未验证 提交 34ac7b74 编写于 作者: Y YuanRisheng 提交者: GitHub

Support triple grad check of op in Eager mode (#42131)

* support 3-rd order gradient

* change code format
上级 4940a525
......@@ -60,19 +60,6 @@ def _get_item(t, i, np_dtype):
raise ValueError("Not supported data type " + str(np_dtype))
def _get_item_for_dygraph(t, i, np_dtype):
if np_dtype == np.float16:
np_t = t.numpy().astype(np.float16)
elif np_dtype == np.float32:
np_t = t.numpy().astype(np.float32)
elif np_dtype == np.float64:
np_t = t.numpy().astype(np.float64)
else:
raise ValueError("Not supported data type " + str(np_dtype))
np_t = np_t.flatten()
return np_t[i]
def _set_item(t, i, e, np_dtype):
if np_dtype == np.float16:
np_t = np.array(t).astype(np.float16)
......@@ -89,22 +76,6 @@ def _set_item(t, i, e, np_dtype):
raise ValueError("Not supported data type " + str(np_dtype))
def _set_item_for_dygraph(t, i, e, np_dtype):
if np_dtype == np.float16:
np_t = t.numpy().astype(np.float16)
elif np_dtype == np.float32:
np_t = t.numpy().astype(np.float32)
elif np_dtype == np.float64:
np_t = t.numpy().astype(np.float64)
else:
raise ValueError("Not supported data type " + str(np_dtype))
shape = np_t.shape
np_t = np_t.flatten()
np_t[i] = e
np_t = np_t.reshape(shape)
paddle.assign(np_t, t)
def set_var_in_scope(scope, place, name, value, recursive_seq_len=None):
t = scope.var(name).get_tensor()
t.set(value, place)
......@@ -169,8 +140,6 @@ def _compute_numerical_jacobian(program, x, y, place, scope, delta):
np_type = dtype_to_np_dtype(x.dtype)
jacobian = [make_jacobian(x, _product(yi.shape), np_type) for yi in y]
if np_type == np.float64:
delta = 1e-5
for i in six.moves.xrange(x_size):
orig = _get_item(x_t, i, np_type)
x_pos = orig + delta
......@@ -545,7 +514,12 @@ def triple_grad_check(x,
rtol=rtol)
def get_static_double_grad(x, y, x_init=None, dy_init=None, place=None):
def get_static_double_grad(x,
y,
x_init=None,
dy_init=None,
place=None,
program=None):
"""
Get Double Grad result of static graph.
......@@ -555,10 +529,13 @@ def get_static_double_grad(x, y, x_init=None, dy_init=None, place=None):
x_init (numpy.array|list[numpy.array]|None): the init value for input x.
dy_init (numpy.array|list[numpy.array]|None): the init value for output y.
place (fluid.CPUPlace or fluid.CUDAPlace): the device.
program (Program|None): a Program with forward pass.
If None, use fluid.default_main_program().
Returns:
A list of numpy array that stores second derivative result calulated by static graph.
"""
if program is None:
program = fluid.default_main_program()
scope = fluid.executor.global_scope()
y_grads = []
......@@ -635,7 +612,10 @@ def get_static_double_grad(x, y, x_init=None, dy_init=None, place=None):
return ddx_res
def get_eager_double_grad(func, x_init=None, dy_init=None):
def get_eager_double_grad(func,
x_init=None,
dy_init=None,
return_mid_result=False):
"""
Get Double Grad result of dygraph.
......@@ -643,8 +623,13 @@ def get_eager_double_grad(func, x_init=None, dy_init=None):
func: A wrapped dygraph function that its logic is equal to static program
x_init (numpy.array|list[numpy.array]|None): the init value for input x.
dy_init (numpy.array|list[numpy.array]|None): the init value for gradient of output.
return_mid_result (bool): A flag that controls the return content.
Returns:
A list of numpy array that stores second derivative result calulated by dygraph
If 'return_mid_result' set True.
the second order derivative and the inputs of second order derivative's calculation
will be returned for higher order derivative's calculation.
If 'return_mid_result' set False.
A list of numpy array that stores second derivative result calulated by dygraph.
"""
inputs = []
dys = []
......@@ -664,12 +649,24 @@ def get_eager_double_grad(func, x_init=None, dy_init=None):
# calcluate second derivative
inputs = inputs + dys
ddys = []
if return_mid_result:
create_graph = True
else:
create_graph = False
for d_input in d_inputs:
d_input.stop_gradient = False
ddy = paddle.ones(shape=d_input.shape, dtype=d_input.dtype)
ddy.stop_gradient = False
ddys.append(ddy)
dd_inputs = paddle.grad(outputs=d_inputs, inputs=inputs, grad_outputs=ddys)
dd_inputs = paddle.grad(
outputs=d_inputs,
inputs=inputs,
grad_outputs=ddys,
create_graph=create_graph)
if return_mid_result:
return dd_inputs, inputs + ddys
else:
return [dd_input.numpy() for dd_input in dd_inputs]
......@@ -682,8 +679,9 @@ def double_grad_check_for_dygraph(func,
rtol=1e-3,
raise_exception=True):
"""
Check gradients of gradients. This function will append backward to the
program before second order gradient check.
Check second order gradients of dygraph. This function will compare the
second order gradients of dygraph and second order gradients of static graph
to validate dygraph's correctness
Args:
func: A wrapped dygraph function that its logic is equal to static program
......@@ -734,3 +732,149 @@ def double_grad_check_for_dygraph(func,
'static:%s\n eager:%s\n' \
% (static_double_grad[i].name, eager_double_grad[i].name, str(place), static_double_grad[i], eager_double_grad[i])
return fail_test(msg)
def get_static_triple_grad(x,
y,
x_init=None,
dy_init=None,
place=None,
program=None):
"""
Get Triple Grad result of static graph.
Args:
x (Variable|list[Variable]): input variables to the program.
y (Variable|list[Variable]): output variables to the program.
x_init (numpy.array|list[numpy.array]|None): the init value for input x.
dy_init (numpy.array|list[numpy.array]|None): the init value for output y.
place (fluid.CPUPlace or fluid.CUDAPlace): the device.
program (Program|None): a Program with forward pass.
If None, use fluid.default_main_program().
Returns:
A list of numpy array that stores third derivative result calulated by static graph.
"""
if program is None:
program = fluid.default_main_program()
scope = fluid.executor.global_scope()
y_grads = []
for i in six.moves.xrange(len(y)):
yi = y[i]
dyi_name = _append_grad_suffix_(yi.name)
np_type = dtype_to_np_dtype(yi.dtype)
dy = program.global_block().create_var(
name=dyi_name, shape=yi.shape, dtype=np_type, persistable=True)
dy.stop_gradient = False
set_var_in_scope(scope, place, dyi_name, dy_init[i])
y_grads.append(dy)
# append first order grads
dx = fluid.gradients(y, x, y_grads)
# y_grads are the input of first-order backward,
# so, they are also the input of second-order backward.
x += y_grads
x_init += dy_init
y = dx
x_grads_grads_init = []
for dxi in dx:
np_type = dtype_to_np_dtype(dxi.dtype)
value = np.ones(dxi.shape, dtype=np_type)
x_grads_grads_init.append(value)
return get_static_double_grad(
x, y, x_init, dy_init=x_grads_grads_init, place=place, program=program)
def get_eager_triple_grad(func,
x_init=None,
dy_init=None,
return_mid_result=False):
"""
Get triple Grad result of dygraph.
Args:
func: A wrapped dygraph function that its logic is equal to static program
x_init (numpy.array|list[numpy.array]|None): the init value for input x.
dy_init (numpy.array|list[numpy.array]|None): the init value for gradient of output.
return_mid_result (list[Tensor], list[Tensor]): If set True, the
Returns:
A list of numpy array that stores second derivative result calulated by dygraph
"""
dd_y, dd_x = get_eager_double_grad(
func, x_init, dy_init, return_mid_result=True)
# calcluate third derivative
dddys = []
for dd_yi in dd_y:
dd_yi.stop_gradient = False
dddy = paddle.ones(shape=dd_yi.shape, dtype=dd_yi.dtype)
dddy.stop_gradient = False
dddys.append(dddy)
ddd_inputs = paddle.grad(outputs=dd_y, inputs=dd_x, grad_outputs=dddys)
return [ddd_input.numpy() for ddd_input in ddd_inputs]
def triple_grad_check_for_dygraph(func,
x,
y,
x_init=None,
place=None,
atol=1e-5,
rtol=1e-3,
raise_exception=True):
"""
Check third order gradients of dygraph. This function will compare the
third order gradients of dygraph and third order gradients of static graph
to validate dygraph's correctness
Args:
func: A wrapped dygraph function that its logic is equal to static program
x (Variable|list[Variable]): input variables to the program.
y (Variable|list[Variable]): output variables to the program.
x_init (numpy.array|list[numpy.array]|None): the init value for input x.
place (fluid.CPUPlace or fluid.CUDAPlace): the device.
eps (float): perturbation for finite differences.
atol (float): absolute tolerance.
rtol (float): relative tolerance.
raise_exception (bool): whether to raise an exception if
the check fails. Default is True.
"""
def fail_test(msg):
if raise_exception:
raise RuntimeError(msg)
return False
# check input arguments
x = _as_list(x)
for v in x:
v.stop_gradient = False
v.persistable = True
y = _as_list(y)
y_grads_init = []
for yi in y:
np_type = dtype_to_np_dtype(yi.dtype)
v = np.random.random(size=yi.shape).astype(np_type)
y_grads_init.append(v)
x_init = _as_list(x_init)
paddle.disable_static()
with _test_eager_guard():
eager_triple_grad = get_eager_triple_grad(func, x_init, y_grads_init)
paddle.enable_static()
static_triple_grad = get_static_triple_grad(x, y, x_init, y_grads_init,
place)
for i in six.moves.xrange(len(static_triple_grad)):
if not np.allclose(static_triple_grad[i], eager_triple_grad[i], rtol,
atol):
msg = 'Check eager double result fail. Mismatch between static_graph double grad %s ' \
'and eager double grad %s on %s,\n' \
'static:%s\n eager:%s\n' \
% (static_triple_grad[i].name, eager_triple_grad[i].name, str(place), static_triple_grad[i], eager_triple_grad[i])
return fail_test(msg)
......@@ -17,6 +17,7 @@ from __future__ import print_function
import unittest
import numpy as np
import paddle
import paddle.fluid as fluid
import paddle.fluid.layers as layers
import paddle.fluid.core as core
......@@ -45,6 +46,7 @@ class TestElementwiseMulDoubleGradCheck(unittest.TestCase):
[x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps)
def test_grad(self):
paddle.enable_static()
places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda():
places.append(fluid.CUDAPlace(0))
......@@ -72,6 +74,7 @@ class TestElementwiseMulBroadcastDoubleGradCheck(unittest.TestCase):
[x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps)
def test_grad(self):
paddle.enable_static()
places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda():
places.append(fluid.CUDAPlace(0))
......@@ -99,6 +102,7 @@ class TestElementwiseAddDoubleGradCheck(unittest.TestCase):
[x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps)
def test_grad(self):
paddle.enable_static()
places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda():
places.append(fluid.CUDAPlace(0))
......@@ -126,6 +130,7 @@ class TestElementwiseAddBroadcastDoubleGradCheck(unittest.TestCase):
[x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps)
def test_grad(self):
paddle.enable_static()
places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda():
places.append(fluid.CUDAPlace(0))
......@@ -153,6 +158,7 @@ class TestElementwiseSubDoubleGradCheck(unittest.TestCase):
[x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps)
def test_grad(self):
paddle.enable_static()
places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda():
places.append(fluid.CUDAPlace(0))
......@@ -180,6 +186,7 @@ class TestElementwiseSubBroadcastDoubleGradCheck(unittest.TestCase):
[x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps)
def test_grad(self):
paddle.enable_static()
places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda():
places.append(fluid.CUDAPlace(0))
......@@ -208,6 +215,7 @@ class TestElementwiseDivDoubleGradCheck(unittest.TestCase):
[x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps, atol=1e-3)
def test_grad(self):
paddle.enable_static()
places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda():
places.append(fluid.CUDAPlace(0))
......@@ -236,6 +244,7 @@ class TestElementwiseDivBroadcastDoubleGradCheck(unittest.TestCase):
[x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps, atol=1e-3)
def test_grad(self):
paddle.enable_static()
places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda():
places.append(fluid.CUDAPlace(0))
......@@ -263,6 +272,7 @@ class TestElementwiseAddTripleGradCheck(unittest.TestCase):
[x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps)
def test_grad(self):
paddle.enable_static()
places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda():
places.append(fluid.CUDAPlace(0))
......@@ -290,6 +300,7 @@ class TestElementwiseAddBroadcastTripleGradCheck(unittest.TestCase):
[x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps)
def test_grad(self):
paddle.enable_static()
places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda():
places.append(fluid.CUDAPlace(0))
......@@ -298,6 +309,9 @@ class TestElementwiseAddBroadcastTripleGradCheck(unittest.TestCase):
class TestElementwiseMulTripleGradCheck(unittest.TestCase):
def multiply_wrapper(self, x):
return paddle.multiply(x[0], x[1])
@prog_scope()
def func(self, place):
# the shape of input variable should be clearly specified, not inlcude -1.
......@@ -315,8 +329,14 @@ class TestElementwiseMulTripleGradCheck(unittest.TestCase):
gradient_checker.triple_grad_check(
[x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps)
gradient_checker.triple_grad_check_for_dygraph(
self.multiply_wrapper, [x, y],
out,
x_init=[x_arr, y_arr],
place=place)
def test_grad(self):
paddle.enable_static()
places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda():
places.append(fluid.CUDAPlace(0))
......@@ -344,6 +364,7 @@ class TestElementwiseMulBroadcastTripleGradCheck(unittest.TestCase):
[x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps)
def test_grad(self):
paddle.enable_static()
places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda():
places.append(fluid.CUDAPlace(0))
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册