未验证 提交 3388e52d 编写于 作者: Y Yan Chunwei 提交者: GitHub

Bugfix/beamsearch op (#7611)

上级 f086ebb8
...@@ -178,14 +178,13 @@ foreach(src ${GENERAL_OPS}) ...@@ -178,14 +178,13 @@ foreach(src ${GENERAL_OPS})
endforeach() endforeach()
file(APPEND ${pybind_file} "USE_OP(less_than);\nUSE_OP(logical_and);\nUSE_NO_KERNEL_OP(read_from_array);\n") file(APPEND ${pybind_file} "USE_OP(less_than);\nUSE_OP(logical_and);\nUSE_NO_KERNEL_OP(read_from_array);\n")
set(GLOB_OP_LIB ${OP_LIBRARY} CACHE INTERNAL "Global OP library") set(GLOB_OP_LIB ${OP_LIBRARY} CACHE INTERNAL "Global OP library")
cc_test(gather_test SRCS gather_test.cc DEPS tensor) cc_test(gather_test SRCS gather_test.cc DEPS tensor)
cc_test(net_op_test SRCS net_op_test.cc DEPS net_op) cc_test(net_op_test SRCS net_op_test.cc DEPS net_op)
cc_test(scatter_test SRCS scatter_test.cc DEPS tensor) cc_test(scatter_test SRCS scatter_test.cc DEPS tensor)
cc_test(beam_search_decode_op_test SRCS beam_search_decode_op_test.cc DEPS lod_tensor) cc_test(beam_search_decode_op_test SRCS beam_search_decode_op_test.cc DEPS lod_tensor)
cc_test(beam_search_op_test SRCS beam_search_op_test.cc DEPS lod_tensor beam_search_op)
cc_test(strided_memcpy_test SRCS strided_memcpy_test.cc DEPS tensor paddle_memory) cc_test(strided_memcpy_test SRCS strided_memcpy_test.cc DEPS tensor paddle_memory)
if(WITH_GPU) if(WITH_GPU)
cc_test(nccl_op_test SRCS nccl_op_test.cu.cc DEPS nccl_op gpu_info device_context) cc_test(nccl_op_test SRCS nccl_op_test.cu.cc DEPS nccl_op gpu_info device_context)
......
...@@ -29,7 +29,7 @@ void BeamSearch::operator()(const framework::LoDTensor &pre_ids, ...@@ -29,7 +29,7 @@ void BeamSearch::operator()(const framework::LoDTensor &pre_ids,
PruneEndidCandidates(pre_ids, &selected_items); PruneEndidCandidates(pre_ids, &selected_items);
// calculate the output tensor's height // calculate the output tensor's height
size_t num_instances = std::accumulate( size_t num_instances = std::accumulate(
std::begin(items), std::end(items), 0, std::begin(selected_items), std::end(selected_items), 0,
[](size_t a, std::vector<Item> &b) { return a + b.size(); }); [](size_t a, std::vector<Item> &b) { return a + b.size(); });
// the output tensor shape should be [num_instances, 1] // the output tensor shape should be [num_instances, 1]
auto dims = framework::make_ddim( auto dims = framework::make_ddim(
...@@ -48,12 +48,20 @@ void BeamSearch::operator()(const framework::LoDTensor &pre_ids, ...@@ -48,12 +48,20 @@ void BeamSearch::operator()(const framework::LoDTensor &pre_ids,
size_t low_offset = 0; size_t low_offset = 0;
for (auto &items : selected_items) { for (auto &items : selected_items) {
low_level.push_back(low_offset); low_level.push_back(low_offset);
sort(items.begin(), items.end(), [](const Item &a, const Item &b) {
if (a.offset < b.offset) {
return true;
}
return a.id < b.id;
});
for (auto &item : items) { for (auto &item : items) {
ids_data[low_offset] = item.id; ids_data[low_offset] = item.id;
scores_data[low_offset] = item.score; scores_data[low_offset] = item.score;
low_offset++; low_offset++;
} }
} }
low_level.push_back(low_offset);
// fill lod // fill lod
auto abs_lod = framework::ToAbsOffset(ids_->lod()); auto abs_lod = framework::ToAbsOffset(ids_->lod());
auto &high_level = abs_lod[lod_level_]; auto &high_level = abs_lod[lod_level_];
...@@ -64,16 +72,21 @@ void BeamSearch::operator()(const framework::LoDTensor &pre_ids, ...@@ -64,16 +72,21 @@ void BeamSearch::operator()(const framework::LoDTensor &pre_ids,
selected_scores->set_lod(lod); selected_scores->set_lod(lod);
} }
void BeamSearch::PruneEndidCandidates(const framework::LoDTensor &pre_ids, int BeamSearch::PruneEndidCandidates(const framework::LoDTensor &pre_ids,
std::vector<std::vector<Item>> *items) { std::vector<std::vector<Item>> *items) {
auto *pre_ids_data = pre_ids.data<int64_t>(); auto *pre_ids_data = pre_ids.data<int64_t>();
int res = 0;
for (size_t offset = 0; offset < items->size(); offset++) { for (size_t offset = 0; offset < items->size(); offset++) {
auto prefix_id = pre_ids_data[offset]; auto prefix_id = pre_ids_data[offset];
if (prefix_id == end_id_) { if (prefix_id == end_id_) {
items->at(offset).clear(); items->at(offset).clear();
} else {
res++;
} }
} }
return res;
} }
std::vector<std::vector<BeamSearch::Item>> BeamSearch::ToMap( std::vector<std::vector<BeamSearch::Item>> BeamSearch::ToMap(
...@@ -121,11 +134,7 @@ bool BeamSearch::NextItemSet(std::vector<BeamSearch::Item> *items) { ...@@ -121,11 +134,7 @@ bool BeamSearch::NextItemSet(std::vector<BeamSearch::Item> *items) {
auto ids = *ids_; auto ids = *ids_;
auto scores = *scores_; auto scores = *scores_;
auto source_abs_two_level_lod = framework::SliceInLevel(
ids.lod(), lod_level_, sent_offset_, sent_offset_ + 1);
source_abs_two_level_lod = framework::ToAbsOffset(source_abs_two_level_lod);
auto abs_lod = framework::ToAbsOffset(ids.lod()); auto abs_lod = framework::ToAbsOffset(ids.lod());
PADDLE_ENFORCE_GE(source_abs_two_level_lod.size(), 2UL);
auto *ids_data = ids.data<int64_t>(); auto *ids_data = ids.data<int64_t>();
auto *scores_data = scores.data<float>(); auto *scores_data = scores.data<float>();
......
...@@ -73,7 +73,15 @@ namespace operators { ...@@ -73,7 +73,15 @@ namespace operators {
* second level: * second level:
* [0, 2, 4] * [0, 2, 4]
* *
* tensor's data * id tensor's data
* [[
* 4,
* 1,
* 3,
* 8,
* ]]
*
* score tensor's data
* [[ * [[
* 0.5, * 0.5,
* 0.3, * 0.3,
...@@ -137,15 +145,20 @@ class BeamSearch { ...@@ -137,15 +145,20 @@ class BeamSearch {
Item() {} Item() {}
Item(size_t offset, size_t id, float score) Item(size_t offset, size_t id, float score)
: offset(offset), id(id), score(score) {} : offset(offset), id(id), score(score) {}
// offset in the lod_level_+1 // offset in the higher lod level.
size_t offset; size_t offset;
// // prefix id in the lower lod level.
// size_t prefix;
// the candidate id // the candidate id
id_t id; id_t id;
// the corresponding score // the corresponding score
score_t score; score_t score;
}; };
void PruneEndidCandidates(const framework::LoDTensor& pre_ids, /*
* Delete all the records that follows the end token.
*/
int PruneEndidCandidates(const framework::LoDTensor& pre_ids,
std::vector<std::vector<Item>>* items); std::vector<std::vector<Item>>* items);
/* /*
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/beam_search_op.h"
#include <gtest/gtest.h>
#include <vector>
namespace paddle {
namespace test {
using std::vector;
using framework::LoDTensor;
using framework::LoD;
using operators::BeamSearch;
using paddle::platform::CPUPlace;
using std::cout;
using std::endl;
void CreateInput(LoDTensor* ids, LoDTensor* scores) {
LoD lod;
vector<size_t> level0({0, 1, 4});
vector<size_t> level1({0, 1, 2, 3, 4});
lod.push_back(level0);
lod.push_back(level1);
ids->set_lod(lod);
scores->set_lod(lod);
auto dims = framework::make_ddim(vector<int64_t>({4, 3}));
ids->Resize(dims);
scores->Resize(dims);
CPUPlace place;
auto* ids_data = ids->mutable_data<int64_t>(place);
auto* scores_data = scores->mutable_data<float>(place);
vector<int64_t> _ids({4, 2, 5, 2, 1, 3, 3, 5, 2, 8, 2, 1});
vector<float> _scores(
{0.5, 0.3, 0.2, 0.6, 0.3, 0.1, 0.9, 0.5, 0.1, 0.7, 0.5, 0.1});
for (int i = 0; i < 12; i++) {
ids_data[i] = _ids[i];
scores_data[i] = _scores[i];
}
}
TEST(beam_search_op, run) {
CPUPlace place;
LoDTensor ids, scores;
CreateInput(&ids, &scores);
LoDTensor pre_ids;
pre_ids.Resize(framework::make_ddim(vector<int64_t>(4, 1)));
for (int i = 0; i < 4; i++) {
pre_ids.mutable_data<int64_t>(place)[i] = i + 1;
}
BeamSearch beamsearch(ids, scores, (int64_t)0, (int64_t)2, 0);
LoDTensor sids, sscores;
beamsearch(pre_ids, &sids, &sscores);
LOG(INFO) << "score: " << sscores << endl;
ASSERT_EQ(sids.lod(), sscores.lod());
vector<int> tids({2, 4, 3, 8});
vector<float> tscores({0.3, 0.5, 0.9, 0.7});
for (int i = 0; i < 4; i++) {
ASSERT_EQ(tids[i], sids.data<int64_t>()[i]);
ASSERT_EQ(tscores[i], sscores.data<float>()[i]);
}
}
} // namespace test
} // namespace paddle
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册