Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
3db9c8c9
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
3db9c8c9
编写于
5月 24, 2019
作者:
K
Kaipeng Deng
提交者:
GitHub
5月 24, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
refine shape and split test. test=develop (#17545)
上级
2dc1c6f2
变更
3
显示空白变更内容
内联
并排
Showing
3 changed file
with
374 addition
and
316 deletion
+374
-316
python/paddle/fluid/tests/unittests/test_activation_nn_grad.py
...n/paddle/fluid/tests/unittests/test_activation_nn_grad.py
+127
-0
python/paddle/fluid/tests/unittests/test_elementwise_nn_grad.py
.../paddle/fluid/tests/unittests/test_elementwise_nn_grad.py
+247
-0
python/paddle/fluid/tests/unittests/test_nn_grad.py
python/paddle/fluid/tests/unittests/test_nn_grad.py
+0
-316
未找到文件。
python/paddle/fluid/tests/unittests/test_activation_nn_grad.py
0 → 100644
浏览文件 @
3db9c8c9
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
import
paddle.fluid
as
fluid
import
paddle.fluid.layers
as
layers
import
paddle.fluid.core
as
core
import
gradient_checker
from
decorator_helper
import
prog_scope
class
TestReluDoubleGradCheck
(
unittest
.
TestCase
):
@
prog_scope
()
def
func
(
self
,
place
):
shape
=
[
2
,
3
,
7
,
9
]
eps
=
0.005
dtype
=
np
.
float64
x
=
layers
.
data
(
'x'
,
shape
,
False
,
dtype
)
x
.
persistable
=
True
y
=
layers
.
relu
(
x
)
x_arr
=
np
.
random
.
uniform
(
-
1
,
1
,
shape
).
astype
(
dtype
)
x_arr
[
np
.
abs
(
x_arr
)
<
0.005
]
=
0.02
gradient_checker
.
double_grad_check
(
[
x
],
y
,
x_init
=
x_arr
,
place
=
place
,
eps
=
eps
)
def
test_grad
(
self
):
places
=
[
fluid
.
CPUPlace
()]
if
core
.
is_compiled_with_cuda
():
places
.
append
(
fluid
.
CUDAPlace
(
0
))
for
p
in
places
:
self
.
func
(
p
)
class
TestLeakyReluDoubleGradCheck
(
unittest
.
TestCase
):
@
prog_scope
()
def
func
(
self
,
place
):
shape
=
[
2
,
3
,
7
,
9
]
eps
=
0.005
alpha
=
0.2
dtype
=
np
.
float64
x
=
layers
.
data
(
'x'
,
shape
,
False
,
dtype
)
x
.
persistable
=
True
y
=
layers
.
leaky_relu
(
x
,
alpha
=
alpha
)
x_arr
=
np
.
random
.
uniform
(
-
1
,
1
,
shape
).
astype
(
dtype
)
x_arr
[
np
.
abs
(
x_arr
)
<
0.005
]
=
0.02
gradient_checker
.
double_grad_check
(
[
x
],
y
,
x_init
=
x_arr
,
place
=
place
,
eps
=
eps
)
def
test_grad
(
self
):
places
=
[
fluid
.
CPUPlace
()]
if
core
.
is_compiled_with_cuda
():
places
=
[
fluid
.
CUDAPlace
(
0
)]
for
p
in
places
:
self
.
func
(
p
)
class
TestSqrtDoubleGradCheck
(
unittest
.
TestCase
):
@
prog_scope
()
def
func
(
self
,
place
):
shape
=
[
2
,
3
,
7
,
9
]
eps
=
0.0001
dtype
=
np
.
float64
x
=
layers
.
data
(
'x'
,
shape
,
False
,
dtype
)
x
.
persistable
=
True
y
=
layers
.
sqrt
(
x
)
x_arr
=
np
.
random
.
uniform
(
0.1
,
1
,
shape
).
astype
(
dtype
)
gradient_checker
.
double_grad_check
(
[
x
],
y
,
x_init
=
x_arr
,
place
=
place
,
eps
=
eps
)
def
test_grad
(
self
):
places
=
[
fluid
.
CPUPlace
()]
if
core
.
is_compiled_with_cuda
():
places
=
[
fluid
.
CUDAPlace
(
0
)]
for
p
in
places
:
self
.
func
(
p
)
class
TestSquareDoubleGradCheck
(
unittest
.
TestCase
):
@
prog_scope
()
def
func
(
self
,
place
):
# the shape of input variable shoule be clearly specified, not inlcude -1.
shape
=
[
2
,
3
,
7
,
9
]
eps
=
0.005
dtype
=
np
.
float64
x
=
layers
.
data
(
'x'
,
shape
,
False
,
dtype
)
x
.
persistable
=
True
y
=
layers
.
square
(
x
)
x_arr
=
np
.
random
.
uniform
(
-
1
,
1
,
shape
).
astype
(
dtype
)
gradient_checker
.
double_grad_check
(
[
x
],
y
,
x_init
=
x_arr
,
place
=
place
,
eps
=
eps
)
def
test_grad
(
self
):
places
=
[
fluid
.
CPUPlace
()]
if
core
.
is_compiled_with_cuda
():
places
.
append
(
fluid
.
CUDAPlace
(
0
))
for
p
in
places
:
self
.
func
(
p
)
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_elementwise_nn_grad.py
0 → 100644
浏览文件 @
3db9c8c9
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
import
paddle.fluid
as
fluid
import
paddle.fluid.layers
as
layers
import
paddle.fluid.core
as
core
import
gradient_checker
from
decorator_helper
import
prog_scope
class
TestElementwiseMulDoubleGradCheck
(
unittest
.
TestCase
):
@
prog_scope
()
def
func
(
self
,
place
):
# the shape of input variable shoule be clearly specified, not inlcude -1.
shape
=
[
2
,
3
,
7
,
9
]
eps
=
0.005
dtype
=
np
.
float64
x
=
layers
.
data
(
'x'
,
shape
,
False
,
dtype
)
y
=
layers
.
data
(
'y'
,
shape
,
False
,
dtype
)
x
.
persistable
=
True
y
.
persistable
=
True
out
=
layers
.
elementwise_mul
(
x
,
y
)
x_arr
=
np
.
random
.
uniform
(
-
1
,
1
,
shape
).
astype
(
dtype
)
y_arr
=
np
.
random
.
uniform
(
-
1
,
1
,
shape
).
astype
(
dtype
)
gradient_checker
.
double_grad_check
(
[
x
,
y
],
out
,
x_init
=
[
x_arr
,
y_arr
],
place
=
place
,
eps
=
eps
)
def
test_grad
(
self
):
places
=
[
fluid
.
CPUPlace
()]
if
core
.
is_compiled_with_cuda
():
places
.
append
(
fluid
.
CUDAPlace
(
0
))
for
p
in
places
:
self
.
func
(
p
)
class
TestElementwiseMulBroadcastDoubleGradCheck
(
unittest
.
TestCase
):
@
prog_scope
()
def
func
(
self
,
place
):
# the shape of input variable shoule be clearly specified, not inlcude -1.
shape
=
[
2
,
3
,
7
,
9
]
eps
=
0.005
dtype
=
np
.
float64
x
=
layers
.
data
(
'x'
,
shape
,
False
,
dtype
)
y
=
layers
.
data
(
'y'
,
shape
[:
-
1
],
False
,
dtype
)
x
.
persistable
=
True
y
.
persistable
=
True
out
=
layers
.
elementwise_mul
(
x
,
y
,
axis
=
0
)
x_arr
=
np
.
random
.
uniform
(
-
1
,
1
,
shape
).
astype
(
dtype
)
y_arr
=
np
.
random
.
uniform
(
-
1
,
1
,
shape
[:
-
1
]).
astype
(
dtype
)
gradient_checker
.
double_grad_check
(
[
x
,
y
],
out
,
x_init
=
[
x_arr
,
y_arr
],
place
=
place
,
eps
=
eps
)
def
test_grad
(
self
):
places
=
[
fluid
.
CPUPlace
()]
if
core
.
is_compiled_with_cuda
():
places
.
append
(
fluid
.
CUDAPlace
(
0
))
for
p
in
places
:
self
.
func
(
p
)
class
TestElementwiseAddDoubleGradCheck
(
unittest
.
TestCase
):
@
prog_scope
()
def
func
(
self
,
place
):
# the shape of input variable shoule be clearly specified, not inlcude -1.
shape
=
[
2
,
3
,
7
,
9
]
eps
=
0.005
dtype
=
np
.
float64
x
=
layers
.
data
(
'x'
,
shape
,
False
,
dtype
)
y
=
layers
.
data
(
'y'
,
shape
,
False
,
dtype
)
x
.
persistable
=
True
y
.
persistable
=
True
out
=
layers
.
elementwise_add
(
x
,
y
)
x_arr
=
np
.
random
.
uniform
(
-
1
,
1
,
shape
).
astype
(
dtype
)
y_arr
=
np
.
random
.
uniform
(
-
1
,
1
,
shape
).
astype
(
dtype
)
gradient_checker
.
double_grad_check
(
[
x
,
y
],
out
,
x_init
=
[
x_arr
,
y_arr
],
place
=
place
,
eps
=
eps
)
def
test_grad
(
self
):
places
=
[
fluid
.
CPUPlace
()]
if
core
.
is_compiled_with_cuda
():
places
.
append
(
fluid
.
CUDAPlace
(
0
))
for
p
in
places
:
self
.
func
(
p
)
class
TestElementwiseAddBroadcastDoubleGradCheck
(
unittest
.
TestCase
):
@
prog_scope
()
def
func
(
self
,
place
):
# the shape of input variable shoule be clearly specified, not inlcude -1.
shape
=
[
2
,
3
,
7
,
9
]
eps
=
0.005
dtype
=
np
.
float64
x
=
layers
.
data
(
'x'
,
shape
,
False
,
dtype
)
y
=
layers
.
data
(
'y'
,
shape
[:
-
1
],
False
,
dtype
)
x
.
persistable
=
True
y
.
persistable
=
True
out
=
layers
.
elementwise_add
(
x
,
y
,
axis
=
0
)
x_arr
=
np
.
random
.
uniform
(
-
1
,
1
,
shape
).
astype
(
dtype
)
y_arr
=
np
.
random
.
uniform
(
-
1
,
1
,
shape
[:
-
1
]).
astype
(
dtype
)
gradient_checker
.
double_grad_check
(
[
x
,
y
],
out
,
x_init
=
[
x_arr
,
y_arr
],
place
=
place
,
eps
=
eps
)
def
test_grad
(
self
):
places
=
[
fluid
.
CPUPlace
()]
if
core
.
is_compiled_with_cuda
():
places
.
append
(
fluid
.
CUDAPlace
(
0
))
for
p
in
places
:
self
.
func
(
p
)
class
TestElementwiseSubDoubleGradCheck
(
unittest
.
TestCase
):
@
prog_scope
()
def
func
(
self
,
place
):
# the shape of input variable shoule be clearly specified, not inlcude -1.
shape
=
[
2
,
3
,
7
,
9
]
eps
=
0.005
dtype
=
np
.
float64
x
=
layers
.
data
(
'x'
,
shape
,
False
,
dtype
)
y
=
layers
.
data
(
'y'
,
shape
,
False
,
dtype
)
x
.
persistable
=
True
y
.
persistable
=
True
out
=
layers
.
elementwise_sub
(
x
,
y
)
x_arr
=
np
.
random
.
uniform
(
-
1
,
1
,
shape
).
astype
(
dtype
)
y_arr
=
np
.
random
.
uniform
(
-
1
,
1
,
shape
).
astype
(
dtype
)
gradient_checker
.
double_grad_check
(
[
x
,
y
],
out
,
x_init
=
[
x_arr
,
y_arr
],
place
=
place
,
eps
=
eps
)
def
test_grad
(
self
):
places
=
[
fluid
.
CPUPlace
()]
if
core
.
is_compiled_with_cuda
():
places
.
append
(
fluid
.
CUDAPlace
(
0
))
for
p
in
places
:
self
.
func
(
p
)
class
TestElementwiseSubBroadcastDoubleGradCheck
(
unittest
.
TestCase
):
@
prog_scope
()
def
func
(
self
,
place
):
# the shape of input variable shoule be clearly specified, not inlcude -1.
shape
=
[
2
,
3
,
7
,
9
]
eps
=
0.005
dtype
=
np
.
float64
x
=
layers
.
data
(
'x'
,
shape
,
False
,
dtype
)
y
=
layers
.
data
(
'y'
,
shape
[:
-
1
],
False
,
dtype
)
x
.
persistable
=
True
y
.
persistable
=
True
out
=
layers
.
elementwise_sub
(
x
,
y
,
axis
=
0
)
x_arr
=
np
.
random
.
uniform
(
-
1
,
1
,
shape
).
astype
(
dtype
)
y_arr
=
np
.
random
.
uniform
(
-
1
,
1
,
shape
[:
-
1
]).
astype
(
dtype
)
gradient_checker
.
double_grad_check
(
[
x
,
y
],
out
,
x_init
=
[
x_arr
,
y_arr
],
place
=
place
,
eps
=
eps
)
def
test_grad
(
self
):
places
=
[
fluid
.
CPUPlace
()]
if
core
.
is_compiled_with_cuda
():
places
.
append
(
fluid
.
CUDAPlace
(
0
))
for
p
in
places
:
self
.
func
(
p
)
class
TestElementwiseDivDoubleGradCheck
(
unittest
.
TestCase
):
@
prog_scope
()
def
func
(
self
,
place
):
# the shape of input variable shoule be clearly specified, not inlcude -1.
shape
=
[
2
,
3
,
7
,
9
]
eps
=
0.0001
dtype
=
np
.
float64
x
=
layers
.
data
(
'x'
,
shape
,
False
,
dtype
)
y
=
layers
.
data
(
'y'
,
shape
,
False
,
dtype
)
x
.
persistable
=
True
y
.
persistable
=
True
out
=
layers
.
elementwise_div
(
x
,
y
,
axis
=
0
)
x_arr
=
np
.
random
.
uniform
(
-
1
,
1
,
shape
).
astype
(
dtype
)
y_arr
=
np
.
random
.
uniform
(
-
1
,
1
,
shape
).
astype
(
dtype
)
y_arr
[
np
.
abs
(
y_arr
)
<
0.005
]
=
0.02
gradient_checker
.
double_grad_check
(
[
x
,
y
],
out
,
x_init
=
[
x_arr
,
y_arr
],
place
=
place
,
eps
=
eps
,
atol
=
1e-3
)
def
test_grad
(
self
):
places
=
[
fluid
.
CPUPlace
()]
if
core
.
is_compiled_with_cuda
():
places
.
append
(
fluid
.
CUDAPlace
(
0
))
for
p
in
places
:
self
.
func
(
p
)
class
TestElementwiseDivBroadcastDoubleGradCheck
(
unittest
.
TestCase
):
@
prog_scope
()
def
func
(
self
,
place
):
# the shape of input variable shoule be clearly specified, not inlcude -1.
shape
=
[
2
,
3
,
7
,
9
]
eps
=
0.0001
dtype
=
np
.
float64
x
=
layers
.
data
(
'x'
,
shape
,
False
,
dtype
)
y
=
layers
.
data
(
'y'
,
shape
[
1
:
-
1
],
False
,
dtype
)
x
.
persistable
=
True
y
.
persistable
=
True
out
=
layers
.
elementwise_div
(
x
,
y
,
axis
=
1
)
x_arr
=
np
.
random
.
uniform
(
-
1
,
1
,
shape
).
astype
(
dtype
)
y_arr
=
np
.
random
.
uniform
(
-
1
,
1
,
shape
[
1
:
-
1
]).
astype
(
dtype
)
y_arr
[
np
.
abs
(
y_arr
)
<
0.005
]
=
0.02
gradient_checker
.
double_grad_check
(
[
x
,
y
],
out
,
x_init
=
[
x_arr
,
y_arr
],
place
=
place
,
eps
=
eps
,
atol
=
1e-3
)
def
test_grad
(
self
):
places
=
[
fluid
.
CPUPlace
()]
if
core
.
is_compiled_with_cuda
():
places
.
append
(
fluid
.
CUDAPlace
(
0
))
for
p
in
places
:
self
.
func
(
p
)
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_nn_grad.py
浏览文件 @
3db9c8c9
...
@@ -43,80 +43,6 @@ class TestMulGradCheck(unittest.TestCase):
...
@@ -43,80 +43,6 @@ class TestMulGradCheck(unittest.TestCase):
self
.
func
(
p
)
self
.
func
(
p
)
class
TestReluDoubleGradCheck
(
unittest
.
TestCase
):
@
prog_scope
()
def
func
(
self
,
place
):
shape
=
[
2
,
8
]
eps
=
0.005
dtype
=
np
.
float64
x
=
layers
.
data
(
'x'
,
shape
,
False
,
dtype
)
x
.
persistable
=
True
y
=
layers
.
relu
(
x
)
x_arr
=
np
.
random
.
uniform
(
-
1
,
1
,
shape
).
astype
(
dtype
)
x_arr
[
np
.
abs
(
x_arr
)
<
0.005
]
=
0.02
gradient_checker
.
double_grad_check
(
[
x
],
y
,
x_init
=
x_arr
,
place
=
place
,
eps
=
eps
)
def
test_grad
(
self
):
places
=
[
fluid
.
CPUPlace
()]
if
core
.
is_compiled_with_cuda
():
places
.
append
(
fluid
.
CUDAPlace
(
0
))
for
p
in
places
:
self
.
func
(
p
)
class
TestLeakyReluDoubleGradCheck
(
unittest
.
TestCase
):
@
prog_scope
()
def
func
(
self
,
place
):
shape
=
[
3
,
7
]
eps
=
0.005
alpha
=
0.2
dtype
=
np
.
float64
x
=
layers
.
data
(
'x'
,
shape
,
False
,
dtype
)
x
.
persistable
=
True
y
=
layers
.
leaky_relu
(
x
,
alpha
=
alpha
)
x_arr
=
np
.
random
.
uniform
(
-
1
,
1
,
shape
).
astype
(
dtype
)
x_arr
[
np
.
abs
(
x_arr
)
<
0.005
]
=
0.02
gradient_checker
.
double_grad_check
(
[
x
],
y
,
x_init
=
x_arr
,
place
=
place
,
eps
=
eps
)
def
test_grad
(
self
):
places
=
[
fluid
.
CPUPlace
()]
if
core
.
is_compiled_with_cuda
():
places
=
[
fluid
.
CUDAPlace
(
0
)]
for
p
in
places
:
self
.
func
(
p
)
class
TestSqrtDoubleGradCheck
(
unittest
.
TestCase
):
@
prog_scope
()
def
func
(
self
,
place
):
shape
=
[
3
,
7
]
eps
=
0.0001
dtype
=
np
.
float64
x
=
layers
.
data
(
'x'
,
shape
,
False
,
dtype
)
x
.
persistable
=
True
y
=
layers
.
sqrt
(
x
)
x_arr
=
np
.
random
.
uniform
(
0.1
,
1
,
shape
).
astype
(
dtype
)
gradient_checker
.
double_grad_check
(
[
x
],
y
,
x_init
=
x_arr
,
place
=
place
,
eps
=
eps
)
def
test_grad
(
self
):
places
=
[
fluid
.
CPUPlace
()]
if
core
.
is_compiled_with_cuda
():
places
=
[
fluid
.
CUDAPlace
(
0
)]
for
p
in
places
:
self
.
func
(
p
)
class
TestConvDoubleGradCheck
(
unittest
.
TestCase
):
class
TestConvDoubleGradCheck
(
unittest
.
TestCase
):
@
prog_scope
()
@
prog_scope
()
def
func
(
self
,
place
):
def
func
(
self
,
place
):
...
@@ -141,57 +67,6 @@ class TestConvDoubleGradCheck(unittest.TestCase):
...
@@ -141,57 +67,6 @@ class TestConvDoubleGradCheck(unittest.TestCase):
self
.
func
(
p
)
self
.
func
(
p
)
class
TestSquareDoubleGradCheck
(
unittest
.
TestCase
):
@
prog_scope
()
def
func
(
self
,
place
):
# the shape of input variable shoule be clearly specified, not inlcude -1.
shape
=
[
17
,
23
]
eps
=
0.005
dtype
=
np
.
float64
x
=
layers
.
data
(
'x'
,
shape
,
False
,
dtype
)
x
.
persistable
=
True
y
=
layers
.
square
(
x
)
x_arr
=
np
.
random
.
uniform
(
-
1
,
1
,
shape
).
astype
(
dtype
)
gradient_checker
.
double_grad_check
(
[
x
],
y
,
x_init
=
x_arr
,
place
=
place
,
eps
=
eps
)
def
test_grad
(
self
):
places
=
[
fluid
.
CPUPlace
()]
if
core
.
is_compiled_with_cuda
():
places
.
append
(
fluid
.
CUDAPlace
(
0
))
for
p
in
places
:
self
.
func
(
p
)
class
TestElementwiseMulDoubleGradCheck
(
unittest
.
TestCase
):
@
prog_scope
()
def
func
(
self
,
place
):
# the shape of input variable shoule be clearly specified, not inlcude -1.
shape
=
[
2
,
3
,
5
,
7
]
eps
=
0.005
dtype
=
np
.
float64
x
=
layers
.
data
(
'x'
,
shape
,
False
,
dtype
)
y
=
layers
.
data
(
'y'
,
shape
,
False
,
dtype
)
x
.
persistable
=
True
y
.
persistable
=
True
out
=
layers
.
elementwise_mul
(
x
,
y
)
x_arr
=
np
.
random
.
uniform
(
-
1
,
1
,
shape
).
astype
(
dtype
)
y_arr
=
np
.
random
.
uniform
(
-
1
,
1
,
shape
).
astype
(
dtype
)
gradient_checker
.
double_grad_check
(
[
x
,
y
],
out
,
x_init
=
[
x_arr
,
y_arr
],
place
=
place
,
eps
=
eps
)
def
test_grad
(
self
):
places
=
[
fluid
.
CPUPlace
()]
if
core
.
is_compiled_with_cuda
():
places
.
append
(
fluid
.
CUDAPlace
(
0
))
for
p
in
places
:
self
.
func
(
p
)
class
TestReduceMeanWithDimDoubleGradCheck
(
unittest
.
TestCase
):
class
TestReduceMeanWithDimDoubleGradCheck
(
unittest
.
TestCase
):
@
prog_scope
()
@
prog_scope
()
def
func
(
self
,
place
):
def
func
(
self
,
place
):
...
@@ -215,141 +90,6 @@ class TestReduceMeanWithDimDoubleGradCheck(unittest.TestCase):
...
@@ -215,141 +90,6 @@ class TestReduceMeanWithDimDoubleGradCheck(unittest.TestCase):
self
.
func
(
p
)
self
.
func
(
p
)
class
TestElementwiseMulBroadcastDoubleGradCheck
(
unittest
.
TestCase
):
@
prog_scope
()
def
func
(
self
,
place
):
# the shape of input variable shoule be clearly specified, not inlcude -1.
shape
=
[
2
,
3
,
5
,
7
]
eps
=
0.005
dtype
=
np
.
float64
x
=
layers
.
data
(
'x'
,
shape
,
False
,
dtype
)
y
=
layers
.
data
(
'y'
,
shape
[:
-
1
],
False
,
dtype
)
x
.
persistable
=
True
y
.
persistable
=
True
out
=
layers
.
elementwise_mul
(
x
,
y
,
axis
=
0
)
x_arr
=
np
.
random
.
uniform
(
-
1
,
1
,
shape
).
astype
(
dtype
)
y_arr
=
np
.
random
.
uniform
(
-
1
,
1
,
shape
[:
-
1
]).
astype
(
dtype
)
gradient_checker
.
double_grad_check
(
[
x
,
y
],
out
,
x_init
=
[
x_arr
,
y_arr
],
place
=
place
,
eps
=
eps
)
def
test_grad
(
self
):
places
=
[
fluid
.
CPUPlace
()]
if
core
.
is_compiled_with_cuda
():
places
.
append
(
fluid
.
CUDAPlace
(
0
))
for
p
in
places
:
self
.
func
(
p
)
class
TestElementwiseAddDoubleGradCheck
(
unittest
.
TestCase
):
@
prog_scope
()
def
func
(
self
,
place
):
# the shape of input variable shoule be clearly specified, not inlcude -1.
shape
=
[
2
,
3
,
5
,
7
]
eps
=
0.005
dtype
=
np
.
float64
x
=
layers
.
data
(
'x'
,
shape
,
False
,
dtype
)
y
=
layers
.
data
(
'y'
,
shape
,
False
,
dtype
)
x
.
persistable
=
True
y
.
persistable
=
True
out
=
layers
.
elementwise_add
(
x
,
y
)
x_arr
=
np
.
random
.
uniform
(
-
1
,
1
,
shape
).
astype
(
dtype
)
y_arr
=
np
.
random
.
uniform
(
-
1
,
1
,
shape
).
astype
(
dtype
)
gradient_checker
.
double_grad_check
(
[
x
,
y
],
out
,
x_init
=
[
x_arr
,
y_arr
],
place
=
place
,
eps
=
eps
)
def
test_grad
(
self
):
places
=
[
fluid
.
CPUPlace
()]
if
core
.
is_compiled_with_cuda
():
places
.
append
(
fluid
.
CUDAPlace
(
0
))
for
p
in
places
:
self
.
func
(
p
)
class
TestElementwiseAddBroadcastDoubleGradCheck
(
unittest
.
TestCase
):
@
prog_scope
()
def
func
(
self
,
place
):
# the shape of input variable shoule be clearly specified, not inlcude -1.
shape
=
[
2
,
3
,
5
,
7
]
eps
=
0.005
dtype
=
np
.
float64
x
=
layers
.
data
(
'x'
,
shape
,
False
,
dtype
)
y
=
layers
.
data
(
'y'
,
shape
[:
-
1
],
False
,
dtype
)
x
.
persistable
=
True
y
.
persistable
=
True
out
=
layers
.
elementwise_add
(
x
,
y
,
axis
=
0
)
x_arr
=
np
.
random
.
uniform
(
-
1
,
1
,
shape
).
astype
(
dtype
)
y_arr
=
np
.
random
.
uniform
(
-
1
,
1
,
shape
[:
-
1
]).
astype
(
dtype
)
gradient_checker
.
double_grad_check
(
[
x
,
y
],
out
,
x_init
=
[
x_arr
,
y_arr
],
place
=
place
,
eps
=
eps
)
def
test_grad
(
self
):
places
=
[
fluid
.
CPUPlace
()]
if
core
.
is_compiled_with_cuda
():
places
.
append
(
fluid
.
CUDAPlace
(
0
))
for
p
in
places
:
self
.
func
(
p
)
class
TestElementwiseSubDoubleGradCheck
(
unittest
.
TestCase
):
@
prog_scope
()
def
func
(
self
,
place
):
# the shape of input variable shoule be clearly specified, not inlcude -1.
shape
=
[
2
,
3
,
5
,
7
]
eps
=
0.005
dtype
=
np
.
float64
x
=
layers
.
data
(
'x'
,
shape
,
False
,
dtype
)
y
=
layers
.
data
(
'y'
,
shape
,
False
,
dtype
)
x
.
persistable
=
True
y
.
persistable
=
True
out
=
layers
.
elementwise_sub
(
x
,
y
)
x_arr
=
np
.
random
.
uniform
(
-
1
,
1
,
shape
).
astype
(
dtype
)
y_arr
=
np
.
random
.
uniform
(
-
1
,
1
,
shape
).
astype
(
dtype
)
gradient_checker
.
double_grad_check
(
[
x
,
y
],
out
,
x_init
=
[
x_arr
,
y_arr
],
place
=
place
,
eps
=
eps
)
def
test_grad
(
self
):
places
=
[
fluid
.
CPUPlace
()]
if
core
.
is_compiled_with_cuda
():
places
.
append
(
fluid
.
CUDAPlace
(
0
))
for
p
in
places
:
self
.
func
(
p
)
class
TestElementwiseSubBroadcastDoubleGradCheck
(
unittest
.
TestCase
):
@
prog_scope
()
def
func
(
self
,
place
):
# the shape of input variable shoule be clearly specified, not inlcude -1.
shape
=
[
2
,
3
,
5
,
7
]
eps
=
0.005
dtype
=
np
.
float64
x
=
layers
.
data
(
'x'
,
shape
,
False
,
dtype
)
y
=
layers
.
data
(
'y'
,
shape
[:
-
1
],
False
,
dtype
)
x
.
persistable
=
True
y
.
persistable
=
True
out
=
layers
.
elementwise_sub
(
x
,
y
,
axis
=
0
)
x_arr
=
np
.
random
.
uniform
(
-
1
,
1
,
shape
).
astype
(
dtype
)
y_arr
=
np
.
random
.
uniform
(
-
1
,
1
,
shape
[:
-
1
]).
astype
(
dtype
)
gradient_checker
.
double_grad_check
(
[
x
,
y
],
out
,
x_init
=
[
x_arr
,
y_arr
],
place
=
place
,
eps
=
eps
)
def
test_grad
(
self
):
places
=
[
fluid
.
CPUPlace
()]
if
core
.
is_compiled_with_cuda
():
places
.
append
(
fluid
.
CUDAPlace
(
0
))
for
p
in
places
:
self
.
func
(
p
)
class
TestMulDoubleGradCheck
(
unittest
.
TestCase
):
class
TestMulDoubleGradCheck
(
unittest
.
TestCase
):
@
prog_scope
()
@
prog_scope
()
def
func
(
self
,
place
):
def
func
(
self
,
place
):
...
@@ -378,61 +118,5 @@ class TestMulDoubleGradCheck(unittest.TestCase):
...
@@ -378,61 +118,5 @@ class TestMulDoubleGradCheck(unittest.TestCase):
self
.
func
(
p
)
self
.
func
(
p
)
class
TestElementwiseDivDoubleGradCheck
(
unittest
.
TestCase
):
@
prog_scope
()
def
func
(
self
,
place
):
# the shape of input variable shoule be clearly specified, not inlcude -1.
shape
=
[
2
,
3
,
7
,
9
]
eps
=
0.0001
dtype
=
np
.
float64
x
=
layers
.
data
(
'x'
,
shape
,
False
,
dtype
)
y
=
layers
.
data
(
'y'
,
shape
,
False
,
dtype
)
x
.
persistable
=
True
y
.
persistable
=
True
out
=
layers
.
elementwise_div
(
x
,
y
,
axis
=
0
)
x_arr
=
np
.
random
.
uniform
(
-
1
,
1
,
shape
).
astype
(
dtype
)
y_arr
=
np
.
random
.
uniform
(
-
1
,
1
,
shape
).
astype
(
dtype
)
y_arr
[
np
.
abs
(
y_arr
)
<
0.005
]
=
0.02
gradient_checker
.
double_grad_check
(
[
x
,
y
],
out
,
x_init
=
[
x_arr
,
y_arr
],
place
=
place
,
eps
=
eps
,
atol
=
1e-3
)
def
test_grad
(
self
):
places
=
[
fluid
.
CPUPlace
()]
if
core
.
is_compiled_with_cuda
():
places
.
append
(
fluid
.
CUDAPlace
(
0
))
for
p
in
places
:
self
.
func
(
p
)
class
TestElementwiseDivBroadcastDoubleGradCheck
(
unittest
.
TestCase
):
@
prog_scope
()
def
func
(
self
,
place
):
# the shape of input variable shoule be clearly specified, not inlcude -1.
shape
=
[
2
,
3
,
7
,
9
]
eps
=
0.0001
dtype
=
np
.
float64
x
=
layers
.
data
(
'x'
,
shape
,
False
,
dtype
)
y
=
layers
.
data
(
'y'
,
shape
[
1
:
-
1
],
False
,
dtype
)
x
.
persistable
=
True
y
.
persistable
=
True
out
=
layers
.
elementwise_div
(
x
,
y
,
axis
=
1
)
x_arr
=
np
.
random
.
uniform
(
-
1
,
1
,
shape
).
astype
(
dtype
)
y_arr
=
np
.
random
.
uniform
(
-
1
,
1
,
shape
[
1
:
-
1
]).
astype
(
dtype
)
y_arr
[
np
.
abs
(
y_arr
)
<
0.005
]
=
0.02
gradient_checker
.
double_grad_check
(
[
x
,
y
],
out
,
x_init
=
[
x_arr
,
y_arr
],
place
=
place
,
eps
=
eps
,
atol
=
1e-3
)
def
test_grad
(
self
):
places
=
[
fluid
.
CPUPlace
()]
if
core
.
is_compiled_with_cuda
():
places
.
append
(
fluid
.
CUDAPlace
(
0
))
for
p
in
places
:
self
.
func
(
p
)
if
__name__
==
"__main__"
:
if
__name__
==
"__main__"
:
unittest
.
main
()
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录