未验证 提交 369a235d 编写于 作者: Z zhangbo9674 提交者: GitHub

Run_program_op add scope cache & reuse (#45813)

* add scope cache & reuse

* add gc scope for end of each train step

* del scope reuse for jit

* refine code

* test
上级 1ed8e9b8
......@@ -246,6 +246,34 @@ static void BuildScopeByBlock(
}
}
static void GcScope(paddle::framework::Scope *scope) {
std::deque<std::shared_ptr<paddle::memory::Allocation>> *garbages =
new std::deque<std::shared_ptr<paddle::memory::Allocation>>();
for (auto &var : scope->LocalVars()) {
if (var != nullptr) {
if (var->IsType<paddle::framework::LoDTensor>()) {
garbages->emplace_back(var->GetMutable<paddle::framework::LoDTensor>()
->MoveMemoryHolder());
}
if (var->IsType<phi::SelectedRows>()) {
garbages->emplace_back(var->GetMutable<phi::SelectedRows>()
->mutable_value()
->MoveMemoryHolder());
}
if (var->IsType<paddle::framework::LoDTensorArray>()) {
auto *lod_tensor_arr =
var->GetMutable<paddle::framework::LoDTensorArray>();
for (auto &t : *lod_tensor_arr) {
garbages->emplace_back(t.MoveMemoryHolder());
}
lod_tensor_arr->clear();
}
}
}
delete garbages; // free mem
}
} // namespace details
inline void RunProgramAPI(
......@@ -274,16 +302,6 @@ inline void RunProgramAPI(
1,
paddle::platform::errors::InvalidArgument(
"The OutScope of RunProgramGradOp should only hold one scope."));
// Step 2. prepare executor and init persistable variables
// NOTE(Aurelius84): While training some models, forward can be called many
// times and then apply backpropagation all at once, such as Reinforcement
// Learning. Tensor data in multi-step training should be saved into single
// scope separately. Otherwise, the gradients can be miscalculated because
// always using the Tensor data of the last step in forward.
paddle::framework::Scope *global_inner_scope = out_scope_vec->front();
VLOG(2) << "The number of sub scopes before forward: "
<< out_scope_vec->front()->kids().size();
paddle::framework::Scope &scope = global_inner_scope->NewScope();
bool use_interpretorcore =
PADDLE_GET_CONST(bool, attrs.at("use_interpretorcore"));
......@@ -291,6 +309,8 @@ inline void RunProgramAPI(
if (use_interpretorcore) {
VLOG(0) << "RunProgramOp use interpretercore to execute program.";
paddle::framework::Scope *global_inner_scope = out_scope_vec->front();
auto input_names = details::GetTensorsName(x);
auto output_names = details::GetTensorsName(out);
auto dout_names = details::GetTensorsName(dout);
......@@ -308,12 +328,16 @@ inline void RunProgramAPI(
if (!interpretercore_info_cache.Has(program_id, /*is_grad=*/false)) {
VLOG(2) << "No interpretercore cahce, so create a new interpretercore";
// Step 1. share input_vars & parameters into scope
details::ShareTensorsIntoScope(x, &scope);
details::ShareTensorsIntoScope(params, &scope);
details::ShareTensorsIntoScope(x, global_inner_scope);
details::ShareTensorsIntoScope(params, global_inner_scope);
// Step 2. create new interpretercore
auto interpreter_core =
paddle::framework::CreateInterpreterCoreInfoToCache(
*forward_program, place, /*is_grad=*/false, program_id, &scope);
*forward_program,
place,
/*is_grad=*/false,
program_id,
global_inner_scope);
// Step 3. get all eager gc vars
std::set<std::string> skip_eager_delete_vars =
paddle::framework::details::ParseSafeEagerDeletionSkipVarsSet(
......@@ -331,10 +355,14 @@ inline void RunProgramAPI(
interpreter_core->Run({});
}
// Step 5. Get Output
details::ShareTensorsFromScopeWithPartialBlock(
out, *forward_global_block, *backward_global_block, &scope);
details::ShareTensorsFromScopeWithPartialBlock(
dout, *forward_global_block, *backward_global_block, &scope);
details::ShareTensorsFromScopeWithPartialBlock(out,
*forward_global_block,
*backward_global_block,
global_inner_scope);
details::ShareTensorsFromScopeWithPartialBlock(dout,
*forward_global_block,
*backward_global_block,
global_inner_scope);
} else {
VLOG(2) << "Get interpretercore cahce by program:" << program_id;
// Step 1. get cache interpretercore
......@@ -342,34 +370,55 @@ inline void RunProgramAPI(
interpretercore_info_cache.GetMutable(program_id, /*is_grad=*/false);
auto &interpreter_core = cached_value.core_;
// Step 2. update scope for cache interpretercore
details::ShareTensorsIntoScope(x, &scope);
details::ShareTensorsIntoScope(params, &scope);
details::ShareTensorsIntoScope(x, global_inner_scope);
details::ShareTensorsIntoScope(params, global_inner_scope);
if (interpreter_core->GetVariableScope()->GetMutableScope() !=
global_inner_scope) {
details::BuildScopeByBlock(
*interpreter_core.get(), *forward_global_block, &scope);
interpreter_core->reset_scope(&scope);
*interpreter_core.get(), *forward_global_block, global_inner_scope);
interpreter_core->reset_scope(global_inner_scope);
}
// Step 3. interpretercore run
if (forward_global_block->OpSize() > 0) {
interpreter_core->Run({});
}
// Step 4. Get Output
details::ShareTensorsFromScopeWithPartialBlock(
out, *forward_global_block, *backward_global_block, &scope);
details::ShareTensorsFromScopeWithPartialBlock(
dout, *forward_global_block, *backward_global_block, &scope);
details::ShareTensorsFromScopeWithPartialBlock(out,
*forward_global_block,
*backward_global_block,
global_inner_scope);
details::ShareTensorsFromScopeWithPartialBlock(dout,
*forward_global_block,
*backward_global_block,
global_inner_scope);
}
VLOG(3) << paddle::framework::GenScopeTreeDebugInfo(out_scope_vec->front());
if (is_test) {
VLOG(1) << "is test, after forward, drop kids";
out_scope_vec->front()->DropKids();
VLOG(4) << "is test, set this scope can reused";
global_inner_scope->SetCanReuesd(true);
details::GcScope(global_inner_scope);
} else {
VLOG(4) << "not test, set this scope can not reused";
global_inner_scope->SetCanReuesd(false);
}
VLOG(2) << "The number of sub scopes after forward: "
<< out_scope_vec->front()->kids().size();
#ifdef PADDLE_WITH_MKLDNN
if (FLAGS_use_mkldnn) paddle::platform::DontClearMKLDNNCache(place);
#endif
} else {
VLOG(2) << "RunProgramOp execute with parallel_executor.";
// Step 2. prepare executor and init persistable variables
// NOTE(Aurelius84): While training some models, forward can be called many
// times and then apply backpropagation all at once, such as Reinforcement
// Learning. Tensor data in multi-step training should be saved into single
// scope separately. Otherwise, the gradients can be miscalculated because
// always using the Tensor data of the last step in forward.
paddle::framework::Scope *global_inner_scope = out_scope_vec->front();
VLOG(2) << "The number of sub scopes before forward: "
<< out_scope_vec->front()->kids().size();
paddle::framework::Scope &scope = global_inner_scope->NewScope();
// share input_vars & parameters into scope
details::ShareTensorsIntoScope(x, &scope);
details::ShareTensorsIntoScope(params, &scope);
......@@ -454,21 +503,14 @@ inline void RunProgramGradAPI(
1,
paddle::platform::errors::InvalidArgument(
"The OutScope of RunProgramGradOp should only hold one scope."));
paddle::framework::Scope *global_inner_scope = out_scope_vec->front();
auto sub_scope_num = global_inner_scope->kids().size();
VLOG(2) << "The number of sub scopes before backward: " << sub_scope_num;
PADDLE_ENFORCE_GT(sub_scope_num,
0,
paddle::platform::errors::InvalidArgument(
"The OutScope of RunProgramGradOp should hold at "
"least one sub scope."));
auto &scope = *(global_inner_scope->kids().front());
auto place = egr::Controller::Instance().GetExpectedPlace();
if (use_interpretorcore) {
VLOG(0) << "RunProgramGradOp use interpretercore to execute program.";
paddle::framework::Scope *global_inner_scope = out_scope_vec->front();
auto *forward_global_block = PADDLE_GET_CONST(
paddle::framework::BlockDesc *, attrs.at("forward_global_block"));
auto *backward_global_block = PADDLE_GET_CONST(
......@@ -490,10 +532,14 @@ inline void RunProgramGradAPI(
paddle::framework::InterpreterCoreInfoCache::Instance();
if (!interpretercore_info_cache.Has(program_id, /*is_grad=*/true)) {
VLOG(2) << "No interpretercore cahce, so create a new interpretercore";
details::ShareTensorsIntoScope(out_grad, &scope);
details::ShareTensorsIntoScope(out_grad, global_inner_scope);
auto interpreter_core =
paddle::framework::CreateInterpreterCoreInfoToCache(
*backward_program, place, /*is_grad=*/true, program_id, &scope);
*backward_program,
place,
/*is_grad=*/true,
program_id,
global_inner_scope);
// get all eager gc vars
std::set<std::string> skip_eager_delete_vars;
......@@ -518,10 +564,14 @@ inline void RunProgramGradAPI(
interpretercore_info_cache.GetMutable(program_id, /*is_grad=*/true);
auto &interpreter_core = cached_value.core_;
// update scope
details::ShareTensorsIntoScope(out_grad, &scope);
details::BuildScopeByBlock(
*interpreter_core.get(), *backward_global_block, &scope);
interpreter_core->reset_scope(&scope);
details::ShareTensorsIntoScope(out_grad, global_inner_scope);
if (interpreter_core->GetVariableScope()->GetMutableScope() !=
global_inner_scope) {
details::BuildScopeByBlock(*interpreter_core.get(),
*backward_global_block,
global_inner_scope);
interpreter_core->reset_scope(global_inner_scope);
}
if (backward_global_block->OpSize() > 0) {
// Debug info: scope info when run end
......@@ -531,16 +581,31 @@ inline void RunProgramGradAPI(
}
}
// Step 4. get outputs
details::ShareTensorsFromScopeWithPartialBlock(
x_grad, *forward_global_block, *backward_global_block, &scope);
details::ShareTensorsFromScopeWithPartialBlock(
params_grad, *forward_global_block, *backward_global_block, &scope);
// Step5. drop current scope
global_inner_scope->DeleteScope(&scope);
VLOG(2) << "The number of sub scopes after backward: "
<< global_inner_scope->kids().size();
details::ShareTensorsFromScopeWithPartialBlock(x_grad,
*forward_global_block,
*backward_global_block,
global_inner_scope);
details::ShareTensorsFromScopeWithPartialBlock(params_grad,
*forward_global_block,
*backward_global_block,
global_inner_scope);
VLOG(4) << "after backward gc all vars";
global_inner_scope->SetCanReuesd(true);
details::GcScope(global_inner_scope);
} else {
VLOG(2) << "RunProgramGradOp use pe to execute program.";
paddle::framework::Scope *global_inner_scope = out_scope_vec->front();
auto sub_scope_num = global_inner_scope->kids().size();
VLOG(2) << "The number of sub scopes before backward: " << sub_scope_num;
PADDLE_ENFORCE_GT(sub_scope_num,
0,
paddle::platform::errors::InvalidArgument(
"The OutScope of RunProgramGradOp should hold at "
"least one sub scope."));
auto &scope = *(global_inner_scope->kids().front());
auto *global_block = PADDLE_GET_CONST(paddle::framework::BlockDesc *,
attrs.at("global_block"));
auto orig_end_op_index =
......
......@@ -132,6 +132,11 @@ class Scope : public ScopeBase {
// Rename variable to a new name and return the new name
std::string Rename(const std::string& origin_name) const;
// only for dygraph_to_static
bool CanReuesd() const { return can_reused_; }
void SetCanReuesd(bool can_reused) { can_reused_ = can_reused; }
protected:
struct KeyHasher {
std::size_t operator()(const std::string& key) const {
......@@ -169,6 +174,9 @@ class Scope : public ScopeBase {
mutable std::list<Scope*> kids_;
const Scope* parent_{nullptr};
// only for dygraph_to_static
bool can_reused_{false};
DISABLE_COPY_AND_ASSIGN(Scope);
#ifndef PADDLE_ON_INFERENCE
......
......@@ -1077,7 +1077,8 @@ All parameter, weight, gradient are variables in Paddle.
R"DOC(
Delete all sub-scopes of the current scope.
)DOC")
.def("_kids", &Scope::kids);
.def("_kids", &Scope::kids)
.def_property("_can_reuesd", &Scope::CanReuesd, &Scope::SetCanReuesd);
m.def(
"Scope",
......
......@@ -169,6 +169,25 @@ class PartialProgramLayer:
custom_white_list=custom_white_list,
custom_black_list=custom_black_list)
# program_id -> list(scope)
self._scope_cache = {}
def _get_scope(self, program_id=None, use_scope_cache=False):
if use_scope_cache:
if program_id not in self._scope_cache:
scope = core.Scope()
self._scope_cache[program_id] = [scope]
return scope
else:
for scope in self._scope_cache[program_id]:
if scope._can_reuesd:
return scope
scope = core.Scope()
self._scope_cache[program_id].append(scope)
return scope
else:
return core.Scope()
@LazyInitialized
def __fake_vars(self):
return _create_fake_var()
......@@ -555,11 +574,19 @@ class PartialProgramLayer:
('forward_global_block', self.forward_program.desc.block(0),
'backward_global_block', self.backward_program.desc.block(0)))
_legacy_C_ops.run_program(
self._valid_vars(in_vars), self._valid_vars(self._params),
self._valid_vars(out_vars),
self._create_scope_vec(program_id=self.program_id,
use_scope_cache=True),
self._double_grads, self._cuda_graph_vec, *attrs)
else:
_legacy_C_ops.run_program(self._valid_vars(in_vars),
self._valid_vars(self._params),
self._valid_vars(out_vars),
self._create_scope_vec(), self._double_grads,
self._cuda_graph_vec, *attrs)
self._create_scope_vec(),
self._double_grads, self._cuda_graph_vec,
*attrs)
restored_nest_out = self._restore_out(out_vars)
return self._remove_no_value(restored_nest_out)
......@@ -735,10 +762,11 @@ class PartialProgramLayer:
return input_vars, out_vars
def _create_scope_vec(self):
def _create_scope_vec(self, program_id=None, use_scope_cache=False):
# Hold forward variables
tmp_scope_vec = None
inner_scope = core.Scope()
inner_scope = self._get_scope(program_id=program_id,
use_scope_cache=use_scope_cache)
if not framework._in_eager_mode_:
tmp_scope_vec = core.VarBase(core.VarDesc.VarType.FP32, [],
"program_out_scope",
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册