Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
30b66f03
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
30b66f03
编写于
8月 05, 2022
作者:
Z
zhaoyingli
提交者:
GitHub
8月 05, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix conflict (#44891)
上级
247002ec
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
458 addition
and
456 deletion
+458
-456
python/paddle/distributed/auto_parallel/dist_op.py
python/paddle/distributed/auto_parallel/dist_op.py
+3
-3
python/paddle/fluid/tests/unittests/auto_parallel/engine_api.py
.../paddle/fluid/tests/unittests/auto_parallel/engine_api.py
+30
-27
python/paddle/fluid/tests/unittests/auto_parallel_gpt_model.py
...n/paddle/fluid/tests/unittests/auto_parallel_gpt_model.py
+339
-343
python/paddle/fluid/tests/unittests/test_auto_parallel_reshard_mppp.py
.../fluid/tests/unittests/test_auto_parallel_reshard_mppp.py
+86
-83
未找到文件。
python/paddle/distributed/auto_parallel/dist_op.py
浏览文件 @
30b66f03
...
...
@@ -26,6 +26,7 @@ from .dist_attribute import get_op_dist_attr_field_keys
class
DistributedOperator
:
def
__init__
(
self
,
serial_op
,
dist_attr
=
None
):
self
.
_serial_op
=
serial_op
self
.
_serial_inputs
=
{}
...
...
@@ -248,6 +249,7 @@ class DistributedOperator:
class
DistributedModule
:
def
__init__
(
self
,
serial_module
,
dist_attr
=
None
):
self
.
_serial_module
=
serial_module
self
.
_dist_attr
=
dist_attr
...
...
@@ -265,6 +267,4 @@ class DistributedModule:
dist_op
=
DistributedOperator
(
op
,
self
.
_dist_attr
)
dist_op
.
dist_attr
.
mark_annotated_as
(
self
.
_dist_attr
)
default_dist_ctx
.
add_dist_op_for_program
(
dist_op
)
if
isinstance
(
output
,
Variable
):
output
=
[
output
]
return
list
(
output
)
return
output
python/paddle/fluid/tests/unittests/auto_parallel/engine_api.py
浏览文件 @
30b66f03
...
...
@@ -47,6 +47,7 @@ paddle.seed(44)
class
MyDataset
(
Dataset
):
def
__init__
(
self
,
num_samples
):
super
(
MyDataset
,
self
).
__init__
()
self
.
num_samples
=
num_samples
...
...
@@ -61,6 +62,7 @@ class MyDataset(Dataset):
class
MLPLayer
(
nn
.
Layer
):
def
__init__
(
self
,
hidden_size
=
1024
,
intermediate_size
=
4
*
1024
,
...
...
@@ -69,43 +71,45 @@ class MLPLayer(nn.Layer):
super
(
MLPLayer
,
self
).
__init__
()
d_model
=
hidden_size
dim_feedforward
=
intermediate_size
weight_attr
=
paddle
.
ParamAttr
(
initializer
=
nn
.
initializer
.
Normal
(
mean
=
0.0
,
std
=
initializer_range
))
weight_attr
=
paddle
.
ParamAttr
(
initializer
=
nn
.
initializer
.
Normal
(
mean
=
0.0
,
std
=
initializer_range
))
bias_attr
=
None
self
.
linear0
=
nn
.
Linear
(
d_model
,
dim_feedforward
,
weight_attr
,
bias_attr
=
bias_attr
)
self
.
linear1
=
nn
.
Linear
(
dim_feedforward
,
d_model
,
weight_attr
,
bias_attr
=
bias_attr
)
self
.
linear0
=
nn
.
Linear
(
d_model
,
dim_feedforward
,
weight_attr
,
bias_attr
=
bias_attr
)
self
.
linear1
=
nn
.
Linear
(
dim_feedforward
,
d_model
,
weight_attr
,
bias_attr
=
bias_attr
)
self
.
linear2
=
nn
.
Linear
(
d_model
,
1
,
weight_attr
,
bias_attr
=
bias_attr
)
self
.
norm
=
nn
.
LayerNorm
(
d_model
,
epsilon
=
1e-5
)
self
.
dropout
=
nn
.
Dropout
(
dropout_ratio
,
mode
=
"upscale_in_train"
)
def
forward
(
self
,
input
):
out
=
auto
.
shard_op
(
self
.
norm
,
dist_attr
=
{
"process_mesh"
:
PP_MESH_0
})(
input
)[
0
]
out
=
self
.
linear0
(
inp
ut
)
out
=
auto
.
shard_op
(
self
.
norm
,
dist_attr
=
{
"process_mesh"
:
PP_MESH_0
})(
input
)
out
=
self
.
linear0
(
o
ut
)
out
=
F
.
gelu
(
out
,
approximate
=
True
)
out
=
auto
.
shard_op
(
self
.
linear1
,
dist_attr
=
{
"process_mesh"
:
PP_MESH_1
})(
out
)[
0
]
out
=
auto
.
shard_op
(
self
.
linear1
,
dist_attr
=
{
"process_mesh"
:
PP_MESH_1
})(
out
)
out
=
self
.
dropout
(
out
)
out
=
self
.
linear2
(
out
)
return
out
def
train
():
mlp
=
MLPLayer
(
hidden_size
=
hidden_size
,
intermediate_size
=
4
*
hidden_size
,
dropout_ratio
=
0.1
,
initializer_range
=
0.02
)
mlp
=
MLPLayer
(
hidden_size
=
hidden_size
,
intermediate_size
=
4
*
hidden_size
,
dropout_ratio
=
0.1
,
initializer_range
=
0.02
)
loss
=
paddle
.
nn
.
CrossEntropyLoss
()
optimizer
=
paddle
.
fluid
.
optimizer
.
AdamOptimizer
(
learning_rate
=
0.00001
,
beta1
=
0.9
,
beta2
=
0.999
,
epsilon
=
1e-08
,
grad_clip
=
None
)
optimizer
=
paddle
.
fluid
.
optimizer
.
AdamOptimizer
(
learning_rate
=
0.00001
,
beta1
=
0.9
,
beta2
=
0.999
,
epsilon
=
1e-08
,
grad_clip
=
None
)
dataset
=
MyDataset
(
batch_num
*
batch_size
)
inputs_spec
=
InputSpec
([
batch_size
,
hidden_size
],
'float32'
,
'x'
)
...
...
@@ -119,11 +123,10 @@ def train():
dist_strategy
.
semi_auto
=
True
fleet
.
init
(
is_collective
=
True
,
strategy
=
dist_strategy
)
engine
=
Engine
(
mlp
,
inputs_spec
=
inputs_spec
,
labels_spec
=
labels_spec
,
strategy
=
dist_strategy
)
engine
=
Engine
(
mlp
,
inputs_spec
=
inputs_spec
,
labels_spec
=
labels_spec
,
strategy
=
dist_strategy
)
engine
.
prepare
(
optimizer
,
loss
)
engine
.
fit
(
dataset
,
batch_size
=
batch_size
,
...
...
python/paddle/fluid/tests/unittests/auto_parallel_gpt_model.py
浏览文件 @
30b66f03
...
...
@@ -76,26 +76,27 @@ class MultiHeadAttention(nn.Layer):
if
self
.
fuse
:
assert
self
.
kdim
==
embed_dim
assert
self
.
vdim
==
embed_dim
self
.
qkv_proj
=
nn
.
Linear
(
embed_dim
,
3
*
embed_dim
,
weight_attr
,
bias_attr
=
bias_attr
)
self
.
qkv_proj
=
nn
.
Linear
(
embed_dim
,
3
*
embed_dim
,
weight_attr
,
bias_attr
=
bias_attr
)
else
:
self
.
q_proj
=
nn
.
Linear
(
embed_dim
,
embed_dim
,
weight_attr
=
weight_attr
,
bias_attr
=
bias_attr
)
self
.
k_proj
=
nn
.
Linear
(
self
.
kdim
,
embed_dim
,
weight_attr
=
weight_attr
,
bias_attr
=
bias_attr
)
self
.
v_proj
=
nn
.
Linear
(
self
.
vdim
,
embed_dim
,
weight_attr
=
weight_attr
,
bias_attr
=
bias_attr
)
self
.
out_proj
=
nn
.
Linear
(
embed_dim
,
embed_dim
,
weight_attr
=
weight_attr
,
bias_attr
=
bias_attr
)
self
.
q_proj
=
nn
.
Linear
(
embed_dim
,
embed_dim
,
weight_attr
=
weight_attr
,
bias_attr
=
bias_attr
)
self
.
k_proj
=
nn
.
Linear
(
self
.
kdim
,
embed_dim
,
weight_attr
=
weight_attr
,
bias_attr
=
bias_attr
)
self
.
v_proj
=
nn
.
Linear
(
self
.
vdim
,
embed_dim
,
weight_attr
=
weight_attr
,
bias_attr
=
bias_attr
)
self
.
out_proj
=
nn
.
Linear
(
embed_dim
,
embed_dim
,
weight_attr
=
weight_attr
,
bias_attr
=
bias_attr
)
def
_fuse_prepare_qkv
(
self
,
query
):
mix_layer
=
self
.
qkv_proj
(
query
)
...
...
@@ -113,33 +114,30 @@ class MultiHeadAttention(nn.Layer):
"""
q
=
self
.
q_proj
(
query
)
if
_global_parallel_strategy
==
"mp"
:
auto
.
shard_tensor
(
self
.
q_proj
.
weight
,
dist_attr
=
{
"process_mesh"
:
_global_process_mesh
,
"dims_mapping"
:
[
-
1
,
0
]
})
auto
.
shard_tensor
(
self
.
q_proj
.
weight
,
dist_attr
=
{
"process_mesh"
:
_global_process_mesh
,
"dims_mapping"
:
[
-
1
,
0
]
})
elif
_global_parallel_strategy
==
"dp_mp"
:
auto
.
shard_tensor
(
self
.
q_proj
.
weight
,
dist_attr
=
{
"process_mesh"
:
_global_process_mesh
,
"dims_mapping"
:
[
-
1
,
1
]
})
auto
.
shard_tensor
(
self
.
q_proj
.
weight
,
dist_attr
=
{
"process_mesh"
:
_global_process_mesh
,
"dims_mapping"
:
[
-
1
,
1
]
})
elif
_global_parallel_strategy
==
"mp_pp"
:
auto
.
shard_tensor
(
self
.
q_proj
.
weight
,
dist_attr
=
{
"process_mesh"
:
MPPP_MESH_LIST
[
self
.
mesh_idx
],
"dims_mapping"
:
[
-
1
,
0
]
})
auto
.
shard_tensor
(
self
.
q_proj
.
weight
,
dist_attr
=
{
"process_mesh"
:
MPPP_MESH_LIST
[
self
.
mesh_idx
],
"dims_mapping"
:
[
-
1
,
0
]
})
elif
_global_parallel_strategy
==
"dp_mp_pp"
:
auto
.
shard_tensor
(
self
.
q_proj
.
weight
,
dist_attr
=
{
"process_mesh"
:
DPMPPP_MESH_LIST
[
self
.
mesh_idx
],
"dims_mapping"
:
[
-
1
,
1
]
})
auto
.
shard_tensor
(
self
.
q_proj
.
weight
,
dist_attr
=
{
"process_mesh"
:
DPMPPP_MESH_LIST
[
self
.
mesh_idx
],
"dims_mapping"
:
[
-
1
,
1
]
})
q
=
tensor
.
reshape
(
x
=
q
,
shape
=
[
0
,
0
,
self
.
num_heads
,
self
.
head_dim
])
q
=
tensor
.
transpose
(
x
=
q
,
perm
=
[
0
,
2
,
1
,
3
])
if
isinstance
(
cache
,
self
.
StaticCache
):
...
...
@@ -167,62 +165,56 @@ class MultiHeadAttention(nn.Layer):
"""
k
=
self
.
k_proj
(
key
)
if
_global_parallel_strategy
==
"mp"
:
auto
.
shard_tensor
(
self
.
k_proj
.
weight
,
dist_attr
=
{
"process_mesh"
:
_global_process_mesh
,
"dims_mapping"
:
[
-
1
,
0
]
})
auto
.
shard_tensor
(
self
.
k_proj
.
weight
,
dist_attr
=
{
"process_mesh"
:
_global_process_mesh
,
"dims_mapping"
:
[
-
1
,
0
]
})
elif
_global_parallel_strategy
==
"dp_mp"
:
auto
.
shard_tensor
(
self
.
k_proj
.
weight
,
dist_attr
=
{
"process_mesh"
:
_global_process_mesh
,
"dims_mapping"
:
[
-
1
,
1
]
})
auto
.
shard_tensor
(
self
.
k_proj
.
weight
,
dist_attr
=
{
"process_mesh"
:
_global_process_mesh
,
"dims_mapping"
:
[
-
1
,
1
]
})
elif
_global_parallel_strategy
==
"mp_pp"
:
auto
.
shard_tensor
(
self
.
k_proj
.
weight
,
dist_attr
=
{
"process_mesh"
:
MPPP_MESH_LIST
[
self
.
mesh_idx
],
"dims_mapping"
:
[
-
1
,
0
]
})
auto
.
shard_tensor
(
self
.
k_proj
.
weight
,
dist_attr
=
{
"process_mesh"
:
MPPP_MESH_LIST
[
self
.
mesh_idx
],
"dims_mapping"
:
[
-
1
,
0
]
})
elif
_global_parallel_strategy
==
"dp_mp_pp"
:
auto
.
shard_tensor
(
self
.
k_proj
.
weight
,
dist_attr
=
{
"process_mesh"
:
DPMPPP_MESH_LIST
[
self
.
mesh_idx
],
"dims_mapping"
:
[
-
1
,
1
]
})
auto
.
shard_tensor
(
self
.
k_proj
.
weight
,
dist_attr
=
{
"process_mesh"
:
DPMPPP_MESH_LIST
[
self
.
mesh_idx
],
"dims_mapping"
:
[
-
1
,
1
]
})
v
=
self
.
v_proj
(
value
)
if
_global_parallel_strategy
==
"mp"
:
auto
.
shard_tensor
(
self
.
v_proj
.
weight
,
dist_attr
=
{
"process_mesh"
:
_global_process_mesh
,
"dims_mapping"
:
[
-
1
,
0
]
})
auto
.
shard_tensor
(
self
.
v_proj
.
weight
,
dist_attr
=
{
"process_mesh"
:
_global_process_mesh
,
"dims_mapping"
:
[
-
1
,
0
]
})
elif
_global_parallel_strategy
==
"dp_mp"
:
auto
.
shard_tensor
(
self
.
v_proj
.
weight
,
dist_attr
=
{
"process_mesh"
:
_global_process_mesh
,
"dims_mapping"
:
[
-
1
,
1
]
})
auto
.
shard_tensor
(
self
.
v_proj
.
weight
,
dist_attr
=
{
"process_mesh"
:
_global_process_mesh
,
"dims_mapping"
:
[
-
1
,
1
]
})
elif
_global_parallel_strategy
==
"mp_pp"
:
auto
.
shard_tensor
(
self
.
v_proj
.
weight
,
dist_attr
=
{
"process_mesh"
:
MPPP_MESH_LIST
[
self
.
mesh_idx
],
"dims_mapping"
:
[
-
1
,
0
]
})
auto
.
shard_tensor
(
self
.
v_proj
.
weight
,
dist_attr
=
{
"process_mesh"
:
MPPP_MESH_LIST
[
self
.
mesh_idx
],
"dims_mapping"
:
[
-
1
,
0
]
})
elif
_global_parallel_strategy
==
"dp_mp_pp"
:
auto
.
shard_tensor
(
self
.
v_proj
.
weight
,
dist_attr
=
{
"process_mesh"
:
DPMPPP_MESH_LIST
[
self
.
mesh_idx
],
"dims_mapping"
:
[
-
1
,
1
]
})
auto
.
shard_tensor
(
self
.
v_proj
.
weight
,
dist_attr
=
{
"process_mesh"
:
DPMPPP_MESH_LIST
[
self
.
mesh_idx
],
"dims_mapping"
:
[
-
1
,
1
]
})
k
=
tensor
.
reshape
(
x
=
k
,
shape
=
[
0
,
0
,
self
.
num_heads
,
self
.
head_dim
])
k
=
tensor
.
transpose
(
x
=
k
,
perm
=
[
0
,
2
,
1
,
3
])
v
=
tensor
.
reshape
(
x
=
v
,
shape
=
[
0
,
0
,
self
.
num_heads
,
self
.
head_dim
])
...
...
@@ -276,17 +268,18 @@ class MultiHeadAttention(nn.Layer):
else
:
q
,
k
,
v
,
cache
=
self
.
_prepare_qkv
(
query
,
key
,
value
,
use_cache
,
cache
)
product
=
layers
.
matmul
(
x
=
q
,
y
=
k
,
transpose_y
=
True
,
alpha
=
self
.
head_dim
**-
0.5
)
product
=
layers
.
matmul
(
x
=
q
,
y
=
k
,
transpose_y
=
True
,
alpha
=
self
.
head_dim
**-
0.5
)
if
attn_mask
is
not
None
:
product
=
product
+
attn_mask
weights
=
F
.
softmax
(
product
)
if
self
.
dropout
:
weights
=
F
.
dropout
(
weights
,
self
.
dropout
,
training
=
self
.
training
,
mode
=
"upscale_in_train"
)
weights
=
F
.
dropout
(
weights
,
self
.
dropout
,
training
=
self
.
training
,
mode
=
"upscale_in_train"
)
out
=
tensor
.
matmul
(
weights
,
v
)
# combine heads
out
=
tensor
.
transpose
(
out
,
perm
=
[
0
,
2
,
1
,
3
])
...
...
@@ -294,33 +287,30 @@ class MultiHeadAttention(nn.Layer):
# project to output
out
=
self
.
out_proj
(
out
)
if
_global_parallel_strategy
==
"mp"
:
auto
.
shard_tensor
(
self
.
out_proj
.
weight
,
dist_attr
=
{
"process_mesh"
:
_global_process_mesh
,
"dims_mapping"
:
[
0
,
-
1
]
})
auto
.
shard_tensor
(
self
.
out_proj
.
weight
,
dist_attr
=
{
"process_mesh"
:
_global_process_mesh
,
"dims_mapping"
:
[
0
,
-
1
]
})
elif
_global_parallel_strategy
==
"dp_mp"
:
auto
.
shard_tensor
(
self
.
out_proj
.
weight
,
dist_attr
=
{
"process_mesh"
:
_global_process_mesh
,
"dims_mapping"
:
[
1
,
-
1
]
})
auto
.
shard_tensor
(
self
.
out_proj
.
weight
,
dist_attr
=
{
"process_mesh"
:
_global_process_mesh
,
"dims_mapping"
:
[
1
,
-
1
]
})
elif
_global_parallel_strategy
==
"mp_pp"
:
auto
.
shard_tensor
(
self
.
out_proj
.
weight
,
dist_attr
=
{
"process_mesh"
:
MPPP_MESH_LIST
[
self
.
mesh_idx
],
"dims_mapping"
:
[
0
,
-
1
]
})
auto
.
shard_tensor
(
self
.
out_proj
.
weight
,
dist_attr
=
{
"process_mesh"
:
MPPP_MESH_LIST
[
self
.
mesh_idx
],
"dims_mapping"
:
[
0
,
-
1
]
})
elif
_global_parallel_strategy
==
"dp_mp_pp"
:
auto
.
shard_tensor
(
self
.
out_proj
.
weight
,
dist_attr
=
{
"process_mesh"
:
DPMPPP_MESH_LIST
[
self
.
mesh_idx
],
"dims_mapping"
:
[
1
,
-
1
]
})
auto
.
shard_tensor
(
self
.
out_proj
.
weight
,
dist_attr
=
{
"process_mesh"
:
DPMPPP_MESH_LIST
[
self
.
mesh_idx
],
"dims_mapping"
:
[
1
,
-
1
]
})
outs
=
[
out
]
if
self
.
need_weights
:
outs
.
append
(
weights
)
...
...
@@ -362,36 +352,37 @@ class TransformerDecoder(nn.Layer):
new_caches
=
[]
self
.
checkpoints
=
[]
if
_global_parallel_strategy
==
"pp"
:
auto
.
shard_tensor
(
output
,
dist_attr
=
{
"process_mesh"
:
PP_MESH_LIST
[
0
],
"dims_mapping"
:
[
-
1
for
i
in
range
(
len
(
output
.
shape
))]
})
auto
.
shard_tensor
(
output
,
dist_attr
=
{
"process_mesh"
:
PP_MESH_LIST
[
0
],
"dims_mapping"
:
[
-
1
for
i
in
range
(
len
(
output
.
shape
))]
})
if
_global_parallel_strategy
==
"dp_pp"
:
auto
.
shard_tensor
(
output
,
dist_attr
=
{
"process_mesh"
:
DPPP_MESH_LIST
[
0
],
"dims_mapping"
:
[
0
]
+
[
-
1
for
i
in
range
(
len
(
output
.
shape
)
-
1
)]
})
auto
.
shard_tensor
(
output
,
dist_attr
=
{
"process_mesh"
:
DPPP_MESH_LIST
[
0
],
"dims_mapping"
:
[
0
]
+
[
-
1
for
i
in
range
(
len
(
output
.
shape
)
-
1
)]
})
if
_global_parallel_strategy
==
"mp_pp"
:
auto
.
shard_tensor
(
output
,
dist_attr
=
{
"process_mesh"
:
MPPP_MESH_LIST
[
0
],
"dims_mapping"
:
[
-
1
]
+
[
-
1
for
i
in
range
(
len
(
output
.
shape
)
-
1
)]
})
auto
.
shard_tensor
(
output
,
dist_attr
=
{
"process_mesh"
:
MPPP_MESH_LIST
[
0
],
"dims_mapping"
:
[
-
1
]
+
[
-
1
for
i
in
range
(
len
(
output
.
shape
)
-
1
)]
})
if
_global_parallel_strategy
==
"dp_mp_pp"
:
auto
.
shard_tensor
(
output
,
dist_attr
=
{
"process_mesh"
:
DPMPPP_MESH_LIST
[
0
],
"dims_mapping"
:
[
0
]
+
[
-
1
for
i
in
range
(
len
(
output
.
shape
)
-
1
)]
})
auto
.
shard_tensor
(
output
,
dist_attr
=
{
"process_mesh"
:
DPMPPP_MESH_LIST
[
0
],
"dims_mapping"
:
[
0
]
+
[
-
1
for
i
in
range
(
len
(
output
.
shape
)
-
1
)]
})
for
i
,
mod
in
enumerate
(
self
.
layers
):
if
cache
is
None
:
if
use_cache
:
...
...
@@ -400,11 +391,12 @@ class TransformerDecoder(nn.Layer):
mod
,
dist_attr
=
{
"process_mesh"
:
PP_MESH_LIST
[
mod
.
mesh_idx
]
})(
output
,
memory
,
tgt_mask
,
use_cache
,
cache
)
[
0
]
})(
output
,
memory
,
tgt_mask
,
use_cache
,
cache
)
auto
.
shard_tensor
(
output
,
dist_attr
=
{
"process_mesh"
:
PP_MESH_LIST
[
mod
.
mesh_idx
],
"process_mesh"
:
PP_MESH_LIST
[
mod
.
mesh_idx
],
"dims_mapping"
:
[
-
1
for
i
in
range
(
len
(
output
.
shape
))]
})
...
...
@@ -413,11 +405,12 @@ class TransformerDecoder(nn.Layer):
mod
,
dist_attr
=
{
"process_mesh"
:
DPPP_MESH_LIST
[
mod
.
mesh_idx
]
})(
output
,
memory
,
tgt_mask
,
use_cache
,
cache
)
[
0
]
})(
output
,
memory
,
tgt_mask
,
use_cache
,
cache
)
auto
.
shard_tensor
(
output
,
dist_attr
=
{
"process_mesh"
:
DPPP_MESH_LIST
[
mod
.
mesh_idx
],
"process_mesh"
:
DPPP_MESH_LIST
[
mod
.
mesh_idx
],
"dims_mapping"
:
[
0
]
+
[
-
1
for
i
in
range
(
len
(
output
.
shape
)
-
1
)]
})
...
...
@@ -426,11 +419,12 @@ class TransformerDecoder(nn.Layer):
mod
,
dist_attr
=
{
"process_mesh"
:
MPPP_MESH_LIST
[
mod
.
mesh_idx
]
})(
output
,
memory
,
tgt_mask
,
use_cache
,
cache
)
[
0
]
})(
output
,
memory
,
tgt_mask
,
use_cache
,
cache
)
auto
.
shard_tensor
(
output
,
dist_attr
=
{
"process_mesh"
:
MPPP_MESH_LIST
[
mod
.
mesh_idx
],
"process_mesh"
:
MPPP_MESH_LIST
[
mod
.
mesh_idx
],
"dims_mapping"
:
[
-
1
]
+
[
-
1
for
i
in
range
(
len
(
output
.
shape
)
-
1
)]
})
...
...
@@ -439,11 +433,12 @@ class TransformerDecoder(nn.Layer):
mod
,
dist_attr
=
{
"process_mesh"
:
DPMPPP_MESH_LIST
[
mod
.
mesh_idx
]
})(
output
,
memory
,
tgt_mask
,
use_cache
,
cache
)
[
0
]
})(
output
,
memory
,
tgt_mask
,
use_cache
,
cache
)
auto
.
shard_tensor
(
output
,
dist_attr
=
{
"process_mesh"
:
DPMPPP_MESH_LIST
[
mod
.
mesh_idx
],
"process_mesh"
:
DPMPPP_MESH_LIST
[
mod
.
mesh_idx
],
"dims_mapping"
:
[
0
]
+
[
-
1
for
i
in
range
(
len
(
output
.
shape
)
-
1
)]
})
...
...
@@ -456,41 +451,47 @@ class TransformerDecoder(nn.Layer):
new_caches
.
append
(
new_cache
)
else
:
if
_global_parallel_strategy
==
"pp"
:
output
=
auto
.
shard_op
(
mod
,
dist_attr
=
{
"process_mesh"
:
PP_MESH_LIST
[
mod
.
mesh_idx
]
})(
output
,
memory
,
tgt_mask
,
use_cache
,
cache
)[
0
]
output
=
auto
.
shard_op
(
mod
,
dist_attr
=
{
"process_mesh"
:
PP_MESH_LIST
[
mod
.
mesh_idx
]
})(
output
,
memory
,
tgt_mask
,
use_cache
,
cache
)
auto
.
shard_tensor
(
output
,
dist_attr
=
{
"process_mesh"
:
PP_MESH_LIST
[
mod
.
mesh_idx
],
"process_mesh"
:
PP_MESH_LIST
[
mod
.
mesh_idx
],
"dims_mapping"
:
[
-
1
for
i
in
range
(
len
(
output
.
shape
))]
})
elif
_global_parallel_strategy
==
"dp_pp"
:
output
=
auto
.
shard_op
(
mod
,
dist_attr
=
{
"process_mesh"
:
DPPP_MESH_LIST
[
mod
.
mesh_idx
]
})(
output
,
memory
,
tgt_mask
,
use_cache
,
cache
)[
0
]
output
=
auto
.
shard_op
(
mod
,
dist_attr
=
{
"process_mesh"
:
DPPP_MESH_LIST
[
mod
.
mesh_idx
]
})(
output
,
memory
,
tgt_mask
,
use_cache
,
cache
)
auto
.
shard_tensor
(
output
,
dist_attr
=
{
"process_mesh"
:
DPPP_MESH_LIST
[
mod
.
mesh_idx
],
"process_mesh"
:
DPPP_MESH_LIST
[
mod
.
mesh_idx
],
"dims_mapping"
:
[
0
]
+
[
-
1
for
i
in
range
(
len
(
output
.
shape
)
-
1
)]
})
elif
_global_parallel_strategy
==
"mp_pp"
:
output
=
auto
.
shard_op
(
mod
,
dist_attr
=
{
"process_mesh"
:
MPPP_MESH_LIST
[
mod
.
mesh_idx
]
})(
output
,
memory
,
tgt_mask
,
use_cache
,
cache
)[
0
]
output
=
auto
.
shard_op
(
mod
,
dist_attr
=
{
"process_mesh"
:
MPPP_MESH_LIST
[
mod
.
mesh_idx
]
})(
output
,
memory
,
tgt_mask
,
use_cache
,
cache
)
auto
.
shard_tensor
(
output
,
dist_attr
=
{
"process_mesh"
:
MPPP_MESH_LIST
[
mod
.
mesh_idx
],
"process_mesh"
:
MPPP_MESH_LIST
[
mod
.
mesh_idx
],
"dims_mapping"
:
[
-
1
]
+
[
-
1
for
i
in
range
(
len
(
output
.
shape
)
-
1
)]
})
...
...
@@ -499,11 +500,12 @@ class TransformerDecoder(nn.Layer):
mod
,
dist_attr
=
{
"process_mesh"
:
DPMPPP_MESH_LIST
[
mod
.
mesh_idx
]
})(
output
,
memory
,
tgt_mask
,
use_cache
,
cache
)
[
0
]
})(
output
,
memory
,
tgt_mask
,
use_cache
,
cache
)
auto
.
shard_tensor
(
output
,
dist_attr
=
{
"process_mesh"
:
DPMPPP_MESH_LIST
[
mod
.
mesh_idx
],
"process_mesh"
:
DPMPPP_MESH_LIST
[
mod
.
mesh_idx
],
"dims_mapping"
:
[
0
]
+
[
-
1
for
i
in
range
(
len
(
output
.
shape
)
-
1
)]
})
...
...
@@ -517,8 +519,9 @@ class TransformerDecoder(nn.Layer):
if
_global_parallel_strategy
==
"pp"
:
output
,
new_cache
=
auto
.
shard_op
(
mod
,
dist_attr
=
{
"process_mesh"
:
PP_MESH_LIST
[
mod
.
mesh_idx
]})(
output
,
memory
,
tgt_mask
,
use_cache
,
cache
)
dist_attr
=
{
"process_mesh"
:
PP_MESH_LIST
[
mod
.
mesh_idx
]
})(
output
,
memory
,
tgt_mask
,
use_cache
,
cache
)
auto
.
shard_tensor
(
output
,
dist_attr
=
{
...
...
@@ -535,7 +538,8 @@ class TransformerDecoder(nn.Layer):
auto
.
shard_tensor
(
output
,
dist_attr
=
{
"process_mesh"
:
DPPP_MESH_LIST
[
mod
.
mesh_idx
],
"process_mesh"
:
DPPP_MESH_LIST
[
mod
.
mesh_idx
],
"dims_mapping"
:
[
0
]
+
[
-
1
for
i
in
range
(
len
(
output
.
shape
)
-
1
)]
})
...
...
@@ -548,7 +552,8 @@ class TransformerDecoder(nn.Layer):
auto
.
shard_tensor
(
output
,
dist_attr
=
{
"process_mesh"
:
MPPP_MESH_LIST
[
mod
.
mesh_idx
],
"process_mesh"
:
MPPP_MESH_LIST
[
mod
.
mesh_idx
],
"dims_mapping"
:
[
-
1
]
+
[
-
1
for
i
in
range
(
len
(
output
.
shape
)
-
1
)]
})
...
...
@@ -561,7 +566,8 @@ class TransformerDecoder(nn.Layer):
auto
.
shard_tensor
(
output
,
dist_attr
=
{
"process_mesh"
:
DPMPPP_MESH_LIST
[
mod
.
mesh_idx
],
"process_mesh"
:
DPMPPP_MESH_LIST
[
mod
.
mesh_idx
],
"dims_mapping"
:
[
0
]
+
[
-
1
for
i
in
range
(
len
(
output
.
shape
)
-
1
)]
})
...
...
@@ -619,17 +625,20 @@ class TransformerDecoderLayer(nn.Layer):
self
.
normalize_before
=
normalize_before
weight_attrs
=
_convert_param_attr_to_list
(
weight_attr
,
3
)
bias_attrs
=
_convert_param_attr_to_list
(
bias_attr
,
3
)
self
.
self_attn
=
MultiHeadAttention
(
d_model
,
nhead
,
dropout
=
attn_dropout
,
weight_attr
=
weight_attrs
[
0
],
bias_attr
=
bias_attrs
[
0
],
mesh_idx
=
self
.
mesh_idx
)
self
.
linear1
=
nn
.
Linear
(
d_model
,
dim_feedforward
,
weight_attrs
[
2
],
bias_attr
=
bias_attrs
[
2
])
self
.
linear2
=
nn
.
Linear
(
dim_feedforward
,
d_model
,
weight_attrs
[
2
],
bias_attr
=
bias_attrs
[
2
])
self
.
self_attn
=
MultiHeadAttention
(
d_model
,
nhead
,
dropout
=
attn_dropout
,
weight_attr
=
weight_attrs
[
0
],
bias_attr
=
bias_attrs
[
0
],
mesh_idx
=
self
.
mesh_idx
)
self
.
linear1
=
nn
.
Linear
(
d_model
,
dim_feedforward
,
weight_attrs
[
2
],
bias_attr
=
bias_attrs
[
2
])
self
.
linear2
=
nn
.
Linear
(
dim_feedforward
,
d_model
,
weight_attrs
[
2
],
bias_attr
=
bias_attrs
[
2
])
self
.
norm1
=
nn
.
LayerNorm
(
d_model
,
epsilon
=
1e-5
)
self
.
norm2
=
nn
.
LayerNorm
(
d_model
,
epsilon
=
1e-5
)
self
.
dropout1
=
nn
.
Dropout
(
dropout
,
mode
=
"upscale_in_train"
)
...
...
@@ -652,72 +661,65 @@ class TransformerDecoderLayer(nn.Layer):
if
self
.
normalize_before
:
tgt
=
self
.
norm2
(
tgt
)
if
_global_parallel_strategy
==
"mp"
:
auto
.
shard_tensor
(
self
.
linear1
.
weight
,
dist_attr
=
{
"process_mesh"
:
_global_process_mesh
,
"dims_mapping"
:
[
-
1
,
0
]
})
auto
.
shard_tensor
(
self
.
linear1
.
weight
,
dist_attr
=
{
"process_mesh"
:
_global_process_mesh
,
"dims_mapping"
:
[
-
1
,
0
]
})
elif
_global_parallel_strategy
==
"dp_mp"
:
auto
.
shard_tensor
(
self
.
linear1
.
weight
,
dist_attr
=
{
"process_mesh"
:
_global_process_mesh
,
"dims_mapping"
:
[
-
1
,
1
]
})
auto
.
shard_tensor
(
self
.
linear1
.
weight
,
dist_attr
=
{
"process_mesh"
:
_global_process_mesh
,
"dims_mapping"
:
[
-
1
,
1
]
})
elif
_global_parallel_strategy
==
"mp_pp"
:
auto
.
shard_tensor
(
self
.
linear1
.
weight
,
dist_attr
=
{
"process_mesh"
:
MPPP_MESH_LIST
[
self
.
mesh_idx
],
"dims_mapping"
:
[
-
1
,
0
]
})
auto
.
shard_tensor
(
self
.
linear1
.
weight
,
dist_attr
=
{
"process_mesh"
:
MPPP_MESH_LIST
[
self
.
mesh_idx
],
"dims_mapping"
:
[
-
1
,
0
]
})
if
_global_parallel_strategy
==
"dp_mp_pp"
:
auto
.
shard_tensor
(
self
.
linear1
.
weight
,
dist_attr
=
{
"process_mesh"
:
DPMPPP_MESH_LIST
[
self
.
mesh_idx
],
"dims_mapping"
:
[
-
1
,
1
]
})
auto
.
shard_tensor
(
self
.
linear1
.
weight
,
dist_attr
=
{
"process_mesh"
:
DPMPPP_MESH_LIST
[
self
.
mesh_idx
],
"dims_mapping"
:
[
-
1
,
1
]
})
if
_global_parallel_strategy
==
"mp"
:
auto
.
shard_tensor
(
self
.
linear2
.
weight
,
dist_attr
=
{
"process_mesh"
:
_global_process_mesh
,
"dims_mapping"
:
[
0
,
-
1
]
})
auto
.
shard_tensor
(
self
.
linear2
.
weight
,
dist_attr
=
{
"process_mesh"
:
_global_process_mesh
,
"dims_mapping"
:
[
0
,
-
1
]
})
elif
_global_parallel_strategy
==
"dp_mp"
:
auto
.
shard_tensor
(
self
.
linear2
.
weight
,
dist_attr
=
{
"process_mesh"
:
_global_process_mesh
,
"dims_mapping"
:
[
1
,
-
1
]
})
auto
.
shard_tensor
(
self
.
linear2
.
weight
,
dist_attr
=
{
"process_mesh"
:
_global_process_mesh
,
"dims_mapping"
:
[
1
,
-
1
]
})
elif
_global_parallel_strategy
==
"mp_pp"
:
auto
.
shard_tensor
(
self
.
linear2
.
weight
,
dist_attr
=
{
"process_mesh"
:
MPPP_MESH_LIST
[
self
.
mesh_idx
],
"dims_mapping"
:
[
0
,
-
1
]
})
auto
.
shard_tensor
(
self
.
linear2
.
weight
,
dist_attr
=
{
"process_mesh"
:
MPPP_MESH_LIST
[
self
.
mesh_idx
],
"dims_mapping"
:
[
0
,
-
1
]
})
elif
_global_parallel_strategy
==
"dp_mp_pp"
:
auto
.
shard_tensor
(
self
.
linear2
.
weight
,
dist_attr
=
{
"process_mesh"
:
DPMPPP_MESH_LIST
[
self
.
mesh_idx
],
"dims_mapping"
:
[
1
,
-
1
]
})
auto
.
shard_tensor
(
self
.
linear2
.
weight
,
dist_attr
=
{
"process_mesh"
:
DPMPPP_MESH_LIST
[
self
.
mesh_idx
],
"dims_mapping"
:
[
1
,
-
1
]
})
tgt
=
self
.
dropout2
(
self
.
linear2
(
F
.
gelu
(
self
.
linear1
(
tgt
),
approximate
=
True
)))
self
.
linear2
(
F
.
gelu
(
self
.
linear1
(
tgt
),
approximate
=
True
)))
tgt
=
residual
+
tgt
if
not
self
.
normalize_before
:
tgt
=
self
.
norm2
(
tgt
)
return
tgt
if
use_cache
is
False
else
(
tgt
,
incremental_cache
)
def
gen_cache
(
self
,
memory
):
incremental_cache
=
self
.
self_attn
.
gen_cache
(
memory
,
type
=
self
.
self_attn
.
Cache
)
incremental_cache
=
self
.
self_attn
.
gen_cache
(
memory
,
type
=
self
.
self_attn
.
Cache
)
return
incremental_cache
...
...
@@ -737,17 +739,15 @@ class GPTEmbeddings(nn.Layer):
self
.
word_embeddings
=
nn
.
Embedding
(
vocab_size
,
hidden_size
,
weight_attr
=
paddle
.
ParamAttr
(
name
=
"word_embeddings"
,
initializer
=
nn
.
initializer
.
Normal
(
mean
=
0.0
,
std
=
initializer_range
)))
weight_attr
=
paddle
.
ParamAttr
(
name
=
"word_embeddings"
,
initializer
=
nn
.
initializer
.
Normal
(
mean
=
0.0
,
std
=
initializer_range
)))
self
.
position_embeddings
=
nn
.
Embedding
(
max_position_embeddings
,
hidden_size
,
weight_attr
=
paddle
.
ParamAttr
(
name
=
"pos_embeddings"
,
initializer
=
nn
.
initializer
.
Normal
(
mean
=
0.0
,
std
=
initializer_range
)))
weight_attr
=
paddle
.
ParamAttr
(
name
=
"pos_embeddings"
,
initializer
=
nn
.
initializer
.
Normal
(
mean
=
0.0
,
std
=
initializer_range
)))
self
.
dropout
=
nn
.
Dropout
(
hidden_dropout_prob
)
def
forward
(
self
,
input_ids
,
position_ids
=
None
):
...
...
@@ -757,33 +757,29 @@ class GPTEmbeddings(nn.Layer):
position_ids
=
seq_length
-
ones
input_embedings
=
self
.
word_embeddings
(
input_ids
)
if
_global_parallel_strategy
==
"mp"
:
auto
.
shard_tensor
(
self
.
word_embeddings
.
weight
,
dist_attr
=
{
"process_mesh"
:
_global_process_mesh
,
"dims_mapping"
:
[
0
,
-
1
]
})
auto
.
shard_tensor
(
self
.
word_embeddings
.
weight
,
dist_attr
=
{
"process_mesh"
:
_global_process_mesh
,
"dims_mapping"
:
[
0
,
-
1
]
})
elif
_global_parallel_strategy
==
"dp_mp"
:
auto
.
shard_tensor
(
self
.
word_embeddings
.
weight
,
dist_attr
=
{
"process_mesh"
:
_global_process_mesh
,
"dims_mapping"
:
[
1
,
-
1
]
})
auto
.
shard_tensor
(
self
.
word_embeddings
.
weight
,
dist_attr
=
{
"process_mesh"
:
_global_process_mesh
,
"dims_mapping"
:
[
1
,
-
1
]
})
elif
_global_parallel_strategy
==
"mp_pp"
:
auto
.
shard_tensor
(
self
.
word_embeddings
.
weight
,
dist_attr
=
{
"process_mesh"
:
MPPP_MESH_LIST
[
0
],
"dims_mapping"
:
[
0
,
-
1
]
})
auto
.
shard_tensor
(
self
.
word_embeddings
.
weight
,
dist_attr
=
{
"process_mesh"
:
MPPP_MESH_LIST
[
0
],
"dims_mapping"
:
[
0
,
-
1
]
})
elif
_global_parallel_strategy
==
"dp_mp_pp"
:
auto
.
shard_tensor
(
self
.
word_embeddings
.
weight
,
dist_attr
=
{
"process_mesh"
:
DPMPPP_MESH_LIST
[
0
],
"dims_mapping"
:
[
1
,
-
1
]
})
auto
.
shard_tensor
(
self
.
word_embeddings
.
weight
,
dist_attr
=
{
"process_mesh"
:
DPMPPP_MESH_LIST
[
0
],
"dims_mapping"
:
[
1
,
-
1
]
})
position_embeddings
=
self
.
position_embeddings
(
position_ids
)
embeddings
=
input_embedings
+
position_embeddings
embeddings
=
self
.
dropout
(
embeddings
)
...
...
@@ -821,9 +817,10 @@ class GPTModel(nn.Layer):
self
.
pipline_mode
=
(
pp_degree
is
not
None
and
pp_degree
>
1
)
if
self
.
pipline_mode
:
self
.
layer_per_stage
=
num_hidden_layers
//
pp_degree
self
.
embeddings
=
GPTEmbeddings
(
vocab_size
,
hidden_size
,
hidden_dropout_prob
,
max_position_embeddings
,
type_vocab_size
,
self
.
initializer_range
)
self
.
embeddings
=
GPTEmbeddings
(
vocab_size
,
hidden_size
,
hidden_dropout_prob
,
max_position_embeddings
,
type_vocab_size
,
self
.
initializer_range
)
decoder_layers
=
nn
.
LayerList
()
for
i
in
range
(
num_hidden_layers
):
mesh_index
=
None
...
...
@@ -831,25 +828,23 @@ class GPTModel(nn.Layer):
if
self
.
layer_per_stage
is
not
None
:
mesh_index
=
i
//
self
.
layer_per_stage
decoder_layers
.
append
(
DecoderLayer
(
d_model
=
hidden_size
,
nhead
=
num_attention_heads
,
dim_feedforward
=
intermediate_size
,
dropout
=
hidden_dropout_prob
,
activation
=
hidden_act
,
attn_dropout
=
attention_probs_dropout_prob
,
act_dropout
=
hidden_dropout_prob
,
weight_attr
=
paddle
.
ParamAttr
(
initializer
=
nn
.
initializer
.
Normal
(
mean
=
0.0
,
std
=
self
.
initializer_range
)),
bias_attr
=
None
,
mesh_idx
=
mesh_index
))
DecoderLayer
(
d_model
=
hidden_size
,
nhead
=
num_attention_heads
,
dim_feedforward
=
intermediate_size
,
dropout
=
hidden_dropout_prob
,
activation
=
hidden_act
,
attn_dropout
=
attention_probs_dropout_prob
,
act_dropout
=
hidden_dropout_prob
,
weight_attr
=
paddle
.
ParamAttr
(
initializer
=
nn
.
initializer
.
Normal
(
mean
=
0.0
,
std
=
self
.
initializer_range
)),
bias_attr
=
None
,
mesh_idx
=
mesh_index
))
Decoder
=
TransformerDecoder
self
.
decoder
=
Decoder
(
decoder_layers
,
num_hidden_layers
,
norm
=
"LayerNorm"
,
hidden_size
=
hidden_size
)
self
.
decoder
=
Decoder
(
decoder_layers
,
num_hidden_layers
,
norm
=
"LayerNorm"
,
hidden_size
=
hidden_size
)
self
.
checkpoints
=
[]
def
forward
(
self
,
...
...
@@ -863,44 +858,44 @@ class GPTModel(nn.Layer):
past_length
=
0
if
cache
is
not
None
:
past_length
=
paddle
.
shape
(
cache
[
0
].
k
)[
-
2
]
position_ids
=
paddle
.
arange
(
past_length
,
paddle
.
shape
(
input_ids
)[
-
1
]
+
past_length
,
dtype
=
'int64'
)
position_ids
=
paddle
.
arange
(
past_length
,
paddle
.
shape
(
input_ids
)[
-
1
]
+
past_length
,
dtype
=
'int64'
)
position_ids
=
position_ids
.
unsqueeze
(
0
)
position_ids
=
paddle
.
fluid
.
layers
.
expand_as
(
position_ids
,
input_ids
)
embedding_output
=
self
.
embeddings
(
input_ids
=
input_ids
,
position_ids
=
position_ids
)
position_ids
=
paddle
.
fluid
.
layers
.
expand_as
(
position_ids
,
input_ids
)
embedding_output
=
self
.
embeddings
(
input_ids
=
input_ids
,
position_ids
=
position_ids
)
if
_global_parallel_strategy
==
"pp"
:
auto
.
shard_tensor
(
input_ids
,
dist_attr
=
{
"process_mesh"
:
PP_MESH_LIST
[
0
],
"dims_mapping"
:
[
-
1
for
i
in
range
(
len
(
input_ids
.
shape
))]
})
auto
.
shard_tensor
(
input_ids
,
dist_attr
=
{
"process_mesh"
:
PP_MESH_LIST
[
0
],
"dims_mapping"
:
[
-
1
for
i
in
range
(
len
(
input_ids
.
shape
))]
})
if
_global_parallel_strategy
==
"dp_pp"
:
auto
.
shard_tensor
(
input_ids
,
dist_attr
=
{
"process_mesh"
:
DPPP_MESH_LIST
[
0
],
"dims_mapping"
:
[
0
]
+
[
-
1
for
i
in
range
(
len
(
input_ids
.
shape
)
-
1
)]
})
auto
.
shard_tensor
(
input_ids
,
dist_attr
=
{
"process_mesh"
:
DPPP_MESH_LIST
[
0
],
"dims_mapping"
:
[
0
]
+
[
-
1
for
i
in
range
(
len
(
input_ids
.
shape
)
-
1
)]
})
if
_global_parallel_strategy
==
"dp_mp_pp"
:
auto
.
shard_tensor
(
input_ids
,
dist_attr
=
{
"process_mesh"
:
DPMPPP_MESH_LIST
[
0
],
"dims_mapping"
:
[
0
]
+
[
-
1
for
i
in
range
(
len
(
input_ids
.
shape
)
-
1
)]
})
encoder_outputs
=
self
.
decoder
(
embedding_output
,
memory
=
None
,
tgt_mask
=
attention_mask
,
use_cache
=
use_cache
,
cache
=
cache
)
auto
.
shard_tensor
(
input_ids
,
dist_attr
=
{
"process_mesh"
:
DPMPPP_MESH_LIST
[
0
],
"dims_mapping"
:
[
0
]
+
[
-
1
for
i
in
range
(
len
(
input_ids
.
shape
)
-
1
)]
})
encoder_outputs
=
self
.
decoder
(
embedding_output
,
memory
=
None
,
tgt_mask
=
attention_mask
,
use_cache
=
use_cache
,
cache
=
cache
)
self
.
checkpoints
.
extend
(
self
.
decoder
.
checkpoints
)
return
encoder_outputs
...
...
@@ -912,19 +907,19 @@ class GPTForPretraining(nn.Layer):
"""
def
__init__
(
self
,
gpt
,
vocab_size
=
50304
,
hidden_size
=
768
,
initializer_range
=
0.02
,
):
self
,
gpt
,
vocab_size
=
50304
,
hidden_size
=
768
,
initializer_range
=
0.02
,
):
super
(
GPTForPretraining
,
self
).
__init__
()
self
.
output_embeddings
=
nn
.
Embedding
(
vocab_size
,
hidden_size
,
weight_attr
=
paddle
.
ParamAttr
(
name
=
"output_embeddings"
,
initializer
=
nn
.
initializer
.
Normal
(
mean
=
0.0
,
std
=
initializer_range
)))
weight_attr
=
paddle
.
ParamAttr
(
name
=
"output_embeddings"
,
initializer
=
nn
.
initializer
.
Normal
(
mean
=
0.0
,
std
=
initializer_range
)))
self
.
gpt
=
gpt
def
forward
(
self
,
...
...
@@ -943,8 +938,9 @@ class GPTForPretraining(nn.Layer):
encoder_outputs
,
cached_kvs
=
outputs
[:
2
]
else
:
encoder_outputs
=
outputs
logits
=
paddle
.
matmul
(
encoder_outputs
,
self
.
output_embeddings
.
weight
,
transpose_y
=
True
)
logits
=
paddle
.
matmul
(
encoder_outputs
,
self
.
output_embeddings
.
weight
,
transpose_y
=
True
)
if
use_cache
:
return
logits
,
cached_kvs
else
:
...
...
python/paddle/fluid/tests/unittests/test_auto_parallel_reshard_mppp.py
浏览文件 @
30b66f03
...
...
@@ -38,6 +38,7 @@ PP_MESH_1 = auto.ProcessMesh([2, 3])
class
MLPLayer
(
nn
.
Layer
):
def
__init__
(
self
,
hidden_size
=
1024
,
intermediate_size
=
4
*
1024
,
...
...
@@ -45,42 +46,51 @@ class MLPLayer(nn.Layer):
super
(
MLPLayer
,
self
).
__init__
()
d_model
=
hidden_size
dim_feedforward
=
intermediate_size
weight_attr
=
paddle
.
ParamAttr
(
initializer
=
nn
.
initializer
.
Normal
(
mean
=
0.0
,
std
=
initializer_range
))
weight_attr
=
paddle
.
ParamAttr
(
initializer
=
nn
.
initializer
.
Normal
(
mean
=
0.0
,
std
=
initializer_range
))
bias_attr
=
None
self
.
word_embeddings
=
nn
.
Embedding
(
hidden_size
,
hidden_size
,
weight_attr
=
paddle
.
ParamAttr
(
name
=
"word_embeddings"
,
initializer
=
nn
.
initializer
.
Normal
(
mean
=
0.0
,
std
=
initializer_range
)))
self
.
linear0
=
nn
.
Linear
(
d_model
,
dim_feedforward
,
weight_attr
,
bias_attr
=
bias_attr
)
self
.
linear1
=
nn
.
Linear
(
dim_feedforward
,
d_model
,
weight_attr
,
bias_attr
=
bias_attr
)
self
.
linear2
=
nn
.
Linear
(
dim_feedforward
,
d_model
,
weight_attr
,
bias_attr
=
bias_attr
)
weight_attr
=
paddle
.
ParamAttr
(
name
=
"word_embeddings"
,
initializer
=
nn
.
initializer
.
Normal
(
mean
=
0.0
,
std
=
initializer_range
)))
self
.
linear0
=
nn
.
Linear
(
d_model
,
dim_feedforward
,
weight_attr
,
bias_attr
=
bias_attr
)
self
.
linear1
=
nn
.
Linear
(
dim_feedforward
,
d_model
,
weight_attr
,
bias_attr
=
bias_attr
)
self
.
linear2
=
nn
.
Linear
(
dim_feedforward
,
d_model
,
weight_attr
,
bias_attr
=
bias_attr
)
def
forward
(
self
,
input
):
auto
.
shard_tensor
(
self
.
word_embeddings
.
weight
,
dist_attr
=
{
"process_mesh"
:
PP_MESH_0
,
"dims_mapping"
:
[
0
,
-
1
]})
auto
.
shard_tensor
(
self
.
linear0
.
weight
,
dist_attr
=
{
"process_mesh"
:
PP_MESH_0
,
"dims_mapping"
:
[
-
1
,
0
]})
auto
.
shard_tensor
(
self
.
linear1
.
weight
,
dist_attr
=
{
"process_mesh"
:
PP_MESH_1
,
"dims_mapping"
:
[
0
,
-
1
]})
auto
.
shard_tensor
(
self
.
linear2
.
weight
,
dist_attr
=
{
"process_mesh"
:
PP_MESH_1
,
"dims_mapping"
:
[
0
,
-
1
]})
auto
.
shard_tensor
(
self
.
word_embeddings
.
weight
,
dist_attr
=
{
"process_mesh"
:
PP_MESH_0
,
"dims_mapping"
:
[
0
,
-
1
]
})
auto
.
shard_tensor
(
self
.
linear0
.
weight
,
dist_attr
=
{
"process_mesh"
:
PP_MESH_0
,
"dims_mapping"
:
[
-
1
,
0
]
})
auto
.
shard_tensor
(
self
.
linear1
.
weight
,
dist_attr
=
{
"process_mesh"
:
PP_MESH_1
,
"dims_mapping"
:
[
0
,
-
1
]
})
auto
.
shard_tensor
(
self
.
linear2
.
weight
,
dist_attr
=
{
"process_mesh"
:
PP_MESH_1
,
"dims_mapping"
:
[
0
,
-
1
]
})
w_out
=
self
.
word_embeddings
(
input
)
out
=
self
.
linear0
(
w_out
)
gelu_out
=
F
.
gelu
(
out
,
approximate
=
True
)
...
...
@@ -98,21 +108,24 @@ def mlp_forward(train_program, start_program):
hidden_size
=
1024
sequence_len
=
512
input
=
static
.
data
(
name
=
"input"
,
shape
=
[
batch_size
],
dtype
=
'int32'
)
label
=
static
.
data
(
name
=
"label"
,
shape
=
[
batch_size
,
1
],
dtype
=
'float32'
)
auto
.
shard_tensor
(
input
,
dist_attr
=
{
"process_mesh"
:
PP_MESH_0
,
"dims_mapping"
:
[
-
1
]})
auto
.
shard_tensor
(
label
,
dist_attr
=
{
"process_mesh"
:
PP_MESH_1
,
"dims_mapping"
:
[
-
1
,
-
1
]})
mlp
=
MLPLayer
(
hidden_size
=
hidden_size
,
intermediate_size
=
4
*
hidden_size
,
initializer_range
=
0.02
)
label
=
static
.
data
(
name
=
"label"
,
shape
=
[
batch_size
,
1
],
dtype
=
'float32'
)
auto
.
shard_tensor
(
input
,
dist_attr
=
{
"process_mesh"
:
PP_MESH_0
,
"dims_mapping"
:
[
-
1
]
})
auto
.
shard_tensor
(
label
,
dist_attr
=
{
"process_mesh"
:
PP_MESH_1
,
"dims_mapping"
:
[
-
1
,
-
1
]
})
mlp
=
MLPLayer
(
hidden_size
=
hidden_size
,
intermediate_size
=
4
*
hidden_size
,
initializer_range
=
0.02
)
predict
=
mlp
(
input
)
error_cost
=
paddle
.
nn
.
functional
.
square_error_cost
(
predict
,
label
)
...
...
@@ -137,13 +150,12 @@ def get_dist_prog(train_program, startup_program, dist_context, rank_id):
complete_train_program
=
completer
.
complete_forward_annotation
(
train_program
)
dist_context
.
block_state
.
parse_forward_blocks
(
complete_train_program
)
params_grads
=
parallelizer
.
_generate_backward
(
complete_train_program
,
startup_program
,
loss
,
parameter_list
=
None
,
no_grad_set
=
None
,
callbacks
=
None
)
params_grads
=
parallelizer
.
_generate_backward
(
complete_train_program
,
startup_program
,
loss
,
parameter_list
=
None
,
no_grad_set
=
None
,
callbacks
=
None
)
# logical partition
partitioner
=
Partitioner
(
dist_context
,
rank_id
)
...
...
@@ -171,8 +183,7 @@ def check_send_recv_result(dist_main_prog, rank_id):
if
op
.
type
==
"send_v2"
and
"gelu_0.tmp_0@GRAD"
in
op
.
input_arg_names
[
0
]:
send_result
=
True
if
op
.
type
==
"recv_v2"
and
"gelu_0.tmp_0"
in
op
.
output_arg_names
[
0
]:
if
op
.
type
==
"recv_v2"
and
"gelu_0.tmp_0"
in
op
.
output_arg_names
[
0
]:
recv_result
=
True
return
send_result
and
recv_result
...
...
@@ -206,6 +217,7 @@ def check_allgather(dist_main_program):
class
TestMLPReshard
(
unittest
.
TestCase
):
def
test_mlp_mppp
(
self
):
train_program
=
paddle
.
static
.
Program
()
startup_program
=
paddle
.
static
.
Program
()
...
...
@@ -230,38 +242,29 @@ class TestMLPReshard(unittest.TestCase):
process_mesh
=
auto
.
ProcessMesh
(
mesh
=
[
0
,
3
])
with
static
.
program_guard
(
train_program
,
startup_program
):
x
=
paddle
.
static
.
data
(
name
=
"x"
,
shape
=
[
4
,
4
],
dtype
=
'float32'
)
x
=
auto
.
shard_tensor
(
x
,
dist_attr
=
{
"process_mesh"
:
process_mesh
,
"dims_mapping"
:
[
0
,
-
1
]
})
x
=
auto
.
shard_tensor
(
x
,
dist_attr
=
{
"process_mesh"
:
process_mesh
,
"dims_mapping"
:
[
0
,
-
1
]
})
w
=
paddle
.
static
.
data
(
name
=
"w"
,
shape
=
[
4
,
4
],
dtype
=
'float32'
)
w
=
auto
.
shard_tensor
(
w
,
dist_attr
=
{
"process_mesh"
:
process_mesh
,
"dims_mapping"
:
[
-
1
,
-
1
]
})
# y = paddle.distributed.shard_op(paddle.matmul, process_mesh, {
# x.name: [-1, -1],
# w.name: [-1, -1]
# }, **{"x": x,
# "y": w})[0]
y
=
paddle
.
distributed
.
shard_op
(
paddle
.
matmul
,
dist_attr
=
{
"process_mesh"
:
process_mesh
,
x
:
{
"dims_mapping"
:
[
-
1
,
-
1
]
},
w
:
{
"dims_mapping"
:
[
-
1
,
-
1
]
}
})(
x
,
w
)[
0
]
w
=
auto
.
shard_tensor
(
w
,
dist_attr
=
{
"process_mesh"
:
process_mesh
,
"dims_mapping"
:
[
-
1
,
-
1
]
})
y
=
paddle
.
distributed
.
shard_op
(
paddle
.
matmul
,
dist_attr
=
{
"process_mesh"
:
process_mesh
,
x
:
{
"dims_mapping"
:
[
-
1
,
-
1
]
},
w
:
{
"dims_mapping"
:
[
-
1
,
-
1
]
}
})(
x
,
w
)
rank_id
=
0
dist_context
=
DistributedContext
()
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录