Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
361cb0e0
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
361cb0e0
编写于
11月 23, 2018
作者:
Q
Qiao Longfei
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
lookup remote table can compile
上级
7c3ce295
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
133 addition
and
99 deletion
+133
-99
paddle/fluid/operators/distributed_ops/lookup_remote_table_op.cc
...fluid/operators/distributed_ops/lookup_remote_table_op.cc
+11
-1
paddle/fluid/operators/distributed_ops/lookup_remote_table_op.h
.../fluid/operators/distributed_ops/lookup_remote_table_op.h
+122
-98
未找到文件。
paddle/fluid/operators/distributed_ops/lookup_remote_table_op.cc
浏览文件 @
361cb0e0
...
...
@@ -68,6 +68,15 @@ class LookupRemoteTableOpMaker : public framework::OpProtoAndCheckerMaker {
"contains the ids to be looked up in W. "
"The last dimension size must be 1."
);
AddOutput
(
"Out"
,
"The lookup results, which have the same type as W."
);
AddAttr
<
std
::
vector
<
int64_t
>>
(
"height_sections"
,
"Height for each output SelectedRows."
)
.
SetDefault
(
std
::
vector
<
int64_t
>
({}));
AddAttr
<
int
>
(
"trainer_id"
,
"trainer id from 0 ~ worker_num."
).
SetDefault
(
0
);
AddAttr
<
std
::
vector
<
std
::
string
>>
(
"epmap"
,
"(string vector, default 127.0.0.1:6164)"
"Server endpoints in the order of input variables for mapping"
)
.
SetDefault
({
"127.0.0.1:6164"
});
AddAttr
<
int64_t
>
(
"padding_idx"
,
"(int64, default -1) "
"If the value is -1, it makes no effect to lookup. "
...
...
@@ -98,7 +107,8 @@ or not. And the output only shares the LoD information with input Ids.
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
lookup_remote_table
,
ops
::
LookupRemoteTableOp
,
ops
::
EmptyGradOpMaker
,
ops
::
LookupRemoteTableOpMaker
);
paddle
::
framework
::
EmptyGradOpMaker
,
ops
::
LookupRemoteTableOpMaker
);
REGISTER_OP_CPU_KERNEL
(
lookup_remote_table
,
ops
::
LookupRemoteTableKernel
<
float
>
,
ops
::
LookupRemoteTableKernel
<
double
>
);
paddle/fluid/operators/distributed_ops/lookup_remote_table_op.h
浏览文件 @
361cb0e0
...
...
@@ -12,26 +12,32 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <future> // NOLINT
#include <ostream>
#include <set>
#include <string>
#include <unordered_map>
#include <vector>
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/operators/detail/macros.h"
#include "paddle/fluid/operators/distributed_ops/send_recv_util.h"
#include "paddle/fluid/operators/math/blas.h"
namespace
paddle
{
namespace
operators
{
namespace
distributed
{
inline
size_t
GetSectionIndex
(
int64_t
id
,
const
std
::
vector
<
int64_t
>&
abs_sections
)
{
for
(
size_t
i
=
1
;
i
<
abs_sections
.
size
();
++
i
)
{
if
(
row
<
abs_sections
[
i
])
{
if
(
id
<
abs_sections
[
i
])
{
return
i
-
1
;
}
}
...
...
@@ -62,9 +68,10 @@ inline std::vector<std::vector<int64_t>> SplitIds(
std
::
vector
<
std
::
vector
<
int64_t
>>
splited_ids
;
splited_ids
.
resize
(
height_section
.
size
()
+
1
);
for
(
auto
&
id
:
all_ids
)
{
auto
section_index
=
GetSectionIndex
(
id
);
auto
section_index
=
GetSectionIndex
(
id
,
abs_sections
);
splited_ids
[
section_index
].
push_back
(
id
-
abs_sections
[
section_index
]);
}
return
splited_ids
;
}
inline
void
SplitIdsIntoMultipleVarsBySection
(
...
...
@@ -82,7 +89,7 @@ inline void SplitIdsIntoMultipleVarsBySection(
auto
&
ids
=
splited_ids
[
i
];
if
(
!
ids
.
empty
())
{
auto
*
id_tensor_data
=
id_tensor
->
mutable_data
<
int64_t
>
(
framework
::
make_ddim
({
ids
.
size
(
),
1
}),
place
);
framework
::
make_ddim
({
static_cast
<
int64_t
>
(
ids
.
size
()
),
1
}),
place
);
memcpy
(
id_tensor_data
,
ids
.
data
(),
sizeof
(
int64_t
)
*
ids
.
size
());
}
}
...
...
@@ -93,8 +100,8 @@ inline void MergeMultipleVarsIntoOnBySection(
const
std
::
vector
<
std
::
string
>&
out_var_names
,
const
std
::
vector
<
int64_t
>&
height_section
,
const
std
::
vector
<
std
::
vector
<
int64_t
>>&
splited_ids
,
framework
::
Scope
*
scope
)
{
PADDLE_ENFORCE_EQ
(
in
_var_names
.
size
(),
height_section
.
size
()
+
1
,
""
);
const
framework
::
ExecutionContext
&
context
,
framework
::
Scope
*
scope
)
{
PADDLE_ENFORCE_EQ
(
out
_var_names
.
size
(),
height_section
.
size
()
+
1
,
""
);
auto
cpu_place
=
platform
::
CPUPlace
();
...
...
@@ -106,15 +113,15 @@ inline void MergeMultipleVarsIntoOnBySection(
id_to_offset
[
id_data
[
i
]].
push_back
(
i
);
}
auto
&
out_tensor
=
scope
->
Var
(
out_name
)
->
Get
<
framework
::
LoDTensor
>
();
auto
*
out_tensor_data
=
out_tensor
.
mutable_data
<
float
>
(
);
auto
*
out_tensor
=
scope
->
Var
(
out_name
)
->
GetMutable
<
framework
::
LoDTensor
>
();
auto
*
out_tensor_data
=
out_tensor
->
mutable_data
<
float
>
(
context
.
GetPlace
()
);
for
(
size_t
section_idx
=
0
;
section_idx
<
out_var_names
.
size
();
++
section_idx
)
{
auto
&
ids_in_this_section
=
splited_ids
[
section_idx
];
auto
&
prefetch_out_var
=
scope
->
Var
(
out_var_names
[
section_idx
])
->
Get
<
framework
::
LoDTensor
>
();
const
auto
*
out_var_data
=
prefetch_out_var
.
mutable_
data
<
float
>
();
const
auto
*
out_var_data
=
prefetch_out_var
.
data
<
float
>
();
auto
&
dims
=
prefetch_out_var
.
dims
();
PADDLE_ENFORCE_EQ
(
dims
.
size
(),
2
,
""
);
...
...
@@ -129,26 +136,101 @@ inline void MergeMultipleVarsIntoOnBySection(
for
(
auto
&
offset
:
offsets
)
{
// should support GPU tensor
memory
::
Copy
(
cpu_place
,
out_tensor_data
+
offset
*
row_numel
,
cpu_place
,
out_var_data
+
i
*
grad_row_numel
,
sizeof
(
T
)
*
grad_row_numel
);
out_var_data
+
i
*
row_numel
,
sizeof
(
float
)
*
row_numel
);
}
}
}
}
inline
void
prefetch
(
const
std
::
string
&
table_name
,
const
std
::
string
&
id_name
,
const
std
::
string
&
out_name
,
const
std
::
vector
<
std
::
string
>&
epmap
,
const
std
::
vector
<
int64_t
>&
height_section
,
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
{
auto
local_scope
=
scope
.
NewScope
();
// inline void prefetch(const std::string& table_name, const std::string&
// id_name,
// const std::string& out_name,
// const std::vector<std::string>& epmap,
// const std::vector<int64_t>& height_section,
// const framework::Scope& scope,
// const platform::Place& place) {
// auto& local_scope = scope.NewScope();
//
// platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
// auto& ctx = *pool.Get(place);
//
// distributed::RPCClient* rpc_client =
// distributed::RPCClient::GetInstance<RPCCLIENT_T>(Attr<int>("trainer_id"));
//
// std::vector<std::string> in_var_names;
// std::vector<std::string> out_var_names;
// for (size_t i = 0; i < epmap.size(); ++i) {
// in_var_names.push_back(id_name + "@" + epmap[i]);
// out_var_names.push_back(out_name + "@" + epmap[i]);
// }
//
// auto splited_ids = SplitIds(id_name, height_section, &local_scope);
// SplitIdsIntoMultipleVarsBySection(id_name, in_var_names, height_section,
// splited_ids, &local_scope);
//
// // create output var in local scope
// for (auto& name : out_var_names) {
// local_scope.Var(name)->GetMutable<framework::LoDTensor>();
// }
//
// std::vector<distributed::VarHandlePtr> rets;
// for (size_t i = 0; i < in_var_names.size(); i++) {
// if (NeedSend(local_scope, in_var_names[i])) {
// VLOG(30) << "sending " << in_var_names[i] << " to " << epmap[i] << " to
// get "
// << out_var_names[i] << " back";
// rets.push_back(rpc_client->AsyncPrefetchVar(
// epmap[i], ctx, local_scope, in_var_names[i], out_var_names[i]));
// } else {
// VLOG(30) << "don't send no-initialied variable: " << out_var_names[i];
// }
// }
// for (size_t i = 0; i < rets.size(); i++) {
// PADDLE_ENFORCE(rets[i]->Wait(), "internal error in RPCClient");
// }
//
// MergeMultipleVarsIntoOnBySection(id_name, out_name, out_var_names,
// height_section, splited_ids, &local_scope);
//
// scope.DeleteScope(&local_scope);
//}
using
Tensor
=
framework
::
Tensor
;
using
LoDTensor
=
framework
::
LoDTensor
;
using
SelectedRows
=
framework
::
SelectedRows
;
using
DDim
=
framework
::
DDim
;
constexpr
int64_t
kNoPadding
=
-
1
;
template
<
typename
T
>
class
LookupRemoteTableKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
std
::
string
id_name
=
context
.
Inputs
(
"Ids"
).
front
();
auto
*
ids_t
=
context
.
Input
<
LoDTensor
>
(
"Ids"
);
// int tensor
std
::
string
out_name
=
context
.
Outputs
(
"Out"
).
front
();
auto
*
output_t
=
context
.
Output
<
LoDTensor
>
(
"Out"
);
// float tensor
std
::
string
table_name
=
context
.
Inputs
(
"W"
).
front
();
auto
*
table_var
=
context
.
InputVar
(
"W"
);
int64_t
padding_idx
=
context
.
Attr
<
int64_t
>
(
"padding_idx"
);
int64_t
*
ids
=
const_cast
<
int64_t
*>
(
ids_t
->
data
<
int64_t
>
());
int64_t
ids_numel
=
ids_t
->
numel
();
auto
epmap
=
context
.
Attr
<
std
::
vector
<
std
::
string
>>
(
"epmap"
);
auto
height_sections
=
context
.
Attr
<
std
::
vector
<
int64_t
>>
(
"height_sections"
);
auto
&
local_scope
=
context
.
scope
().
NewScope
();
platform
::
DeviceContextPool
&
pool
=
platform
::
DeviceContextPool
::
Instance
();
auto
&
ctx
=
*
pool
.
Get
(
place
);
auto
&
ctx
=
*
pool
.
Get
(
context
.
GetPlace
()
);
distributed
::
RPCClient
*
rpc_client
=
distributed
::
RPCClient
::
GetInstance
<
RPCCLIENT_T
>
(
Attr
<
int
>
(
"trainer_id"
));
distributed
::
RPCClient
::
GetInstance
<
RPCCLIENT_T
>
(
context
.
Attr
<
int
>
(
"trainer_id"
));
std
::
vector
<
std
::
string
>
in_var_names
;
std
::
vector
<
std
::
string
>
out_var_names
;
...
...
@@ -157,9 +239,9 @@ inline void prefetch(const std::string& table_name, const std::string& id_name,
out_var_names
.
push_back
(
out_name
+
"@"
+
epmap
[
i
]);
}
auto
splited_ids
=
SplitIds
(
id_name
,
height_section
,
local_scope
);
SplitIdsIntoMultipleVarsBySection
(
id_name
,
in_var_names
,
height_section
,
splited_ids
,
local_scope
);
auto
splited_ids
=
SplitIds
(
id_name
,
height_sections
,
&
local_scope
);
SplitIdsIntoMultipleVarsBySection
(
id_name
,
in_var_names
,
height_sections
,
splited_ids
,
&
local_scope
);
// create output var in local scope
for
(
auto
&
name
:
out_var_names
)
{
...
...
@@ -167,10 +249,10 @@ inline void prefetch(const std::string& table_name, const std::string& id_name,
}
std
::
vector
<
distributed
::
VarHandlePtr
>
rets
;
for
(
size_t
i
=
0
;
i
<
in
s
.
size
();
i
++
)
{
if
(
NeedSend
(
local_scope
,
in
s
[
i
]))
{
VLOG
(
30
)
<<
"sending "
<<
ins
[
i
]
<<
" to "
<<
epmap
[
i
]
<<
" to get "
<<
out
s
[
i
]
<<
" back"
;
for
(
size_t
i
=
0
;
i
<
in_var_name
s
.
size
();
i
++
)
{
if
(
NeedSend
(
local_scope
,
in_var_name
s
[
i
]))
{
VLOG
(
30
)
<<
"sending "
<<
in_var_names
[
i
]
<<
" to "
<<
epmap
[
i
]
<<
" to get "
<<
out_var_name
s
[
i
]
<<
" back"
;
rets
.
push_back
(
rpc_client
->
AsyncPrefetchVar
(
epmap
[
i
],
ctx
,
local_scope
,
in_var_names
[
i
],
out_var_names
[
i
]));
}
else
{
...
...
@@ -182,70 +264,12 @@ inline void prefetch(const std::string& table_name, const std::string& id_name,
}
MergeMultipleVarsIntoOnBySection
(
id_name
,
out_name
,
out_var_names
,
height_section
,
plited_ids
,
scope
)
height_sections
,
splited_ids
,
context
,
&
local_scope
);
scope
.
DeleteScope
(
local_scope
);
}
using
Tensor
=
framework
::
Tensor
;
using
LoDTensor
=
framework
::
LoDTensor
;
using
SelectedRows
=
framework
::
SelectedRows
;
using
DDim
=
framework
::
DDim
;
constexpr
int64_t
kNoPadding
=
-
1
;
template
<
typename
T
>
class
LookupRemoteTableKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
ids_t
=
context
.
Input
<
LoDTensor
>
(
"Ids"
);
// int tensor
auto
*
output_t
=
context
.
Output
<
LoDTensor
>
(
"Out"
);
// float tensor
auto
*
table_var
=
context
.
InputVar
(
"W"
);
int64_t
padding_idx
=
context
.
Attr
<
int64_t
>
(
"padding_idx"
);
int64_t
*
ids
=
const_cast
<
int64_t
*>
(
ids_t
->
data
<
int64_t
>
());
int64_t
ids_numel
=
ids_t
->
numel
();
if
(
table_var
->
IsType
<
LoDTensor
>
())
{
auto
*
table_t
=
context
.
Input
<
LoDTensor
>
(
"W"
);
int64_t
row_number
=
table_t
->
dims
()[
0
];
int64_t
row_width
=
table_t
->
dims
()[
1
];
auto
*
table
=
table_t
->
data
<
T
>
();
auto
*
output
=
output_t
->
mutable_data
<
T
>
(
context
.
GetPlace
());
for
(
int64_t
i
=
0
;
i
<
ids_numel
;
++
i
)
{
if
(
padding_idx
!=
kNoPadding
&&
ids
[
i
]
==
padding_idx
)
{
memset
(
output
+
i
*
row_width
,
0
,
row_width
*
sizeof
(
T
));
}
else
{
PADDLE_ENFORCE_LT
(
ids
[
i
],
row_number
);
PADDLE_ENFORCE_GE
(
ids
[
i
],
0
,
"ids %d"
,
i
);
memcpy
(
output
+
i
*
row_width
,
table
+
ids
[
i
]
*
row_width
,
row_width
*
sizeof
(
T
));
}
}
}
else
if
(
table_var
->
IsType
<
SelectedRows
>
())
{
const
auto
&
table_t
=
table_var
->
Get
<
SelectedRows
>
();
int64_t
row_width
=
table_t
.
value
().
dims
()[
1
];
const
auto
*
table
=
table_t
.
value
().
data
<
T
>
();
auto
*
output
=
output_t
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
blas
=
math
::
GetBlas
<
platform
::
CPUDeviceContext
,
T
>
(
context
);
for
(
int64_t
i
=
0
;
i
<
ids_numel
;
++
i
)
{
if
(
padding_idx
!=
kNoPadding
&&
ids
[
i
]
==
padding_idx
)
{
memset
(
output
+
i
*
row_width
,
0
,
row_width
*
sizeof
(
T
));
}
else
{
PADDLE_ENFORCE_GE
(
ids
[
i
],
0
);
auto
id_index
=
table_t
.
Index
(
ids
[
i
]);
PADDLE_ENFORCE_GE
(
id_index
,
0
,
"the input key should be exists."
);
blas
.
VCOPY
(
row_width
,
table
+
id_index
*
row_width
,
output
+
i
*
row_width
);
}
}
}
context
.
scope
().
DeleteScope
(
&
local_scope
);
}
};
}
// namespace distributed
}
// namespace operators
}
// namespace paddle
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录