Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
34ac7b74
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
34ac7b74
编写于
4月 22, 2022
作者:
Y
YuanRisheng
提交者:
GitHub
4月 22, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Support triple grad check of op in Eager mode (#42131)
* support 3-rd order gradient * change code format
上级
4940a525
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
204 addition
and
39 deletion
+204
-39
python/paddle/fluid/tests/unittests/gradient_checker.py
python/paddle/fluid/tests/unittests/gradient_checker.py
+183
-39
python/paddle/fluid/tests/unittests/test_elementwise_nn_grad.py
.../paddle/fluid/tests/unittests/test_elementwise_nn_grad.py
+21
-0
未找到文件。
python/paddle/fluid/tests/unittests/gradient_checker.py
浏览文件 @
34ac7b74
...
...
@@ -60,19 +60,6 @@ def _get_item(t, i, np_dtype):
raise
ValueError
(
"Not supported data type "
+
str
(
np_dtype
))
def
_get_item_for_dygraph
(
t
,
i
,
np_dtype
):
if
np_dtype
==
np
.
float16
:
np_t
=
t
.
numpy
().
astype
(
np
.
float16
)
elif
np_dtype
==
np
.
float32
:
np_t
=
t
.
numpy
().
astype
(
np
.
float32
)
elif
np_dtype
==
np
.
float64
:
np_t
=
t
.
numpy
().
astype
(
np
.
float64
)
else
:
raise
ValueError
(
"Not supported data type "
+
str
(
np_dtype
))
np_t
=
np_t
.
flatten
()
return
np_t
[
i
]
def
_set_item
(
t
,
i
,
e
,
np_dtype
):
if
np_dtype
==
np
.
float16
:
np_t
=
np
.
array
(
t
).
astype
(
np
.
float16
)
...
...
@@ -89,22 +76,6 @@ def _set_item(t, i, e, np_dtype):
raise
ValueError
(
"Not supported data type "
+
str
(
np_dtype
))
def
_set_item_for_dygraph
(
t
,
i
,
e
,
np_dtype
):
if
np_dtype
==
np
.
float16
:
np_t
=
t
.
numpy
().
astype
(
np
.
float16
)
elif
np_dtype
==
np
.
float32
:
np_t
=
t
.
numpy
().
astype
(
np
.
float32
)
elif
np_dtype
==
np
.
float64
:
np_t
=
t
.
numpy
().
astype
(
np
.
float64
)
else
:
raise
ValueError
(
"Not supported data type "
+
str
(
np_dtype
))
shape
=
np_t
.
shape
np_t
=
np_t
.
flatten
()
np_t
[
i
]
=
e
np_t
=
np_t
.
reshape
(
shape
)
paddle
.
assign
(
np_t
,
t
)
def
set_var_in_scope
(
scope
,
place
,
name
,
value
,
recursive_seq_len
=
None
):
t
=
scope
.
var
(
name
).
get_tensor
()
t
.
set
(
value
,
place
)
...
...
@@ -169,8 +140,6 @@ def _compute_numerical_jacobian(program, x, y, place, scope, delta):
np_type
=
dtype_to_np_dtype
(
x
.
dtype
)
jacobian
=
[
make_jacobian
(
x
,
_product
(
yi
.
shape
),
np_type
)
for
yi
in
y
]
if
np_type
==
np
.
float64
:
delta
=
1e-5
for
i
in
six
.
moves
.
xrange
(
x_size
):
orig
=
_get_item
(
x_t
,
i
,
np_type
)
x_pos
=
orig
+
delta
...
...
@@ -545,7 +514,12 @@ def triple_grad_check(x,
rtol
=
rtol
)
def
get_static_double_grad
(
x
,
y
,
x_init
=
None
,
dy_init
=
None
,
place
=
None
):
def
get_static_double_grad
(
x
,
y
,
x_init
=
None
,
dy_init
=
None
,
place
=
None
,
program
=
None
):
"""
Get Double Grad result of static graph.
...
...
@@ -555,10 +529,13 @@ def get_static_double_grad(x, y, x_init=None, dy_init=None, place=None):
x_init (numpy.array|list[numpy.array]|None): the init value for input x.
dy_init (numpy.array|list[numpy.array]|None): the init value for output y.
place (fluid.CPUPlace or fluid.CUDAPlace): the device.
program (Program|None): a Program with forward pass.
If None, use fluid.default_main_program().
Returns:
A list of numpy array that stores second derivative result calulated by static graph.
"""
if
program
is
None
:
program
=
fluid
.
default_main_program
()
scope
=
fluid
.
executor
.
global_scope
()
y_grads
=
[]
...
...
@@ -635,7 +612,10 @@ def get_static_double_grad(x, y, x_init=None, dy_init=None, place=None):
return
ddx_res
def
get_eager_double_grad
(
func
,
x_init
=
None
,
dy_init
=
None
):
def
get_eager_double_grad
(
func
,
x_init
=
None
,
dy_init
=
None
,
return_mid_result
=
False
):
"""
Get Double Grad result of dygraph.
...
...
@@ -643,8 +623,13 @@ def get_eager_double_grad(func, x_init=None, dy_init=None):
func: A wrapped dygraph function that its logic is equal to static program
x_init (numpy.array|list[numpy.array]|None): the init value for input x.
dy_init (numpy.array|list[numpy.array]|None): the init value for gradient of output.
return_mid_result (bool): A flag that controls the return content.
Returns:
A list of numpy array that stores second derivative result calulated by dygraph
If 'return_mid_result' set True.
the second order derivative and the inputs of second order derivative's calculation
will be returned for higher order derivative's calculation.
If 'return_mid_result' set False.
A list of numpy array that stores second derivative result calulated by dygraph.
"""
inputs
=
[]
dys
=
[]
...
...
@@ -664,12 +649,24 @@ def get_eager_double_grad(func, x_init=None, dy_init=None):
# calcluate second derivative
inputs
=
inputs
+
dys
ddys
=
[]
if
return_mid_result
:
create_graph
=
True
else
:
create_graph
=
False
for
d_input
in
d_inputs
:
d_input
.
stop_gradient
=
False
ddy
=
paddle
.
ones
(
shape
=
d_input
.
shape
,
dtype
=
d_input
.
dtype
)
ddy
.
stop_gradient
=
False
ddys
.
append
(
ddy
)
dd_inputs
=
paddle
.
grad
(
outputs
=
d_inputs
,
inputs
=
inputs
,
grad_outputs
=
ddys
)
dd_inputs
=
paddle
.
grad
(
outputs
=
d_inputs
,
inputs
=
inputs
,
grad_outputs
=
ddys
,
create_graph
=
create_graph
)
if
return_mid_result
:
return
dd_inputs
,
inputs
+
ddys
else
:
return
[
dd_input
.
numpy
()
for
dd_input
in
dd_inputs
]
...
...
@@ -682,8 +679,9 @@ def double_grad_check_for_dygraph(func,
rtol
=
1e-3
,
raise_exception
=
True
):
"""
Check gradients of gradients. This function will append backward to the
program before second order gradient check.
Check second order gradients of dygraph. This function will compare the
second order gradients of dygraph and second order gradients of static graph
to validate dygraph's correctness
Args:
func: A wrapped dygraph function that its logic is equal to static program
...
...
@@ -734,3 +732,149 @@ def double_grad_check_for_dygraph(func,
'static:%s
\n
eager:%s
\n
'
\
%
(
static_double_grad
[
i
].
name
,
eager_double_grad
[
i
].
name
,
str
(
place
),
static_double_grad
[
i
],
eager_double_grad
[
i
])
return
fail_test
(
msg
)
def
get_static_triple_grad
(
x
,
y
,
x_init
=
None
,
dy_init
=
None
,
place
=
None
,
program
=
None
):
"""
Get Triple Grad result of static graph.
Args:
x (Variable|list[Variable]): input variables to the program.
y (Variable|list[Variable]): output variables to the program.
x_init (numpy.array|list[numpy.array]|None): the init value for input x.
dy_init (numpy.array|list[numpy.array]|None): the init value for output y.
place (fluid.CPUPlace or fluid.CUDAPlace): the device.
program (Program|None): a Program with forward pass.
If None, use fluid.default_main_program().
Returns:
A list of numpy array that stores third derivative result calulated by static graph.
"""
if
program
is
None
:
program
=
fluid
.
default_main_program
()
scope
=
fluid
.
executor
.
global_scope
()
y_grads
=
[]
for
i
in
six
.
moves
.
xrange
(
len
(
y
)):
yi
=
y
[
i
]
dyi_name
=
_append_grad_suffix_
(
yi
.
name
)
np_type
=
dtype_to_np_dtype
(
yi
.
dtype
)
dy
=
program
.
global_block
().
create_var
(
name
=
dyi_name
,
shape
=
yi
.
shape
,
dtype
=
np_type
,
persistable
=
True
)
dy
.
stop_gradient
=
False
set_var_in_scope
(
scope
,
place
,
dyi_name
,
dy_init
[
i
])
y_grads
.
append
(
dy
)
# append first order grads
dx
=
fluid
.
gradients
(
y
,
x
,
y_grads
)
# y_grads are the input of first-order backward,
# so, they are also the input of second-order backward.
x
+=
y_grads
x_init
+=
dy_init
y
=
dx
x_grads_grads_init
=
[]
for
dxi
in
dx
:
np_type
=
dtype_to_np_dtype
(
dxi
.
dtype
)
value
=
np
.
ones
(
dxi
.
shape
,
dtype
=
np_type
)
x_grads_grads_init
.
append
(
value
)
return
get_static_double_grad
(
x
,
y
,
x_init
,
dy_init
=
x_grads_grads_init
,
place
=
place
,
program
=
program
)
def
get_eager_triple_grad
(
func
,
x_init
=
None
,
dy_init
=
None
,
return_mid_result
=
False
):
"""
Get triple Grad result of dygraph.
Args:
func: A wrapped dygraph function that its logic is equal to static program
x_init (numpy.array|list[numpy.array]|None): the init value for input x.
dy_init (numpy.array|list[numpy.array]|None): the init value for gradient of output.
return_mid_result (list[Tensor], list[Tensor]): If set True, the
Returns:
A list of numpy array that stores second derivative result calulated by dygraph
"""
dd_y
,
dd_x
=
get_eager_double_grad
(
func
,
x_init
,
dy_init
,
return_mid_result
=
True
)
# calcluate third derivative
dddys
=
[]
for
dd_yi
in
dd_y
:
dd_yi
.
stop_gradient
=
False
dddy
=
paddle
.
ones
(
shape
=
dd_yi
.
shape
,
dtype
=
dd_yi
.
dtype
)
dddy
.
stop_gradient
=
False
dddys
.
append
(
dddy
)
ddd_inputs
=
paddle
.
grad
(
outputs
=
dd_y
,
inputs
=
dd_x
,
grad_outputs
=
dddys
)
return
[
ddd_input
.
numpy
()
for
ddd_input
in
ddd_inputs
]
def
triple_grad_check_for_dygraph
(
func
,
x
,
y
,
x_init
=
None
,
place
=
None
,
atol
=
1e-5
,
rtol
=
1e-3
,
raise_exception
=
True
):
"""
Check third order gradients of dygraph. This function will compare the
third order gradients of dygraph and third order gradients of static graph
to validate dygraph's correctness
Args:
func: A wrapped dygraph function that its logic is equal to static program
x (Variable|list[Variable]): input variables to the program.
y (Variable|list[Variable]): output variables to the program.
x_init (numpy.array|list[numpy.array]|None): the init value for input x.
place (fluid.CPUPlace or fluid.CUDAPlace): the device.
eps (float): perturbation for finite differences.
atol (float): absolute tolerance.
rtol (float): relative tolerance.
raise_exception (bool): whether to raise an exception if
the check fails. Default is True.
"""
def
fail_test
(
msg
):
if
raise_exception
:
raise
RuntimeError
(
msg
)
return
False
# check input arguments
x
=
_as_list
(
x
)
for
v
in
x
:
v
.
stop_gradient
=
False
v
.
persistable
=
True
y
=
_as_list
(
y
)
y_grads_init
=
[]
for
yi
in
y
:
np_type
=
dtype_to_np_dtype
(
yi
.
dtype
)
v
=
np
.
random
.
random
(
size
=
yi
.
shape
).
astype
(
np_type
)
y_grads_init
.
append
(
v
)
x_init
=
_as_list
(
x_init
)
paddle
.
disable_static
()
with
_test_eager_guard
():
eager_triple_grad
=
get_eager_triple_grad
(
func
,
x_init
,
y_grads_init
)
paddle
.
enable_static
()
static_triple_grad
=
get_static_triple_grad
(
x
,
y
,
x_init
,
y_grads_init
,
place
)
for
i
in
six
.
moves
.
xrange
(
len
(
static_triple_grad
)):
if
not
np
.
allclose
(
static_triple_grad
[
i
],
eager_triple_grad
[
i
],
rtol
,
atol
):
msg
=
'Check eager double result fail. Mismatch between static_graph double grad %s '
\
'and eager double grad %s on %s,
\n
'
\
'static:%s
\n
eager:%s
\n
'
\
%
(
static_triple_grad
[
i
].
name
,
eager_triple_grad
[
i
].
name
,
str
(
place
),
static_triple_grad
[
i
],
eager_triple_grad
[
i
])
return
fail_test
(
msg
)
python/paddle/fluid/tests/unittests/test_elementwise_nn_grad.py
浏览文件 @
34ac7b74
...
...
@@ -17,6 +17,7 @@ from __future__ import print_function
import
unittest
import
numpy
as
np
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.layers
as
layers
import
paddle.fluid.core
as
core
...
...
@@ -45,6 +46,7 @@ class TestElementwiseMulDoubleGradCheck(unittest.TestCase):
[
x
,
y
],
out
,
x_init
=
[
x_arr
,
y_arr
],
place
=
place
,
eps
=
eps
)
def
test_grad
(
self
):
paddle
.
enable_static
()
places
=
[
fluid
.
CPUPlace
()]
if
core
.
is_compiled_with_cuda
():
places
.
append
(
fluid
.
CUDAPlace
(
0
))
...
...
@@ -72,6 +74,7 @@ class TestElementwiseMulBroadcastDoubleGradCheck(unittest.TestCase):
[
x
,
y
],
out
,
x_init
=
[
x_arr
,
y_arr
],
place
=
place
,
eps
=
eps
)
def
test_grad
(
self
):
paddle
.
enable_static
()
places
=
[
fluid
.
CPUPlace
()]
if
core
.
is_compiled_with_cuda
():
places
.
append
(
fluid
.
CUDAPlace
(
0
))
...
...
@@ -99,6 +102,7 @@ class TestElementwiseAddDoubleGradCheck(unittest.TestCase):
[
x
,
y
],
out
,
x_init
=
[
x_arr
,
y_arr
],
place
=
place
,
eps
=
eps
)
def
test_grad
(
self
):
paddle
.
enable_static
()
places
=
[
fluid
.
CPUPlace
()]
if
core
.
is_compiled_with_cuda
():
places
.
append
(
fluid
.
CUDAPlace
(
0
))
...
...
@@ -126,6 +130,7 @@ class TestElementwiseAddBroadcastDoubleGradCheck(unittest.TestCase):
[
x
,
y
],
out
,
x_init
=
[
x_arr
,
y_arr
],
place
=
place
,
eps
=
eps
)
def
test_grad
(
self
):
paddle
.
enable_static
()
places
=
[
fluid
.
CPUPlace
()]
if
core
.
is_compiled_with_cuda
():
places
.
append
(
fluid
.
CUDAPlace
(
0
))
...
...
@@ -153,6 +158,7 @@ class TestElementwiseSubDoubleGradCheck(unittest.TestCase):
[
x
,
y
],
out
,
x_init
=
[
x_arr
,
y_arr
],
place
=
place
,
eps
=
eps
)
def
test_grad
(
self
):
paddle
.
enable_static
()
places
=
[
fluid
.
CPUPlace
()]
if
core
.
is_compiled_with_cuda
():
places
.
append
(
fluid
.
CUDAPlace
(
0
))
...
...
@@ -180,6 +186,7 @@ class TestElementwiseSubBroadcastDoubleGradCheck(unittest.TestCase):
[
x
,
y
],
out
,
x_init
=
[
x_arr
,
y_arr
],
place
=
place
,
eps
=
eps
)
def
test_grad
(
self
):
paddle
.
enable_static
()
places
=
[
fluid
.
CPUPlace
()]
if
core
.
is_compiled_with_cuda
():
places
.
append
(
fluid
.
CUDAPlace
(
0
))
...
...
@@ -208,6 +215,7 @@ class TestElementwiseDivDoubleGradCheck(unittest.TestCase):
[
x
,
y
],
out
,
x_init
=
[
x_arr
,
y_arr
],
place
=
place
,
eps
=
eps
,
atol
=
1e-3
)
def
test_grad
(
self
):
paddle
.
enable_static
()
places
=
[
fluid
.
CPUPlace
()]
if
core
.
is_compiled_with_cuda
():
places
.
append
(
fluid
.
CUDAPlace
(
0
))
...
...
@@ -236,6 +244,7 @@ class TestElementwiseDivBroadcastDoubleGradCheck(unittest.TestCase):
[
x
,
y
],
out
,
x_init
=
[
x_arr
,
y_arr
],
place
=
place
,
eps
=
eps
,
atol
=
1e-3
)
def
test_grad
(
self
):
paddle
.
enable_static
()
places
=
[
fluid
.
CPUPlace
()]
if
core
.
is_compiled_with_cuda
():
places
.
append
(
fluid
.
CUDAPlace
(
0
))
...
...
@@ -263,6 +272,7 @@ class TestElementwiseAddTripleGradCheck(unittest.TestCase):
[
x
,
y
],
out
,
x_init
=
[
x_arr
,
y_arr
],
place
=
place
,
eps
=
eps
)
def
test_grad
(
self
):
paddle
.
enable_static
()
places
=
[
fluid
.
CPUPlace
()]
if
core
.
is_compiled_with_cuda
():
places
.
append
(
fluid
.
CUDAPlace
(
0
))
...
...
@@ -290,6 +300,7 @@ class TestElementwiseAddBroadcastTripleGradCheck(unittest.TestCase):
[
x
,
y
],
out
,
x_init
=
[
x_arr
,
y_arr
],
place
=
place
,
eps
=
eps
)
def
test_grad
(
self
):
paddle
.
enable_static
()
places
=
[
fluid
.
CPUPlace
()]
if
core
.
is_compiled_with_cuda
():
places
.
append
(
fluid
.
CUDAPlace
(
0
))
...
...
@@ -298,6 +309,9 @@ class TestElementwiseAddBroadcastTripleGradCheck(unittest.TestCase):
class
TestElementwiseMulTripleGradCheck
(
unittest
.
TestCase
):
def
multiply_wrapper
(
self
,
x
):
return
paddle
.
multiply
(
x
[
0
],
x
[
1
])
@
prog_scope
()
def
func
(
self
,
place
):
# the shape of input variable should be clearly specified, not inlcude -1.
...
...
@@ -315,8 +329,14 @@ class TestElementwiseMulTripleGradCheck(unittest.TestCase):
gradient_checker
.
triple_grad_check
(
[
x
,
y
],
out
,
x_init
=
[
x_arr
,
y_arr
],
place
=
place
,
eps
=
eps
)
gradient_checker
.
triple_grad_check_for_dygraph
(
self
.
multiply_wrapper
,
[
x
,
y
],
out
,
x_init
=
[
x_arr
,
y_arr
],
place
=
place
)
def
test_grad
(
self
):
paddle
.
enable_static
()
places
=
[
fluid
.
CPUPlace
()]
if
core
.
is_compiled_with_cuda
():
places
.
append
(
fluid
.
CUDAPlace
(
0
))
...
...
@@ -344,6 +364,7 @@ class TestElementwiseMulBroadcastTripleGradCheck(unittest.TestCase):
[
x
,
y
],
out
,
x_init
=
[
x_arr
,
y_arr
],
place
=
place
,
eps
=
eps
)
def
test_grad
(
self
):
paddle
.
enable_static
()
places
=
[
fluid
.
CPUPlace
()]
if
core
.
is_compiled_with_cuda
():
places
.
append
(
fluid
.
CUDAPlace
(
0
))
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录