Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
3e1676fa
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
3e1676fa
编写于
4月 14, 2020
作者:
S
suytingwan
提交者:
GitHub
4月 14, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add meshgrid op (#23736)
* test=develop fix api doc error
上级
17ec3ab2
变更
7
显示空白变更内容
内联
并排
Showing
7 changed file
with
588 addition
and
4 deletion
+588
-4
paddle/fluid/operators/meshgrid_op.cc
paddle/fluid/operators/meshgrid_op.cc
+157
-0
paddle/fluid/operators/meshgrid_op.cu
paddle/fluid/operators/meshgrid_op.cu
+29
-0
paddle/fluid/operators/meshgrid_op.h
paddle/fluid/operators/meshgrid_op.h
+198
-0
python/paddle/__init__.py
python/paddle/__init__.py
+1
-1
python/paddle/fluid/tests/unittests/test_meshgrid_op.py
python/paddle/fluid/tests/unittests/test_meshgrid_op.py
+118
-0
python/paddle/tensor/__init__.py
python/paddle/tensor/__init__.py
+1
-1
python/paddle/tensor/creation.py
python/paddle/tensor/creation.py
+84
-2
未找到文件。
paddle/fluid/operators/meshgrid_op.cc
0 → 100644
浏览文件 @
3e1676fa
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/meshgrid_op.h"
#include <memory>
#include <string>
#include <vector>
namespace
paddle
{
namespace
operators
{
using
framework
::
Tensor
;
class
MeshgridOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
protected:
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE_GE
(
ctx
->
Inputs
(
"X"
).
size
(),
1UL
,
platform
::
errors
::
InvalidArgument
(
"Input(X) should not be empty."
));
PADDLE_ENFORCE_GE
(
ctx
->
Outputs
(
"Out"
).
size
(),
1UL
,
platform
::
errors
::
InvalidArgument
(
"Output(Out) should not be empty."
));
auto
inputs_dims
=
ctx
->
GetInputsDim
(
"X"
);
const
size_t
inputs_num
=
inputs_dims
.
size
();
auto
outs_names
=
ctx
->
Outputs
(
"Out"
);
const
size_t
outputs_num
=
outs_names
.
size
();
auto
out_shape
=
std
::
vector
<
int
>
(
inputs_num
);
for
(
size_t
i
=
0
;
i
<
inputs_num
;
i
++
)
{
out_shape
[
i
]
=
inputs_dims
[
i
][
0
];
}
auto
out_dims
=
framework
::
make_ddim
(
std
::
vector
<
int
>
(
out_shape
));
std
::
vector
<
framework
::
DDim
>
outs_dims
(
outputs_num
,
out_dims
);
ctx
->
SetOutputsDim
(
"Out"
,
outs_dims
);
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
inputs
=
ctx
.
MultiInput
<
Tensor
>
(
"X"
);
auto
input_data_type
=
framework
::
proto
::
VarType
::
Type
(
0
);
bool
flag
=
0
;
for
(
auto
*
input
:
inputs
)
{
if
(
input
->
IsInitialized
()
&&
input
->
numel
()
>
0
)
{
input_data_type
=
input
->
type
();
flag
=
1
;
break
;
}
}
if
(
flag
==
0
)
{
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"All Inputs of Meshgrid OP are Empty!"
));
}
return
framework
::
OpKernelType
(
input_data_type
,
ctx
.
GetPlace
());
}
};
class
MeshgridOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
{
AddInput
(
"X"
,
"(Tensor, default Tensor<float>)."
).
AsDuplicable
();
AddOutput
(
"Out"
,
"(Tensor, default Tensor<float>.)"
).
AsDuplicable
();
AddComment
(
R"DOC(
Meshgrid Operator.
Take: N tensors, each of which can be either scalr or 1-dimensional vector, and create
N-dimensional grids.
Args:
tensors (list of tensor): if the input k tensors has (N1,), (N2,),..., (Nk,), then
the output tensors are all of size (N1, N2, ...., Nk).
Example::
>>> x = fluid.data(name='x', shape=[10], dtype='float64')
>>> y = fluid.data(name='y', shape=[20], dtype='float64')
>>> grid_x, grid_y = fluid.layers.meshgrid([x, y])
>>> grid_x.shape
(10,20)
>>> grid_y.shape
(10,20)
)DOC"
);
}
};
class
MeshgridGradOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
protected:
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE_GT
(
ctx
->
Inputs
(
framework
::
GradVarName
(
"Out"
)).
size
(),
1
,
platform
::
errors
::
InvalidArgument
(
"Number of Inputs(Out@Grad) must be larger than 1"
));
ctx
->
SetOutputsDim
(
framework
::
GradVarName
(
"X"
),
ctx
->
GetInputsDim
(
"X"
));
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
OperatorWithKernel
::
IndicateVarDataType
(
ctx
,
framework
::
GradVarName
(
"Out"
)),
ctx
.
device_context
());
}
};
template
<
typename
T
>
class
MeshgridGradOpMaker
:
public
framework
::
SingleGradOpMaker
<
T
>
{
public:
using
framework
::
SingleGradOpMaker
<
T
>::
SingleGradOpMaker
;
protected:
void
Apply
(
GradOpPtr
<
T
>
op
)
const
override
{
op
->
SetType
(
"meshgrid_grad"
);
op
->
SetInput
(
"X"
,
this
->
Input
(
"X"
));
op
->
SetInput
(
framework
::
GradVarName
(
"Out"
),
this
->
OutputGrad
(
"Out"
));
op
->
SetOutput
(
framework
::
GradVarName
(
"X"
),
this
->
InputGrad
(
"X"
,
false
));
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
meshgrid
,
ops
::
MeshgridOp
,
ops
::
MeshgridOpMaker
,
ops
::
MeshgridGradOpMaker
<
paddle
::
framework
::
OpDesc
>
,
ops
::
MeshgridGradOpMaker
<
paddle
::
imperative
::
OpBase
>
);
REGISTER_OPERATOR
(
meshgrid_grad
,
ops
::
MeshgridGradOp
);
REGISTER_OP_CPU_KERNEL
(
meshgrid
,
ops
::
MeshgridKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
MeshgridKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
,
ops
::
MeshgridKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int
>
,
ops
::
MeshgridKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int64_t
>
);
REGISTER_OP_CPU_KERNEL
(
meshgrid_grad
,
ops
::
MeshgridGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
MeshgridGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int64_t
>
,
ops
::
MeshgridGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int
>
,
ops
::
MeshgridGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
);
paddle/fluid/operators/meshgrid_op.cu
0 → 100644
浏览文件 @
3e1676fa
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/meshgrid_op.h"
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_CUDA_KERNEL
(
meshgrid
,
ops
::
MeshgridKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
MeshgridKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
,
ops
::
MeshgridKernel
<
paddle
::
platform
::
CUDADeviceContext
,
int
>
,
ops
::
MeshgridKernel
<
paddle
::
platform
::
CUDADeviceContext
,
int64_t
>
,
ops
::
MeshgridKernel
<
paddle
::
platform
::
CUDADeviceContext
,
bool
>
);
REGISTER_OP_CUDA_KERNEL
(
meshgrid_grad
,
ops
::
MeshgridGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
MeshgridGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
,
ops
::
MeshgridGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
int
>
,
ops
::
MeshgridGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
int64_t
>
);
paddle/fluid/operators/meshgrid_op.h
0 → 100644
浏览文件 @
3e1676fa
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <vector>
#include <boost/preprocessor/arithmetic/mod.hpp>
#include <boost/preprocessor/comparison/greater.hpp>
#include <boost/preprocessor/comparison/greater_equal.hpp>
#include <boost/preprocessor/control/if.hpp>
#include <boost/preprocessor/repetition/repeat.hpp>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/platform/errors.h"
#define MAX_RANK_SUPPORTED 6
#define MESHGRID_TEMPLATE(z, n, data) \
case n + 1: { \
MeshgridForward<n + 1>(context); \
break; \
}
#define REP_MESHGRID_TEMPLATE(n) BOOST_PP_REPEAT(n, MESHGRID_TEMPLATE, ~)
#define COND(n) BOOST_PP_GREATER_EQUAL(n, BOOST_PP_MOD(n, MAX_RANK_SUPPORTED))
#define MESHGRID_GRAD_CASE(n) \
case n: { \
MeshgridBackward<n>(context); \
break; \
}
#define MESHGRID_GRAD_TEMPLATE(z, n, data) \
BOOST_PP_IF(COND(n), MESHGRID_GRAD_CASE(n), )
#define REP_MESHGRID_GRAD_TEMPLATE(n) \
BOOST_PP_REPEAT(n, MESHGRID_GRAD_TEMPLATE, ~)
namespace
paddle
{
namespace
operators
{
template
<
typename
T
,
int
MajorType
=
Eigen
::
RowMajor
,
typename
IndexType
=
Eigen
::
DenseIndex
>
using
EigenMatrix
=
framework
::
EigenMatrix
<
T
,
MajorType
,
IndexType
>
;
template
<
typename
T
,
int
MajorType
=
Eigen
::
RowMajor
,
typename
IndexType
=
Eigen
::
DenseIndex
>
using
EigenVector
=
framework
::
EigenVector
<
T
,
MajorType
,
IndexType
>
;
template
<
typename
T
,
size_t
D
,
int
MajorType
=
Eigen
::
RowMajor
,
typename
IndexType
=
Eigen
::
DenseIndex
>
using
EigenTensor
=
framework
::
EigenTensor
<
T
,
D
,
MajorType
,
IndexType
>
;
template
<
typename
DeviceContext
,
typename
T
>
class
MeshgridKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
ins
=
context
.
MultiInput
<
framework
::
Tensor
>
(
"X"
);
auto
rank
=
ins
.
size
();
switch
(
rank
)
{
REP_MESHGRID_TEMPLATE
(
MAX_RANK_SUPPORTED
)
default:
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"Only support tensor nums between 1 and 6."
));
}
}
protected:
template
<
int
Rank
>
void
MeshgridForward
(
const
framework
::
ExecutionContext
&
context
)
const
{
auto
ins
=
context
.
MultiInput
<
framework
::
Tensor
>
(
"X"
);
auto
outs
=
context
.
MultiOutput
<
framework
::
Tensor
>
(
"Out"
);
PADDLE_ENFORCE_EQ
(
ins
.
size
()
>
1
,
true
,
platform
::
errors
::
InvalidArgument
(
"expect at least 2 input tensors"
));
int64_t
size
=
ins
.
size
();
std
::
vector
<
int64_t
>
shape
(
size
);
for
(
int64_t
i
=
0
;
i
<
size
;
i
++
)
{
switch
(
ins
[
i
]
->
dims
().
size
())
{
case
0
:
shape
[
i
]
=
1
;
break
;
case
1
:
shape
[
i
]
=
ins
[
i
]
->
dims
()[
0
];
break
;
default:
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"Expected scalar or 1D tensor in the tensor list but got tensor "
"%d: "
,
i
));
}
}
for
(
int64_t
i
=
0
;
i
<
size
;
i
++
)
{
std
::
vector
<
int64_t
>
view_shape
(
size
,
1
);
view_shape
[
i
]
=
shape
[
i
];
framework
::
Tensor
reshape_ins_tensor
;
TensorCopy
(
*
ins
[
i
],
context
.
GetPlace
(),
context
.
device_context
(),
&
reshape_ins_tensor
);
framework
::
DDim
out_dims_reshape
=
framework
::
make_ddim
(
view_shape
);
reshape_ins_tensor
.
Resize
(
out_dims_reshape
);
framework
::
DDim
out_dims
=
framework
::
make_ddim
(
shape
);
Eigen
::
DSizes
<
int
,
Rank
>
bcast_dims
;
for
(
int64_t
j
=
0
;
j
<
size
;
j
++
)
{
bcast_dims
[
j
]
=
shape
[
j
];
}
bcast_dims
[
i
]
=
1
;
outs
[
i
]
->
Resize
(
out_dims
);
auto
x
=
EigenTensor
<
T
,
Rank
>::
From
(
reshape_ins_tensor
);
outs
[
i
]
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
y
=
EigenTensor
<
T
,
Rank
>::
From
(
*
outs
[
i
]);
auto
&
place
=
*
context
.
template
device_context
<
DeviceContext
>().
eigen_device
();
y
.
device
(
place
)
=
x
.
broadcast
(
bcast_dims
);
}
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
MeshgridGradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
out_grad
=
context
.
MultiInput
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
int
n
=
out_grad
.
size
();
switch
(
n
)
{
REP_MESHGRID_GRAD_TEMPLATE
(
MAX_RANK_SUPPORTED
)
default:
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"only support tensor nums being between 1 and 6."
));
}
}
protected:
template
<
int
Rank
>
void
MeshgridBackward
(
const
framework
::
ExecutionContext
&
context
)
const
{
auto
out_grad
=
context
.
MultiInput
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
ins
=
context
.
MultiInput
<
framework
::
Tensor
>
(
"X"
);
auto
outs
=
context
.
MultiOutput
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"X"
));
int
n
=
out_grad
.
size
();
auto
out_dims
=
out_grad
[
0
]
->
dims
();
for
(
int
i
=
0
;
i
<
n
;
i
++
)
{
outs
[
i
]
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
out_grad_tmp
=
EigenVector
<
T
>::
Flatten
(
*
out_grad
[
i
]);
auto
in_grad
=
EigenVector
<
T
>::
Flatten
(
*
outs
[
i
]);
std
::
vector
<
int
>
reduce_dims_vec
;
std
::
vector
<
int
>
reshape_dims_vec
;
for
(
int
j
=
0
;
j
<
n
;
j
++
)
{
reduce_dims_vec
.
push_back
(
reshape_dims_vec
.
size
());
if
(
j
==
i
)
{
reshape_dims_vec
.
push_back
(
1
);
reshape_dims_vec
.
push_back
(
out_dims
[
j
]);
}
else
{
reshape_dims_vec
.
push_back
(
out_dims
[
j
]);
reshape_dims_vec
.
push_back
(
1
);
}
}
Eigen
::
DSizes
<
int
,
Rank
>
reduce_dims
;
for
(
int
k
=
0
;
k
<
n
;
k
++
)
{
reduce_dims
[
k
]
=
reduce_dims_vec
[
k
];
}
Eigen
::
DSizes
<
int
,
Rank
*
2
>
reshape_dims
;
for
(
int
k
=
0
;
k
<
n
*
2
;
k
++
)
{
reshape_dims
[
k
]
=
reshape_dims_vec
[
k
];
}
auto
tensor_reduce_tmp
=
out_grad_tmp
.
reshape
(
reshape_dims
).
sum
(
reduce_dims
);
auto
&
place
=
*
context
.
template
device_context
<
DeviceContext
>().
eigen_device
();
in_grad
.
device
(
place
)
=
tensor_reduce_tmp
.
reshape
(
in_grad
.
dimensions
());
}
}
};
}
// namespace operators
}
// namespace paddle
python/paddle/__init__.py
浏览文件 @
3e1676fa
...
...
@@ -59,7 +59,7 @@ from .tensor.creation import full #DEFINE_ALIAS
from
.tensor.creation
import
full_like
#DEFINE_ALIAS
# from .tensor.creation import triu #DEFINE_ALIAS
# from .tensor.creation import tril #DEFINE_ALIAS
# from .tensor.creation import meshgrid
#DEFINE_ALIAS
from
.tensor.creation
import
meshgrid
#DEFINE_ALIAS
# from .tensor.stat import mean #DEFINE_ALIAS
# from .tensor.stat import reduce_mean #DEFINE_ALIAS
# from .tensor.stat import std #DEFINE_ALIAS
...
...
python/paddle/fluid/tests/unittests/test_meshgrid_op.py
0 → 100644
浏览文件 @
3e1676fa
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
from
op_test
import
OpTest
,
skip_check_grad_ci
import
paddle.fluid
as
fluid
import
paddle
from
paddle.fluid
import
compiler
,
Program
,
program_guard
,
core
class
TestMeshgridOp
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"meshgrid"
self
.
dtype
=
self
.
get_dtype
()
ins
,
outs
=
self
.
init_test_data
()
self
.
inputs
=
{
'X'
:
[(
'x%d'
%
i
,
ins
[
i
])
for
i
in
range
(
len
(
ins
))]}
self
.
outputs
=
{
'Out'
:
[(
'out%d'
%
i
,
outs
[
i
])
for
i
in
range
(
len
(
outs
))]
}
def
get_dtype
(
self
):
return
"float64"
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'x0'
],
[
'out0'
])
self
.
check_grad
([
'x1'
],
[
'out1'
])
def
init_test_data
(
self
):
self
.
shape
=
self
.
get_x_shape
()
ins
=
[]
outs
=
[]
for
i
in
range
(
len
(
self
.
shape
)):
ins
.
append
(
np
.
random
.
random
((
self
.
shape
[
i
],
)).
astype
(
self
.
dtype
))
for
i
in
range
(
len
(
self
.
shape
)):
out_reshape
=
[
1
]
*
len
(
self
.
shape
)
out_reshape
[
i
]
=
self
.
shape
[
i
]
out_temp
=
np
.
reshape
(
ins
[
i
],
out_reshape
)
outs
.
append
(
np
.
broadcast_to
(
out_temp
,
self
.
shape
))
return
ins
,
outs
def
get_x_shape
(
self
):
return
[
100
,
200
]
class
TestMeshgridOp2
(
TestMeshgridOp
):
def
get_x_shape
(
self
):
return
[
100
,
300
]
class
TestMeshgridOp3
(
unittest
.
TestCase
):
def
test_api
(
self
):
x
=
fluid
.
data
(
shape
=
[
100
],
dtype
=
'int32'
,
name
=
'x'
)
y
=
fluid
.
data
(
shape
=
[
200
],
dtype
=
'int32'
,
name
=
'y'
)
input_1
=
np
.
random
.
randint
(
0
,
100
,
[
100
,
]).
astype
(
'int32'
)
input_2
=
np
.
random
.
randint
(
0
,
100
,
[
200
,
]).
astype
(
'int32'
)
out_1
=
np
.
reshape
(
input_1
,
[
100
,
1
])
out_1
=
np
.
broadcast_to
(
out_1
,
[
100
,
200
])
out_2
=
np
.
reshape
(
input_2
,
[
1
,
200
])
out_2
=
np
.
broadcast_to
(
out_2
,
[
100
,
200
])
exe
=
fluid
.
Executor
(
place
=
fluid
.
CPUPlace
())
grid_x
,
grid_y
=
paddle
.
tensor
.
meshgrid
([
x
,
y
])
res_1
,
res_2
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
'x'
:
input_1
,
'y'
:
input_2
},
fetch_list
=
[
grid_x
,
grid_y
])
assert
np
.
array_equal
(
res_1
,
out_1
)
assert
np
.
array_equal
(
res_2
,
out_2
)
class
TestMeshgridOp4
(
unittest
.
TestCase
):
def
test_errors
(
self
):
with
program_guard
(
Program
(),
Program
()):
def
test_input_type
():
x
=
fluid
.
data
(
shape
=
[
200
],
dtype
=
'float32'
,
name
=
'x2'
)
paddle
.
tensor
.
meshgrid
(
x
)
self
.
assertRaises
(
TypeError
,
test_input_type
)
class
TestMeshgridOp5
(
unittest
.
TestCase
):
def
test_api_with_dygraph
(
self
):
input_3
=
np
.
random
.
randint
(
0
,
100
,
[
100
,
]).
astype
(
'int32'
)
input_4
=
np
.
random
.
randint
(
0
,
100
,
[
200
,
]).
astype
(
'int32'
)
with
fluid
.
dygraph
.
guard
():
tensor_3
=
fluid
.
dygraph
.
to_variable
(
input_3
)
tensor_4
=
fluid
.
dygraph
.
to_variable
(
input_4
)
res_3
,
res_4
=
paddle
.
tensor
.
meshgrid
([
tensor_3
,
tensor_4
])
assert
np
.
array_equal
(
res_3
.
shape
,
[
100
,
200
])
assert
np
.
array_equal
(
res_4
.
shape
,
[
100
,
200
])
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/tensor/__init__.py
浏览文件 @
3e1676fa
...
...
@@ -39,7 +39,7 @@ from .creation import full # DEFINE_ALIAS
from
.creation
import
full_like
#DEFINE_ALIAS
from
.creation
import
triu
#DEFINE_ALIAS
from
.creation
import
tril
#DEFINE_ALIAS
# from .creation import meshgrid
#DEFINE_ALIAS
from
.creation
import
meshgrid
#DEFINE_ALIAS
# from .stat import mean #DEFINE_ALIAS
# from .stat import reduce_mean #DEFINE_ALIAS
# from .stat import std #DEFINE_ALIAS
...
...
python/paddle/tensor/creation.py
浏览文件 @
3e1676fa
...
...
@@ -13,7 +13,7 @@
# limitations under the License.
from
__future__
import
print_function
from
..fluid.framework
import
Variable
from
..fluid.framework
import
Variable
,
in_dygraph_mode
from
..fluid.initializer
import
Constant
from
..fluid.layers
import
core
from
..fluid.layer_helper
import
LayerHelper
...
...
@@ -43,7 +43,7 @@ __all__ = [
'full_like'
,
'triu'
,
'tril'
,
#
'meshgrid',
'meshgrid'
,
]
...
...
@@ -723,3 +723,85 @@ def triu(input, diagonal=0, name=None):
"""
return
_tril_triu_op
(
LayerHelper
(
'triu'
,
**
locals
()))
def
meshgrid
(
input
,
name
=
None
):
"""
This op takes a list of N tensors as input, each of which is 1-dimensional
vector, and creates N-dimensional grids.
Args:
input(Variable) : tensors (list of tensor): the shapes of input k tensors are (N1,),
(N2,),..., (Nk,). Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
name (str, optional): The default value is None. Normally there is no need for
user to set this property. For more information, please refer to :ref:`api_guide_Name`.
Returns:
Variable: k tensors. The shape of each tensor is (N1, N2, ..., Nk)
Examples:
.. code-block:: python
import paddle
import paddle.fluid as fluid
import numpy as np
x = fluid.data(name='x', shape=[100], dtype='int32')
y = fluid.data(name='y', shape=[200], dtype='int32')
input_1 = np.random.randint(0, 100, [100, ]).astype('int32')
input_2 = np.random.randint(0, 100, [200, ]).astype('int32')
exe = fluid.Executor(place=fluid.CPUPlace())
grid_x, grid_y = paddle.tensor.meshgrid([x, y])
res_1, res_2 = exe.run(fluid.default_main_program(),
feed={'x': input_1,
'y': input_2},
fetch_list=[grid_x, grid_y])
#the shape of res_1 is (100, 200)
#the shape of res_2 is (100, 200)
.. code-block:: python
#example 2: in dygraph mode
import paddle
import paddle.fluid as fluid
import numpy as np
input_3 = np.random.randint(0, 100, [100, ]).astype('int32')
input_4 = np.random.randint(0, 100, [200, ]).astype('int32')
with fluid.dygraph.guard():
tensor_3 = fluid.dygraph.to_variable(input_3)
tensor_4 = fluid.dygraph.to_variable(input_4)
grid_x, grid_y = paddle.tensor.meshgrid([tensor_3, tensor_4])
#the shape of grid_x is (100, 200)
#the shape of grid_y is (100, 200)
"""
if
in_dygraph_mode
():
num
=
len
(
input
)
out
=
core
.
ops
.
meshgrid
(
input
,
num
)
return
out
helper
=
LayerHelper
(
'meshgrid'
,
**
locals
())
if
not
isinstance
(
input
,
list
):
raise
TypeError
(
"The type of input in meshgrid should be list."
)
for
id
,
input_
in
enumerate
(
input
):
check_dtype
(
input_
.
dtype
,
'create data type'
,
[
'float16'
,
'float32'
,
'float64'
,
'int32'
,
'int64'
],
'meshgrid'
)
num
=
len
(
input
)
out
=
[
helper
.
create_variable_for_type_inference
(
dtype
=
input
[
i
].
dtype
)
for
i
in
range
(
num
)
]
helper
.
append_op
(
type
=
'meshgrid'
,
inputs
=
{
'X'
:
input
},
outputs
=
{
'Out'
:
out
})
return
out
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录