未验证 提交 2f9b5f23 编写于 作者: T tensor-tang 提交者: GitHub

Merge branch 'develop' into fea/jit/rnn

python/paddle/fluid/tests/unittests/reader_reset_test.recordio
paddle/operators/check_t.save
paddle/operators/check_tensor.ls
paddle/operators/tensor.save
......
......@@ -42,6 +42,7 @@
| QiJune | Jun Qi |
| qingqing01 | Qing-Qing Dang |
| reyoung | Yang Yu |
| Sand3r- | Michal Gallus |
| Superjom | Chun-Wei Yan |
| tensor-tang | Jian Tang |
| tianbingsz | Tian-Bing Xu |
......
......@@ -100,6 +100,7 @@ class OperatorBase {
const std::string& Type() const { return type_; }
bool HasAttr(const std::string& name) const { return attrs_.count(name); }
template <typename T>
inline const T& Attr(const std::string& name) const {
PADDLE_ENFORCE(attrs_.count(name) != 0, "%s should be in AttributeMap",
......
......@@ -7,16 +7,17 @@ set(analysis_deps # analysis_deps can be extended accross the project
add_subdirectory(ir_passes)
add_subdirectory(passes)
cc_library(ir_pass_manager SRCS ir_pass_manager.cc DEPS graph pass ${INFER_IR_PASSES})
cc_library(analysis_helper SRCS helper.cc DEPS framework_proto proto_desc graph paddle_fluid_api)
cc_library(ir_pass_manager SRCS ir_pass_manager.cc DEPS graph pass ${INFER_IR_PASSES} analysis_helper)
cc_library(argument SRCS argument.cc DEPS scope proto_desc)
cc_library(analysis_pass SRCS analysis_pass.cc DEPS proto_desc)
cc_library(analysis SRCS
analyzer.cc
helper.cc
analysis_pass
DEPS ${analysis_deps}
DEPS ${analysis_deps} analysis_helper
)
cc_test(test_dot SRCS dot_tester.cc DEPS analysis)
......
......@@ -30,6 +30,7 @@ TEST(Analyzer, analysis_without_tensorrt) {
Argument argument;
argument.SetModelDir(FLAGS_inference_model_dir);
argument.SetIrAnalysisPasses({"infer_clean_graph_pass"});
argument.SetUseGPU(false);
Analyzer analyser;
analyser.Run(&argument);
......@@ -41,6 +42,7 @@ TEST(Analyzer, analysis_with_tensorrt) {
argument.SetTensorRtWorkspaceSize(1 << 20);
argument.SetModelDir(FLAGS_inference_model_dir);
argument.SetIrAnalysisPasses({"infer_clean_graph_pass"});
argument.SetUseGPU(false);
Analyzer analyser;
analyser.Run(&argument);
......
......@@ -116,6 +116,7 @@ struct Argument {
std::vector<std::string>);
DECL_ARGUMENT_FIELD(use_gpu, UseGPU, bool);
DECL_ARGUMENT_FIELD(gpu_device_id, GPUDeviceId, int);
DECL_ARGUMENT_FIELD(use_tensorrt, UseTensorRT, bool);
DECL_ARGUMENT_FIELD(tensorrt_node_teller, TensorRtNodeTeller,
std::function<bool(const framework::ir::Node*)>);
......
......@@ -4,4 +4,6 @@ set(analysis_deps ${analysis_deps}
subgraph_detector tensorrt_subgraph_pass
CACHE INTERNAL "")
set(pass_file ${PADDLE_BINARY_DIR}/paddle/fluid/inference/api/paddle_inference_pass.h)
file(APPEND ${pass_file} "USE_PASS(tensorrt_subgraph_pass);\n")
set(INFER_IR_PASSES ${INFER_IR_PASSES} tensorrt_subgraph_pass CACHE INTERNAL "")
......@@ -30,15 +30,28 @@ void IrGraphBuildPass::RunImpl(Argument *argument) {
if (!argument->scope_valid()) {
argument->SetScope(new framework::Scope);
}
PADDLE_ENFORCE(argument->use_gpu_valid());
// The load program should run on the same device with the inference program,
// so that the parameters will on the same device, or they will keep copying
// between difference devices.
platform::Place place;
if (argument->use_gpu()) {
PADDLE_ENFORCE(argument->gpu_device_id_valid());
place = platform::CUDAPlace(argument->gpu_device_id());
} else {
place = platform::CPUPlace();
}
if (argument->model_dir_valid()) {
auto program = LoadModel(argument->model_dir(), argument->scope_ptr());
auto program =
LoadModel(argument->model_dir(), argument->scope_ptr(), place);
argument->SetMainProgram(program.release());
} else if (argument->model_program_path_valid() &&
argument->model_params_path_valid()) {
auto program =
LoadModel(argument->model_program_path(), argument->model_params_path(),
argument->scope_ptr());
argument->scope_ptr(), place);
argument->SetMainProgram(program.release());
} else {
PADDLE_THROW(
......@@ -52,16 +65,15 @@ void IrGraphBuildPass::RunImpl(Argument *argument) {
}
std::unique_ptr<framework::ProgramDesc> IrGraphBuildPass::LoadModel(
const std::string &path, framework::Scope *scope) {
platform::CPUPlace place;
const std::string &path, framework::Scope *scope,
const platform::Place &place) {
framework::Executor exe(place);
return Load(&exe, scope, path);
}
std::unique_ptr<framework::ProgramDesc> IrGraphBuildPass::LoadModel(
const std::string &program_path, const std::string &params_path,
framework::Scope *scope) {
platform::CPUPlace place;
framework::Scope *scope, const platform::Place &place) {
framework::Executor exe(place);
return Load(&exe, scope, program_path, params_path);
}
......
......@@ -17,6 +17,7 @@
#include <string>
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/inference/analysis/analysis_pass.h"
#include "paddle/fluid/platform/place.h"
namespace paddle {
namespace inference {
......@@ -32,11 +33,12 @@ class IrGraphBuildPass : public AnalysisPass {
std::string repr() const override;
private:
std::unique_ptr<framework::ProgramDesc> LoadModel(const std::string &path,
framework::Scope *scope);
std::unique_ptr<framework::ProgramDesc> LoadModel(
const std::string &path, framework::Scope *scope,
const platform::Place &place);
std::unique_ptr<framework::ProgramDesc> LoadModel(
const std::string &program_path, const std::string &params_path,
framework::Scope *scope);
framework::Scope *scope, const platform::Place &place);
std::string model_binary_str_;
};
......
......@@ -27,11 +27,10 @@ endif()
cc_library(reset_tensor_array SRCS details/reset_tensor_array.cc DEPS lod_tensor scope)
cc_library(analysis_config SRCS analysis_config.cc DEPS lod_tensor paddle_pass_builder)
cc_library(paddle_pass_builder SRCS paddle_pass_builder.cc)
cc_library(paddle_inference_api SRCS api.cc api_impl.cc helper.cc DEPS lod_tensor scope paddle_pass_builder reset_tensor_array analysis_config analysis_config paddle_pass_builder)
cc_library(analysis_predictor SRCS analysis_predictor.cc DEPS paddle_inference_api analysis naive_executor zero_copy_tensor reset_tensor_array analysis_config paddle_pass_builder)
cc_library(zero_copy_tensor SRCS details/zero_copy_tensor.cc DEPS paddle_inference_api)
cc_library(zero_copy_tensor_dummy SRCS details/zero_copy_tensor_dummy.cc DEPS paddle_inference_api)
cc_library(analysis_predictor SRCS analysis_predictor.cc DEPS paddle_inference_api analysis naive_executor zero_copy_tensor reset_tensor_array analysis_config paddle_pass_builder ir_pass_manager)
cc_library(zero_copy_tensor SRCS details/zero_copy_tensor.cc DEPS scope lod_tensor enforce)
cc_library(zero_copy_tensor_dummy SRCS details/zero_copy_tensor_dummy.cc)
cc_library(paddle_inference_api SRCS api.cc api_impl.cc helper.cc DEPS lod_tensor scope paddle_pass_builder reset_tensor_array analysis_config analysis_config paddle_pass_builder DEPS zero_copy_tensor)
cc_test(test_paddle_inference_api
SRCS api_tester.cc
......
......@@ -285,6 +285,7 @@ void AnalysisPredictor::OptimizeInferenceProgram() {
status_program_optimized_ = true;
argument_.SetUseGPU(config_.use_gpu);
argument_.SetGPUDeviceId(config_.device);
// Analyze inference_program
if (!config_.model_dir.empty()) {
argument_.SetModelDir(config_.model_dir);
......@@ -491,8 +492,7 @@ bool AnalysisPredictor::LoadParameters() {
}
// Use NaiveExecutor to Load parameters.
platform::CPUPlace place;
framework::NaiveExecutor e(place);
framework::NaiveExecutor e(place_);
e.Prepare(scope_.get(), *load_program, 0, false);
e.Run();
VLOG(3) << "get " << scope_->LocalVarNames().size() << " vars after load";
......
......@@ -116,8 +116,12 @@ class CpuPassStrategy : public PassStrategy {
class GpuPassStrategy : public PassStrategy {
public:
GpuPassStrategy() : PassStrategy({}) {
// TODO(NHZlX) Problem with Data synchronization between GPU and CPU
// When running in GPU mode, the parameters are all on GPU. But the
// opearations of "conv_bn_fuse_pass" are on CPU.
passes_.assign({
"infer_clean_graph_pass", "conv_bn_fuse_pass",
"infer_clean_graph_pass",
// "infer_clean_graph_pass", "conv_bn_fuse_pass",
});
}
......
set(INFERENCE_EXTRA_DEPS paddle_inference_api paddle_fluid_api ir_pass_manager analysis_predictor)
if(WITH_GPU AND TENSORRT_FOUND)
set(INFERENCE_EXTRA_DEPS ${INFERENCE_EXTRA_DEPS} analysis ${analysis_deps} ir_pass_manager analysis_predictor)
endif()
function(download_model install_dir model_name)
if (NOT EXISTS ${install_dir})
inference_download_and_uncompress(${install_dir} ${INFERENCE_URL} ${model_name})
......@@ -109,6 +113,6 @@ if(WITH_GPU AND TENSORRT_FOUND)
inference_download_and_uncompress(${TRT_MODEL_INSTALL_DIR} ${INFERENCE_URL}/tensorrt_test "trt_test_models.tar.gz")
endif()
inference_analysis_test(test_trt_models SRCS trt_models_tester.cc
EXTRA_DEPS ${INFERENCE_EXTRA_DEPS} analysis ${analysis_deps} ir_pass_manager analysis_predictor
EXTRA_DEPS ${INFERENCE_EXTRA_DEPS}
ARGS --infer_model=${TRT_MODEL_INSTALL_DIR}/trt_test_models SERIAL)
endif()
......@@ -222,7 +222,23 @@ void TestMultiThreadPrediction(
// The inputs of each thread are all the same.
std::vector<PaddleTensor> outputs_tid;
auto &predictor = predictors[tid];
LOG(INFO) << "running thread " << tid;
// warmup run
LOG(INFO) << "Running thread " << tid << ", warm up run...";
{
Timer warmup_timer;
warmup_timer.tic();
predictor->Run(inputs[0], outputs, batch_size);
PrintTime(batch_size, 1, num_threads, tid, warmup_timer.toc(), 1);
#if !defined(_WIN32)
if (FLAGS_profile) {
paddle::platform::ResetProfiler();
}
#endif
}
LOG(INFO) << "Thread " << tid << " run " << num_times << " times...";
{
Timer timer;
timer.tic();
for (int i = 0; i < num_times; i++) {
......@@ -235,6 +251,7 @@ void TestMultiThreadPrediction(
total_time += time;
PrintTime(batch_size, num_times, num_threads, tid, time / num_times,
inputs.size());
}
});
}
for (int i = 0; i < num_threads; ++i) {
......
......@@ -145,5 +145,3 @@ TEST(TensorRT_mobilenet, analysis) {
} // namespace inference
} // namespace paddle
USE_PASS(tensorrt_subgraph_pass);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <mkldnn/include/mkldnn.hpp>
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
#include "paddle/fluid/platform/mkldnn_helper.h"
#include "paddle/fluid/operators/math/jit_kernel.h"
#include "xbyak.h"
#include "xbyak_util.h"
namespace paddle {
namespace operators {
using framework::DataLayout;
using mkldnn::memory;
static mkldnn::memory::format StringToMKLDNNFormat(std::string& format) {
std::transform(format.begin(), format.end(), format.begin(), ::tolower);
if (!format.compare("nchw")) {
return memory::format::nchw;
} else if (!format.compare("nchw16c")) {
return memory::format::nChw16c;
} else if (!format.compare("nchw8c")) {
return memory::format::nChw8c;
} else if (!format.compare("nhwc")) {
return memory::format::nhwc;
} else {
return memory::format::any;
}
}
static void UpdateDataFormat(const framework::ExecutionContext& ctx,
framework::Tensor* tensor, const char* attribute) {
if (ctx.op().HasAttr(attribute)) {
auto format_as_string = ctx.Attr<std::string>(attribute);
auto format = StringToMKLDNNFormat(format_as_string);
if (format != memory::format::any) {
tensor->set_format(format);
}
}
}
template <typename T>
static void ReorderInput(framework::Tensor* tensor,
const platform::Place& place,
const mkldnn::engine& engine, bool isFourDim) {
using platform::to_void_cast;
auto dims = paddle::framework::vectorize2int(tensor->dims());
framework::Tensor out_tensor;
out_tensor.Resize(tensor->dims());
out_tensor.set_format(isFourDim ? memory::format::nchw : memory::format::nc);
out_tensor.set_layout(tensor->layout());
mkldnn::memory input_memory = {
{{dims, platform::MKLDNNGetDataType<T>(), tensor->format()}, engine},
to_void_cast<T>(tensor->data<T>())};
mkldnn::memory output_memory = {
{{dims, platform::MKLDNNGetDataType<T>(), out_tensor.format()}, engine},
to_void_cast<T>(out_tensor.mutable_data<T>(place))};
platform::Reorder(input_memory, output_memory);
tensor->ShareDataWith(out_tensor);
}
template <typename T>
class ElementwiseMulMKLDNNKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
using Tensor = framework::Tensor;
int axis = ctx.Attr<int>("axis");
auto* x = ctx.Input<Tensor>("X");
auto* y = ctx.Input<Tensor>("Y");
auto* z = ctx.Output<Tensor>("Out");
const T* x_data = x->data<T>();
const T* y_data = y->data<T>();
T* z_data = z->mutable_data<T>(ctx.GetPlace());
auto x_dims = x->dims();
auto y_dims_untrimmed = y->dims();
auto x_int_dims = paddle::framework::vectorize2int(x_dims);
UpdateDataFormat(ctx, (Tensor*)x, "x_data_format");
UpdateDataFormat(ctx, (Tensor*)y, "y_data_format");
Xbyak::util::Cpu cpu;
const bool is_avx512_enabled = cpu.has(Xbyak::util::Cpu::tAVX512F);
const bool are_dims_divisable = !(x_int_dims[1] % 16);
const bool is_x_format_correct = x->format() == memory::format::nChw16c;
const bool is_y_format_correct = y->format() == memory::format::nc;
if (is_x_format_correct && is_y_format_correct && are_dims_divisable &&
is_avx512_enabled) {
int pre, n, post;
get_mid_dims(x_dims, y_dims_untrimmed, axis, &pre, &n, &post);
if (post == 1) {
PADDLE_THROW("Not implemented when post is 1");
} else {
// Just check whether it works for RE-Resnext.
PADDLE_ENFORCE_EQ(x_dims.size(), 4, "X should have 4 dimensions");
int n = x_dims[0];
int c = x_dims[1];
int h = x_dims[2];
int w = x_dims[3];
PADDLE_ENFORCE(y_dims_untrimmed[0] == n && y_dims_untrimmed[1] == c,
"Y should be in nc format");
constexpr int simd_width = 16;
int C = c / simd_width;
const auto& multiply =
math::jitkernel::KernelPool::Instance()
.template Get<math::jitkernel::EltwiseMulnChw16cNCKernel<T>>(n);
#pragma omp parallel for collapse(2)
for (int ni = 0; ni < n; ni++) {
for (int ci = 0; ci < C; ci++) {
auto ptr_x =
x_data + ni * C * h * w * simd_width + ci * h * w * simd_width;
auto ptr_y = y_data + ni * C * simd_width + ci * simd_width;
auto ptr_z =
z_data + ni * C * h * w * simd_width + ci * h * w * simd_width;
multiply->Compute(ptr_x, ptr_y, ptr_z, h, w);
}
}
}
z->set_layout(DataLayout::kMKLDNN);
z->set_format(x->format());
} else {
// Fallback to naive version:
const bool are_inputs_in_same_format = x->format() == y->format();
const bool is_x_nchw = x->format() == memory::format::nchw;
const bool is_x_nc = x->format() == memory::format::nc;
const bool is_y_nchw = y->format() == memory::format::nchw;
const bool is_y_nc = y->format() == memory::format::nc;
if (!are_inputs_in_same_format) {
using platform::MKLDNNDeviceContext;
auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
const auto& mkldnn_engine = dev_ctx.GetEngine();
if (!(is_x_nchw || is_x_nc))
ReorderInput<T>((Tensor*)x, ctx.GetPlace(), mkldnn_engine,
x->dims().size() == 4);
if (!(is_y_nchw || is_y_nc))
ReorderInput<T>((Tensor*)y, ctx.GetPlace(), mkldnn_engine,
y->dims().size() == 4);
}
auto mul_func = [](T a, T b) -> T { return a * b; };
TransformFunctor<decltype(mul_func), T,
paddle::platform::CPUDeviceContext, T>
functor(
x, y, z,
ctx.template device_context<paddle::platform::CPUDeviceContext>(),
mul_func);
axis = (axis == -1 ? x_dims.size() - y_dims_untrimmed.size() : axis);
PADDLE_ENFORCE(axis >= 0 && axis < x_dims.size(),
"Axis should be in range [0, x_dims)");
auto y_dims = trim_trailing_singular_dims(y_dims_untrimmed);
axis = (y_dims.size() == 0) ? x_dims.size() : axis;
int pre, n, post;
get_mid_dims(x_dims, y_dims, axis, &pre, &n, &post);
if (post == 1) {
functor.RunRowWise(n, pre);
} else {
functor.RunMidWise(n, pre, post);
}
z->set_layout(DataLayout::kMKLDNN);
z->set_format(x->format());
}
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_KERNEL(elementwise_mul, MKLDNN, ::paddle::platform::CPUPlace,
ops::ElementwiseMulMKLDNNKernel<float>)
......@@ -97,6 +97,20 @@ class ElementwiseOpMaker : public framework::OpProtoAndCheckerMaker {
.EqualGreaterThan(-1);
AddAttr<bool>("use_mkldnn", "(bool, default false). Used by MKLDNN.")
.SetDefault(false);
AddAttr<std::string>(
"x_data_format",
"(string, default NCHW) Only used in mkldnn"
"An optional string from: \"NHWC\", \"NCHW\", \"NCHW16C\", \"NCHW8C\". "
"Defaults to \"\". Specify the data format of the output data, "
"the input will be transformed automatically. ")
.SetDefault("");
AddAttr<std::string>(
"y_data_format",
"(string, default \"\") Only used in mkldnn"
"An optional string from: \"NHWC\", \"NCHW\", \"NCHW16C\", \"NCHW8C\". "
"Defaults to \"\". Specify the data format of the output data, "
"the input will be transformed automatically. ")
.SetDefault("");
AddComment(string::Sprintf(R"DOC(
Elementwise %s Operator
......
......@@ -408,6 +408,42 @@ class LSTMJitCode : public VActJitCode {
}
};
#ifdef PADDLE_WITH_MKLDNN
struct EltwiseMulnChw16cNC : public Xbyak::CodeGenerator {
explicit EltwiseMulnChw16cNC(size_t code_size = 256 * 1024)
: Xbyak::CodeGenerator(code_size) {
// RDI is ptr x_input
// RSI is ptr y_input
// RDX is ptr output
// RCX is height
// r8 is width
push(rbx);
xor_(rax, rax);
xor_(r10, r10);
vmovups(zmm3, ptr[rsi]);
L("h_loop");
xor_(rbx, rbx);
L("w_loop");
vmovups(zmm2, ptr[rdi + rax]);
vmulps(zmm1, zmm2, zmm3);
vmovups(ptr[rdx + rax], zmm1);
add(rax, 64);
inc(rbx);
cmp(r8, rbx);
jnz("w_loop");
inc(r10);
cmp(r10, rcx);
jnz("h_loop");
pop(rbx);
ret();
}
};
#endif
} // namespace gen
} // namespace jitkernel
} // namespace math
......
......@@ -89,6 +89,15 @@ class VAddBiasKernel : public Kernel {
void (*Compute)(const T *, const T *, T *, int);
};
#ifdef PADDLE_WITH_MKLDNN
template <typename T>
class EltwiseMulnChw16cNCKernel : public Kernel {
public:
// nChw16c = nChw16c .* NC
void (*Compute)(const float *, const float *, float *, int, int);
};
#endif
template <typename T>
class VActKernel : public Kernel {
public:
......
......@@ -184,6 +184,44 @@ bool VAddKernelImpl<double>::useMKL(int d) {
}
#endif
#ifdef PADDLE_WITH_MKLDNN
/* EltwiseMul for nChw16c & NC inputs JitKernel */
template <typename T>
class EltwiseMulnChw16cNCKernelImpl
: public math::jitkernel::EltwiseMulnChw16cNCKernel<T> {
public:
JITKERNEL_DECLARE_STATIC_FUNC;
explicit EltwiseMulnChw16cNCKernelImpl(int d)
: EltwiseMulnChw16cNCKernel<T>() {
using mul_func_t = void (*)(const float*, const float*, float*, int, int);
#ifdef PADDLE_WITH_XBYAK
if (useJIT(d)) {
// roughly estimate the size of code
size_t sz = 96 + d / YMM_FLOAT_BLOCK * 4 * 8;
sz = sz > 4096 ? sz : 4096;
jitcode_.reset(new gen::EltwiseMulnChw16cNC(sz));
this->Compute = (mul_func_t)jitcode_->getCode();
return;
}
#endif
PADDLE_THROW(
"This kernel shouldn't be used in Non-Xbyak, Non-MKL-DNN "
"environemnt");
}
#ifdef PADDLE_WITH_XBYAK
private:
std::unique_ptr<gen::EltwiseMulnChw16cNC> jitcode_{nullptr};
};
template <>
bool EltwiseMulnChw16cNCKernelImpl<float>::useJIT(int d) {
return true;
}
#endif
#endif
/* VAddRelu JitKernel */
template <typename T>
class VAddReluKernelImpl : public VAddReluKernel<T> {
......@@ -349,6 +387,9 @@ REGISTER_JITKERNEL(vscal, VScalKernel);
REGISTER_JITKERNEL(vaddbias, VAddBiasKernel);
REGISTER_JITKERNEL(vrelu, VReluKernel);
REGISTER_JITKERNEL(videntity, VIdentityKernel);
#ifdef PADDLE_WITH_MKLDNN
REGISTER_JITKERNEL(eltwise_mul_nchw16c, EltwiseMulnChw16cNCKernel);
#endif
} // namespace jitkernel
} // namespace math
......
......@@ -359,6 +359,9 @@ All parameter, weight, gradient are variables in Paddle.
return self.GetMutable<platform::Communicator>();
},
py::return_value_policy::reference)
#endif
#ifndef _WIN32
.def("get_reader",
[](Variable &self) -> framework::ReaderHolder * {
PADDLE_ENFORCE(self.IsType<framework::ReaderHolder>());
......@@ -366,7 +369,7 @@ All parameter, weight, gradient are variables in Paddle.
},
py::return_value_policy::reference)
#endif
;
; // NOLINT
#if !defined(_WIN32)
py::class_<framework::ReaderHolder>(m, "Reader", "")
......
......@@ -362,7 +362,9 @@ class OpTest(unittest.TestCase):
else:
return []
places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda() and core.op_support_gpu(self.op_type):
cpu_only = self._cpu_only if hasattr(self, '_cpu_only') else False
if core.is_compiled_with_cuda() and core.op_support_gpu(self.op_type)\
and not cpu_only:
places.append(core.CUDAPlace(0))
return places
......
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
from op_test import OpTest
import paddle.fluid.core as core
from paddle.fluid.op import Operator
from test_elementwise_mul_op import *
class TestElementwiseMulMKLDNNOp_BroadcastNCHW16c(ElementwiseMulOp):
def init_input_output(self):
x = np.random.rand(1, 16, 2, 2).astype(self.dtype)
self.x = x.transpose(0, 2, 3, 1).reshape(1, 16, 2, 2)
self.y = np.random.rand(1, 16).astype(self.dtype)
self.out = x * self.y.reshape(1, 16, 1, 1)
self.out = self.out.transpose(0, 2, 3, 1).reshape(1, 16, 2, 2)
def setUp(self):
super(TestElementwiseMulMKLDNNOp_BroadcastNCHW16c, self).setUp()
self.attrs["x_data_format"] = "nchw16c"
self.attrs["y_data_format"] = "nc"
self._cpu_only = True
def init_kernel_type(self):
self.use_mkldnn = True
def init_axis(self):
self.axis = 0
def test_check_grad_normal(self):
pass
def test_check_grad_ingore_x(self):
pass
def test_check_grad_ingore_y(self):
pass
@unittest.skip(
"Not implemented yet.") # TODO(mgallus): enable when implemented.
class TestElementwiseMulMKLDNNOp_BroadcastNCHW8c(ElementwiseMulOp):
def init_input_output(self):
x = np.random.rand(1, 8, 2, 2).astype(self.dtype)
self.x = x.transpose(0, 2, 3, 1).reshape(1, 8, 2, 2)
self.y = np.random.rand(1, 8).astype(self.dtype)
self.out = x * self.y.reshape(1, 8, 1, 1)
self.out = self.out.transpose(0, 2, 3, 1).reshape(1, 8, 2, 2)
def setUp(self):
super(TestElementwiseMulMKLDNNOp_BroadcastNCHW8c, self).setUp()
self.attrs["x_data_format"] = "nchw8c"
self.attrs["y_data_format"] = "nc"
self._cpu_only = True
def init_kernel_type(self):
self.use_mkldnn = True
def init_axis(self):
self.axis = 0
def test_check_grad_normal(self):
pass
def test_check_grad_ingore_x(self):
pass
def test_check_grad_ingore_y(self):
pass
class TestElementwiseMulMKLDNNOp_FallbackNCHW(ElementwiseMulOp):
def init_input_output(self):
self.x = np.random.rand(1, 16, 2, 2).astype(self.dtype)
self.y = np.random.rand(1, 16).astype(self.dtype)
self.out = self.x * self.y.reshape(1, 16, 1, 1)
def init_kernel_type(self):
self.use_mkldnn = True
def init_axis(self):
self.axis = 0
def test_check_grad_normal(self):
pass
def test_check_grad_ingore_x(self):
pass
def test_check_grad_ingore_y(self):
pass
class TestElementwiseMulMKLDNNOp_FallbackNCHW16C(ElementwiseMulOp):
def init_input_output(self):
x = np.random.rand(1, 16, 2, 2).astype(self.dtype)
self.x = x.transpose(0, 2, 3, 1).reshape(1, 16, 2, 2)
y = np.random.rand(1, 16, 2, 2).astype(self.dtype)
self.y = y.transpose(0, 2, 3, 1).reshape(1, 16, 2, 2)
self.out = self.x * self.y
def setUp(self):
super(TestElementwiseMulMKLDNNOp_FallbackNCHW16C, self).setUp()
self.attrs["x_data_format"] = "nchw16c"
self.attrs["y_data_format"] = "nchw16c"
self._cpu_only = True
def init_kernel_type(self):
self.use_mkldnn = True
def init_axis(self):
self.axis = 0
def test_check_grad_normal(self):
pass
def test_check_grad_ingore_x(self):
pass
def test_check_grad_ingore_y(self):
pass
class TestElementwiseMulMKLDNNOp_FallbackNoReorders(ElementwiseMulOp):
def init_input_output(self):
x = np.random.rand(1, 16, 2, 2).astype(self.dtype)
self.x = x.transpose(0, 2, 3, 1).reshape(1, 16, 2, 2)
y = np.random.rand(1, 16, 2, 2).astype(self.dtype)
self.y = y.transpose(0, 2, 3, 1).reshape(1, 16, 2, 2)
self.out = self.x * self.y
def setUp(self):
super(TestElementwiseMulMKLDNNOp_FallbackNoReorders, self).setUp()
self.attrs["x_data_format"] = "nchw16c"
self.attrs["y_data_format"] = "nchw16c"
self._cpu_only = True
def init_kernel_type(self):
self.use_mkldnn = True
def init_axis(self):
self.axis = 0
def test_check_grad_normal(self):
pass
def test_check_grad_ingore_x(self):
pass
def test_check_grad_ingore_y(self):
pass
class TestElementwiseMulMKLDNNOp_FallbackWithReorder1(ElementwiseMulOp):
def init_input_output(self):
self.x = np.random.rand(1, 16, 2, 2).astype(self.dtype)
y = np.random.rand(1, 16, 2, 2).astype(self.dtype)
self.y = y.transpose(0, 2, 3, 1).reshape(1, 16, 2, 2)
self.out = self.x * y
def setUp(self):
super(TestElementwiseMulMKLDNNOp_FallbackWithReorder1, self).setUp()
self.attrs["x_data_format"] = "nchw"
self.attrs["y_data_format"] = "nchw16c"
self._cpu_only = True
def init_kernel_type(self):
self.use_mkldnn = True
def init_axis(self):
self.axis = 0
def test_check_grad_normal(self):
pass
def test_check_grad_ingore_x(self):
pass
def test_check_grad_ingore_y(self):
pass
class TestElementwiseMulMKLDNNOp_FallbackWithReorder2(ElementwiseMulOp):
def init_input_output(self):
self.y = np.random.rand(1, 16, 2, 2).astype(self.dtype)
x = np.random.rand(1, 16, 2, 2).astype(self.dtype)
self.x = x.transpose(0, 2, 3, 1).reshape(1, 16, 2, 2)
self.out = x * self.y
def setUp(self):
super(TestElementwiseMulMKLDNNOp_FallbackWithReorder2, self).setUp()
self.attrs["x_data_format"] = "nchw16c"
self.attrs["y_data_format"] = "nchw"
self._cpu_only = True
def init_kernel_type(self):
self.use_mkldnn = True
def init_axis(self):
self.axis = 0
def test_check_grad_normal(self):
pass
def test_check_grad_ingore_x(self):
pass
def test_check_grad_ingore_y(self):
pass
class TestElementwiseMulMKLDNNOp_FallbackNoReorders2(ElementwiseMulOp):
def init_input_output(self):
self.x = np.random.rand(1, 16).astype(self.dtype)
self.y = np.random.rand(1, 16).astype(self.dtype)
self.out = self.x * self.y
def setUp(self):
super(TestElementwiseMulMKLDNNOp_FallbackNoReorders2, self).setUp()
self.attrs["x_data_format"] = "nc"
self.attrs["y_data_format"] = "nc"
self._cpu_only = True
def init_kernel_type(self):
self.use_mkldnn = True
def init_axis(self):
self.axis = 0
def test_check_grad_normal(self):
pass
def test_check_grad_ingore_x(self):
pass
def test_check_grad_ingore_y(self):
pass
if __name__ == '__main__':
unittest.main()
......@@ -21,13 +21,24 @@ from paddle.fluid.op import Operator
class ElementwiseMulOp(OpTest):
def init_kernel_type(self):
self.use_mkldnn = False
def setUp(self):
self.op_type = "elementwise_mul"
self.dtype = np.float32
self.axis = -1
self.init_dtype()
self.init_input_output()
self.init_kernel_type()
self.init_axis()
self.inputs = {
'X': np.random.uniform(0.1, 1, [13, 17]).astype("float64"),
'Y': np.random.uniform(0.1, 1, [13, 17]).astype("float64")
'X': OpTest.np_dtype_to_fluid_dtype(self.x),
'Y': OpTest.np_dtype_to_fluid_dtype(self.y)
}
self.outputs = {'Out': np.multiply(self.inputs['X'], self.inputs['Y'])}
self.outputs = {'Out': self.out}
self.attrs = {'axis': self.axis, 'use_mkldnn': self.use_mkldnn}
def test_check_output(self):
self.check_output()
......@@ -41,6 +52,17 @@ class ElementwiseMulOp(OpTest):
def test_check_grad_ingore_y(self):
self.check_grad(['X'], 'Out', no_grad_set=set('Y'))
def init_input_output(self):
self.x = np.random.uniform(0.1, 1, [13, 17]).astype(self.dtype)
self.y = np.random.uniform(0.1, 1, [13, 17]).astype(self.dtype)
self.out = np.multiply(self.x, self.y)
def init_dtype(self):
pass
def init_axis(self):
pass
class TestElementwiseMulOp_scalar(ElementwiseMulOp):
def setUp(self):
......@@ -63,17 +85,13 @@ class TestElementwiseMulOp_Vector(ElementwiseMulOp):
class TestElementwiseMulOp_broadcast_0(ElementwiseMulOp):
def setUp(self):
self.op_type = "elementwise_mul"
self.inputs = {
'X': np.random.rand(2, 3, 4).astype(np.float64),
'Y': np.random.rand(2).astype(np.float64)
}
def init_input_output(self):
self.x = np.random.rand(2, 3, 4).astype(self.dtype)
self.y = np.random.rand(2).astype(self.dtype)
self.out = self.x * self.y.reshape(2, 1, 1)
self.attrs = {'axis': 0}
self.outputs = {
'Out': self.inputs['X'] * self.inputs['Y'].reshape(2, 1, 1)
}
def init_axis(self):
self.axis = 0
class TestElementwiseMulOp_broadcast_1(ElementwiseMulOp):
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册