未验证 提交 32b62c25 编写于 作者: Z zhaoyuchen2018 提交者: GitHub

optimize sum op (#16820)

* optimize sum op

fuse multi eigen kernel calls into one cuda kernel.
refine code

test=develop.
Signed-off-by: Nzhaoyuchen <zhaoyuchen01@baidu.com>

* Refine code.

test=develop
Signed-off-by: Nzhaoyuchen <zhaoyuchen01@baidu.com>

* Refine code according to comments.

test=develop

* refine code

delete sum_op_gpu.h
test=develop

* Fix test error.

test=develop
Signed-off-by: Nzhaoyuchen <zhaoyuchen01@baidu.com>

* refine code in format.

test=develop.

* refine code

test=develop
Signed-off-by: Nzhaoyuchen <zhaoyuchen01@baidu.com>

* refine code

test=develop
Signed-off-by: Nzhaoyuchen <zhaoyuchen01@baidu.com>
上级 a72dbe9a
......@@ -8,9 +8,246 @@ distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <paddle/fluid/platform/device_context.h>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/sum_op.h"
#include "paddle/fluid/platform/float16.h"
namespace plat = paddle::platform;
namespace paddle {
namespace operators {
#define CEIL_DIV(x, y) (((x) + (y)-1) / (y))
using LoDTensor = framework::LoDTensor;
template <class T>
__global__ void Sum2CUDAKernel(const T *in_0, const T *in_1, T *out,
int64_t N) {
int id = blockIdx.x * blockDim.x + threadIdx.x;
while (id < N) {
out[id] = in_0[id] + in_1[id];
id += blockDim.x * gridDim.x;
}
}
template <class T>
__global__ void SumArrayCUDAKernel(T **in, T *out, int64_t N, size_t in_size,
bool read_dst) {
int id = blockIdx.x * blockDim.x + threadIdx.x;
while (id < N) {
T total(0);
for (int i = 0; i < in_size; ++i) {
const T *tmp = in[i];
if (tmp) {
total += tmp[id];
}
}
if (read_dst) {
out[id] += total;
} else {
out[id] = total;
}
id += blockDim.x * gridDim.x;
}
}
template <class T>
__global__ void SumSelectedRowsCUDAKernel(T **sr_in_out, int64_t N,
size_t rows) {
int id = blockIdx.x * blockDim.x + threadIdx.x;
while (id < N) {
for (int i = 0; i < 2 * rows; i += 2) {
const T *tmp = sr_in_out[i];
T *tmp_out = sr_in_out[i + 1];
if (tmp && tmp_out) {
tmp_out[id] += tmp[id];
}
}
id += blockDim.x * gridDim.x;
}
}
template <class T>
__global__ void SumAlign4CUDAKernel(const T *in_0, const T *in_1, T *out,
int64_t N) {
int id = blockIdx.x * blockDim.x + threadIdx.x;
for (int i = id; i < N / 4; i += blockDim.x * gridDim.x) {
const float4 *in0_4 = reinterpret_cast<float4 *>(in_0);
const float4 *in1_4 = reinterpret_cast<float4 *>(in_1);
float4 tmp;
tmp.x = in0_4[i].x + in1_4[i].x;
tmp.y = in0_4[i].y + in1_4[i].y;
tmp.z = in0_4[i].z + in1_4[i].z;
tmp.w = in0_4[i].w + in1_4[i].w;
reinterpret_cast<float4 *>(out)[i] = tmp;
}
}
template <class T>
void FuseLodTensorSumCompute(const framework::ExecutionContext &context) {
auto in_vars = context.MultiInputVar("X");
const size_t in_num = in_vars.size();
constexpr size_t theory_sm_threads = 1024;
auto &dev_ctx =
context.template device_context<platform::CUDADeviceContext>();
auto stream = dev_ctx.stream();
auto max_threads = dev_ctx.GetMaxPhysicalThreadCount();
auto sm_count = max_threads / theory_sm_threads;
size_t tile_size = 0;
dim3 grids;
dim3 blocks;
auto ComputeKernelParameter = [&](size_t length) {
if (length >= max_threads)
tile_size = 1024;
else if (length < max_threads && length > sm_count * 128)
tile_size = 512;
else if (length <= sm_count * 128)
tile_size = 256;
grids = dim3(CEIL_DIV(length, tile_size), 1, 1);
blocks = dim3(tile_size, 1, 1);
};
auto *out = context.Output<LoDTensor>("Out");
auto out_var = context.OutputVar("Out");
bool in_place = in_vars[0] == out_var;
if (!in_place) {
out->mutable_data<T>(context.GetPlace());
}
int start = in_place ? 1 : 0;
if (!in_place) {
// seperate path for a+b,maybe not fast than eigen
if (in_num == 2 && in_vars[0]->IsType<framework::LoDTensor>() &&
in_vars[1]->IsType<framework::LoDTensor>()) {
auto &in_0 = in_vars[0]->Get<framework::LoDTensor>();
auto &in_1 = in_vars[1]->Get<framework::LoDTensor>();
auto length = in_0.numel();
if (length) {
ComputeKernelParameter(length);
Sum2CUDAKernel<T><<<grids, blocks, 0, stream>>>(
in_0.data<T>(), in_1.data<T>(), out->data<T>(), length);
}
return;
}
}
if (!in_place) {
math::SetConstant<platform::CUDADeviceContext, T> constant_functor;
constant_functor(
context.template device_context<platform::CUDADeviceContext>(), out,
static_cast<T>(0));
}
std::vector<const T *> in_data;
std::vector<int> selectrow_index;
int64_t lod_length = 0;
bool dst_write = false;
for (int i = start; i < in_num; ++i) {
if (in_vars[i]->IsType<framework::LoDTensor>()) {
auto &in_i = in_vars[i]->Get<framework::LoDTensor>();
in_data.emplace_back(in_i.data<T>());
lod_length = in_i.numel();
} else if (in_vars[i]->IsType<framework::SelectedRows>()) {
selectrow_index.push_back(i);
}
}
// compute select rows seperately.
if (!selectrow_index.empty()) {
std::vector<const T *> sr_in_out_data;
size_t rows = 0;
int64_t length = 0;
for (auto index : selectrow_index) {
auto &sr = in_vars[index]->Get<framework::SelectedRows>();
auto &sr_value = sr.value();
auto &sr_rows = sr.rows();
auto row_numel = sr_value.numel() / sr_rows.size();
auto out_dims = out->dims();
PADDLE_ENFORCE_EQ(sr.height(), out_dims[0]);
PADDLE_ENFORCE_EQ(row_numel, out->numel() / sr.height());
auto *sr_data = sr_value.data<T>();
auto *sr_out_data = out->data<T>();
rows += sr_rows.size();
length = row_numel;
for (size_t i = 0; i < sr_rows.size(); ++i) {
sr_in_out_data.emplace_back(&sr_data[i * row_numel]);
sr_in_out_data.emplace_back(&sr_out_data[sr_rows[i] * row_numel]);
}
}
if (!sr_in_out_data.empty()) {
auto tmp_sr_in_out_array =
platform::DeviceTemporaryAllocator::Instance().Get(dev_ctx).Allocate(
sr_in_out_data.size() * sizeof(T *));
memory::Copy(boost::get<platform::CUDAPlace>(dev_ctx.GetPlace()),
tmp_sr_in_out_array->ptr(), platform::CPUPlace(),
reinterpret_cast<void *>(sr_in_out_data.data()),
sr_in_out_data.size() * sizeof(T *), dev_ctx.stream());
T **sr_in_out_array_data =
reinterpret_cast<T **>(tmp_sr_in_out_array->ptr());
ComputeKernelParameter(length);
SumSelectedRowsCUDAKernel<T><<<grids, blocks, 0, stream>>>(
sr_in_out_array_data, length, rows);
dst_write = true;
}
}
// if indata not null, merge into one kernel call.
if (!in_data.empty()) {
auto tmp_in_array =
platform::DeviceTemporaryAllocator::Instance().Get(dev_ctx).Allocate(
in_data.size() * sizeof(T *));
memory::Copy(boost::get<platform::CUDAPlace>(dev_ctx.GetPlace()),
tmp_in_array->ptr(), platform::CPUPlace(),
reinterpret_cast<void *>(in_data.data()),
in_data.size() * sizeof(T *), dev_ctx.stream());
T **in_array_data = reinterpret_cast<T **>(tmp_in_array->ptr());
ComputeKernelParameter(lod_length);
SumArrayCUDAKernel<T><<<grids, blocks, 0, stream>>>(
in_array_data, out->data<T>(), lod_length, in_data.size(),
dst_write | in_place);
}
}
template <typename T>
class SumKernel<platform::CUDADeviceContext, T>
: public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext &context) const override {
auto in_vars = context.MultiInputVar("X");
const size_t in_num = in_vars.size();
auto out_var = context.OutputVar("Out");
bool in_place = out_var == in_vars[0];
if (out_var->IsType<framework::LoDTensor>()) {
FuseLodTensorSumCompute<T>(context);
} else if (out_var->IsType<framework::SelectedRows>()) {
SelectedRowsCompute<platform::CUDADeviceContext, T>(context);
} else if (out_var->IsType<framework::LoDTensorArray>()) {
LodTensorArrayCompute<platform::CUDADeviceContext, T>(context);
} else {
PADDLE_THROW("Unexpected branch, output variable type is %s",
framework::ToTypeName(out_var->Type()));
}
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
namespace plat = paddle::platform;
REGISTER_OP_CUDA_KERNEL(
......
......@@ -28,61 +28,11 @@ template <typename T, int MajorType = Eigen::RowMajor,
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
template <typename DeviceContext, typename T>
class SumKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext &context) const override {
void SelectedRowsCompute(const framework::ExecutionContext &context) {
auto in_vars = context.MultiInputVar("X");
size_t in_num = in_vars.size();
auto out_var = context.OutputVar("Out");
bool in_place = out_var == in_vars[0];
if (out_var->IsType<framework::LoDTensor>()) {
auto *out = context.Output<LoDTensor>("Out");
if (!in_place) {
out->mutable_data<T>(context.GetPlace());
}
auto result = EigenVector<T>::Flatten(*out);
auto &place =
*context.template device_context<DeviceContext>().eigen_device();
int start = in_place ? 1 : 0;
if (!in_place) {
if ((in_num >= 2) && in_vars[0]->IsType<framework::LoDTensor>() &&
in_vars[1]->IsType<framework::LoDTensor>()) {
auto &in_0 = in_vars[0]->Get<framework::LoDTensor>();
auto &in_1 = in_vars[1]->Get<framework::LoDTensor>();
if (in_0.numel() && in_1.numel()) {
auto in_0_e = EigenVector<T>::Flatten(in_0);
auto in_1_e = EigenVector<T>::Flatten(in_1);
result.device(place) = in_0_e + in_1_e;
start = 2;
}
}
if (start != 2) {
math::SetConstant<DeviceContext, T> constant_functor;
constant_functor(context.template device_context<DeviceContext>(),
out, static_cast<T>(0));
}
}
math::SelectedRowsAddToTensor<DeviceContext, T> functor;
// If in_place, just skip the first tensor
for (size_t i = start; i < in_num; i++) {
if (in_vars[i]->IsType<framework::LoDTensor>()) {
auto &in_t = in_vars[i]->Get<framework::LoDTensor>();
if (in_t.numel() == 0) {
continue;
}
auto in = EigenVector<T>::Flatten(in_t);
result.device(place) = result + in;
} else if (in_vars[i]->IsType<framework::SelectedRows>()) {
auto &in_t = in_vars[i]->Get<framework::SelectedRows>();
functor(context.template device_context<DeviceContext>(), in_t, out);
} else {
PADDLE_THROW("Variable type must be LoDTensor/SelectedRows.");
}
}
} else if (out_var->IsType<framework::SelectedRows>()) {
if (in_place && in_vars.size() < 2) {
return;
}
......@@ -94,8 +44,7 @@ class SumKernel : public framework::OpKernel<T> {
auto &in0 = in_vars[0]->Get<SelectedRows>();
temp_in0.set_height(in0.height());
temp_in0.set_rows(in0.rows());
framework::TensorCopy(in0.value(), in0.place(),
context.device_context(),
framework::TensorCopy(in0.value(), in0.place(), context.device_context(),
temp_in0.mutable_value());
inputs.push_back(&temp_in0);
for (size_t i = 1; i < in_vars.size(); ++i) {
......@@ -125,8 +74,7 @@ class SumKernel : public framework::OpKernel<T> {
}
if (has_data) {
math::scatter::MergeAdd<DeviceContext, T> merge_add;
merge_add(context.template device_context<DeviceContext>(), inputs,
out);
merge_add(context.template device_context<DeviceContext>(), inputs, out);
out->SyncIndex();
......@@ -135,7 +83,13 @@ class SumKernel : public framework::OpKernel<T> {
out->mutable_value()->mutable_data<T>(framework::make_ddim({0}),
context.GetPlace());
}
} else if (out_var->IsType<framework::LoDTensorArray>()) {
}
template <typename DeviceContext, typename T>
void LodTensorArrayCompute(const framework::ExecutionContext &context) {
auto in_vars = context.MultiInputVar("X");
auto out_var = context.OutputVar("Out");
bool in_place = out_var == in_vars[0];
auto &out_array = *out_var->GetMutable<framework::LoDTensorArray>();
for (size_t i = in_place ? 1 : 0; i < in_vars.size(); ++i) {
PADDLE_ENFORCE(in_vars[i]->IsType<framework::LoDTensorArray>(),
......@@ -161,6 +115,67 @@ class SumKernel : public framework::OpKernel<T> {
}
}
}
}
template <typename DeviceContext, typename T>
class SumKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext &context) const override {
auto in_vars = context.MultiInputVar("X");
size_t in_num = in_vars.size();
auto out_var = context.OutputVar("Out");
bool in_place = out_var == in_vars[0];
if (out_var->IsType<framework::LoDTensor>()) {
auto *out = context.Output<LoDTensor>("Out");
if (!in_place) {
out->mutable_data<T>(context.GetPlace());
}
auto result = EigenVector<T>::Flatten(*out);
auto &place =
*context.template device_context<DeviceContext>().eigen_device();
int start = in_place ? 1 : 0;
if (!in_place) {
if ((in_num >= 2) && in_vars[0]->IsType<framework::LoDTensor>() &&
in_vars[1]->IsType<framework::LoDTensor>()) {
auto &in_0 = in_vars[0]->Get<framework::LoDTensor>();
auto &in_1 = in_vars[1]->Get<framework::LoDTensor>();
if (in_0.numel() && in_1.numel()) {
auto in_0_e = EigenVector<T>::Flatten(in_0);
auto in_1_e = EigenVector<T>::Flatten(in_1);
result.device(place) = in_0_e + in_1_e;
start = 2;
}
}
if (start != 2) {
math::SetConstant<DeviceContext, T> constant_functor;
constant_functor(context.template device_context<DeviceContext>(),
out, static_cast<T>(0));
}
}
math::SelectedRowsAddToTensor<DeviceContext, T> functor;
// If in_place, just skip the first tensor
for (size_t i = start; i < in_num; i++) {
if (in_vars[i]->IsType<framework::LoDTensor>()) {
auto &in_t = in_vars[i]->Get<framework::LoDTensor>();
if (in_t.numel() == 0) {
continue;
}
auto in = EigenVector<T>::Flatten(in_t);
result.device(place) = result + in;
} else if (in_vars[i]->IsType<framework::SelectedRows>()) {
auto &in_t = in_vars[i]->Get<framework::SelectedRows>();
functor(context.template device_context<DeviceContext>(), in_t, out);
} else {
PADDLE_THROW("Variable type must be LoDTensor/SelectedRows.");
}
}
} else if (out_var->IsType<framework::SelectedRows>()) {
SelectedRowsCompute<DeviceContext, T>(context);
} else if (out_var->IsType<framework::LoDTensorArray>()) {
LodTensorArrayCompute<DeviceContext, T>(context);
} else {
PADDLE_THROW("Unexpected branch, output variable type is %s",
framework::ToTypeName(out_var->Type()));
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册