未验证 提交 39565147 编写于 作者: X xiaoxiaohehe001 提交者: GitHub

[Paddle Inference-TRT]Adding six op unittest codes of TRT INT8 (#35130)

* add_op_unittest
上级 b94d7ff3
...@@ -39,4 +39,7 @@ set_tests_properties(test_trt_pool_op PROPERTIES ENVIRONMENT FLAGS_fraction_of_g ...@@ -39,4 +39,7 @@ set_tests_properties(test_trt_pool_op PROPERTIES ENVIRONMENT FLAGS_fraction_of_g
set_tests_properties(test_trt_reduce_mean_op PROPERTIES TIMEOUT 60) set_tests_properties(test_trt_reduce_mean_op PROPERTIES TIMEOUT 60)
set_tests_properties(test_trt_tile_op PROPERTIES TIMEOUT 60) set_tests_properties(test_trt_tile_op PROPERTIES TIMEOUT 60)
set_tests_properties(test_trt_convert_conv2d PROPERTIES TIMEOUT 100) set_tests_properties(test_trt_convert_conv2d PROPERTIES TIMEOUT 100)
set_tests_properties(test_trt_fc_fuse_quant_dequant_pass PROPERTIES TIMEOUT 100)
set_tests_properties(test_trt_conv_quant_dequant_pass PROPERTIES TIMEOUT 100)
set_tests_properties(test_trt_matmul_quant_dequant PROPERTIES TIMEOUT 100)
endif() endif()
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import shutil
import unittest
import numpy as np
from inference_pass_test import InferencePassTest
from quant_dequant_test import QuantDequantTest
import paddle.fluid as fluid
import paddle.fluid.core as core
from paddle.fluid.core import PassVersionChecker
from paddle.fluid.core import AnalysisConfig
class QuantDequantTensorRTSubgraphPassConvTest(QuantDequantTest):
def setUp(self):
self.set_params()
def network():
self.data = fluid.data(
name='data', shape=[1, 28, 28], dtype='float32')
data_reshape = fluid.layers.reshape(self.data, shape=[1, 4, 14, 14])
self.label = fluid.data(name='label', shape=[1, 1], dtype='int64')
label_shape = fluid.layers.reshape(self.label, shape=[1, 1, 1])
conv_out = fluid.layers.conv2d(
input=data_reshape,
num_filters=self.conv_num_filters,
filter_size=self.conv_filter_size,
groups=self.conv_groups,
padding=self.conv_padding,
bias_attr=False,
use_cudnn=self.use_cudnn,
act=None)
if self.conv_padding == [1, 1]:
cout = fluid.layers.reshape(conv_out, shape=[1, 1, 10816])
elif self.conv_padding == 'VALID':
cout = fluid.layers.reshape(conv_out, shape=[1, 1, 7744])
elif self.conv_padding == 'SAME':
cout = fluid.layers.reshape(conv_out, shape=[1, 1, 12544])
elif self.conv_groups == 4:
cout = fluid.layers.reshape(conv_out, shape=[1, 1, 10816])
result = fluid.layers.relu(cout)
loss = fluid.layers.cross_entropy(input=result, label=label_shape)
avg_loss = fluid.layers.mean(loss)
return avg_loss, result
self.main_program.random_seed = 2
self.startup_program.random_seed = 2
self.test_main_program.random_seed = 2
#self.test_startup_program.random_seed = 2
with fluid.unique_name.guard():
with fluid.program_guard(self.main_program, self.startup_program):
self.loss, result = network()
opt = fluid.optimizer.Adam(learning_rate=0.0001)
opt.minimize(self.loss)
with fluid.unique_name.guard():
with fluid.program_guard(self.test_main_program,
self.startup_program):
network()
self.feeds = {"data": np.random.random([1, 28, 28]).astype("float32")}
self.fetch_list = [result]
self.enable_trt = True
self.trt_parameters = QuantDequantTensorRTSubgraphPassConvTest.TensorRTParam(
1 << 30, 32, 0, AnalysisConfig.Precision.Int8, False, False)
self.activation_quantize_type = 'moving_average_abs_max'
self.weight_quantize_type = 'channel_wise_abs_max'
def set_params(self):
self.conv_num_filters = 64
self.conv_filter_size = 4
self.conv_groups = 1
self.conv_padding = [1, 1]
self.use_cudnn = True
def test_check_output(self):
if core.is_compiled_with_cuda():
use_gpu = True
self.check_output_with_option(
use_gpu, atol=1e-1, flatten=False, rtol=1e-1)
self.assertTrue(
PassVersionChecker.IsCompatible('tensorrt_subgraph_pass'))
class QuantDequantTensorRTSubgraphPassConvValidPaddingTest(
QuantDequantTensorRTSubgraphPassConvTest):
def set_params(self):
self.conv_num_filters = 64
self.conv_filter_size = 4
self.conv_groups = 1
self.conv_padding = 'VALID'
self.use_cudnn = True
class QuantDequantTensorRTSubgraphPassConvSamePaddingTest(
QuantDequantTensorRTSubgraphPassConvTest):
def set_params(self):
self.conv_num_filters = 64
self.conv_filter_size = 4
self.conv_groups = 1
self.conv_padding = 'SAME'
self.use_cudnn = True
class QuantDequantTensorRTSubgraphPassDWConvTest(
QuantDequantTensorRTSubgraphPassConvTest):
def set_params(self):
self.conv_num_filters = 64
self.conv_filter_size = 4
self.conv_groups = 4
self.conv_padding = [1, 1]
self.use_cudnn = True
class DynamicShapeQuantDequantTensorRTSubgraphPassConvTest(QuantDequantTest):
def setUp(self):
self.set_params()
def network():
self.data = fluid.data(
name='data', shape=[1, 28, 28], dtype='float32')
data_reshape = fluid.layers.reshape(self.data, shape=[1, 4, 14, 14])
self.label = fluid.data(name='label', shape=[1, 1], dtype='int64')
label_shape = fluid.layers.reshape(self.label, shape=[1, 1, 1])
conv_out = fluid.layers.conv2d(
input=data_reshape,
num_filters=self.conv_num_filters,
filter_size=self.conv_filter_size,
groups=self.conv_groups,
padding=self.conv_padding,
bias_attr=False,
use_cudnn=self.use_cudnn,
act=None)
cout = fluid.layers.reshape(conv_out, shape=[1, 1, 10816])
result = fluid.layers.relu(cout)
loss = fluid.layers.cross_entropy(input=result, label=label_shape)
avg_loss = fluid.layers.mean(loss)
return avg_loss, result
self.main_program.random_seed = 2
self.startup_program.random_seed = 2
self.test_main_program.random_seed = 2
#self.test_startup_program.random_seed = 2
with fluid.unique_name.guard():
with fluid.program_guard(self.main_program, self.startup_program):
self.loss, result = network()
opt = fluid.optimizer.Adam(learning_rate=0.0001)
opt.minimize(self.loss)
with fluid.unique_name.guard():
with fluid.program_guard(self.test_main_program,
self.startup_program):
network()
self.feeds = {"data": np.random.random([1, 28, 28]).astype("float32")}
self.fetch_list = [result]
self.enable_trt = True
self.trt_parameters = DynamicShapeQuantDequantTensorRTSubgraphPassConvTest.TensorRTParam(
1 << 30, 32, 0, AnalysisConfig.Precision.Int8, False, False)
self.dynamic_shape_params = DynamicShapeQuantDequantTensorRTSubgraphPassConvTest.DynamicShapeParam(
{
"conv2d_0.tmp_0": [1, 4, 14, 14],
"data": [1, 28, 28],
"depthwise_conv2d_0.tmp_0": [1, 4, 14, 14],
"reshape2_0.tmp_0": [1, 4, 14, 14],
"reshape2_2.tmp_0": [1, 1, 10816]
}, {
"conv2d_0.tmp_0": [4, 4, 14, 14],
"data": [4, 28, 28],
"depthwise_conv2d_0.tmp_0": [4, 4, 14, 14],
"reshape2_0.tmp_0": [4, 4, 14, 14],
"reshape2_2.tmp_0": [1, 1, 43264]
}, {
"conv2d_0.tmp_0": [1, 4, 14, 14],
"data": [1, 28, 28],
"depthwise_conv2d_0.tmp_0": [1, 4, 14, 14],
"reshape2_0.tmp_0": [1, 4, 14, 14],
"reshape2_2.tmp_0": [1, 1, 10816]
}, False)
self.activation_quantize_type = 'moving_average_abs_max'
self.weight_quantize_type = 'channel_wise_abs_max'
def set_params(self):
self.conv_num_filters = 64
self.conv_filter_size = 4
self.conv_groups = 1
self.conv_padding = [1, 1]
self.use_cudnn = True
def test_check_output(self):
if core.is_compiled_with_cuda():
use_gpu = True
self.check_output_with_option(
use_gpu, atol=1e-1, flatten=False, rtol=1e-1)
self.assertTrue(
PassVersionChecker.IsCompatible('tensorrt_subgraph_pass'))
class QuantDequantTensorRTSubgraphPassConvTransposeTest(QuantDequantTest):
def setUp(self):
self.set_params()
def network():
self.data = fluid.data(
name='data', shape=[1, 28, 28], dtype='float32')
data_reshape = fluid.layers.reshape(self.data, shape=[1, 4, 14, 14])
self.label = fluid.data(name='label', shape=[1, 1], dtype='int64')
label_shape = fluid.layers.reshape(self.label, shape=[1, 1, 1])
conv_out = fluid.layers.conv2d_transpose(
input=data_reshape,
num_filters=self.conv_num_filters,
filter_size=self.conv_filter_size,
groups=self.conv_groups,
padding=self.conv_padding,
bias_attr=False,
use_cudnn=self.use_cudnn,
act=None)
if self.conv_padding == [1, 1]:
cout = fluid.layers.reshape(conv_out, shape=[1, 1, 14400])
elif self.conv_padding == 'VALID':
cout = fluid.layers.reshape(conv_out, shape=[1, 1, 18496])
elif self.conv_padding == 'SAME':
cout = fluid.layers.reshape(conv_out, shape=[1, 1, 12544])
elif self.conv_groups == 4:
cout = fluid.layers.reshape(conv_out, shape=[1, 1, 10816])
result = fluid.layers.relu(cout)
loss = fluid.layers.cross_entropy(input=result, label=label_shape)
avg_loss = fluid.layers.mean(loss)
return avg_loss, result
self.main_program.random_seed = 2
self.startup_program.random_seed = 2
self.test_main_program.random_seed = 2
#self.test_startup_program.random_seed = 2
with fluid.unique_name.guard():
with fluid.program_guard(self.main_program, self.startup_program):
self.loss, result = network()
opt = fluid.optimizer.Adam(learning_rate=0.0001)
opt.minimize(self.loss)
with fluid.unique_name.guard():
with fluid.program_guard(self.test_main_program,
self.startup_program):
network()
self.feeds = {"data": np.random.random([1, 28, 28]).astype("float32")}
self.fetch_list = [result]
self.enable_trt = True
self.trt_parameters = QuantDequantTensorRTSubgraphPassConvTransposeTest.TensorRTParam(
1 << 30, 32, 0, AnalysisConfig.Precision.Int8, False, False)
self.activation_quantize_type = 'moving_average_abs_max'
self.weight_quantize_type = 'channel_wise_abs_max'
def set_params(self):
self.conv_num_filters = 64
self.conv_filter_size = 4
self.conv_groups = 1
self.conv_padding = [1, 1]
self.use_cudnn = True
def test_check_output(self):
if core.is_compiled_with_cuda():
use_gpu = True
self.check_output_with_option(
use_gpu, atol=1e-1, flatten=False, rtol=1e-1)
self.assertTrue(
PassVersionChecker.IsCompatible('tensorrt_subgraph_pass'))
class QuantDequantTensorRTSubgraphPassConvTransValidPaddingTest(
QuantDequantTensorRTSubgraphPassConvTransposeTest):
def set_params(self):
self.conv_num_filters = 64
self.conv_filter_size = 4
self.conv_groups = 1
self.conv_padding = 'VALID'
self.use_cudnn = True
class QuantDequantTensorRTSubgraphPassConvTransSamePaddingTest(
QuantDequantTensorRTSubgraphPassConvTransposeTest):
def set_params(self):
self.conv_num_filters = 64
self.conv_filter_size = 4
self.conv_groups = 1
self.conv_padding = 'SAME'
self.use_cudnn = True
class QuantDequantTensorRTSubgraphPassTransDWConvTest(
QuantDequantTensorRTSubgraphPassConvTransposeTest):
def set_params(self):
self.conv_num_filters = 64
self.conv_filter_size = 4
self.conv_groups = 4
self.conv_padding = [1, 1]
self.use_cudnn = True
if __name__ == "__main__":
unittest.main()
...@@ -285,55 +285,5 @@ class FCFusePassTRTDynamicDims4Cols3Test(InferencePassTest): ...@@ -285,55 +285,5 @@ class FCFusePassTRTDynamicDims4Cols3Test(InferencePassTest):
self.check_output_with_option(use_gpu[i]) self.check_output_with_option(use_gpu[i])
class FcQuantDequantFusePassTRTTest(QuantDequantTest):
def setUp(self):
def network():
self.data = fluid.data(
name='data', shape=[1, 28, 28], dtype='float32')
self.label = fluid.data(name='label', shape=[1, 1], dtype='int64')
fc_out = fluid.layers.fc(input=self.data,
size=10,
num_flatten_dims=1,
bias_attr=False,
act=None)
result = fluid.layers.relu(fc_out)
loss = fluid.layers.cross_entropy(input=result, label=self.label)
avg_loss = fluid.layers.mean(loss)
return avg_loss, result
self.main_program.random_seed = 2
self.startup_program.random_seed = 2
self.test_main_program.random_seed = 2
#self.test_startup_program.random_seed = 2
with fluid.unique_name.guard():
with fluid.program_guard(self.main_program, self.startup_program):
self.loss, result = network()
opt = fluid.optimizer.Adam(learning_rate=0.0001)
opt.minimize(self.loss)
with fluid.unique_name.guard():
with fluid.program_guard(self.test_main_program,
self.startup_program):
network()
self.feeds = {"data": np.random.random((1, 28, 28)).astype("float32")}
self.fetch_list = [result]
self.enable_trt = True
self.trt_parameters = FcQuantDequantFusePassTRTTest.TensorRTParam(
1 << 30, 32, 0, AnalysisConfig.Precision.Int8, False, False)
self.activation_quantize_type = 'moving_average_abs_max'
self.weight_quantize_type = 'channel_wise_abs_max'
def test_check_output(self):
#self.quant_dequant()
if core.is_compiled_with_cuda():
use_gpu = True
self.check_output_with_option(
use_gpu, atol=1e-2, flatten=False, rtol=1e-2)
self.assertTrue(
PassVersionChecker.IsCompatible(
'quant_conv2d_dequant_fuse_pass'))
if __name__ == "__main__": if __name__ == "__main__":
unittest.main() unittest.main()
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
from inference_pass_test import InferencePassTest
from quant_dequant_test import QuantDequantTest
import paddle.fluid as fluid
import paddle.fluid.core as core
from paddle.fluid.core import AnalysisConfig
from paddle.fluid.core import PassVersionChecker
class FCQuantDequantFusePassTRTDims3Cols1Test(QuantDequantTest):
def setUp(self):
def network():
self.data = fluid.data(
name='data', shape=[1, 28, 28], dtype='float32')
self.label = fluid.data(name='label', shape=[1, 1], dtype='int64')
fc_out = fluid.layers.fc(input=self.data,
size=10,
num_flatten_dims=1,
bias_attr=False,
act="relu")
result = fluid.layers.relu(fc_out)
loss = fluid.layers.cross_entropy(input=result, label=self.label)
avg_loss = fluid.layers.mean(loss)
return avg_loss, result
self.main_program.random_seed = 2
self.startup_program.random_seed = 2
self.test_main_program.random_seed = 2
#self.test_startup_program.random_seed = 2
with fluid.unique_name.guard():
with fluid.program_guard(self.main_program, self.startup_program):
self.loss, result = network()
opt = fluid.optimizer.Adam(learning_rate=0.0001)
opt.minimize(self.loss)
with fluid.unique_name.guard():
with fluid.program_guard(self.test_main_program,
self.startup_program):
network()
self.feeds = {"data": np.random.random((1, 28, 28)).astype("float32")}
self.fetch_list = [result]
self.enable_trt = True
self.trt_parameters = FCQuantDequantFusePassTRTDims3Cols1Test.TensorRTParam(
1 << 30, 32, 0, AnalysisConfig.Precision.Int8, False, False)
self.dynamic_shape_params = FCQuantDequantFusePassTRTDims3Cols1Test.DynamicShapeParam(
{
'data': [1, 28, 28],
'reshape2_1.tmp_0': [1, 1, 10]
}, {'data': [2, 28, 28],
'reshape2_1.tmp_0': [2, 1, 10]},
{'data': [1, 28, 28],
'reshape2_1.tmp_0': [1, 1, 10]}, False)
self.activation_quantize_type = 'moving_average_abs_max'
self.weight_quantize_type = 'channel_wise_abs_max'
def test_check_output(self):
#self.quant_dequant()
if core.is_compiled_with_cuda():
use_gpu = True
self.check_output_with_option(
use_gpu, atol=1e-2, flatten=False, rtol=1e-2)
self.assertTrue(
PassVersionChecker.IsCompatible(
'quant_conv2d_dequant_fuse_pass'))
class FCQuantDequantFusePassTRTDims3Cols2Test(QuantDequantTest):
def setUp(self):
def network():
self.data = fluid.data(
name='data', shape=[1, 28, 28], dtype='float32')
self.label = fluid.data(name='label', shape=[1, 1], dtype='int64')
label_shape = fluid.layers.reshape(self.label, shape=[1, 1, 1])
fc_out = fluid.layers.fc(input=self.data,
size=28,
num_flatten_dims=2,
bias_attr=False,
act=None)
c_out = fluid.layers.reshape(fc_out, shape=[1, 1, 784])
result = fluid.layers.relu(c_out)
loss = fluid.layers.cross_entropy(input=result, label=label_shape)
avg_loss = fluid.layers.mean(loss)
return avg_loss, result
self.main_program.random_seed = 2
self.startup_program.random_seed = 2
self.test_main_program.random_seed = 2
#self.test_startup_program.random_seed = 2
with fluid.unique_name.guard():
with fluid.program_guard(self.main_program, self.startup_program):
self.loss, result = network()
opt = fluid.optimizer.Adam(learning_rate=0.0001)
opt.minimize(self.loss)
with fluid.unique_name.guard():
with fluid.program_guard(self.test_main_program,
self.startup_program):
network()
self.feeds = {"data": np.random.random((1, 28, 28)).astype("float32")}
self.fetch_list = [result]
self.enable_trt = True
self.trt_parameters = FCQuantDequantFusePassTRTDims3Cols2Test.TensorRTParam(
1 << 30, 32, 0, AnalysisConfig.Precision.Int8, False, False)
self.dynamic_shape_params = FCQuantDequantFusePassTRTDims3Cols2Test.DynamicShapeParam(
{
'data': [1, 28, 28],
'reshape2_1.tmp_0': [1, 1, 784]
}, {'data': [4, 28, 28],
'reshape2_1.tmp_0': [4, 1, 784]},
{'data': [1, 28, 28],
'reshape2_1.tmp_0': [1, 1, 784]}, False)
self.activation_quantize_type = 'moving_average_abs_max'
self.weight_quantize_type = 'channel_wise_abs_max'
def test_check_output(self):
#self.quant_dequant()
if core.is_compiled_with_cuda():
use_gpu = True
self.check_output_with_option(
use_gpu, atol=1e-1, flatten=False, rtol=1e-1)
self.assertTrue(
PassVersionChecker.IsCompatible(
'quant_conv2d_dequant_fuse_pass'))
class FCQuantDequantFusePassTRTDims3Cols3Test(QuantDequantTest):
def setUp(self):
def network():
self.data = fluid.data(
name='data', shape=[1, 28, 28], dtype='float32')
self.label = fluid.data(name='label', shape=[1, 1], dtype='int64')
label_shape = fluid.layers.reshape(self.label, shape=[1, 1, 1])
reshape_out = fluid.layers.reshape(self.data, shape=[1, 14, 14, 4])
fc_out = fluid.layers.fc(input=reshape_out,
size=14,
num_flatten_dims=3,
bias_attr=False,
act=None)
c_out = fluid.layers.reshape(fc_out, shape=[1, 1, 2744])
result = fluid.layers.relu(c_out)
loss = fluid.layers.cross_entropy(input=result, label=label_shape)
avg_loss = fluid.layers.mean(loss)
return avg_loss, result
self.main_program.random_seed = 2
self.startup_program.random_seed = 2
self.test_main_program.random_seed = 2
#self.test_startup_program.random_seed = 2
with fluid.unique_name.guard():
with fluid.program_guard(self.main_program, self.startup_program):
self.loss, result = network()
opt = fluid.optimizer.Adam(learning_rate=0.0001)
opt.minimize(self.loss)
with fluid.unique_name.guard():
with fluid.program_guard(self.test_main_program,
self.startup_program):
network()
self.feeds = {"data": np.random.random((1, 28, 28)).astype("float32")}
self.fetch_list = [result]
self.enable_trt = True
self.trt_parameters = FCQuantDequantFusePassTRTDims3Cols3Test.TensorRTParam(
1 << 30, 32, 0, AnalysisConfig.Precision.Int8, False, False)
self.dynamic_shape_params = FCQuantDequantFusePassTRTDims3Cols3Test.DynamicShapeParam(
{
'data': [1, 28, 28],
"reshape2_1.tmp_0": [1, 14, 14, 4],
"reshape2_2.tmp_0": [1, 1, 2744]
}, {
'data': [4, 28, 28],
"reshape2_1.tmp_0": [4, 14, 14, 4],
"reshape2_2.tmp_0": [4, 1, 2744]
}, {
'data': [1, 28, 28],
"reshape2_1.tmp_0": [1, 14, 14, 4],
"reshape2_2.tmp_0": [1, 1, 2744]
}, False)
self.activation_quantize_type = 'moving_average_abs_max'
self.weight_quantize_type = 'channel_wise_abs_max'
def test_check_output(self):
#self.quant_dequant()
if core.is_compiled_with_cuda():
use_gpu = True
self.check_output_with_option(
use_gpu, atol=1e0, flatten=False, rtol=1e0)
self.assertTrue(
PassVersionChecker.IsCompatible(
'quant_conv2d_dequant_fuse_pass'))
if __name__ == "__main__":
unittest.main()
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
from inference_pass_test import InferencePassTest
from quant_dequant_test import QuantDequantTest
import paddle.fluid as fluid
import paddle.fluid.core as core
from paddle.fluid.core import PassVersionChecker
from paddle.fluid.core import AnalysisConfig
class TensorRTMatMulQuantDequantDims3Test(QuantDequantTest):
def setUp(self):
self.set_params()
def network():
self.data = fluid.data(
name='data', shape=[1, 28, 28], dtype='float32')
self.label = fluid.data(name='label', shape=[1, 1], dtype='int64')
matmul_out = fluid.layers.matmul(
x=self.data,
y=self.data,
transpose_x=self.transpose_x,
transpose_y=self.transpose_y,
alpha=self.alpha)
fc_out = fluid.layers.fc(input=matmul_out,
size=10,
num_flatten_dims=1,
bias_attr=False,
act=None)
result = fluid.layers.relu(fc_out)
loss = fluid.layers.cross_entropy(input=result, label=self.label)
avg_loss = fluid.layers.mean(loss)
return avg_loss, result
self.main_program.random_seed = 2
self.startup_program.random_seed = 2
self.test_main_program.random_seed = 2
#self.test_startup_program.random_seed = 2
with fluid.unique_name.guard():
with fluid.program_guard(self.main_program, self.startup_program):
self.loss, result = network()
opt = fluid.optimizer.Adam(learning_rate=0.0001)
opt.minimize(self.loss)
with fluid.unique_name.guard():
with fluid.program_guard(self.test_main_program,
self.startup_program):
network()
self.feeds = {"data": np.random.random([1, 28, 28]).astype("float32")}
self.fetch_list = [result]
self.enable_trt = True
self.trt_parameters = TensorRTMatMulQuantDequantDims3Test.TensorRTParam(
1 << 30, 32, 0, AnalysisConfig.Precision.Int8, False, False)
self.activation_quantize_type = 'moving_average_abs_max'
self.weight_quantize_type = 'channel_wise_abs_max'
def set_params(self):
self.transpose_x = False
self.transpose_y = False
self.alpha = 1.0
def test_check_output(self):
#self.quant_dequant()
if core.is_compiled_with_cuda():
use_gpu = True
self.check_output_with_option(
use_gpu, atol=1e-1, flatten=False, rtol=1e-1)
self.assertTrue(
PassVersionChecker.IsCompatible('tensorrt_subgraph_pass'))
class TensorRTMatMulQuantDequantDims3TransposeXTest(
TensorRTMatMulQuantDequantDims3Test):
def set_params(self):
self.transpose_x = True
self.transpose_y = False
self.alpha = 1.0
class TensorRTMatMulQuantDequantDims3TransposeYTest(
TensorRTMatMulQuantDequantDims3Test):
def set_params(self):
self.transpose_x = False
self.transpose_y = True
self.alpha = 1.0
class TensorRTMatMulQuantDequantDims3TransposeXYTest(
TensorRTMatMulQuantDequantDims3Test):
def set_params(self):
self.transpose_x = True
self.transpose_y = True
self.alpha = 1.0
class TensorRTMatMulQuantDequantDims4Test(QuantDequantTest):
def setUp(self):
self.set_params()
def network():
self.data = fluid.data(
name='data', shape=[1, 28, 28], dtype='float32')
self.label = fluid.data(name='label', shape=[1, 1], dtype='int64')
reshape_out = fluid.layers.reshape(self.data, shape=[1, 4, 14, 14])
matmul_out = fluid.layers.matmul(
x=reshape_out,
y=reshape_out,
transpose_x=self.transpose_x,
transpose_y=self.transpose_y,
alpha=self.alpha)
out = fluid.layers.batch_norm(matmul_out, is_test=True)
fc_out = fluid.layers.fc(input=matmul_out,
size=10,
num_flatten_dims=1,
bias_attr=False,
act=None)
result = fluid.layers.relu(fc_out)
loss = fluid.layers.cross_entropy(input=result, label=self.label)
avg_loss = fluid.layers.mean(loss)
return avg_loss, result
self.main_program.random_seed = 2
self.startup_program.random_seed = 2
self.test_main_program.random_seed = 2
#self.test_startup_program.random_seed = 2
with fluid.unique_name.guard():
with fluid.program_guard(self.main_program, self.startup_program):
self.loss, result = network()
opt = fluid.optimizer.Adam(learning_rate=0.0001)
opt.minimize(self.loss)
with fluid.unique_name.guard():
with fluid.program_guard(self.test_main_program,
self.startup_program):
network()
self.feeds = {"data": np.random.random([1, 28, 28]).astype("float32")}
self.fetch_list = [result]
self.enable_trt = True
self.trt_parameters = TensorRTMatMulQuantDequantDims4Test.TensorRTParam(
1 << 30, 32, 0, AnalysisConfig.Precision.Int8, False, False)
self.activation_quantize_type = 'moving_average_abs_max'
self.weight_quantize_type = 'channel_wise_abs_max'
def set_params(self):
self.transpose_x = False
self.transpose_y = False
self.alpha = 1.0
def test_check_output(self):
#self.quant_dequant()
if core.is_compiled_with_cuda():
use_gpu = True
self.check_output_with_option(
use_gpu, atol=1e-1, flatten=False, rtol=1e-1)
self.assertTrue(
PassVersionChecker.IsCompatible('tensorrt_subgraph_pass'))
class TensorRTMatMulQuantDequantDims4TransposeXTest(
TensorRTMatMulQuantDequantDims4Test):
def set_params(self):
self.transpose_x = True
self.transpose_y = False
self.alpha = 1.0
class TensorRTMatMulQuantDequantDims4TransposeYTest(
TensorRTMatMulQuantDequantDims4Test):
def set_params(self):
self.transpose_x = False
self.transpose_y = True
self.alpha = 1.0
class TensorRTMatMulQuantDequantDims4TransposeXYTest(
TensorRTMatMulQuantDequantDims4Test):
def set_params(self):
self.transpose_x = True
self.transpose_y = True
self.alpha = 1.0
class TensorRTMatMulQuantDequantDims4ScaleTest(
TensorRTMatMulQuantDequantDims4Test):
def set_params(self):
self.transpose_x = False
self.transpose_y = False
self.alpha = 2.0
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册