ids_arrai:89,idx:[14,20,34,40,74],ies:29,if_els:68,if_else_op:7,ifdef:[47,54],ifels:[8,55],ifelseop:55,iii:66,iil:83,illustr:[10,15,21,22,33,48],im_siz:34,imag:[0,5,22,31,34,35,49,50,55,58,66,72,95,96,97,99,100,119],image_a:58,image_b:58,image_conv_lay:66,image_fil:58,image_lay:58,image_nam:5,image_path:58,image_reader_cr:58,imagenet:12,imagepullpolici:[95,97],images_reader_cr:58,imagin:35,imgsiz:108,imgsizei:108,imgsizex:108,immedi:[40,43,52,61,95],immutable_paramet:5,imper:19,imperfect:59,implement:[8,14,15,16,17,18,19,21,22,24,31,33,36,37,38,40,43,45,46,47,49,53,56,63,65,66,67,68,69,70],implemet:13,impli:[9,81,84],implicitli:19,imposs:[20,49,119],impractic:69,improv:[23,24,40,59,66,95],in_arg:89,inarg:13,inbound:95,inc_path:78,includ:[5,8,9,15,18,20,21,30,31,34,36,40,45,46,48,49,54,55,57,59,65,72,75,87,95,108,116,117,118],inclus:49,incom:[19,39],increas:[10,14,30,83],increment:[21,26,35,40],incupd:74,inde:21,independ:[6,7,15,23,63,67,119],index:[6,7,8,10,14,19,55,57,70,95],indic:[7,8,15,27,34,48,55,60,64,67,70,89,95],indice_map:70,indices_map:70,individu:[10,51,95],industri:[10,44,119],ineffici:[53,69],infer:[5,7,8,10,26,31,37,38,39,40,41,45,47,56,57,59,64,66,69,84,86],infer_shap:57,infer_var_type_:38,inferer:66,inferfac:38,inferior:17,infershap:[8,57,59,75,76],infershapecontext:[75,76],infervartypefn:38,info:[30,48,74,81,84,93,97,119],inform:[8,18,29,36,39,40,43,44,47,48,51,57,61,63,64,95],infrastructur:[31,95],ingrad_:42,ingredi:[21,66],inherit:[8,20,50,59,67],ininst:5,init:[8,23,34,42,48,49,74,84,86,91,95,97],init_attr:57,init_model_path:[102,103,105],initi:[7,9,14,19,22,23,24,26,35,48,51,52,57,61,65,70,86,103,109],initial_max:83,initial_mean:83,initial_min:83,initial_std:83,initialize_op_attr:57,initrd:119,inlin:[67,76,95],inner:[81,89],inner_pos_arrai:89,inner_seq_pos_arrai:89,input0:76,input1:76,input:[6,7,8,13,17,19,20,22,23,24,25,26,30,31,32,33,34,35,36,38,39,40,42,43,47,48,49,52,53,56,57,58,59,60,63,65,66,67,69,70,74,75,76,81,82,83,84,86,89,97,105,109,110,113,114],input_data:74,input_data_target:74,input_hassub_sequence_data:74,input_index:74,input_label:74,input_lay:74,input_nam:5,input_seg:70,input_sequence_data:74,input_sequence_label:74,input_sparse_float_value_data:74,input_sparse_non_value_data:74,input_t:74,input_to_check:6,input_typ:81,input_valu:6,input_var:[6,57],inputbuff:13,inputdef:74,inputgradi:60,inputlayers_:74,inputs_to_check:6,inputsizechang:43,insert:[7,25,32,51,56,59,60,72],insid:[7,10,22,24,25,26,39,43,53,54,58,59,60,95],inspir:54,instal:[1,2,4,18,42,62,72,77,78,86,87,96,101,107,116,117,118],install_android:116,instanc:[6,8,10,12,16,19,20,22,23,25,27,32,37,43,48,49,52,57,59,60],instance_ip:95,instanti:[10,27,109],instead:[6,7,9,13,18,19,21,22,30,31,35,36,66],instrins:30,instruct:[8,35],int16:71,int32:[47,55,70,71,103],int64:[22,28,47,64,69,71],int64_t:54,int8:47,integ:[14,18,19,21,30,45,49,84],integer_sequ:81,integer_valu:[81,84,89],integer_value_sequ:[49,66,89,114],integer_value_sub_sequ:89,integr:119,intel:[31,47,67],intellig:40,inteloptimizedpaddl:42,intens:66,inter:22,interact:[22,95],interchang:[35,59],interconnect:51,interest:[19,30,51],interfac:[8,14,18,20,29,36,51,53,59,60,66,67,95,119],intermedi:[22,29,32,34,40,50,66],intern:[30,66,95,107],internel:42,internet:[9,10,119],interpret:[27,31,32,71],intrins:[19,27,30],introduc:[8,10,20,34,41,44,61,63,65],intuit:[17,59],inval_:42,invalid:[58,63],invent:31,invoc:[9,33,59],invok:[7,20,22,25,53,57,59,60,65,69,95,108],involv:49,ios:117,ios_arch:117,ios_deployment_target:117,ios_development_root:117,ios_enable_bitcod:117,ios_platform:117,ios_sdk_root:117,ios_use_veclib_for_bla:117,ip_str:97,ips:[95,97],ipt:[57,65,83,114],ipx:119,ipython:5,is_cpu_plac:43,is_inf:90,is_mkldnn_librari:43,is_seq:114,is_stat:83,is_target:56,is_tensor:65,is_test:43,is_traget:56,isbinari:89,isinst:[25,81,84],ismkldnnkernel:43,ispodallrun:97,isspars:74,issu:[9,34,66],issue_numb:72,istag:62,item:[17,30,58,86,97,119],iter:[5,10,22,31,32,40,43,52,54,58,66,70],iter_multiple_input_and_param:57,its:[5,7,8,10,14,19,20,21,24,25,26,31,32,34,35,36,38,40,44,48,49,51,52,53,56,57,59,60,63,64,65,67,69,95,108],itself:[7,10,17,20,32,43,52,63],ivector:[89,90],ivs:65,java:[8,45,55,59],jeremi:108,job:[7,17,19,22,25,59,97,102,103,105],job_desc:22,job_dispatch_packag:93,job_nam:[18,95,97],job_namespac:[95,97],job_path:[95,97],job_path_output:97,job_workspac:93,jobdesc:22,jobnam:[22,97],jobpath:[95,97],jobport0:95,jobport1:95,jobport2:95,jobport3:95,jobselector:97,jobserv:18,join:10,jpg:20,json:[36,66,95,96],juditski:52,jupyt:18,just:[9,14,15,19,22,31,32,34,38,43,52,53,57,58,59,60,61,63,64,95],jx4xr:95,jypyt:5,k8s:[19,97,119],k8s_data:[95,97],k8s_job:5,k8s_token:5,k8s_train:[95,97],k8s_user:5,kafka:12,kcpu:54,kcuda:54,kdisabl:54,kebilinearinterpbw:108,kebilinearinterpfw:108,keep:[10,21,31,32,35,49,52,57,63,65,119],kei:[0,6,7,8,10,12,14,28,30,39,43,59,60,65,66,70,72,81,97,108],kenlm:66,kept:[40,57],kera:61,kernel:[6,21,30,32,39,42,52,54,61,64,66,67,69,75,76],kernel_hint:39,kernel_type_for_var:69,kerneltyp:[39,43],key1:103,key2:103,key_pair_nam:95,keyid:95,keymetadata:95,keypair:95,keyserv:95,keystat:95,keyusag:95,keyword:[57,68,97],kforcecpu:39,kill:[10,95],kind:[5,6,10,16,20,22,25,32,35,39,43,50,51,54,67,69,71,81,84,95,96,97],kind_:54,kmark:54,kms:95,knchw8c:47,knchw:47,knhwc:47,know:[5,14,19,20,40,44,95],knowledg:66,known:[7,8,21,31,33,48],kpoprang:54,kpushrang:54,kqueue:21,kselectedrow:64,kstate:54,kube_cluster_tl:5,kube_ctrl_start_job:5,kube_get_workers_addr:19,kube_list_containers_in_job_and_return_current_containers_rank:5,kubeconfig:95,kubectl:[93,96,97,98],kuberent:[10,95],kubernet:[5,10,19,22,59,94,97,99,100,119],kubernetes_service_host:5,kusecudnn:39,kusemkldnn:39,kwarg:[26,36,57,65],l1_regularization_op:61,l2_regularization_op:61,l2regular:81,l93:13,label:[22,26,31,34,35,36,50,55,58,66,69,81,84,96,109],label_fil:58,label_lay:58,label_path:58,labelselector:97,lag:103,lambda:[19,25],lan:101,languag:[19,21,31,35,40,54,59,63,66,68,81,84],larg:[22,24,25,40,44,52,66,72],larger:[40,68],larger_than:[8,37,55],last:[7,25,40,48,54,55,110],last_seq:[49,111],lastseen:96,latenc:[30,66,95],later:[9,59,61,66,67,76,95],latest:[2,8,9,10,17,62,72,77,78,96,97,116],latter:[52,70],launch:[43,95],launcher:5,law:[81,84],layer1:[81,110],layer2:[81,110],layer:[7,8,13,19,21,22,24,31,34,35,37,50,52,55,58,59,61,65,66,67,70,74,81,83,84,86,89,90,109,110,113,114],layer_0:74,layer_att:82,layer_attr:[81,82,105,114],layer_expand:110,layer_first_seq:110,layer_help:39,layer_last_seq:110,layer_nam:81,layer_num:105,layer_pool:110,layer_s:89,layer_typ:[41,42],layerbas:74,layerconfig:74,layergradutil:74,layerhelp:[39,57],layermap:74,layers_test:78,layout:[43,69],layout_:[39,47],layouttyp:39,lazi:[52,61],ld_library_path:87,lead:[20,40,47],leaki:34,learing_r:50,learn:[2,5,7,15,17,21,22,24,27,34,35,40,42,49,51,52,54,58,59,61,67,108],learning_r:[15,22,81,83,109],learning_rate_arg:83,learning_rate_decay_a:83,learning_rate_decay_b:83,learning_rate_schedul:83,leas:10,least:10,leav:[8,95],lectur:40,left:8,left_scor:81,legal:65,len:[15,19,28,31,57,74,86,97],length:[15,30,41,44,48,49,59,66,70,96],leran:40,less:[5,25,119],less_equ:68,less_than:[5,40],let02:96,let:[5,8,17,19,21,32,33,35,39,43,47,48,49,50,60,67,69,95],level:[30,33,36,44,48,49,54,67,70,71,89,113],lgtest:9,lgtest_main:9,lib64:[2,78,103],lib:[1,46,87,107,116,117,118],lib_path:78,libapi:9,libari:46,libc:4,libcuda:[2,78],libgcc_:4,libgflag:87,libglog:87,libgoogl:107,libiomp5:42,libmkldnn:42,libmklml_intel:42,libnvidia:[2,78],libopenbla:87,libpaddl:[45,46,59,72,107],libpaddle_capi:46,libpaddle_capi_engin:87,libpaddle_capi_lay:87,libpaddle_capi_shar:87,libpaddle_capi_whol:87,libpaddle_gserv:46,libpaddle_math:46,libprotobuf:[83,87],librari:[9,16,21,22,42,43,46,51,66,69,103],library_:47,library_type_:69,librarydevicecontext:47,librarytyp:69,libstdc:4,libz:87,licens:[42,51,81,84],life:10,lifecycl:[54,119],lifetim:63,lightweight:33,like:[7,8,9,10,13,18,19,21,27,31,32,33,34,35,36,38,43,47,51,52,57,58,59,60,61,63,64,66,68,69,70,95,109,119],limit:[31,40,44,49,59,61,81,83,84,108],linaro:118,line:[9,13,18,21,29,35,52,55,57,59,61,72,81,83,95,105],line_count:83,linear:[49,81,83,84,86],lineno:107,link1:30,link2:30,link:[9,28,29,63,95,113,119],linux:[0,4,21,28,95,116,118],linux_x86_64:[4,62,78],lipo:117,list:[5,7,8,9,14,18,19,27,29,31,34,47,50,53,54,57,60,63,70,81,95,105,107],listdir:91,listen:[10,19,22],listen_and_do:19,listenanddo:19,lite:87,littl:[15,39,44],live:109,live_in:40,live_out:40,load:[5,10,22,34,51,57,84,95,97],load_missing_parameter_strategi:[102,103,105],load_mnist:34,load_paramet:83,loadsave_parameters_in_pserv:[13,102,103],local:[1,6,8,10,16,17,21,35,40,48,55,57,59,97,102,103],local_scop:6,localhost:[2,77],localip:97,localpath:29,locat:[9,31,47,54,67,70],lock:[9,10,14,15],lod:[21,44,48,64,70,71],lod_desc:[64,71],lod_expand:49,lod_level:[57,64,71],lod_tensor:[48,64,71],lodtenosr:20,lodtensor:[20,21,38,44,59,71],lodtensordesc:[44,64],log:[4,14,22,29,34,74,79,83,91,93,95,96,97,98,103],log_barrier_abstract:[102,103],log_barrier_lowest_nod:[102,103],log_barrier_show_log:[102,103],log_clip:[102,103],log_error_clip:[102,103],log_period:[96,97,103,105],log_period_serv:[102,103],logger:81,logic:[17,22,24,25,34,38,50,51,53,63,70],logit:[34,69],longer:[10,22,40],look:[8,18,19,21,31,32,35,52,57,60,61,66,95,109],lookahead:66,lookup:[38,49,109],lookup_t:40,loop:[6,8,20,31,40,54,58,63],loop_var:70,loss:[7,22,34,36,50,52,61,66],lot:[22,47,49,52,57,61,67,119],low:[50,51,66,67,70],low_rnn:48,lower:[30,48,49],lower_level_rnn:48,lpaddle_capi_engin:87,lpaddle_capi_lay:87,lpaddle_capi_shar:46,lpaddle_capi_whol:46,lrelu:34,lstm:[96,114],lstm_last:111,lstmemori:[82,114],lstmemory_group:82,lstmemory_unit:82,lstmlayer:41,luckili:40,mac:[46,116],machin:[22,24,31,34,40,42,51,52,61,81,90,95,98,113,119],machine_transl:114,maco:[0,4],macro:[33,47,60],made:[10,15,31],mai:[6,8,22,26,30,32,39,40,43,51,54,58,59,63,66,69,81,84,95],main:[19,21,25,31,32,36,51,55,59,87,95,107],main_program:[7,26],mainli:[16,40,47,67],maintain:[8,14,52,57,59,95],majel:9,major:[22,30,69],make:[0,1,5,7,8,9,10,14,15,17,21,22,23,30,31,35,48,49,52,53,57,58,59,61,66,70,72,74,75,77,78,87,95,108,116,117,118,119],make_chan:21,make_channel:21,make_ddim:76,make_function_oper:33,make_vari:65,maker:[59,60],malloc:67,man:28,manag:[10,15,16,19,21,22,29,54,63,67,77],mandarin:66,mani:[7,9,14,19,21,31,34,39,40,49,53,54,57,59,60,63,64,65,68,69,70],manili:36,manipul:[31,57,60],manner:[52,61,66,67],mantain:40,manual:[22,50,52,60,83,119],manufactur:31,manylinux1:4,manylinux1_x86_64:[4,62,78],manylinux:62,map:[5,8,14,25,43,47,57,60,63,65,67,70,84,87,119],map_fn:70,mapreduc:5,mark:[7,24,34,35,48,49,54,63,119],marker:54,market:30,master:[5,17,59,62,118],mastermind:9,mat:[45,46,89],mat_cache_row:13,mat_norm:13,mat_normal_shar:13,mat_sparse_row:13,mat_sparse_row_auto_grow:13,mat_sparse_row_id:13,mat_sparse_row_prefetch:13,mat_sparse_row_prefetch_full_s:13,mat_value_shar:13,match:[9,30,68,81],matchbox:119,math:[42,45,59,74,75,108],mathemat:61,matmul:[8,36,48,70,75],matrix:[13,45,46,74,75,87,89,90],matrixptr:74,matrixtyp:46,mattyp:13,max:[6,23,25,40,57,83,105,108,110],max_diff:6,max_length:[49,114],max_relative_error:[6,75],maxim:25,maximum:[8,15],maxoutfunctor:67,mayb:[8,43],md5:11,mean:[7,9,22,23,25,36,49,56,58,63,66,69,81,95,103,109,119],meant:70,measur:26,mechan:[7,16,20,26,43,57,60,95],mem:[8,18,49],mem_per_pserv:22,mem_per_train:22,member:[5,25,35,36,47,53,57,63],memcpi:[53,108],memori:[7,8,13,14,18,30,32,42,43,44,47,49,52,54,59,69,76,96,108,109,114],memory_nam:82,memory_optim:40,memory_test:0,memory_threshold_on_load_data:[102,103],memoryalloc:67,memorydesc:43,mention:[7,9,14,22,24,31,48,51,52,54],merg:[15,17,23,26,42,48,51,53,72,90],merge_model:90,merge_v2_model:90,merge_v2_modelss:90,messag:[8,19,21,27,31,32,35,44,54,55,56,57,59,60,64,71,72,78,96],metadata:[28,95,96,97],metal:119,metaphor:35,metaplotlib:5,method:[6,8,17,19,20,22,23,25,30,34,35,36,39,50,51,57,58,59,63,64,69,70,107],methodolog:52,metric:[26,54],mfs:97,microarchitectur:30,might:[8,9,19,21,31,40,55,66,95],min:[23,25,57,95,105,108],min_block:8,min_count:24,min_desc:8,min_pool_s:81,mini:[8,10,21,26,27,31,37,48,81],mini_batch:58,minibatch:[8,26,35,37,55],minim:[8,22,24,25,31,34,50,59,109],minimum:66,minsizerel:[116,117,118],minu:60,minus_grad:60,minusgradop:60,minusop:60,minusopgradmak:60,minusopprotoandcheckermak:60,minut:[10,17,95],mip:116,mirror:9,mislead:15,miss:34,mistak:31,mit:95,mix:[54,70,114],mkdir:[1,29,77,87,95,98],mkl:[1,43,59,67,69,78,87],mkl_packed_:41,mkldnn:[42,47,69],mkldnn_:42,mkldnnactiv:42,mkldnnbase:42,mkldnnlayer:42,mkldnnmatrix:42,mkldnnstream:42,mkldnntester:42,mklml:[42,78],mklml_lnx_2018:78,mklpack:41,mklpackedgatedrecurrentlay:41,mklpackedgemm:41,mklpackedlstmlay:41,mklpackedrecurrentlay:41,mlp:36,mnist:[12,22,34,35,55,58,59,90,107],mnist_random_image_batch_read:58,mnist_train:58,mnist_train_batch_read:58,mnist_v2:90,mnt:97,mobil:[30,31,40,59,77],mode:[30,41,51,72,97],model:[7,8,10,11,19,22,24,25,26,35,40,41,50,51,52,59,61,66,69,70,77,84,86,90,95,105],model_list:[103,105],model_path:105,modelparallel:22,modern:40,modif:66,modifi:[22,30,36,61,72,95],modul:[22,33,34,49,66,70,75,83,107],modular:49,momentum:[63,81,84],momentumop:107,mon:96,monitor:[21,54],month:9,more:[5,6,7,9,10,14,17,18,20,21,22,24,29,30,31,32,33,35,39,40,43,47,48,49,50,54,57,58,59,61,66,67,68,70,83,108,109,119],most:[5,7,9,17,21,22,32,35,36,47,49,52,54,58,61,66,67,68,109,119],mostli:[30,119],motiv:59,mount:[18,95],mountpath:[95,96,97],move:[10,14,20,29,31,52,95,119],movidiu:31,movie_id:97,mpi:[21,51,98],mpirun:98,mse:[31,35,50,55],much:[10,31,43,50,58,61,70],mul:[33,40,57,74,75],mul_grad:75,mul_op:75,mul_result:57,mulgradkernel:75,mulkernel:75,mulop:[33,75],mulopgrad:75,mulopmak:75,mult:[19,32],multi:[26,51,53,69,119],multigradientmachin:53,multipl:[5,6,14,15,17,19,21,22,24,26,31,32,33,39,51,54,59,66,69,71,84,95],multiple_input:57,multiple_param_attr:57,multipli:19,must:[7,15,20,25,40,43,44,47,54,56,57,58,59,65,71,74,75,76,81,91,95],mutabl:[67,76],mutable_data:[43,67,75,76],mutex:21,mutuable_data:67,mxnet:[8,19,21,31],my_cluster_nam:95,my_cost:83,my_external_dns_nam:95,my_lib:91,myerrorclip:25,mypaddl:[96,97],naiv:19,name:[5,6,7,8,10,12,13,15,18,19,20,22,26,30,33,36,39,42,43,44,46,47,49,54,55,57,59,62,64,65,70,71,74,83,84,86,96,97,99,100,105,108,109,114,119],name_:54,name_prefix:12,namespac:[8,37,45,57,74,75,96,97],nativ:30,natur:[14,17,24,49,70],ncall:107,nccl1:51,nccl2:51,ncclinit:51,nchw8:69,nchw8c:69,nchw:[42,47],ndarrai:[12,81],ndk:116,nearest:30,nearli:[6,20],necess:70,necessari:[7,8,15,17,25,26,40,44,49,53,57,65,70],necessarili:19,neck:51,need:[5,6,7,9,13,14,15,17,18,20,21,22,24,25,26,29,31,32,33,34,39,40,43,47,49,50,51,52,53,54,56,57,59,60,61,63,64,65,66,67,70,78,95,97,108,119],need_tran:83,neighberhood:51,neon:30,nervana:31,nessesari:66,nest:[7,8,54,55,71,89],net:[8,34,48,63,90],netop:[8,59],network:[5,6,7,8,10,13,22,24,26,34,36,40,41,42,48,50,52,54,57,58,61,63,65,66,67,69,71,82,84,86,89,90,97,105,111,119],network_config:105,networkadministr:95,neural:[5,7,8,10,22,36,40,41,42,48,52,61,63,67,69,71,86,111,113],neuralnetwork:53,never:[40,58,63,95,96,97],new_block_idx:57,new_op_desc:25,new_scop:69,new_stat:48,newblock:57,newbuff:43,newest:15,newli:[30,119],newop:8,newopdesc:57,newprogram:57,newscop:69,newvardesc:57,next:[7,10,16,20,21,25,49,51,70,95],nextlay:42,nfs4:95,nfs:[95,97],nfsdir:97,nfsver:95,nic:[97,102,103],nil:[14,21],nmt_without_attent:81,nnz:[74,89],no_grad_dict:7,no_grad_set:[6,7,75],no_gradi:7,no_sequ:84,node0:97,node1ip:98,node2ip:98,node3ip:98,node:[9,17,19,22,24,36,40,49,51,59,95,96,97,98,119],node_0:[95,97],node_1:[95,97],node_2:[95,97],node_id:91,nodeattr:36,nodeentri:36,nodefil:93,nodesep:36,nohup:91,nois:[10,34],noisi:34,non:[10,21,30,31,64,95],none:[5,6,7,8,21,25,26,34,36,37,48,49,50,55,57,65,70,109,114],noneedtran:43,nor:19,norm:[34,47],normal:[52,66,96,97],notat:40,note:[5,7,8,13,14,18,40,44,47,51,58,59,67,69,76,95],notebook:[2,18],noteworthi:31,noth:[39,57,63,72],notic:[25,31,51,60],notimplementederror:25,notin:69,notingradi:75,notion:70,notori:6,now:[7,9,10,20,21,24,34,44,47,52,59,60,61,63,95,113],nproc:0,nullptr:[43,54,60,63,74],num:[91,97,103],num_class:36,num_gradient_serv:[91,102,103],num_hidden:36,num_parameter_serv:5,num_pass:[84,96,97,102,103,105],num_pserv:22,num_row:64,num_samples_process:83,num_shard:12,num_step:70,num_train:22,number:[8,10,12,24,26,40,52,54,58,59,65,70,95],numdevices_:105,numeric_grad:6,numerical_grad:6,numlogicaldevices_:105,numpi:[1,12,30,34,57,58,75,81,83,84],numreal:13,numsampl:108,numtimeout:14,nv_:9,nv_gpu:0,nv_librari:9,nv_test:9,nvcc:[9,30,32],nvidia:[0,2,30,47,51,67,78],nvlink:51,nvprof:54,obj:83,object:[5,13,20,22,25,26,34,36,40,45,50,54,57,59,61,63,108],obtain:[17,20,52,67,81,84],obvious:[9,47],occup:[40,97],occupi:[30,54],occur:40,occurr:8,oct:96,off:[0,1,46,72,77,87,101,116,117,118,119],offer:[8,59,65],offici:[9,95],offlin:[10,12,119],offset:[13,89],often:[13,36,40,47],ograd:74,old:[6,15,17,49,59],older:31,omega:61,omit:81,omp_num_thread:107,ompi_comm_world_rank:91,onc:[10,14,19,22,24,26,31,35,52,68,95],one:[5,6,7,8,10,13,14,15,17,18,19,20,21,22,25,26,27,30,31,32,33,34,36,38,39,43,44,47,48,49,50,51,52,53,55,56,57,58,59,60,63,64,66,67,68,69,70,89,95,109,119],onehotcrossentropyopkernel:75,ones:[33,34,59],onli:[5,6,7,9,13,14,15,16,17,18,19,20,22,24,25,26,27,29,30,31,34,35,40,43,48,49,50,51,53,54,57,59,64,65,66,67,68,69,70,89,95,113,119],onlin:[10,12,40,58],only_cpu:6,onnx:31,onto:[22,24,95],op1:[40,69],op1_2_op2:69,op1_to_op2:69,op2:[40,69],op3:40,op_:75,op_check:75,op_class:[59,65],op_desc:[25,38,56],op_info:109,op_kei:43,op_maker_class:[59,65],op_proto:65,op_registri:109,op_siz:25,op_test:75,op_typ:[59,75],op_unique_kei:43,opattrcheck:75,opcreat:65,opdesc:[8,25,35,55,56,57,59,60,65,71],opdescbind:[38,60],opdescbuild:8,open:[5,12,31,34,42,58,81,83,84,95],openbla:[1,2,87],openmpi:[94,98],opensourc:51,oper:[6,8,19,21,22,23,24,26,27,30,31,32,34,35,36,38,39,48,49,50,51,54,56,61,63,66,67,69,71,75,76,95,109],operand:30,operartor:76,operator_grad:6,operator_list:54,operatorbas:[8,33,59,60,65,75],operatorwithkernel:[69,75],opinfo:[38,59,60],opinfomak:38,opinfomap:60,opkernel:[75,76],opkernelkei:59,opkerneltyp:[47,69],opmak:65,opproto:75,opprotoandcheckermak:[60,75],opprotomak:[65,75],opregist:65,opregistri:65,ops:[6,7,8,9,19,20,32,35,36,52,55,56,57,59,67,75,119],ops_:8,ops_test:9,opt:[1,5,50,56,65,97],opt_op_list:50,optest:75,optim:[6,7,22,23,24,32,34,51,52,53,55,59,61,64,66,81,83,84,109],optimis:50,optimize_op_attr:57,optimzi:81,option:[5,9,22,34,39,44,55,56,57,59,64,65,66,71,116,119],optmization_op_list:50,opts_np:56,optyp:[38,65],opwithkernel:64,order:[7,35,44,54,58,61,70,95,97,107,119],oregon:95,org:[12,28,34,81,84],orient:65,origin:[6,30,34,63,70,72],other:[8,10,15,19,29,30,31,32,38,40,43,47,48,52,56,61,63,65,66,67,69,95,109,119],otherwis:[5,7,10,15,17,34,38,43,58,66],our:[5,7,9,20,21,22,24,34,38,40,47,51,52,63,70,95],out:[5,8,9,14,17,20,22,25,31,36,40,43,48,49,57,69,75,76,81,95,107,113,114],out_dir:[95,97],out_mem:114,outer_mem:111,outgrad_:42,output:[5,6,7,8,12,17,19,20,24,25,29,32,33,34,35,36,37,38,40,43,44,48,49,52,55,56,57,58,59,60,63,64,65,67,69,70,75,76,81,84,90,93,96,97,105,114],output_:42,output_all_step:48,output_arg_nam:25,output_fil:90,output_lay:[81,84,86],output_mem:114,output_nam:6,output_num:48,output_path:12,output_seg:70,outputbuff:13,outputgradi:60,outsid:[22,63],outter:89,outter_pos_arrai:89,outter_seq_pos_arrai:89,outupt:70,outv:74,outval_:42,over:[5,31,40,51,52,70],overal:[34,52,54,119],overfit:61,overload:[30,39],overrid:[8,10,29,43,67,75,76],overview:[14,15,16,67],overwrit:29,own:[7,15,17,25,27,36,38,50,51,52,61,65,95],pack:[70,83],packag:[14,18,19,33,42,62,78,95,107],pad:[43,66],paddl:[0,1,2,4,5,8,9,10,12,18,20,22,29,32,33,34,37,41,42,43,44,45,46,48,49,53,55,59,61,62,65,66,67,70,72,74,75,77,81,83,84,86,87,89,90,91,93,95,96,97,98,101,105,107,108,109,114,116,119],paddle_arguments_get_sequence_start_po:89,paddle_arguments_set_id:89,paddle_arguments_set_sequence_start_po:89,paddle_arguments_set_valu:89,paddle_begin_init_param:15,paddle_capi:87,paddle_dir:75,paddle_doc:77,paddle_docs_cn:77,paddle_element_typ:15,paddle_element_type_float32:15,paddle_element_type_float64:15,paddle_element_type_int32:15,paddle_element_type_int64:15,paddle_element_type_uint32:15,paddle_element_type_uint64:15,paddle_enforc:[8,20,43],paddle_enforce_eq:[75,76],paddle_error:[45,46],paddle_exampl:18,paddle_finish_init_param:15,paddle_get_param:15,paddle_gradi:15,paddle_gradient_machine_create_shared_param:90,paddle_gradient_machine_forward:90,paddle_gradient_machine_load_parameter_from_disk:90,paddle_init:90,paddle_init_num_gradient_serv:91,paddle_init_param:15,paddle_init_port:91,paddle_init_ports_num:91,paddle_init_ports_num_for_spars:91,paddle_init_pserv:91,paddle_init_trainer_count:91,paddle_init_trainer_id:91,paddle_init_use_gpu:91,paddle_ivector:89,paddle_ivector_cr:89,paddle_job:18,paddle_manylinux_devel:1,paddle_matrix:[45,46,89,90],paddle_matrix_cr:[46,89],paddle_matrix_create_spars:89,paddle_matrix_get_row:89,paddle_matrix_get_shap:45,paddle_matrix_shap:45,paddle_matrix_sparse_copy_from:89,paddle_n:97,paddle_new_etcd_pserver_cli:15,paddle_new_pserver_cli:15,paddle_on_cloud:18,paddle_output:96,paddle_paramet:15,paddle_port:97,paddle_ports_num:97,paddle_ports_num_spars:97,paddle_process_by_paddl:97,paddle_pserver2:93,paddle_pserver_cli:15,paddle_pserver_client_releas:15,paddle_r:89,paddle_root:87,paddle_save_model:15,paddle_send_grad:15,paddle_server_num:97,paddle_train:[46,62,93,97],paddle_with_cuda:54,paddle_with_mkldnn:47,paddlepaddl:[0,1,2,4,9,10,12,15,16,17,18,19,22,28,29,33,34,35,37,39,44,48,49,50,53,54,57,58,59,63,70,71,72,81,84,86,87,89,90,93,94,96,97,99,100,101,107,108,114,116,118,119],paddlepaddle_gpu:4,paddlepaddlebook:2,paddlepaddlehub:2,page:95,pair:[7,8,22,35,50,54,59],pakcag:9,panic:21,paper:[34,66],para:13,paradigm:[19,27,59],paragraph:48,paragraph_data:48,paragraph_out:48,parallel:[19,21,22,24,51,54,59,69,95,96,97,105,108],parallel_for:19,parallel_nn:[102,103],paralleldo:23,parallelfor:19,paralleliz:66,param:[6,8,15,53,57,67,76,81,83],param_attr:[13,57,81,83,114],param_config_proto:15,param_fil:[83,90],paramattr:[81,83,114],paramet:[6,7,8,9,11,13,17,19,22,23,25,27,29,31,32,34,35,36,38,44,48,50,51,55,58,63,65,66,70,81,83,84,86,89,92,93,97,103,109],parameter_block_s:[102,103],parameter_block_size_for_spars:[102,103],parameter_list:[7,50],parameter_nam:5,parameter_serv:5,parameter_valu:13,parameterattribut:13,parameterclient2:97,parameterclient_:13,parametermap:74,parametermutex_:13,parameters_:74,parameters_and_grad:50,parameterserver2:13,parameterset:5,parameterupdat:53,parameterupdater_:13,params_grad:50,params_pass_4:90,params_pass_90:84,params_pass_:84,paramt:95,paraspars:74,parent:[8,19,55,57,59],parent_:[8,63],parent_idx:57,parenthes:59,pars:[0,9,22,36,95],parse_known_arg:97,parsefromstr:83,parser:97,part:[7,8,17,22,31,43,44,55,57,66,67,119],particular:[35,44,59,66,69],partit:[10,12,22,24,59,95],paserv:97,pass:[7,8,10,21,25,26,31,34,40,44,50,52,53,56,57,58,59,61,63,66,68,70,72,81,84,95,96,97,103,105,108],pass_id:[22,81,84],pass_idx:58,pass_manu:83,passtyp:74,past:[5,95],patch:28,path:[10,14,15,18,40,49,58,66,87,95,96,97,103,116,117,118],path_to_paddlepaddle_working_directori:77,pattern:[10,45,52,61,95],paus:[10,17],pcie:51,pd_api:89,peer:[51,79],pem:[5,12,95],pend:[10,14],pep425tag:[4,78],per:[10,15,51,52,58,61],percal:107,perf_test:107,perfectli:66,perform:[6,15,21,22,26,30,31,34,40,51,53,54,58,59,61,66,67,69,102,107,108],perftool:[54,107],period:[10,17,103],permiss:[81,84,95],persist:[27,64,66,71,95],persistentvolum:95,persistentvolumeclaim:[95,97],person:[5,39],perspect:59,perturb:6,pex:119,pfs:[12,29],pfsclient:12,pfspath:29,pgp:95,phase:[43,49,51,52,58,60,66,119],philosophi:[52,61],photo:34,physic:119,pick:95,pickl:[91,98],pictur:51,piec:[19,54],pillow:18,pip:[1,4,62,72,77,78,86,107],pipelin:[26,66],pivot:43,pixel:22,place:[7,8,10,17,22,24,27,39,43,51,59,69,76,109],place_:[39,47,67,69],placehold:[34,67,76],placement:24,plain:[18,44,46,47],plan:[10,19,43,59,66],platform:[4,8,32,43,47,54,67,69,75,76,95,109,116,117],pleas:[5,10,14,15,16,19,21,32,36,47,48,57,58,59,66,67,71,77,78,95,97],plot:5,plug:[51,52],pnpairvalid:102,pod:[12,18,19,95,96,97],pod_nam:95,podip:97,podlist:97,point:[8,10,18,21,30,40,43,51,67,76,89,108,119],pointer:[8,15,36,40,47,57,59,63,67,76,89],poli:83,polici:95,poll:21,pollut:17,polyak:52,ponit:36,pool3:74,pool:[23,40,66],pooling_lay:81,pooling_typ:[81,110],pop:[8,27],popul:15,popular:[9,34,36,54],port:[9,19,91,95,96,97,102,103],port_num:102,portabl:36,portal:77,ports_num:[91,97,103],ports_num_for_spars:[13,91,97,102,103,105],pose:10,posit:89,possibl:[5,8,14,21,24,40,57,61,71],post:[18,28],postpon:61,potenti:[30,108],pow:83,power:[30,40,51,66,119],ppo_workspac:77,pprof:107,pre:[5,15,39,40,95],pre_activ:57,pre_bia:57,pre_stat:[48,70],preambl:57,precis:[26,30,52],precompil:27,pred:[36,40],predecessor:40,predict:[22,61,81,86,90],predict_fil:[102,103],predict_output_dir:[102,103],prefer:[31,39],prefetch:[13,74],prefix:[10,12,49,66,95],pregel:21,pregrad:74,prepand:57,prepar:[6,18,53,66,91,98,99],prepend:57,prepend_oper:57,preprocess:[66,70],present:[5,7,8,54,70,72],preserv:29,prev_batch_st:[102,103],prevent:[5,10,14,17,25,61],preview:59,previou:[7,10,24,29,48,49,95],previous_memori:8,price:[59,86],prim:43,primari:[31,35],primarili:[52,61],primit:[30,42,43,51,70],primitive_desc:43,primitivedesc:43,principl:[5,9,47],print:[4,5,21,22,31,36,57,68,78,84,86,98],print_graphviz:36,printallstatu:108,println:21,printstatu:108,prioriti:59,privat:[8,46,54,57,63,64,65,67,70,72,76],privileg:95,pro:51,prob:86,probabl:[49,66],problem:[5,6,9,17,20,31,34,35,52,59,61],proc:2,proce:[10,58,95],procedur:[8,44],process:[5,7,8,12,13,14,17,19,20,21,22,26,27,31,32,36,40,42,44,51,61,65,69,81,83,95,97],processor:[30,108],prod:72,produc:[10,31,36,58],product:[18,31,84,95],productgraph:96,prof:107,profil:[29,54,66,107,108],profilerst:54,profl:107,proflier:[54,108],prog:97,program:[5,7,12,15,17,22,24,27,35,37,40,50,51,54,58,59,63,68,71,97,108],programdesc:[19,22,27,31,40,44,56,57,60,71],programm:[22,31,57],progress:[10,14],project:[18,46,66],promis:49,prompt:[29,31],prone:5,pronunc:66,prop_kind:43,propag:[7,31,52],proper:39,properli:39,properti:[36,61],propos:[8,23,24,49,50,51,52,70],proprietari:42,protect:[20,30,65,74,75],proto:[21,39,44,47,55,59,65,71,75],proto_:65,protobuf:[8,18,19,22,27,31,32,35,36,40,44,55,57,59,60,65,83,87,90],protocol:[109,119],protomak:75,provi:91,provid:[5,8,15,18,19,26,27,30,31,34,36,38,39,47,51,52,54,57,61,65,66,67,68,70,81,86,95,102,119],provis:[95,119],prune:8,ps_desir:10,pserver:[13,15,16,18,59,91,93,95,97,102,103],pserver_addr:15,pserver_cpu:18,pserver_id:11,pserver_mem:18,pserver_num_thread:[13,102,103],pseudo:[5,7,18,60,70],pseudocod:70,psize:74,ptr:[46,67],pub:98,pull:[2,9,59,62,116],purpos:[10,22,24,39,108],push:[8,27,31,54,62,97],push_back:74,put:[9,10,13,24,40,43,57,67],pvc:95,pwd:[0,1,2,72,77,116],pxe:119,py_paddl:78,pybind:[8,21,30],pydataprovid:81,pydataprovider2:97,python2:107,python:[0,1,4,5,8,16,20,21,26,27,31,33,34,35,36,39,45,49,53,54,59,62,67,70,72,74,75,77,78,81,86,90,91,98,107,109,114],pythonpath:78,pytorch:[31,54],qualcomm:30,queri:95,question:[5,19,24,65,95],queue:[21,24],quick:36,quick_start:[18,95,96,97,99],quick_start_data:96,quickli:[49,57,59],quickstart:96,quit:49,r14b:116,rais:[25,36,91],rajathkmp:34,ran:[24,108],rand:[34,83,89,103,105,108],rand_max:89,random:[12,21,34,47,53,57,58,75,83],random_imag:12,randomli:[17,89],rang:[12,19,22,30,34,40,54,58,65,97],rank0:51,rank1:51,rank:[5,70,95],rankdir:36,rapid:60,raspberrypi:118,raspbian:118,rasspberri:118,rate:[15,66,81,97],rather:[7,18,34,70,95],ratio:103,raw:44,rdma_tcp:[102,103],reach:[10,40,51],read:[5,7,10,12,19,20,21,22,24,31,32,58,59,66,70,83,95,119],read_from_arrai:40,read_from_realistic_imag:5,read_from_rng:5,read_lock:11,read_minibatch:31,read_mnist_imag:5,read_next_from_fil:81,read_paramet:83,read_ranking_model_data:5,readabl:[54,59],reader:[12,22,30,34,35,55,66,84,91,107],reader_cr:12,reader_creator_bool:58,reader_creator_random_imag:58,reader_creator_random_image_and_label:58,readi:[10,21,95,96,119],readlockguard:13,readm:[46,72],readnext:20,readwritebuffer_:13,readwritemani:95,real:[13,34,58],realist:5,realiti:66,realiz:[8,48],realli:[31,61],reason:[5,6,10,21,31,96],receiv:[10,18,21,22,24,48],recent:[40,52],recognit:66,recommend:[5,97],record:[14,43,54,65,95],recordev:54,recordio:[5,12,14,20],recov:[10,70],recover:59,recoveri:14,recurr:[41,48,63,66,111,112],recurrent_group:[66,81,82,111,113,114],recurrent_op:70,recurrentgradientmachin:[46,49,70],recurrentlay:41,recurs:[7,8,9,29,40,59],recv:[19,22,24,51,95],recvparametertyp:13,red:34,reduc:[24,30,51,59,107],reduce_by_kei:59,reduce_mean:34,refactor:[22,24,35,49,52,53,57,61,70],refer:[8,10,14,15,16,19,30,36,43,47,48,51,55,57,59,61,63,67,70,71],referenc:14,refine_unknown_arg:97,reflect:14,reg:65,regard:[20,119],region:63,regist:[21,40,47,60,67,69],register_gpu_profil:108,register_lay:74,register_op:[33,59,60,65,75],register_op_cpu_kernel:[67,75],register_op_cuda_kernel:[67,75],register_op_without_gradi:[59,75],register_oper:[38,60],register_tim:13,register_timer_info:108,registerop:65,registr:109,registri:[18,38,67,96,119],regular:[7,81,95],reinit:20,reiniti:[20,43],rel:[6,17,61],relat:[10,17,18,30,47,54,63,69,119],relationship:[60,67],releas:[62,66,78,87,95,116,117,118],reli:[6,19,49,50,52,61],reliabl:[10,61],relu1:36,relu2:36,relu:[34,36,40],relwithdebinfo:107,remain:70,remot:[9,13,22,59,72,95,103,105],remoteparameterupdat:[13,16],remov:[7,22,29,31,49,72],renam:[7,29,30],reorder:43,reorder_primit:43,repeat:[8,35,55,56,64,65,71],repeatedli:[35,40],replac:[9,14,38,52,60,66],replic:22,replicaset:18,repo:[9,118],report:[14,30,31,54],reportdataset:14,repositori:[77,116],repres:[7,8,14,19,22,24,25,31,36,44,47,49,52,57,59,61,64,67,70,71,95],represent:[15,22,32,34,35,40,47,49,64],request:[9,10,13,17,19,59,62,95,96,119],requir:[5,7,10,15,17,18,20,22,24,25,29,30,36,40,42,48,52,54,55,56,59,61,64,65,66,71,77,81,84,95,119],requisit:40,research:[22,31],reserv:[29,81,84],reserveoutput:74,reset:[10,26,79],reset_program:26,resetingrad:42,resetinvalu:42,resetoutgrad:42,resetoutvalu:42,resetxxx:42,reshap:[6,58,83],residu:21,resiz:[13,67,75,76],resolv:[9,72,96],resourc:[22,27,51,54,67,95],respect:[6,20,25,30,34,48],respons:[13,21,22,26,34,51,52,53,61,95,96],rest:[8,18,28,32,69,119],restart:[10,15,95,96,119],restartpolici:[95,96,97],restor:[6,52],restrict:[61,63,107],result:[6,7,14,21,26,34,35,36,40,44,49,50,51,53,84,95,108,109],resum:17,retran:95,retriev:[8,49,63],reuqest:62,reus:[8,17,49,58,59],rev:0,revamp:22,reveal:5,revers:[7,113,114],review:[19,72,96],reviews_electronics_5:96,rewrit:[9,21],rid:[20,31],right:[6,7,8,9,18,26,40,59,61,81,84],right_scor:81,ring:51,risk:7,rkt:[0,18],rmsprop:[52,81],rmspropoptim:52,rnn:[8,31,34,49,57,59,63,66,102,113,114],rnn_bias_attr:114,rnn_layer_attr:114,rnn_out:114,rnn_output:70,rnn_use_batch:[41,102,103],rnnalgorithm:49,rnnstep:70,roadmap:[66,70],rocmplac:47,role:[5,14,15,22,51,95],rollback:57,root:[7,51,95,96,97],roughli:66,round:[30,51],routin:[30,42,51],row:[13,21,89],row_offset:89,rowoffset:89,rows_:64,rpc:14,rpcserver:14,rpi:118,rpi_arm_neon:118,rpi_toolchain:118,rsize:95,rstrip:97,rtk:119,rule:[7,22,25,31,35,95],run:[0,1,2,5,6,7,8,9,10,18,19,20,21,22,23,24,26,30,31,32,33,34,35,36,40,43,47,48,50,51,52,54,55,56,57,59,62,63,64,66,67,68,69,72,76,77,78,93,95,96,97,99,100,101,107,108,116,119],run_test:1,runinitfunct:[97,108],runnabl:24,running_on_cloud:18,runserv:77,runtim:[8,19,21,22,38,48,59,71,78],runtime_table_:8,s_block:7,safe:18,sai:[20,32,35,37,40,58],said:31,same:[5,6,14,15,17,19,20,21,22,33,34,36,39,40,48,49,51,57,59,60,63,66,69,70,76,95],sampl:[26,34,57,65,89],sampler:34,satifi:40,satisfi:[9,43,64,95],save:[10,12,14,15,18,19,22,35,36,40,44,52,64,71,95,96],save_dir:[96,97,103,105],save_only_on:[102,103],save_parameter_to_tar:84,savetxt:83,saving_period:[97,102,103],saving_period_by_batch:[102,103,105],scalabl:59,scalar:[7,8,37,68,70],scale:[22,24,52,60,65,66,75],scaleop:75,scaleopmak:[59,75],scan:[7,14,40,59],scatter:[7,51],scenario:49,schdule:95,schedul:[14,18,24,95],scheme:[13,61],scienc:40,scope:[6,19,23,27,32,69,109],score:[49,81],score_diff:81,scorer:66,scp:98,script:[1,51,77,93,95,98,116],sdk:117,search:[10,63,114],second:[5,19,29,31,34,36,48,49,55,56,58,63,65,75],secret:95,section:[7,24,31,57,95],see:[5,7,10,19,21,24,30,31,57,66,81,83,84,95],seed:[83,103,108],seem:[9,21,30,31,66],seen:61,segment:[48,70],sel:21,select:[49,95],selected_generation_scor:49,selected_id:49,selected_row:[64,71],selected_rows_desc:[64,71],selected_scor:49,selectedrow:[38,71],selector:96,self:[6,25,26,34,36,40,41,42,44,50,57,70,74,75],self_addr:19,semant:[5,49,62],semaphor:21,semat:5,send:[10,15,19,22,24,39,51,59,65,95],send_back_parameter_typ:13,sendbackparameterspars:13,sendbackparametertyp:13,sendparameterrequest:13,sendparameterrespons:13,sens:[52,61],sent:[5,15,19,22,59,65,71,96],sentanc:81,sentenc:[31,48,49,70,114],sentence_input:70,separ:[15,22,33,52,60,61],seper:70,seq_len:70,seq_po:89,seq_pool:110,seq_pos_arrai:89,seqtoseq:83,sequenc:[7,8,19,27,31,35,41,50,55,66,70,81,84,89,111,113],sequence_layer_group:111,sequence_nest_layer_group:111,sequence_start_posit:89,sequencegen:111,sequencetyp:84,sequenti:[8,19,21],seri:[20,111],serial:[8,14,44,53,59],serializ:[59,71],serv:[22,30,59,70,95],server:[1,5,9,13,16,17,22,32,51,59,79,91,92,93,97,103,119],serverless:10,servic:119,sess:[34,36,50],session:[36,50,56],set:[0,5,7,10,18,20,34,38,40,43,47,48,49,54,56,57,59,60,63,66,67,70,75,76,77,81,83,84,89,95,96,108],set_active_typ:74,set_attr:25,set_drop_r:74,set_float_el:6,set_input:25,set_output:25,set_shap:20,set_siz:74,set_typ:[25,74],setdatatyp:64,setdefault:75,setp:95,setq:0,settotalbyteslimit:83,setup:[22,52,62,74,75,119],seven:66,sever:[6,13,22,24,34,48,49,51,53,54,57,64,67,70,95],sexstant:119,sgd:[5,10,18,24,52,53,64,84,92,102,109],sgd_optim:109,shall:[7,9],shape:[6,7,8,20,22,34,37,47,48,55,57,59,64,66,67,84,109],shapes_:20,shard:[10,11,12,13,14,15,17,22,24,92,95],share:[9,20,34,46,53,57,59,61,66,67,70],shared_librari:9,shared_ptr:[43,45,46,63,67,76],shell:95,shoul:6,should:[5,6,7,8,15,18,21,22,25,26,30,32,33,34,38,39,43,47,48,49,50,52,53,54,55,58,59,60,61,64,65,66,68,69,70,71,75,77,95,113],should_be_fals:5,should_be_tru:5,show:[0,7,8,10,20,21,29,31,37,40,44,48,51,52,55,68,70,95],show_check_sparse_distribution_log:[102,103],show_layer_stat:[102,103],show_parameter_stats_period:[96,102,103,105],shown:[5,22,26,51,54,66,95],shrunk:25,shuf:81,shuffl:[20,22,81],shuffleread:20,sid:95,side:[22,26,40,53],sig:95,sigint:93,sigmod:65,sigmod_op:65,sigmod_output:65,sigmoid:[8,65,70],sign:[28,44,95],signatur:95,signific:66,similar:[8,19,21,22,24,27,31,49,52,54,58,59,61,66,67,69,70,95,119],similarli:[31,40],simpl:[19,24,30,32,35,36,40,48,52,55,61,63,65,66,70,97],simple_attent:114,simple_gru:114,simple_lstm:82,simple_rnn:114,simpler:53,simplest:95,simpli:[5,15,22],simplifi:[5,49,57,65,66],simul:[31,117],simultan:95,sinc:[10,14,16,17,21,22,23,24,31,38,40,43,47,52,57,58,60,61,70,95,119],singl:[7,10,20,22,24,26,30,39,51,59,63,66],singleton:[19,23],sit:22,site:[9,95,107],situat:[7,56,69],size:[10,12,13,15,21,22,30,34,40,44,49,52,57,58,64,65,66,67,70,74,75,76,81,83,84,86,89,109,114],size_in_byt:43,size_t:[13,20,67,70,74],sizeof:[8,89],skip:[7,58,72,83,95],sleep:97,slice:19,slide:10,slight:31,slightli:34,small:[6,19,32,34,42,49],small_messag:[102,103],smaller:[6,10,30,49],smart:63,snap:96,snapdragon:30,snapshot:[11,17,95],snippet:[21,33,50,95],sock:18,sock_recv_buf_s:[102,103],sock_send_buf_s:[102,103],socket:97,softmax:[5,8,22,24,31,36,37,49,55,74,81,114],softmax_param:83,softmaxoutput:36,softwar:[30,54,81,84,119],solid:34,solut:[51,119],solv:[5,7,20,40,59],some:[5,7,8,9,13,14,15,17,18,20,21,22,24,25,30,32,33,34,35,39,40,43,47,48,49,50,55,56,57,58,59,60,63,67,69,70,95,119],some_c_api_funct:46,some_inst:46,some_op:[38,48,70],some_python_class:45,somecppclass:45,somegotyp:45,someth:[7,13,57],sometim:[54,58],somewhat:15,somewher:63,soon:10,sort:[70,95,97],sort_by_length:70,sortagrad:66,sourc:[6,9,29,31,34,42,44,46,49,58,59,95],source_dict_dim:[49,114],source_dict_s:49,source_language_word:[49,114],space:[24,30,57,61,66],span:54,spars:[13,21,74,81,89,91,95,97,103,105],sparse_binary_vector:[81,84,89],sparse_binary_vector_sequ:89,sparse_binary_vector_sub_sequ:89,sparse_float_vector:84,sparse_remot:13,sparse_upd:[13,81],sparse_vector:[81,89],sparse_vector_sequ:89,sparse_vector_sub_sequ:89,sparseparam:74,sparseprefetchrowcpumatrix:74,spec:[95,96,97],special:[7,15,22,30,32,38,47,49,50],specialvartypeinfer:38,specif:[7,9,10,20,22,25,29,32,49,59,63,67,81,84],specifi:[5,6,13,14,15,18,19,21,22,23,25,26,27,29,34,44,54,57,63,65,70,77,95],spectrogram:66,speech:66,speed:[30,44,51,52,119],speedup:54,sphinx:[45,77],split:[17,19,20,23,31,37,49,59,70,91,95],split_count:[91,95,97],spread:7,squar:36,square_error_cost:[84,109],squash:72,srand:[89,103],src:[9,43,78,91,93,97],src_backward:114,src_dict:83,src_dict_path:83,src_embed:[49,114],src_forward:114,src_primitive_desc:43,src_word_id:[49,114],src_word_vec:49,sreializ:71,ssh:[95,98],ssh_server:93,sstabl:5,stabil:[6,40],stabl:[62,95],stack:[27,59,70,95],stage:[9,16,23,34,40,43,66,71,72],stale:10,stamp:78,standalon:116,standard:[21,31,59,61,66],stanford:[6,96],star:9,start:[7,9,10,13,14,15,17,18,21,22,23,49,51,53,54,72,78,89,96,97,103],start_mpi_train:98,start_op_idx:7,start_paddl:97,start_pass:[102,103],start_pserv:[102,103],startpaddl:97,startup:[10,18,31,95],stat:[103,108],state:[8,10,26,27,48,49,54,63,66,70,82,96,113],statem:40,statement:[21,31,35,40,95],statfulset:97,static_cast:[43,76],staticinput:[113,114],statist:[26,54],statset:108,statu:[18,49,72,95,96,97,108],status:96,std:[9,13,20,36,38,39,43,45,46,54,56,59,60,63,65,67,74,75,76,103],stdbuf:91,stderr:93,stdout:93,step:[6,8,10,15,21,22,24,26,31,34,35,41,49,52,53,57,59,65,66,70,95,111,113,114,119],step_gradi:7,step_id:70,step_input:70,step_net:8,step_output:70,step_scop:59,stepnet:[8,48,59,63],still:[7,14,17,22,31,40,60],stirng:57,stmt1482205552000:95,stmt1482205746000:95,stochast:[10,14,17,52],stop:57,stop_gradi:57,storag:[28,30,95],store:[6,8,9,13,27,36,38,44,47,49,53,55,57,59,60,61,63,70,95],str:[7,18,70,97,105],straight:[55,58,64],straightforward:43,strategi:[10,57,103],stream:[22,43,54,67],stream_:67,strict:58,stride:[43,47,66],string:[7,8,14,29,36,39,44,54,55,56,57,59,60,63,64,65,71,74,75,95,103],strip:83,struct:[14,15,28,30,38,39,46,47,54,60,65,69,83],structur:[7,8,14,31,34,44,49,55,57,59,64,95],sts:95,stuff:72,style:[59,65],sub:[5,7,17,19,24,34,40,48,51,53,57],sub_block:7,sub_sequ:84,subclass:57,subcommand:29,subgraph:[24,34],submiss:22,submit:[43,59,95],subnet0:95,subnet:[5,95],subobjectpath:96,subseq:[110,113],subsequ:51,subsequenceinput:111,subtract:6,succ:40,succeed:[14,96],success:[15,95,96],successfulcr:96,sucess:40,sucessor:40,sudo:[0,95],suffer:6,suffix:[18,91],suggest:9,suit:119,suitabl:[64,67],sum:[7,8,11,23,38,57],sum_op:7,summar:[34,54],summari:54,sumopgradmak:60,sumpool:81,supercomput:40,suppli:64,support:[4,6,8,10,17,18,19,21,22,24,31,33,34,40,43,44,47,49,52,53,54,56,58,59,60,61,64,66,69,95,119],support_inplac:40,suppos:[9,19,33,64,89],suppress:29,sure:95,svs:65,swagger:28,swig:[1,16,45,46],switch_ord:82,switchop:8,sychron:51,symbol:[8,36,46],symbols_ready_:8,symbolt:[8,59],symlink:72,sync:[10,52,61],sync_with_cpp:107,syncflag:74,synchron:[10,14,21,43,51,54,95],syntax:[19,27,31,49,58],sysroot:116,system:[8,9,10,15,17,21,22,24,28,33,34,40,42,66,81],tabl:[8,19,31,38,44,64,71],tablelookup:64,tablelookupgrad:64,tablelookupop:64,tag:[2,62,72,78,101],tail:49,tainer_id:97,take:[5,7,8,9,10,17,19,20,21,22,25,27,30,32,34,35,37,38,40,43,47,52,55,56,57,58,59,60,67,69,70,95],taken:[25,36,40,47,70],talk:[15,32],tanh:[34,49,74,114],tar:[78,84,90,95],tarbal:95,target:[7,8,9,25,27,34,36,50,56,59],target_block:[7,25],target_dict_dim:114,target_dict_s:49,target_language_word:114,target_link_librari:9,target_word:49,targetinlink:111,task13:66,task14:66,task:[22,44,49,54,65,90],task_queu:14,taskentri:14,taskqueu:14,tbd:[16,43,66,111],tcp:[95,103],tear:108,technic:[7,10],techniqu:40,technolog:31,tee:96,tell:[10,14,15,49,65],templat:[33,43,65,67,75,76,96,97,119],tempor:66,temporari:[7,18,27,40,52,57],tempori:40,tensor:[6,9,19,21,23,24,30,31,32,34,36,38,39,43,44,47,48,49,64,70,71,75,109],tensor_arrai:19,tensor_array_read:70,tensor_array_s:70,tensor_array_stack:70,tensor_array_unstack:70,tensor_array_writ:70,tensor_data:44,tensor_in:69,tensor_s:6,tensor_test:9,tensor_to_check:6,tensorarrai:23,tensorarraydesc:70,tensordesc:[44,64],tensorflow:[8,19,21,22,24,31,34,37,61,70],term:[10,60,61,66],termin:96,terminolog:40,tessorarrai:70,test1:12,test:[5,6,9,36,46,52,58,62,72,74,75,76,86,89,91,98,103,105,108,109],test_:75,test_all_data_in_one_period:96,test_check_grad_ingore_i:75,test_check_grad_ingore_x:75,test_check_grad_norm:75,test_check_output:75,test_compar:78,test_comparespars:78,test_comparetwonet:78,test_comparetwoopt:78,test_config_pars:78,test_data_dir:91,test_fcgrad:74,test_gpuprofil:108,test_layergrad:74,test_list:83,test_mkldnn:42,test_mklpack:41,test_mul_op:[1,75],test_networkcompar:78,test_pass:[102,103,105],test_period:[102,103,105],test_predict:78,test_pydataprovid:78,test_pydataprovider2:78,test_pydataproviderwrapp:78,test_recurrent_machine_gener:78,test_recurrentgradientmachin:[78,111],test_swig_api:78,test_train:78,test_traineronepass:78,test_wait:[102,103],testa:5,testb:5,testbilinearfwdbwd:108,testconfig:74,testfcgrad:74,testfclay:74,testlayergrad:74,testmulop:75,testq:5,testutil:74,text1:29,text:[5,44,48,54,66,95],tflop:108,tftp:119,tgz:[4,78],than:[7,10,18,19,20,25,31,32,33,34,57,59,61,68,70,83,89,95,119],the_step:31,theano:31,thei:[5,7,9,10,15,17,19,20,21,24,25,29,31,34,35,39,40,49,50,54,57,59,65,70,71,95,108],them:[5,6,7,9,10,13,18,20,21,24,25,31,32,33,38,39,40,49,57,58,59,60,63,64,65,69,70,71,95,108],themselv:[7,9],theori:31,therefor:[7,40,52],therein:8,theta:34,theta_d:34,theta_g:34,thi:[4,5,6,7,8,9,10,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,30,31,32,33,34,35,36,39,40,43,47,48,49,50,51,52,53,54,55,57,58,59,60,61,64,65,66,67,69,70,81,84,89,95,108,109,119],thin:38,thing:[22,34,59,67],think:[5,9],third:[10,36,89],third_parti:[42,78,87,116,117,118],those:[8,9,10,33,35,36,37,55],though:[70,119],thought:9,thread:[19,21,23,54,108],thread_count:23,thread_id:54,thread_id_:54,thread_local_rand_use_global_se:[102,103],thread_pool:23,threadid:105,threadloc:108,threadpool:19,three:[6,7,10,21,26,30,31,32,35,43,49,50,53,54,55,58,66,67],threshold:[10,14,25,103],through:[7,9,10,14,16,26,40,50,52,77,109],throughout:27,throughput:108,thrust:59,thu:[17,26,36,40,66,95],tier:96,time:[5,6,9,10,14,17,20,21,22,24,25,31,33,38,40,41,47,48,49,51,54,57,58,59,60,64,65,66,70,71,89,96,97,103,107,108,111,119],timelin:[54,59],timeo:95,timeout:[10,14],timer:108,timestamp:11,timestep:63,titan:40,titl:97,tls:28,tmp:57,to_no_sequ:110,to_sequ:[110,111],to_your_paddle_clone_path:77,todo:[8,10,14,17,49,65,66],togeth:[7,70],token:[5,66,114],toler:6,too:[6,19,21,25,43,69,70],took:119,tool:[54,77,95,97,116,118],toolchain:116,toolkit:66,top:[48,49,66],top_k:49,top_level_rnn:48,topic:43,topk_generated_scor:49,topk_id:49,topk_scor:49,toplevel:0,topolog:[5,10,22,36,40,44,53],topoloi:36,torch:[8,31],tostr:83,total:[10,24,26,51,54,58,96,108,119],total_pass:58,tottim:107,touch:78,toward:31,trace:[8,32,34],track:[10,14,36,57,72],tradit:[8,30,66],traffic:22,train:[2,7,8,12,14,15,17,19,20,25,26,27,31,32,34,35,40,41,44,51,52,53,54,55,56,57,59,61,64,66,67,71,79,81,84,91,93,94,96,97,98,99,100,103,105,114],train_arg:97,train_args_dict:97,train_args_list:97,train_config_dir:[95,97],train_data:91,train_data_dir:91,train_i:84,train_id:95,train_list:[83,91],train_loop:31,train_read:[22,84],train_x:84,trainabl:[44,57],trainer:[5,11,12,13,14,16,22,24,32,41,42,52,53,59,74,84,91,92,97,103,105],trainer_config:[90,95,96,97],trainer_config_help:74,trainer_count:[81,86,91,95,96,97,102,103,105],trainer_cpu:18,trainer_cr:18,trainer_gpu:18,trainer_id:[91,95,97,103],trainer_intern:13,trainer_mem:18,trainer_packag:18,trainer_prog:22,trainerconfighelp:83,trainerid:[17,97],trainingjob:22,trainonebatch:13,tran:[43,74],trans_var:69,transact:[10,14],transcript:66,transfer:[40,54],transform:[59,66],translat:[40,81],translation_id:49,translation_scor:49,transpar:49,transpil:19,travers:[7,35,40],travi:72,treat:[8,15,40],treatment:[15,30],tree:[8,19,27,31,57,97,109,118],trg_dic_siz:49,trg_embed:[49,114],trick:49,tricki:45,trigger:[17,20,53],trivial:[49,70],true_block:[8,37,55],true_imag:58,true_label:58,true_neg:26,true_posit:26,true_read:58,tune:[66,102,107],tupl:[7,57,58],turn:[57,58,113],tutori:[95,97,98,99,100],twice:[24,34],twine:62,two:[5,7,15,16,17,18,19,20,21,22,26,29,30,31,32,34,35,38,40,44,47,49,52,54,55,58,59,60,61,63,64,65,66,69,70,71,75,76,95,108],txt:[9,18,29,41,42,74,77,91,95,98],type:[5,7,8,10,13,14,17,18,20,22,28,29,30,32,38,39,43,44,45,46,48,49,55,56,57,58,59,60,61,64,65,66,67,69,71,74,75,76,84,86,89,95,96,105,114],type_nam:65,typedef:[15,30,45,46,47,67],typeerror:25,typeid:65,typenam:[33,65,67,75,76],typic:22,ubuntu:[4,62,86],ubyt:58,uci_h:86,uid:96,uint16_t:30,uint32:[28,44],uint32_t:54,uint64:[44,45],uint64_t:[45,89],unawar:15,unbias:6,unblock:21,unbound:40,unbuff:21,unclear:17,uncreat:7,under:[9,14,24,51,69,81,84,95],underli:[20,49],understand:[31,57,66,119],understand_senti:114,undeterminist:108,uni:66,unidirect:66,unifi:[20,27,36,64],uniform:[12,34,57,58],uniform_random:57,uniniti:7,uninstal:[1,78],uniqu:[5,8,10,17,18,43,47,57,63,95],unique_nam:57,unique_name_gener:57,unique_ptr:[60,63,67,74],unit:[9,52,54,61,67],unittest:[46,75,78],unix:21,unk:[64,71],unless:[81,84],unlik:49,unnecessari:[7,66],unordered_map:63,unpack:70,unrol:48,unseen:61,unsign:[15,30],unstack:70,unstack_from:70,unsupervis:34,unsupport:75,until:[10,15,21,23,24,31,40,63,95,97],untrack:72,unzip:116,updat:[7,10,14,15,22,28,30,34,48,49,50,51,52,53,63,66,70,72,105,107],update_equ:84,update_memori:8,update_op:50,updatecallback:74,updatestack:95,upgrad:[4,51,78],upload:[10,18,21,28,62],upon:10,upstream:[72,78],uri:95,usag:[30,37,40,53,57,68,93,97],use:[5,6,8,9,10,16,20,21,22,23,24,27,30,34,36,38,39,40,43,47,49,50,51,53,54,57,63,64,65,66,69,70,71,72,75,81,84,89,91,95,97,108],use_cpu:39,use_cudnn:39,use_eigen_bla:116,use_eigen_for_bla:[116,117],use_gpu:[81,84,86,91,96,97,102,103,105],use_mkl_pack:41,use_mkldnn:[39,42],use_old_updat:[13,102,103],use_sparse_remote_updat:13,used:[5,6,8,9,10,16,17,20,21,22,25,27,30,31,34,36,40,48,49,52,53,54,57,58,59,61,63,65,67,69,70,95,108],useful:[6,30,40,57,63,69],usegpu:[74,89],user:[5,6,7,8,9,12,14,17,18,19,22,23,24,25,26,27,29,33,34,35,36,38,39,43,47,49,50,51,52,54,57,58,59,60,61,63,65,67,69,70,95,119],user_id:97,user_nam:12,usercert:12,userkei:12,usernam:[12,72,116],uses:[6,10,17,19,21,22,30,40,47,48,49,53,54,67,69,95],using:[5,6,7,8,9,10,14,15,17,18,21,22,27,29,30,31,33,34,36,38,40,48,50,52,55,57,58,60,61,63,65,66,67,75,86,95],usr:[1,2,78,91,95,97,103],usual:[7,18,40,47,54,55,61,67,95,108],util:[22,41,42,51,90,97,108,119],uuid:[11,17],v7a:116,v8a:116,val:7,valgrind:107,valid:[58,59,63,95],valu:[6,7,8,10,19,21,25,26,36,37,40,42,44,48,49,50,52,53,55,59,63,64,65,68,70,71,74,81,89,95,97,105,116],value1:103,value2:103,value_:64,valueerror:[36,81],values_:70,vanilla:114,var_nam:[7,69],var_recurs:25,vardesc:[8,35,55,57,59,64],vardescbuild:8,vari:95,variabl:[5,6,8,19,20,21,22,24,25,26,27,32,34,35,36,37,38,47,48,49,50,52,55,56,60,61,64,65,66,69,70,95,96,109],variablenamemap:75,varialbl:34,variant:[38,47,67,70],varibal:7,varibl:36,varienc:70,varient:70,variou:[8,21,30,40,61],varproto:65,vars_:[8,63],vartyp:[64,71],vartypeinfer:38,vec2seq:66,vec:83,veclib:117,vector:[5,8,13,15,20,36,37,43,48,49,54,57,59,60,64,66,68,70,87,89],vendor:9,verbos:29,veri:[9,14,19,24,27,31,33,34,40,43,49,53,58,61,63,66,67,70],verifi:8,version:[7,9,18,22,25,29,32,34,36,37,44,49,62,66,72,81,84,95,101,102,103,108,117],versu:5,via:[7,10,47,72,95,119],view:[44,47],vim:2,virtual:[20,25,38,39,60,67],virtualenv:0,visibl:[17,63],visit:7,visual:49,vlog:13,vocabulari:66,volum:[77,96,97],volumemount:[95,96,97],volumn:95,wai:[5,7,15,17,21,27,31,39,40,49,52,57,58,61,70],wait:[10,15,21,23,97],wangkuiyi:9,want:[5,18,19,21,26,34,39,47,52,54,56,58,61,63,67,68,69,70],warn:[29,78,83,97],warp_ctc:66,warranti:[81,84],wast:51,watch:10,wbia:95,weight:[41,44,61,74],weightlist:74,weights_:74,weights_primitive_desc:43,weights_t:74,welcom:[9,66],well:[7,18,21,22,24,31,33,34,61,64,66,95],wer:66,were:[9,21,31],west:95,wget:[78,116],wgt:43,what:[9,20,31,34,49,57,65,69,72,119],wheel:4,when:[7,8,9,10,13,14,15,18,19,22,24,25,26,27,29,30,31,32,36,49,51,52,53,54,55,57,59,67,70,95,108,119],whenev:[57,66],where:[5,7,8,10,17,19,22,31,32,35,47,48,49,52,55,59,61,67,70,109],wherea:[8,14,33,37,67,68,71],whether:[6,7,8,20,27,54,58,64,70,89],which:[5,6,7,8,9,10,12,14,15,17,18,19,20,21,22,23,25,27,30,31,32,33,34,36,38,40,43,44,47,48,49,50,51,53,55,56,57,58,59,60,63,64,65,68,69,70,71,84,95,107,119],while_grad:40,while_loop:[49,70],while_op:7,whileloop:70,whileop:8,white:66,whl:[1,4],who:[7,33,35,51,57],whoever:15,whole:[7,20,34,37,40,45,46,48,51,56,65,66,87,95,119],wholli:20,whose:[6,7,10,17,25,48,59,60,65,70],why:[6,46,108],wide:[9,25,34,93,98],width:[13,45,58,74,75,83,89],wiki:9,window:[0,52,66],wirt:36,wise:[24,59,66],with_avx:[1,72,101,116,117],with_bia:65,with_c_api:[1,87,116,117,118],with_doc:1,with_doubl:[1,74,101],with_dso:1,with_golang:[1,87,116],with_gpu:[0,1,72,87,101,116,117],with_mkl:[1,41,42,87,116],with_mkldnn:42,with_mklml:42,with_profil:108,with_python:[1,87,101,116,117],with_rdma:[101,116,117],with_style_check:[1,72],with_swig_pi:[1,87,116,117],with_test:[1,72,75],with_tim:[101,108],within:[14,22,31,66],without:[7,10,15,20,21,54,57,58,59,66,81,84],wloop:70,wmt14:114,word2vec:[18,81,91,93],word:[7,24,35,38,40,48,49,59,65,66,70,81,113],word_dict:[91,98],word_dim:83,word_id:81,word_vector_dim:[49,114],wordcount:66,work:[2,5,8,9,10,22,27,30,31,39,50,52,54,57,72,77,95,96,97,119],worker:[24,71,95],workercount:95,workflow:[59,95],workspac:[91,93],worri:6,worth:109,would:[8,9,10,17,21,22,23,24,31,33,34,35,43,50,52,53,57,58,64,66,70,95,119],wouldn:[31,35],wrap:[20,31,33,34,51,119],wrapper:[9,20,21,33,51,52,60,70,108],write:[5,10,17,19,20,21,22,24,30,31,32,33,36,38,43,50,52,57,58,59,60,67,70,81,83,84,95],write_lock:11,write_to_arrai:40,writer:[5,57],written:[7,8,19,24,27,34,44,52,59,60,64],wrong:58,wrote:36,wsize:95,www:[81,84],x64:118,x86:[116,117],x86_64:[116,117],x_neg:6,x_po:6,xarg:[2,74,78,98],xcode:117,xcodebuild:117,xgbe0:103,xgbe1:103,xpu:31,xrang:[6,31,34,54,58,74,84,86],xx_layer:39,xxx:[5,70],xxxx:11,xxxxxxxxx:95,xxxxxxxxxx:95,xxxxxxxxxxxxx:95,xxxxxxxxxxxxxxxxxxx:95,y_dim:34,y_neg:6,y_po:6,y_predict:[84,86,109],yaml:[9,93,95,96,97,98,119],yancey1989:18,yapf:72,year:31,yep:[54,107],yet:[31,66,119],yield:[5,12,20,58,81,84],you:[6,18,22,30,63,81,84,95,119],your:[5,9,13,18,29,59,78,95,116,117,118,119],your_access_key_id:95,your_param_nam:83,your_repo:97,your_secrete_access_kei:95,your_source_root:46,yuang:31,yuyang:107,z_dim:34,z_size:34,zero:[6,7,10,21,34,49,53,57,64,95,103],zip:[57,97,116],zlib:87,zone:95,zxf:78,zxvf:95},titles:["\u7528Docker\u7f16\u8bd1\u548c\u6d4b\u8bd5PaddlePaddle","\u4ece\u6e90\u7801\u7f16\u8bd1","\u4f7f\u7528Docker\u5b89\u88c5\u8fd0\u884c","\u5b89\u88c5\u4e0e\u7f16\u8bd1","\u4f7f\u7528pip\u5b89\u88c5","PaddlePaddle Design Doc","Auto Gradient Check Design","Backward Building","Design Doc: Block and Scope","Required CMake Function","Design Doc: Distributed Training","\u6a21\u578b\u53c2\u6570\u68c0\u67e5\u70b9\uff08Checkpointing\uff09","\u8bad\u7ec3\u6570\u636e\u7684\u5b58\u50a8\u548c\u5206\u53d1","Alalysis of large model distributed training in Paddle","Design Doc: Master Server","Design Doc: The Client Library of Parameter Server","Design Doc: Remote Parameter Updater for Cluster Train","Design Doc: Save Model","Submit a Distributed Training Job","Design Doc: Concurrent Programming with Fluid","C++ Data Feeding","Design Doc: CSP in PaddlePaddle Fluid","Design Doc: Distributed Training Architecture","Design Doc: Execute the Program with Multi CPU","Design Doc: Parameter Server","Error Clip","Evaluator Design","Executor Design Doc","FileManager\u8bbe\u8ba1\u6587\u6863","PFSClient","Design Doc: float16","Design Doc: PaddlePaddle Fluid","PaddlePaddle Fluid: Towards a Compiled Programming Language","Design Doc: Functions, Operators, and Layers","Design for GAN","Design Doc: Computations as a Graph","Survey on Graph","The IfElse
Operator","Design Doc: InferVarType","Problem","Memory Optimization","Intel\u00ae MKL Packed on PaddlePaddle: Design Doc","Intel\u00ae MKL-DNN on PaddlePaddle: Design Doc","Design Doc: Add MKLDNN Kernel in Fluid Operator","Design Doc: Model Format","Paddle\u591a\u8bed\u8a00\u63a5\u53e3\u5b9e\u73b0","C-API \u6a21\u578b\u63a8\u65ad\u5b9e\u73b0\u6587\u6863","Design Doc: The Keys of Operator Kernel Type","RNNOp design","Design: Sequence Decoder Generating LoDTensors","Optimizer Design","Design Doc: NCCL support in Paddle Fluid","Averaging Parameter in PaddlePaddle","Design Doc: The C++ Class Parameters
","Introduction","Design Doc: PaddlePaddle Programs","Prune","Design Doc: Python API","Python Data Reader Design Doc","Design Doc: Refactorization Overview","Design Doc: Gradient Operators Registration","Regularization in PaddlePaddle","PaddlePaddle\u53d1\u884c\u89c4\u8303","Design of Scope in Paddle","Design Doc: Selected Rows","Interaction between C++ and Python","DeepSpeech2 on PaddlePaddle: Design Doc","Design Doc: Supporting new Device/Library","Design Doc: Switch","Background","Design for TensorArray","Background","\u5982\u4f55\u8d21\u732e\u4ee3\u7801","\u5f00\u53d1\u6807\u51c6","\u5b9e\u73b0\u65b0\u7684\u7f51\u7edc\u5c42","\u5982\u4f55\u5199\u65b0\u7684Operator","\u5728Paddle\u4e2d\u5982\u4f55\u4f7f\u7528Eigen","\u5982\u4f55\u8d21\u732e\u6587\u6863","\u7f16\u8bd1\u5b89\u88c5\u4e0e\u5355\u5143\u6d4b\u8bd5","\u96c6\u7fa4\u8bad\u7ec3\u4e0e\u9884\u6d4b","FAQ","\u672c\u5730\u8bad\u7ec3\u4e0e\u9884\u6d4b","\u6a21\u578b\u914d\u7f6e","\u53c2\u6570\u8bbe\u7f6e","\u57fa\u672c\u4f7f\u7528\u6982\u5ff5","\u65b0\u624b\u5165\u95e8","\u5feb\u901f\u5f00\u59cb","\u5b89\u88c5\u4e0e\u7f16\u8bd1C-API\u9884\u6d4b\u5e93","C-API\u9884\u6d4b\u5e93","\u8f93\u5165/\u8f93\u51fa\u6570\u636e\u7ec4\u7ec7","C-API\u4f7f\u7528\u6d41\u7a0b","\u542f\u52a8\u53c2\u6570\u8bf4\u660e","\u5206\u5e03\u5f0f\u8bad\u7ec3","\u4f7f\u7528fabric\u542f\u52a8\u96c6\u7fa4\u8bad\u7ec3","\u5728\u4e0d\u540c\u96c6\u7fa4\u4e2d\u8fd0\u884c","Distributed PaddlePaddle Training on AWS with Kubernetes","Kubernetes\u5355\u673a\u8bad\u7ec3","Kubernetes\u5206\u5e03\u5f0f\u8bad\u7ec3","\u5728OpenMPI\u96c6\u7fa4\u4e2d\u63d0\u4ea4\u8bad\u7ec3\u4f5c\u4e1a","<no title>","<no title>","\u73af\u5883\u51c6\u5907","\u53c2\u6570\u6982\u8ff0","\u7ec6\u8282\u63cf\u8ff0","\u547d\u4ee4\u884c\u53c2\u6570\u8bbe\u7f6e","\u4f7f\u7528\u6848\u4f8b","\u8fdb\u9636\u4f7f\u7528","Python\u4ee3\u7801\u7684\u6027\u80fd\u5206\u6790","GPU\u6027\u80fd\u8c03\u4f18","PaddlePaddle Fluid Source Code Overview","\u652f\u6301\u53cc\u5c42\u5e8f\u5217\u4f5c\u4e3a\u8f93\u5165\u7684Layer","\u5355\u53cc\u5c42RNN API\u5bf9\u6bd4\u4ecb\u7ecd","RNN\u6a21\u578b","Recurrent Group\u6559\u7a0b","RNN\u914d\u7f6e","PaddlePaddle \u6587\u6863","Android\u5e73\u53f0\u7f16\u8bd1\u6307\u5357","iOS\u5e73\u53f0\u7f16\u8bd1\u6307\u5357","Raspberry Pi\u5e73\u53f0\u7f16\u8bd1\u6307\u5357","Cluster bootstrapping tool survey"],titleterms:{"\u4e00\u4e9b\u7ec6\u8282\u7684\u8865\u5145":97,"\u4e0a\u4f20\u8bad\u7ec3\u6587\u4ef6":12,"\u4e0b\u8f7d\u6570\u636e":96,"\u4e0b\u8f7dmklml\u5e93\u5931\u8d25":78,"\u4e0d\u4f7f\u7528":45,"\u4e0d\u4f7f\u7528swig\u8fd9\u79cd\u4ee3\u7801\u751f\u6210\u5668":45,"\u4e0d\u540c\u7684":82,"\u4e0d\u5bfc\u51fapaddle\u5185\u90e8\u7684\u7ed3\u6784\u4f53":45,"\u4e0d\u5f15\u7528\u5176\u4ed6\u52a8\u6001\u5e93":45,"\u4e24\u79cd\u4f7f\u7528":82,"\u4e3a\u4ec0\u4e48\u8981":0,"\u4e3a\u4ec0\u4e48\u9700\u8981\u6027\u80fd\u5206\u6790":108,"\u4ec0\u4e48\u662f\u6027\u80fd\u5206\u6790":108,"\u4ec5\u4ec5\u4f7f\u7528void":45,"\u4ece\u5feb\u7167\u6062\u590d":11,"\u4ece\u6e90\u7801\u7f16\u8bd1":1,"\u4ee3\u7801\u8981\u6c42":72,"\u4f7f\u7528":[72,96],"\u4f7f\u7528\u52a8\u6001\u5e93\u6765\u5206\u53d1paddl":45,"\u4f7f\u7528\u6848\u4f8b":105,"\u4f7f\u7528\u6a21\u578b\u521d\u59cb\u5316\u7f51\u7edc":105,"\u4f7f\u7528\u6d41\u7a0b":90,"\u4f7f\u7528\u73af\u5883\u53d8\u91cf":97,"\u4f7f\u7528\u8f6c\u6362\u5e93":12,"\u4f7f\u7528docker\u542f\u52a8paddlepaddl":2,"\u4f7f\u7528docker\u5b89\u88c5\u8fd0\u884c":2,"\u4f7f\u7528docker\u6267\u884cgpu\u8bad\u7ec3":2,"\u4f7f\u7528docker\u6784\u5efa":77,"\u4f7f\u7528fabric\u542f\u52a8\u96c6\u7fa4\u8bad\u7ec3":93,"\u4f7f\u7528paddlepaddl":77,"\u4f7f\u7528pip\u5b89\u88c5":4,"\u4fdd\u6301\u672c\u5730\u4ed3\u5e93\u6700\u65b0":72,"\u4fee\u6539\u542f\u52a8\u811a\u672c":96,"\u514b\u9686":72,"\u5177\u4f53\u67d0\u79cd\u7c7b\u578b\u7684\u5934\u6587\u4ef6":46,"\u5177\u4f53\u67d0\u79cd\u7c7b\u578b\u7684\u5b9e\u73b0\u6587\u4ef6":46,"\u5185\u7f6e\u5b9a\u65f6\u5668":108,"\u5199\u68af\u5ea6\u68c0\u67e5\u5355\u5143\u6d4b\u8bd5":74,"\u51c6\u5907\u4e00\u4e2alinux\u96c6\u7fa4":93,"\u51c6\u5907\u4ea4\u53c9\u7f16\u8bd1\u73af\u5883":[116,117],"\u51c6\u5907\u6570\u636e\u96c6":91,"\u51c6\u5907\u8bad\u7ec3\u6570\u636e":97,"\u51c6\u5907\u8bad\u7ec3\u7a0b\u5e8f":91,"\u51c6\u5907\u9884\u6d4b\u6a21\u578b":90,"\u51c6\u5907openmpi\u96c6\u7fa4":98,"\u51cf\u5c11\u6570\u636e\u8f7d\u5165\u7684\u8017\u65f6":81,"\u51cf\u5c11dataprovider\u7f13\u51b2\u6c60\u5185\u5b58":81,"\u51fa\u73b0":82,"\u5206\u5757\u6587\u4ef6\u4f20\u8f93":28,"\u5206\u5e03\u5f0f\u8bad\u7ec3":92,"\u5206\u652f\u89c4\u8303":62,"\u521b\u5efa\u672c\u5730\u5206\u652f":72,"\u521b\u5efa\u795e\u7ecf\u7f51\u7edc\u8f93\u5165":90,"\u521b\u5efajob":97,"\u521b\u5efapaddlepaddl":96,"\u521d\u59cb\u5316paddlepaddle\u8fd0\u884c\u73af\u5883":90,"\u5220\u9664\u672c\u5730\u5206\u652f":72,"\u5220\u9664\u8fdc\u7a0b\u5206\u652f":72,"\u5229\u7528\u66f4\u591a\u7684\u8ba1\u7b97\u8d44\u6e90":81,"\u5230\u8fdc\u7a0b\u4ed3\u5e93":72,"\u5236\u4f5c\u955c\u50cf":97,"\u5236\u4f5cdocker\u955c\u50cf":96,"\u524d\u5411\u8ba1\u7b97":90,"\u524d\u5411operator\u5355\u6d4b":75,"\u52a0\u8f7d\u6a21\u578b":90,"\u52a0\u8f7dpaddlepaddl":84,"\u52a0\u901f\u6267\u884c":11,"\u52a0\u901f\u8bad\u7ec3\u901f\u5ea6":81,"\u52a8\u6001\u5e93\u4e2d\u4e0d\u5d4c\u5165\u4efb\u4f55\u5176\u4ed6\u8bed\u8a00\u7684\u89e3\u91ca\u5668":45,"\u52a8\u6001\u6269\u5bb9":11,"\u5355\u5143\u6d4b\u8bd5":103,"\u5355\u53cc\u5c42rnn":111,"\u539f\u56e0":45,"\u539f\u56e0\u5217\u8868":45,"\u53c2\u6570\u5185\u5b58":81,"\u53c2\u6570\u670d\u52a1\u5668\u548c\u5206\u5e03\u5f0f\u901a\u4fe1":103,"\u53c2\u6570\u6982\u8ff0":102,"\u53c2\u6570\u8bbe\u7f6e":83,"\u53c2\u8003\u6587\u6863":28,"\u53c2\u8003\u8d44\u6599":108,"\u53cc\u5c42rnn":111,"\u53cc\u5c42rnn\u4ecb\u7ecd":113,"\u53cc\u5c42rnn\u7684\u4f7f\u7528":113,"\u53cd\u5411operator\u5355\u6d4b":75,"\u53d1\u5e03docker\u955c\u50cf":62,"\u53d1\u5e03wheel\u5305\u5230pypi":62,"\u53ef\u80fd\u78b0\u5230\u7684\u95ee\u9898":0,"\u5404\u4e2a\u7248\u672c\u6700\u65b0\u7684whl\u5305":4,"\u540d\u8bcd\u89e3\u91ca":28,"\u5411\u91cf":103,"\u542f\u52a8\u4efb\u52a1":97,"\u542f\u52a8\u53c2\u6570\u670d\u52a1\u5668":91,"\u542f\u52a8\u53c2\u6570\u8bf4\u660e":91,"\u542f\u52a8\u8ba1\u7b97\u8282\u70b9":91,"\u542f\u52a8\u96c6\u7fa4\u4f5c\u4e1a":[93,98],"\u5440":0,"\u547d\u4ee4\u884c\u53c2\u6570\u8bbe\u7f6e":104,"\u548c":110,"\u5728\u4e0d\u540c\u8bbe\u5907\u4e0a\u6307\u5b9a\u5c42":105,"\u5728\u4e0d\u540c\u96c6\u7fa4\u4e2d\u8fd0\u884c":94,"\u5728docker\u4e2d\u6267\u884cpaddlepaddle\u8bad\u7ec3\u7a0b\u5e8f":2,"\u5728openmpi\u96c6\u7fa4\u4e2d\u63d0\u4ea4\u8bad\u7ec3\u4f5c\u4e1a":98,"\u5728paddle\u4e2d\u5982\u4f55\u4f7f\u7528eigen":76,"\u57fa\u4e8edocker\u5bb9\u5668\u7684\u7f16\u8bd1\u65b9\u5f0f":116,"\u57fa\u4e8elinux\u4ea4\u53c9\u7f16\u8bd1\u73af\u5883\u7684\u7f16\u8bd1\u65b9\u5f0f":116,"\u57fa\u672c\u4f7f\u7528\u6982\u5ff5":[84,89],"\u57fa\u672c\u539f\u7406":113,"\u57fa\u672c\u8981\u6c42":45,"\u5982\u4f55\u4e66\u5199\u6587\u6863":77,"\u5982\u4f55\u4f7f\u7528":82,"\u5982\u4f55\u5171\u4eab\u53c2\u6570":83,"\u5982\u4f55\u5199\u65b0\u7684oper":75,"\u5982\u4f55\u51cf\u5c11\u5185\u5b58\u5360\u7528":81,"\u5982\u4f55\u521d\u59cb\u5316\u53c2\u6570":83,"\u5982\u4f55\u52a0\u8f7d\u9884\u8bad\u7ec3\u53c2\u6570":83,"\u5982\u4f55\u52a0\u901f\u8bad\u7ec3\u901f\u5ea6":81,"\u5982\u4f55\u548c\u660e\u6587\u8fdb\u884c\u76f8\u4e92\u8f6c\u5316":83,"\u5982\u4f55\u5728\u8bad\u7ec3\u8fc7\u7a0b\u4e2d\u83b7\u5f97\u53c2\u6570\u7684\u6743\u91cd\u548c\u68af\u5ea6":81,"\u5982\u4f55\u5728\u8bad\u7ec3\u8fc7\u7a0b\u4e2d\u83b7\u5f97\u67d0\u4e00\u4e2alayer\u7684output":81,"\u5982\u4f55\u6307\u5b9agpu\u8bbe\u5907":81,"\u5982\u4f55\u66f4\u65b0www":77,"\u5982\u4f55\u6784\u5efa\u6587\u6863":77,"\u5982\u4f55\u8bbe\u7f6e\u5b66\u4e60\u7387\u9000\u706b":83,"\u5982\u4f55\u8c03\u7528":81,"\u5982\u4f55\u8d21\u732e\u4ee3\u7801":72,"\u5982\u4f55\u8d21\u732e\u6587\u6863":77,"\u5982\u4f55\u8fdb\u884c\u6027\u80fd\u5206\u6790":108,"\u5982\u4f55\u9009\u62e9sgd\u7b97\u6cd5\u7684\u5b66\u4e60\u7387":83,"\u5b50\u5e8f\u5217\u95f4\u65e0memori":111,"\u5b50\u5e8f\u5217\u95f4\u6709memori":111,"\u5b58\u50a8\u7684\u53c2\u6570\u683c\u5f0f\u662f\u4ec0\u4e48":83,"\u5b89\u88c5":4,"\u5b89\u88c5\u4e0e\u7f16\u8bd1":3,"\u5b89\u88c5\u4e0e\u7f16\u8bd1c":87,"\u5b89\u88c5\u4ea4\u53c9\u7f16\u8bd1\u5668":118,"\u5b89\u88c5\u6d41\u7a0b":3,"\u5b9a\u4e49operator\u7c7b":75,"\u5b9a\u4e49opkernel\u7c7b":75,"\u5b9a\u4e49protomaker\u7c7b":75,"\u5b9e\u73b0":45,"\u5b9e\u73b0\u5355\u5143\u6d4b\u8bd5":75,"\u5b9e\u73b0\u65b0\u7684\u7f51\u7edc\u5c42":74,"\u5b9e\u73b0\u65b9\u5f0f":46,"\u5b9e\u73b0\u8ba1\u7b97":76,"\u5b9e\u73b0c":[74,75],"\u5b9e\u73b0python\u5c01\u88c5":74,"\u5bfb\u627e\u6027\u80fd\u74f6\u9888":107,"\u5bfc\u51fac":45,"\u5c06\u547d\u4ee4\u53c2\u6570\u4f20\u7ed9\u7f51\u7edc\u914d\u7f6e":105,"\u5de5\u5177":108,"\u5e38\u89c1\u95ee\u9898\u548c\u89e3\u51b3\u65b9\u6cd5":4,"\u5e38\u89c1\u95ee\u9898\u89e3\u7b54":3,"\u5e76\u5b8c\u6210":72,"\u5efa\u7acb":72,"\u5f00\u53d1\u6807\u51c6":73,"\u5f00\u59cb\u5f00\u53d1":72,"\u5f02\u6b65\u968f\u673a\u68af\u5ea6\u4e0b\u964d":103,"\u5feb\u7167\u4fdd\u5b58\u7684\u8bbe\u8ba1\u5982\u4e0b":11,"\u5feb\u901f\u4f7f\u7528":86,"\u5feb\u901f\u5b89\u88c5":86,"\u5feb\u901f\u5f00\u59cb":86,"\u6027\u80fd\u5206\u6790\u5c0f\u6280\u5de7":108,"\u6027\u80fd\u5206\u6790\u5de5\u5177\u4ecb\u7ecd":108,"\u6027\u80fd\u8c03\u4f18":103,"\u603b\u4f53\u6d41\u7a0b":0,"\u603b\u7ed3":89,"\u6216\u8005\u662f":78,"\u6267\u884c\u5355\u5143\u6d4b\u8bd5":1,"\u627e\u5230\u7684pythonlibs\u548cpythoninterp\u7248\u672c\u4e0d\u4e00\u81f4":78,"\u62a5importerror":78,"\u6307\u9488\u4f5c\u4e3a\u7c7b\u578b\u7684\u53e5\u67c4":45,"\u63a5\u53e3\u8f93\u51fa\u591a\u4e2alayer\u7684\u9884\u6d4b\u7ed3\u679c":81,"\u63a8\u5bfc\u65b9\u7a0b":74,"\u63a8\u6d4b\u6267\u884c":11,"\u63d0\u4ea4":72,"\u63d0\u4ea4\u4ee3\u7801\u7684\u4e00\u4e9b\u7ea6\u5b9a":72,"\u63d0\u4ea4\u955c\u50cf":96,"\u642d\u5efa\u795e\u7ecf\u7f51\u7edc":84,"\u652f\u6301\u53cc\u5c42\u5e8f\u5217\u4f5c\u4e3a\u8f93\u5165\u7684layer":110,"\u652f\u6301\u7528\u6237\u81ea\u5b9a\u4e49\u7684\u6570\u636e\u9884\u5904\u7406job":12,"\u6570\u636e\u652f\u6301":103,"\u6574\u4f53\u65b9\u6848":97,"\u6587\u4ef6\u4f20\u8f93\u4f18\u5316":28,"\u6587\u4ef6\u8bbf\u95ee\u65b9\u5f0f":12,"\u6587\u4ef6\u8bbf\u95ee\u7684\u6743\u9650":12,"\u6587\u4ef6\u9884\u5904\u7406":12,"\u6587\u6863":115,"\u65b0\u624b\u5165\u95e8":85,"\u65e5\u5fd7\u4e2d\u4fdd\u5b58\u5747\u4e3a\u7f51\u7edc\u901a\u4fe1\u7c7b\u9519\u8bef":79,"\u65f6\u95f4\u5e8f\u5217":111,"\u65f6\u95f4\u6b65":111,"\u66b4\u9732\u63a5\u53e3\u539f\u5219":46,"\u672c\u5730\u6d4b\u8bd5":105,"\u672c\u5730\u8bad\u7ec3":105,"\u672c\u5730\u8bad\u7ec3\u4e0e\u9884\u6d4b":81,"\u672f\u8bed":11,"\u6784\u5efa\u548c\u6d4b\u8bd5":72,"\u6784\u5efapaddlepaddle\u7684android\u5f00\u53d1\u955c\u50cf":116,"\u67b6\u6784\u56fe":28,"\u67e5\u770b\u6027\u80fd\u5206\u6790\u6587\u4ef6":107,"\u67e5\u770b\u8bad\u7ec3\u7ed3\u679c":96,"\u67e5\u770b\u8f93\u51fa":97,"\u6846\u67b6\u751f\u6210":28,"\u6848\u4f8b\u4e00":105,"\u6848\u4f8b\u4e8c":105,"\u68c0\u67e5\u6a21\u578b\u8f93\u51fa":93,"\u68c0\u67e5\u96c6\u7fa4\u8bad\u7ec3\u7ed3\u679c":93,"\u6982\u5ff5\u7b80\u4ecb":75,"\u6982\u5ff5\u89e3\u91ca":12,"\u6982\u8ff0":[87,110,113],"\u6a21\u5757":28,"\u6a21\u578b\u53c2\u6570\u68c0\u67e5\u70b9":11,"\u6a21\u578b\u63a8\u65ad\u5b9e\u73b0\u6587\u6863":46,"\u6a21\u578b\u914d\u7f6e":[82,111],"\u6a21\u578b\u914d\u7f6e\u7684\u6a21\u578b\u914d\u7f6e":111,"\u6ce8\u518coper":75,"\u6ce8\u610f\u4e8b\u9879":[75,90],"\u6d41\u7a0b\u4ecb\u7ecd":12,"\u6d4b\u8bd5":103,"\u6df7\u5408\u4ee3\u7801\u7684\u6027\u80fd\u5206\u6790":107,"\u6e05\u7406":90,"\u73af\u5883\u51c6\u5907":101,"\u751f\u6210\u5e8f\u5217":114,"\u751f\u6210\u6027\u80fd\u5206\u6790\u6587\u4ef6":107,"\u751f\u6210\u6d41\u7a0b\u7684\u4f7f\u7528\u65b9\u6cd5":113,"\u751f\u6210sparse\u6587\u4ef6":28,"\u7528\u6237\u4f7f\u7528\u6d41\u7a0b":28,"\u7528docker\u7f16\u8bd1\u548c\u6d4b\u8bd5paddlepaddl":0,"\u7684\u533a\u522b":82,"\u7684\u53c2\u6570":82,"\u7684\u65b9\u6cd5\u6709\u4f55\u533a\u522b":82,"\u76ee\u5f55\u7ed3\u6784":46,"\u76ee\u6807":28,"\u76f4\u63a5\u6784\u5efa":77,"\u76f8\u5173\u6982\u5ff5":113,"\u77e9\u9635":103,"\u793a\u4f8b1":111,"\u793a\u4f8b2":111,"\u793a\u4f8b3":111,"\u793a\u4f8b4":111,"\u793a\u4f8b\u7a0b\u5e8f":12,"\u795e\u7ecf\u5143\u6fc0\u6d3b\u5185\u5b58":81,"\u7a00\u758f\u8bad\u7ec3":105,"\u7aef\u6570\u636e\u7c7b\u578b\u8bf4\u660e":89,"\u7b26\u53f7":45,"\u7b80\u5355\u95e8\u63a7\u5faa\u73af\u795e\u7ecf\u7f51\u7edc":114,"\u7c7b":[45,74,75],"\u7ebf\u6027\u56de\u5f52\u5b8c\u6574\u793a\u4f8b":84,"\u7ec4\u7ec7\u5e8f\u5217\u4fe1\u606f":89,"\u7ec4\u7ec7\u8f93\u5165\u6570\u636e":[89,90],"\u7ec6\u8282\u63cf\u8ff0":103,"\u7ec8\u6b62\u96c6\u7fa4\u4f5c\u4e1a":93,"\u7ed1\u5b9apython":75,"\u7f16\u5199\u9884\u6d4b\u4ee3\u7801":90,"\u7f16\u5199yaml\u6587\u4ef6":96,"\u7f16\u8bd1":75,"\u7f16\u8bd1\u4f9d\u8d56":1,"\u7f16\u8bd1\u548c\u5b89\u88c5":[116,117,118],"\u7f16\u8bd1\u548c\u6267\u884c":75,"\u7f16\u8bd1\u5b89\u88c5\u4e0e\u5355\u5143\u6d4b\u8bd5":78,"\u7f16\u8bd1\u5b89\u88c5\u540e\u6267\u884c":78,"\u7f16\u8bd1\u65b9\u6cd5":1,"\u7f16\u8bd1\u6d41\u7a0b":3,"\u7f16\u8bd1\u9009\u9879":[1,46],"\u7f16\u8bd1\u9009\u9879\u7684\u8bbe\u7f6e":1,"\u7f16\u8bd1\u9009\u9879\u8bf4\u660e":1,"\u7f16\u8bd1paddlepaddl":116,"\u7f29\u5bb9":11,"\u800c\u662f\u624b\u5199\u591a\u8bed\u8a00\u7ed1\u5b9a":45,"\u80cc\u666f":45,"\u81ea\u7136\u8bed\u8a00\u5904\u7406":103,"\u83b7\u53d6paddlepaddle\u7684docker\u955c\u50cf":2,"\u8986\u76d6\u4e0d\u4e00\u81f4\u7684\u90e8\u5206":28,"\u8bad\u7ec3":103,"\u8bad\u7ec3\u56e0\u6b64\u9000\u51fa\u600e\u4e48\u529e":81,"\u8bad\u7ec3\u6570\u636e\u5b58\u50a8":12,"\u8bad\u7ec3\u6570\u636e\u7684\u5b58\u50a8\u548c\u5206\u53d1":12,"\u8bad\u7ec3\u6a21\u578b":84,"\u8bad\u7ec3\u6d41\u7a0b\u7684\u4f7f\u7528\u65b9\u6cd5":113,"\u8bad\u7ec3\u8fc7\u7a0b\u4e2d\u51fa\u73b0":81,"\u8bcd\u6c47\u8868":111,"\u8be6\u7ec6\u6559\u7a0b":108,"\u8bfb\u53d6\u53cc\u5c42\u5e8f\u5217\u6570\u636e":111,"\u8f6c\u6362\u5e93":12,"\u8f93\u5165":[89,113],"\u8f93\u5165\u4e0d\u7b49\u957f":111,"\u8f93\u5165\u793a\u4f8b":113,"\u8f93\u51fa":113,"\u8f93\u51fa\u6570\u636e":89,"\u8f93\u51fa\u6570\u636e\u7c7b\u578b":89,"\u8f93\u51fa\u6570\u636e\u7ec4\u7ec7":89,"\u8fd0\u884c\u5bb9\u5668":96,"\u8fd0\u884c\u73af\u5883\u4f9d\u8d56":4,"\u8fd0\u884cdocker":78,"\u8fd9\u4e2a\u52a8\u6001\u5e93\u4f7f\u7528c99\u6807\u51c6\u7684\u5934\u6587\u4ef6\u5bfc\u51fa\u4e00\u4e9b\u51fd\u6570":45,"\u8fdb\u884c\u8bad\u7ec3":[12,96],"\u8fdb\u9636\u4f7f\u7528":106,"\u901a\u7528":103,"\u9047\u5230":78,"\u914d\u7f6e\u4ea4\u53c9\u7f16\u8bd1\u53c2\u6570":[116,117,118],"\u914d\u7f6e\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u67b6\u6784":114,"\u914d\u7f6e\u7f51\u7edc":84,"\u94a9\u5b50":72,"\u94fe\u63a5\u8bf4\u660e":87,"\u9519\u8bef\u600e\u4e48\u529e":82,"\u968f\u673a\u6570":103,"\u96c6\u7fa4\u591a\u8282\u70b9\u8bad\u7ec3":79,"\u96c6\u7fa4\u8bad\u7ec3":105,"\u96c6\u7fa4\u8bad\u7ec3\u4e0e\u9884\u6d4b":79,"\u9700\u8981\u7684\u8f6f\u786c\u4ef6":0,"\u975e\u6cd5\u6307\u4ee4":78,"abstract":[22,23,24,51,119],"android\u5e73\u53f0\u7f16\u8bd1\u6307\u5357":116,"api\u4f7f\u7528\u6d41\u7a0b":90,"api\u5bf9\u6bd4\u4ecb\u7ecd":111,"api\u5e93":116,"api\u9884\u6d4b\u5e93":[87,88],"beam_search\u7684\u751f\u6210":111,"book\u4e2d\u6240\u6709\u7ae0\u8282":62,"book\u6559\u7a0b":2,"case":7,"class":[34,53,57],"cmake\u6e90\u7801\u7f16\u8bd1":78,"filemanager\u8bbe\u8ba1\u6587\u6863":28,"final":39,"float":81,"function":[9,33,34,57],"gpu\u548ccpu\u6df7\u5408\u4f7f\u7528":105,"gpu\u6027\u80fd\u8c03\u4f18":108,"gpu\u955c\u50cf\u51fa\u73b0":78,"group\u6559\u7a0b":113,"import":78,"ios\u5e73\u53f0\u7f16\u8bd1\u6307\u5357":117,"kubernetes\u5206\u5e03\u5f0f\u8bad\u7ec3":97,"kubernetes\u5355\u673a\u8bad\u7ec3":96,"new":67,"org\u5de5\u5177":77,"paddle\u52a8\u6001\u5e93\u4e2d":45,"paddle\u591a\u8bed\u8a00\u63a5\u53e3\u5b9e\u73b0":45,"paddle\u7248\u672c\u53f7\u4e3a0":78,"paddlepaddle\u53d1\u884c\u89c4\u8303":62,"paddlepaddle\u56de\u5f52\u6d4b\u8bd5\u5217\u8868":62,"paddlepaddle\u662f\u5426\u652f\u6301\u7ef4\u6570\u53ef\u53d8\u7684\u6570\u636e\u8f93\u5165":82,"paddlepaddle\u73af\u5883\u4f9d\u8d56":4,"paddlepaddle\u7684softmax\u80fd\u5426\u6307\u5b9a\u8ba1\u7b97\u7684\u7ef4\u5ea6":82,"paddlepaddle\u7f16\u8bd1\u4f9d\u8d56":1,"pi\u5e73\u53f0\u7f16\u8bd1\u6307\u5357":118,"pod\u95f4\u901a\u4fe1":97,"python\u4e0ec":107,"python\u4ee3\u7801\u7684\u6027\u80fd\u5206\u6790":107,"python\u76f8\u5173\u7684\u5355\u5143\u6d4b\u8bd5\u90fd\u8fc7\u4e0d\u4e86":78,"return":[57,58],"rnn\u6a21\u578b":112,"rnn\u914d\u7f6e":114,"switch":[43,67,68],"tensor\u4f7f\u7528\u6837\u4f8b":76,"tensor\u5230eigentensor\u7684\u8f6c\u6362":76,"tensor\u6a21\u5757":76,AWS:95,DNS:95,EFS:95,For:9,KMS:95,The:[8,15,19,27,31,34,35,37,38,47,50,53,59,60,68],Use:[8,55],Using:[9,15],With:18,about:34,absolut:49,access:95,account:95,action:[41,42],activ:42,actor:21,add:[40,43,95],address:95,advanc:67,alalysi:13,algorithm:[6,10,22,48,56],all:[63,70],analog:19,analysi:[22,40],anneal:83,api:[22,41,42,46,50,52,57,61,65],appendix:119,arbitrari:31,architectur:[22,54],argument:[29,58],arrai:6,asset:95,associ:[63,95],assumpt:119,async:103,attent:114,attribut:[40,61],auto:6,averag:52,aws:95,background:[6,24,41,67,68,69,70,71],backward:[7,31,35,59],base:[18,49],basic:[40,67,119],batch:58,batch_siz:58,beam:[49,66],becaus:83,benchmark:[41,42],benefit:[24,59],between:[5,21,57,59,65,67],big:83,binari:8,bla:1,block:[8,32,34,35,55,57,59],blockdesc:55,bootstrap:119,bring:119,bucket:95,build:[7,34,59],can:63,capi:46,capi_priv:46,challeng:[7,24,56],chang:49,channel:21,check:6,checkpoint:[10,11,17],choic:39,choos:[9,95],client:15,clip:25,clone:72,close:6,cloudform:95,cluster:[16,95,119],cmake:[9,41,42],code:[18,32,57,109],commit:72,compar:119,comparis:57,compat:31,compil:[8,30,32,55,59,109],complet:31,compos:58,comput:[8,35,43,59,61],con:119,concept:[57,59,95],concern:42,conclus:[17,36,119],concurr:[19,21],condit:34,configur:95,construct:35,content:[41,42,46,66,78,79,81,82,83,95,108,110],control:[40,59],contruct:40,convert:17,convolut:66,core:[6,57,95],corner:7,cpu:23,creat:[7,21,58,59,63,95],createreaderop:20,creation:[14,52,61],creator:58,credenti:95,csp:21,ctc:66,cuda:[1,30,78],cudnn:1,current:[30,60],custom:58,data:[10,20,22,58,69,95],dataflow:40,dataprovid:103,dataset:[10,14],datatyp:47,decod:49,decor:58,decoratedread:20,deep:[8,31],deepspeech2:66,defin:95,definit:71,delet:95,demo:[34,95],dens:17,depend:[34,66],deploi:18,describ:[31,50],descript:[29,59],design:[5,6,8,10,14,15,16,17,19,21,22,23,24,26,27,30,31,33,34,35,38,41,42,43,44,47,48,49,50,51,53,55,57,58,59,60,63,64,66,67,68,70],destroi:[63,95],detail:[13,66],develop:59,devic:67,devicecontext:67,dictionari:58,differ:[59,67],directori:95,discrimin:34,discuss:[24,34],dispatch:[10,14],distribut:[5,10,13,18,22,24,95],dnn:42,doc:[5,8,10,14,15,16,17,19,21,22,23,24,27,30,31,33,35,38,41,42,43,44,47,51,53,55,57,58,59,60,64,66,67,68],docker:[0,18],doe:58,down:95,download:95,driver:78,drop_out:82,duplic:82,dure:[49,58],dylib:46,dynam:[10,70],dynet:36,ec2:95,eigen:76,elast:95,elect:17,els:8,engin:34,enough:6,entri:58,environ:18,error:25,evalu:26,event:[5,54],evolut:31,exampl:[5,9,19,21,37,46],except:81,execut:[8,23,31,55,59],executor:27,expand:110,explan:6,extern:95,faq:80,fault:10,feed:20,file:[8,95],fileread:20,find:95,first_seq:110,float16:30,flow:40,fluid:[19,21,31,32,43,51,109],fork:72,format:[8,10,44],forward:35,frame:8,framework:[6,76],from:[5,17,65],functor:67,futur:[31,66],gan:34,gate:114,gener:[32,34,49,119],give:58,global:[55,57],gpu:103,grad_op:7,gradient:[6,7,15,42,60],graph:[35,36,40,59,61],group:95,gru:103,handler:[5,45],happen:17,hardwar:30,helper:57,hierarchi:8,high:[50,52,61,65],how:[6,13,52,58,59,67],iam:95,ifels:37,ifelseop:8,illeg:78,imag:18,implement:[6,7,9,13,23,25,26,30,44,48,51,52,57,58,59,60,61],infer:81,infershap:[55,64],infervartyp:38,ingredi:5,ingress:28,initi:[15,34,95],insid:63,inspect:95,instal:[95,119],instanc:95,instead:58,instruct:78,insuffici:78,integr:[67,95],intel:[41,42],interact:65,interfac:[6,10,15,16,27,50,58,63],intermedi:59,introduc:[49,70],introduct:[54,61],isn:58,issu:[30,72],job:[10,18,95,96],kei:[41,47,95],kernel:[43,47,59],kube:95,kubectl:95,kubernet:[18,95,96],languag:[8,32],larg:13,last_seq:110,layer:[5,33,41,42,57,82],layout:47,learn:[8,31,83],leval:65,level:[50,52,61,65],libpaddle_capi_shar:46,libpaddle_capi_whol:46,librari:[15,30,47,59,67],limit:22,list:[11,58],live:40,load:21,local:[22,63,95],lod:49,lodtensor:[48,49,70],lodtensordesc:71,logic:14,low:[52,61,65],lstm:103,machin:49,macro:59,main:34,make:40,manag:9,map:[58,59],master:[10,14,18,19],math:67,mathemat:6,matrix:42,member:34,memori:[40,48,67,82,111,113],messag:[65,83],method:49,might:34,migrat:59,mileston:59,mini:58,minibatch:21,mkl:[41,42],mkldnn:43,mkldnn_helper:43,mkldnndevicecontext:43,model:[5,13,15,17,21,31,34,44,49,114],modul:[59,67,78],more:34,motiv:[7,21,27,44,51,56],multi:[23,32],multipl:58,mxnet:36,name:[63,78,82,95],nativ:32,nccl:51,necess:57,necessari:59,need:58,nest:48,network:[59,114],neural:114,nlp:103,norm:61,note:6,numer:6,numpi:6,nvprof:108,nvvp:108,object:10,offset:49,onli:[58,63],op_mak:59,oper:[20,33,37,40,43,47,52,55,57,59,60,64,70],opinfomap:59,opkernel:[59,67],opproto:65,ops:61,optim:[10,15,35,40,50,57],option:29,opwithkernel:59,order:29,org:77,origin:59,orthogon:63,other:42,output:95,overview:[17,25,27,41,42,59,63,66,109],pack:[41,49],packag:9,paddl:[13,51,58,63,76,78,82],paddlejob:18,paddlepaddl:[5,8,21,31,32,41,42,52,55,61,62,66,77,78,95,109,115],pair:95,paradigm:31,parallel_nn:105,paramet:[5,10,15,16,18,21,24,42,52,53,57,61,95],parameteraverageoptim:52,parent:63,part:35,partit:15,path:[17,29],penalti:61,perform:[52,103],persist:14,pfsclient:[28,29],pfsserver:28,place:[40,47,67],placement:22,platform:78,point:[41,81,95],polici:40,pool:110,pose:[38,60],potenti:39,pre:72,prefetch:58,prepar:95,principl:43,privat:95,pro:119,problem:[26,38,39,40,47,50,60,69],procedur:119,process:[10,15,18,50,59],program:[8,19,21,23,31,32,55,57],programdesc:[32,55],project:9,propos:[38,60,61],protobuf:64,protocol:83,provid:58,prune:56,pserver:17,pull:72,push:72,python:[6,18,22,41,42,48,50,52,57,58,61,65,71,89],qualiti:59,queue:[10,14],raspberri:118,rate:83,reader:[5,20,58],readerbas:20,readerhold:20,readop:20,realiz:59,recoveri:10,recurr:[82,113,114],recv:21,refactor:59,refer:[6,22,24,40,41,42,66],region:95,regist:[38,59,65],registr:[59,60],registri:59,regular:[15,61],reject:83,rel:49,relat:[20,59,70],remot:16,remoteexecutor:22,render:95,represent:[8,59],request:72,requir:[9,34],retri:14,reus:57,rnn:[48,70,103,111],rnnop:[8,48,59],route53:95,row:[64,66],rpc:21,run:[27,109],runtim:18,save:17,scale:10,scope:[8,48,59,63],search:[49,66],secur:95,select:[15,21,64],selectedrow:64,semant:68,send:21,separ:59,sequenc:[49,114],server:[10,14,15,18,21,24,95],servic:95,setup:95,sextant:119,sgd:103,shape:49,share:[5,7,40,63],should:63,shuffl:58,simpl:49,singl:58,solut:[38,39,40,41,47,56,60,69],sourc:109,spars:[15,16,17,64],stack:8,start:[5,95],statement:26,step2:90,step:[48,90],storag:61,store:10,strategi:40,subcommond:29,submit:18,suffici:58,suitabl:9,sulut:43,summar:[5,19],summari:44,support:[30,51,67,70,78],survei:[30,36,61,119],synopsi:29,syntax:21,system:[31,95],tabl:[46,66],task:[10,14,66],tear:95,tecton:119,templat:95,tensor:[59,67,76],tensorarrai:[49,70],tensordesc:71,tensorflow:36,test:[41,42,43],theori:6,thi:[63,78],think:34,three:70,time:109,timelin:17,todo:[11,12,23],togeth:63,toler:10,too:83,tool:[9,119],topic:67,toward:32,train:[5,10,13,16,18,22,50,58,95],trainer:[10,15,17,18,21,95],transform:69,translat:49,transpil:[22,23,24,32,40,51],tune:103,ture:31,two:6,type:[21,47],uniform:70,unit:[41,42,43],unpack:49,updat:[5,16,17,95],usag:[7,25,48,49,58],use:[13,58],user:10,valu:57,vardesc:71,variabl:[7,40,57,59,63,71],verifi:95,version:[19,30,78],volum:95,vpc:95,what:[13,17],wheel:78,when:[17,63],whl:78,why:[30,31,52,58,59,70],work:66,worker:19}})
\ No newline at end of file