提交 32fbc6b2 编写于 作者: Y Yu Yang

Merge branch 'develop' of github.com:baidu/Paddle into feature/grad_reg_mechanism_cont

...@@ -345,6 +345,11 @@ clip ...@@ -345,6 +345,11 @@ clip
.. autoclass:: paddle.v2.layer.clip .. autoclass:: paddle.v2.layer.clip
:noindex: :noindex:
resize
------
.. autoclass:: paddle.v2.layer.resize
:noindex:
slope_intercept slope_intercept
--------------- ---------------
.. autoclass:: paddle.v2.layer.slope_intercept .. autoclass:: paddle.v2.layer.slope_intercept
......
...@@ -206,7 +206,7 @@ MulOp(const std::string &type, const framework::VariableNameMap &inputs, ...@@ -206,7 +206,7 @@ MulOp(const std::string &type, const framework::VariableNameMap &inputs,
- `REGISTER_OP` : 注册`ops::MulOp`类,类型名为`mul`,该类的`ProtoMaker`为`ops::MulOpMaker`,注册`ops::MulOpGrad`,类型名为`mul_grad`。 - `REGISTER_OP` : 注册`ops::MulOp`类,类型名为`mul`,该类的`ProtoMaker`为`ops::MulOpMaker`,注册`ops::MulOpGrad`,类型名为`mul_grad`。
- `REGISTER_OP_WITHOUT_GRADIENT` : 用于注册没有反向的Op。 - `REGISTER_OP_WITHOUT_GRADIENT` : 用于注册没有反向的Op。
- `REGISTER_OP_CPU_KERNEL` :注册`ops::MulKernel`类,并特化模板参数为`paddle::platform::CPUPlace`和`float`类型,同理,注册`ops::MulKernel`类。 - `REGISTER_OP_CPU_KERNEL` :注册`ops::MulKernel`类,并特化模板参数为`paddle::platform::CPUPlace`和`float`类型,同理,注册`ops::MulGradKernel`类。
-`.cu`文件中注册GPU Kernel。 -`.cu`文件中注册GPU Kernel。
......
...@@ -205,7 +205,7 @@ The definition of its corresponding backward operator, if applicable, is similar ...@@ -205,7 +205,7 @@ The definition of its corresponding backward operator, if applicable, is similar
- `REGISTER_OP` registers the `ops::MulOp` class, type named `mul`, its type `ProtoMaker` is `ops::MulOpMaker`, registering `ops::MulOpGrad` as `mul_grad`. - `REGISTER_OP` registers the `ops::MulOp` class, type named `mul`, its type `ProtoMaker` is `ops::MulOpMaker`, registering `ops::MulOpGrad` as `mul_grad`.
- `REGISTER_OP_WITHOUT_GRADIENT` registers an operator without gradient. - `REGISTER_OP_WITHOUT_GRADIENT` registers an operator without gradient.
- `REGISTER_OP_CPU_KERNEL` registers `ops::MulKernel` class and specialized template types `paddle::platform::CPUPlace` and `float`, which also registers `ops::MulKernel`. - `REGISTER_OP_CPU_KERNEL` registers `ops::MulKernel` class and specialized template types `paddle::platform::CPUPlace` and `float`, which also registers `ops::MulGradKernel`.
- Registering GPU Kernel in `.cu` files - Registering GPU Kernel in `.cu` files
......
...@@ -29,7 +29,7 @@ cc_test(operator_test SRCS operator_test.cc DEPS operator op_registry) ...@@ -29,7 +29,7 @@ cc_test(operator_test SRCS operator_test.cc DEPS operator op_registry)
cc_library(grad_op_builder SRCS grad_op_builder.cc DEPS operator proto_desc) cc_library(grad_op_builder SRCS grad_op_builder.cc DEPS operator proto_desc)
cc_library(op_registry SRCS op_registry.cc DEPS grad_op_builder op_proto_maker op_info) cc_library(op_registry SRCS op_registry.cc DEPS grad_op_builder op_proto_maker op_info)
cc_test(op_registry_test SRCS op_registry_test.cc DEPS op_registry) cc_test(op_registry_test SRCS op_registry_test.cc DEPS op_registry)
cc_test(grad_op_builder_test SRCS grad_op_builder_test.cc DEPS grad_op_builder op_registry add_op) cc_test(grad_op_builder_test SRCS grad_op_builder_test.cc DEPS grad_op_builder op_registry sum_op)
py_proto_compile(framework_py_proto SRCS framework.proto) py_proto_compile(framework_py_proto SRCS framework.proto)
# Generate an empty __init__.py to make framework_py_proto as a valid python module. # Generate an empty __init__.py to make framework_py_proto as a valid python module.
......
...@@ -3,7 +3,7 @@ ...@@ -3,7 +3,7 @@
#include "paddle/framework/op_registry.h" #include "paddle/framework/op_registry.h"
#include "paddle/framework/operator.h" #include "paddle/framework/operator.h"
USE_OP(add); USE_OP(sum);
namespace paddle { namespace paddle {
namespace framework { namespace framework {
...@@ -41,17 +41,24 @@ namespace f = paddle::framework; ...@@ -41,17 +41,24 @@ namespace f = paddle::framework;
TEST(GradOpBuilder, AddTwo) { TEST(GradOpBuilder, AddTwo) {
std::shared_ptr<f::OperatorBase> add_op(f::OpRegistry::CreateOp( std::shared_ptr<f::OperatorBase> add_op(f::OpRegistry::CreateOp(
"add", {{"X", {"x"}}, {"Y", {"y"}}}, {{"Out", {"out"}}}, {})); "sum", {{"X", {"x", "y"}}}, {{"Out", {"out"}}}, {}));
std::shared_ptr<f::OperatorBase> grad_add_op = std::shared_ptr<f::OperatorBase> grad_add_op =
f::OpRegistry::CreateGradOp(*add_op); f::OpRegistry::CreateGradOp(*add_op);
EXPECT_EQ(grad_add_op->Inputs().size(), 4UL);
EXPECT_EQ(grad_add_op->Outputs().size(), 2UL); EXPECT_EQ(grad_add_op->Inputs().size(), 1UL);
EXPECT_EQ(grad_add_op->Input("X"), "x"); EXPECT_EQ(grad_add_op->Outputs().size(), 1UL);
EXPECT_EQ(grad_add_op->Input("Y"), "y");
EXPECT_EQ(grad_add_op->Input("Out"), "out");
EXPECT_EQ(grad_add_op->Input(f::GradVarName("Out")), f::GradVarName("out")); EXPECT_EQ(grad_add_op->Input(f::GradVarName("Out")), f::GradVarName("out"));
EXPECT_EQ(grad_add_op->Output(f::GradVarName("X")), f::GradVarName("x")); auto &outputs = grad_add_op->Outputs(f::GradVarName("X"));
EXPECT_EQ(grad_add_op->Output(f::GradVarName("Y")), f::GradVarName("y")); EXPECT_EQ(2UL, outputs.size());
auto in_output = [&outputs](const std::string &name) {
for (auto &output_name : outputs) {
if (output_name == name) return true;
}
return false;
};
EXPECT_TRUE(in_output(f::GradVarName("x")));
EXPECT_TRUE(in_output(f::GradVarName("y")));
} }
REGISTER_OP(mult_io, f::NOP, f::MutiInOutOpMaker, mult_io_grad, f::NOP); REGISTER_OP(mult_io, f::NOP, f::MutiInOutOpMaker, mult_io_grad, f::NOP);
......
...@@ -245,5 +245,12 @@ std::vector<Tensor*> InferShapeContext::MultiOutput<Tensor>( ...@@ -245,5 +245,12 @@ std::vector<Tensor*> InferShapeContext::MultiOutput<Tensor>(
return res; return res;
} }
std::ostream& operator<<(std::ostream& os,
const OperatorWithKernel::OpKernelKey& kernel_key) {
os << "place[" << kernel_key.place_ << "]:data_type[" << kernel_key.data_type_
<< "]";
return os;
}
} // namespace framework } // namespace framework
} // namespace paddle } // namespace paddle
...@@ -478,9 +478,25 @@ class OperatorWithKernel : public OperatorBase { ...@@ -478,9 +478,25 @@ class OperatorWithKernel : public OperatorBase {
this->InferShape(&infer_shape_ctx); this->InferShape(&infer_shape_ctx);
ExecutionContext ctx(*this, scope, dev_ctx); ExecutionContext ctx(*this, scope, dev_ctx);
auto& opKernel = AllOpKernels().at(type_).at(
OpKernelKey(IndicateDataType(ctx), dev_ctx)); // check if op[type] has kernel registered.
opKernel->Compute(ctx); auto& all_op_kernels = AllOpKernels();
auto kernels_iter = all_op_kernels.find(type_);
if (kernels_iter == all_op_kernels.end()) {
PADDLE_THROW("op[%s] has no kernel", type_);
}
// check if op[type] have kernel for kernel_key
OpKernelMap& kernels = kernels_iter->second;
auto kernel_key = OpKernelKey(IndicateDataType(ctx), dev_ctx);
auto kernel_iter = kernels.find(kernel_key);
if (kernel_iter == kernels.end()) {
PADDLE_THROW("op[%s] has no kernel with kernel_key[%s]", type_,
kernel_key);
}
kernel_iter->second->Compute(ctx);
} }
static std::unordered_map<std::string /* op_type */, OpKernelMap>& static std::unordered_map<std::string /* op_type */, OpKernelMap>&
...@@ -529,5 +545,8 @@ class OperatorWithKernel : public OperatorBase { ...@@ -529,5 +545,8 @@ class OperatorWithKernel : public OperatorBase {
} }
}; };
std::ostream& operator<<(std::ostream& os,
const OperatorWithKernel::OpKernelKey& kernel_key);
} // namespace framework } // namespace framework
} // namespace paddle } // namespace paddle
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/add_op.h"
namespace paddle {
namespace operators {
class AddOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(framework::InferShapeContextBase* ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) of AddOp should not be null.");
PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) of AddOp should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("Out"),
"Output(Out) of AddOp should not be null.");
auto x_dims = ctx->GetInputDim("X");
auto y_dims = ctx->GetInputDim("Y");
PADDLE_ENFORCE_EQ(x_dims, y_dims,
"Two input of Add Op's dimension must be same.");
ctx->SetOutputDim("Out", x_dims);
}
};
class AddOpMaker : public framework::OpProtoAndCheckerMaker {
public:
AddOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "The first input of add op");
AddInput("Y", "The second input of add op");
AddOutput("Out", "The output of add op");
AddComment(R"DOC(
Two Element Add Operator.
The equation is: Out = X + Y
)DOC");
}
};
class AddOpGrad : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(framework::InferShapeContextBase* ctx) const override {}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP(add, ops::AddOp, ops::AddOpMaker, add_grad, ops::AddOpGrad);
REGISTER_OP_CPU_KERNEL(add, ops::AddKernel<paddle::platform::CPUPlace, float>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/add_op.h"
namespace ops = paddle::operators;
REGISTER_OP_GPU_KERNEL(add, ops::AddKernel<paddle::platform::GPUPlace, float>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
template <typename T, int MajorType = Eigen::RowMajor,
typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
template <typename Place, typename T>
class AddKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* input0 = context.Input<Tensor>("X");
auto* input1 = context.Input<Tensor>("Y");
auto* output = context.Output<Tensor>("Out");
output->mutable_data<T>(context.GetPlace());
auto X = EigenVector<T>::Flatten(*input0);
auto Y = EigenVector<T>::Flatten(*input1);
auto Z = EigenVector<T>::Flatten(*output);
auto place = context.GetEigenDevice<Place>();
Z.device(place) = X + Y;
}
};
} // namespace operators
} // namespace paddle
...@@ -43,8 +43,10 @@ class SumOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -43,8 +43,10 @@ class SumOpMaker : public framework::OpProtoAndCheckerMaker {
public: public:
SumOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker) SumOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) { : OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "the input tensors of sum operator.").AsDuplicable(); AddInput("X", "the input tensors of sum operator.")
AddOutput("Out", "the output tensor of sum operator."); .AsDuplicable()
.NotInGradient();
AddOutput("Out", "the output tensor of sum operator.").NotInGradient();
AddComment(R"DOC( AddComment(R"DOC(
Sum the input tensors. Sum the input tensors.
......
...@@ -142,6 +142,7 @@ __all__ = [ ...@@ -142,6 +142,7 @@ __all__ = [
'img_pool3d_layer', 'img_pool3d_layer',
'scale_shift_layer', 'scale_shift_layer',
'img_conv3d_layer', 'img_conv3d_layer',
'resize_layer',
] ]
...@@ -250,6 +251,8 @@ class LayerType(object): ...@@ -250,6 +251,8 @@ class LayerType(object):
KMAX_SEQ_SCORE = 'kmax_seq_score' KMAX_SEQ_SCORE = 'kmax_seq_score'
SCALE_SHIFT_LAYER = 'scale_shift' SCALE_SHIFT_LAYER = 'scale_shift'
RESIZE = 'resize'
@staticmethod @staticmethod
def is_layer_type(type_name): def is_layer_type(type_name):
""" """
...@@ -6932,3 +6935,23 @@ def scale_shift_layer(input, name=None, param_attr=None, bias_attr=None): ...@@ -6932,3 +6935,23 @@ def scale_shift_layer(input, name=None, param_attr=None, bias_attr=None):
bias=ParamAttr.to_bias(bias_attr)) bias=ParamAttr.to_bias(bias_attr))
return LayerOutput( return LayerOutput(
name, LayerType.SCALE_SHIFT_LAYER, parents=[input], size=input.size) name, LayerType.SCALE_SHIFT_LAYER, parents=[input], size=input.size)
@wrap_name_default("resize")
def resize_layer(input, size, name=None):
"""
The resize layer resizes the input matrix with a shape of [Height, Width]
into the output matrix with a shape of [Height x Width / size, size],
where size is the parameter of this layer indicating the output dimension.
:param input: The input to this layer.
:type input: LayerOutput.
:param name: The name of this layer. It is optional.
:type name: basestring
:param size: The resized output dimesion of this layer.
:type size: int
:return: A LayerOutput object.
:rtype: LayerOutput
"""
Layer(name=name, type=LayerType.RESIZE, inputs=Input(input.name), size=size)
return LayerOutput(name, LayerType.RESIZE, parents=[input], size=input.size)
...@@ -10,6 +10,6 @@ test_prelu_layer test_row_conv test_detection_output_layer test_multibox_loss_la ...@@ -10,6 +10,6 @@ test_prelu_layer test_row_conv test_detection_output_layer test_multibox_loss_la
test_recursive_topology test_gated_unit_layer test_clip_layer test_row_l2_norm_layer test_recursive_topology test_gated_unit_layer test_clip_layer test_row_l2_norm_layer
test_kmax_seq_socre_layer test_sub_nested_seq_select_layer test_scale_shift_layer test_kmax_seq_socre_layer test_sub_nested_seq_select_layer test_scale_shift_layer
test_seq_slice_layer test_cross_entropy_over_beam test_pooling3D_layer test_seq_slice_layer test_cross_entropy_over_beam test_pooling3D_layer
test_conv3d_layer test_deconv3d_layer test_BatchNorm3D) test_conv3d_layer test_deconv3d_layer test_BatchNorm3D test_resize_layer)
export whole_configs=(test_split_datasource) export whole_configs=(test_split_datasource)
type: "nn"
layers {
name: "input"
type: "data"
size: 300
active_type: ""
}
layers {
name: "__resize_0__"
type: "resize"
size: 150
active_type: ""
inputs {
input_layer_name: "input"
}
}
input_layer_names: "input"
output_layer_names: "__resize_0__"
sub_models {
name: "root"
layer_names: "input"
layer_names: "__resize_0__"
input_layer_names: "input"
output_layer_names: "__resize_0__"
is_recurrent_layer_group: false
}
from paddle.trainer_config_helpers import *
data = data_layer(name='input', size=300)
resized = resize_layer(input=data, size=150)
outputs(resized)
import unittest
import numpy as np
from op_test import OpTest
class TestAddOp(OpTest):
def setUp(self):
self.op_type = "add"
self.inputs = {
'X': np.random.random((102, 105)).astype("float32"),
'Y': np.random.random((102, 105)).astype("float32")
}
self.outputs = {'Out': self.inputs['X'] + self.inputs['Y']}
def test_check_output(self):
self.check_output()
if __name__ == "__main__":
unittest.main()
...@@ -15,7 +15,7 @@ class PySimpleCond(object): ...@@ -15,7 +15,7 @@ class PySimpleCond(object):
for i in range(1, 10, 2): for i in range(1, 10, 2):
array[i] = 0 array[i] = 0
self.cond = np.array(array) self.cond = np.array(array)
self.x = np.ones(shape=(10, 1)) self.x = np.ones(shape=(10, 1)).astype("float32")
def forward(self): def forward(self):
self.index_t = np.where(self.cond == 1) self.index_t = np.where(self.cond == 1)
......
import unittest
import numpy as np
import paddle.v2.framework.core as core
from op_test import get_numeric_gradient
from op_test import create_op
class GetNumericGradientTest(unittest.TestCase):
def test_add_op(self):
x = np.random.random((10, 1)).astype("float32")
y = np.random.random((10, 1)).astype("float32")
z = x + y
scope = core.Scope()
add_op = create_op(scope, "add", {'X': x, 'Y': y}, {'Out': z}, dict())
arr = get_numeric_gradient(scope, add_op, {'X': x,
'Y': y}, 'X', ['Out'])
self.assertAlmostEqual(arr.mean(), 1.0, delta=1e-4)
def test_softmax_op(self):
def stable_softmax(x):
"""Compute the softmax of vector x in a numerically stable way."""
shiftx = x - np.max(x)
exps = np.exp(shiftx)
return exps / np.sum(exps)
def label_softmax_grad(Y, dY):
dX = Y * 0.0
for i in range(Y.shape[0]):
d = np.dot(Y[i, :], dY[i, :])
dX[i, :] = Y[i, :] * (dY[i, :] - d)
return dX
X = np.random.random((2, 2)).astype("float32")
Y = np.apply_along_axis(stable_softmax, 1, X)
dY = np.ones(Y.shape)
dX = label_softmax_grad(Y, dY)
scope = core.Scope()
softmax_op = create_op(scope, "softmax", {"X": X}, {"Y": Y}, dict())
arr = get_numeric_gradient(scope, softmax_op, {"X": X}, "X", "Y")
np.testing.assert_almost_equal(arr, dX, decimal=1e-2)
if __name__ == "__main__":
unittest.main()
...@@ -15,7 +15,7 @@ def fc(X, W, Y): ...@@ -15,7 +15,7 @@ def fc(X, W, Y):
class TestNet(unittest.TestCase): class TestNet(unittest.TestCase):
def test_net_all(self): def test_net_all(self):
net = core.Net.create() net = core.Net.create()
op1 = Operator("add", X="X", Y="Y", Out="Out") op1 = Operator("sum", X=["X", "Y"], Out="Out")
net.append_op(op1) net.append_op(op1)
net2 = core.Net.create() net2 = core.Net.create()
...@@ -26,7 +26,7 @@ class TestNet(unittest.TestCase): ...@@ -26,7 +26,7 @@ class TestNet(unittest.TestCase):
expected = ''' expected = '''
Op(plain_net), inputs:{all[W, X, Y]}, outputs:{all[Out, fc.out, pre_activation]}. Op(plain_net), inputs:{all[W, X, Y]}, outputs:{all[Out, fc.out, pre_activation]}.
Op(add), inputs:{X[X], Y[Y]}, outputs:{Out[Out]}. Op(sum), inputs:{X[X, Y]}, outputs:{Out[Out]}.
Op(plain_net), inputs:{all[W, X]}, outputs:{all[fc.out, pre_activation]}. Op(plain_net), inputs:{all[W, X]}, outputs:{all[fc.out, pre_activation]}.
Op(plain_net), inputs:{all[W, X]}, outputs:{all[fc.out, pre_activation]}. Op(plain_net), inputs:{all[W, X]}, outputs:{all[fc.out, pre_activation]}.
Op(mul), inputs:{X[X], Y[W]}, outputs:{Out[pre_activation]}. Op(mul), inputs:{X[X], Y[W]}, outputs:{Out[pre_activation]}.
......
...@@ -193,10 +193,10 @@ class TestOpDescCreationMethod(unittest.TestCase): ...@@ -193,10 +193,10 @@ class TestOpDescCreationMethod(unittest.TestCase):
class TestOpCreations(unittest.TestCase): class TestOpCreations(unittest.TestCase):
def test_all(self): def test_all(self):
add_op = op.Operator("add", X="a", Y="b", Out="z") add_op = op.Operator("sum", X=["a", "b"], Out="z")
self.assertIsNotNone(add_op) self.assertIsNotNone(add_op)
# Invoke C++ DebugString() # Invoke C++ DebugString()
self.assertEqual('Op(add), inputs:{X[a], Y[b]}, outputs:{Out[z]}.', self.assertEqual('Op(sum), inputs:{X[a, b]}, outputs:{Out[z]}.',
str(add_op)) str(add_op))
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册